

Ana Rita Palmeiro Lobato

Licenciada em Ciências de Engenharia

ARGAMASSAS DE CAIS NHL2 E AÉREA A INFLUÊNCIA DOS AGREGADOS

Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Construção

Orientador: Maria Paulina Faria Rodrigues, Professora Associada, Faculdade

de Ciências e Tecnologia da Universidade Nova de Lisboa

Co-orientador: Vasco Nunes da Ponte Moreira Rato, Professor Auxiliar, ISCTE –

Instituto Universitário de Lisboa

Júri:

Presidente: Professor Doutor Rodrigo Gonçalves

Arguente: Doutora Maria do Rosário Veiga

Vogal: Professora Doutora Maria Paulina Faria Rodrigues

Argamassas de cais NHL2 e aérea. A influência dos agregados Copyright © Ana Rita Palmeiro Lobato Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor

Agradecimentos

Agradecimento especial à Professora Doutora Paulina Faria e ao Professor Doutor Vasco Rato, pela orientação deste trabalho, pela sua disponibilidade, apoio e por permitir que a minha tese seja de um tema que eu sempre quis estudar.

Ao Mestre. Vítor Silva pelo apoio incansável no laboratório, pela amizade e orientação do caminho quando os acontecimentos nem sempre corriam como o esperado.

À SECIL pela disponibilização da cal NHL2 e da sua composição química.

Aos colegas de laboratório Diogo, João, Rui e Flávio pela ajuda no trabalho e companheirismo. Sem eles as horas passadas no laboratório teriam sido monótonas e por vezes penosas.

Aos meus amigos da faculdade e aos meus amigos de infância que sempre estiveram no meu crescimento, em especial à Francisca e ao Miguel que são mais que amigos, são como família.

Ao Gonçalo pela ajuda, paciência e carinho presentes em todos os momentos. Se não fosse ele a puxar-me e colocar os meus pés no chão o caminho teria sido muito mais complicado. ©

E sobretudo aos meus pais e irmão que me ensinaram os maiores valores da vida e s.empre me deixaram seguir os meus sonhos. E felizmente consegui realizar um dos seu sonhos, ter um filho com um curso superior.

Resumo

Resumo

O crescimento do mercado da reabilitação de edifícios torna importante o estudo de materiais que

sejam adequados para este tipo de obras. Essencialmente devido a questões de compatibilidade, as

cais de construção estão de novo a ser utilizadas em algumas obras em edifícios antigos.

Neste trabalho, estudaram-se argamassas com base numa cal hidráulica natural NHL2, classificada

segundo a última versão da norma NP EN 459-1:2011, que foi recentemente lançada no mercado, e

compararam-se com argamassas com base em cal aérea CL90 (com características conhecidas),

ambas de produção nacional e classificadas segundo essa norma.

Para além do ligante, o agregado, e nomeadamente a sua distribuição granulométrica, também

desempenha um papel muito importante nas características das argamassas. Neste trabalho

utilizou-se como agregado silicioso uma areia fina, uma areia grossa e uma areia resultante de

mistura e com distribuição granulométrica semelhante à da areia CEN de referência. Assim, o

objectivo desta dissertação foi essencialmente conhecer o comportamento físico e mecânico das

argamassas, e a forma como o tipo de ligante (fracamente hidráulico ou aéreo) e a granulometria

das areias o influencia.

Produziram-se e caracterizaram-se, no estado fresco e endurecido, aos 28 e aos 90 dias, seis

composições de argamassas ao traço 1:3 de NHL2 e de CL90 com as três granulometrias distintas de

agregados.

Os resultados obtidos mostram que as argamassas de NHL2 apresentam grandes poros esféricos,

característicos dos ligante hidráulicos, e grandes poros-fissura, característicos dos ligantes aéreos; a

existência deste dois tipos de poros provoca uma tendência de redução dos parâmetros mecânicos

com a progressão da cura e maiores valores de porosidade aberta em relação às argamassas CL. As

argamassas produzidas com a mistura de areias obtiveram resistências mecânicas mais elevadas,

menor porosidade e melhor comportamento em relação à água que as argamassas produzidas com

areias monogranulares.

Termos chave: Cal Hidráulica Natural; Cal Aérea Hidratada; Agregado; Granulometria; Argamassa.

I

Abstract

As the market for the rehabilitation of buildings grows it becomes more important to study materials that provide a more suitable solution for this kind of work. Mostly due to compatibility issues, limes are, once again, being used in some construction work in older buildings.

This thesis studies the comparison between mortars based on an hydraulic natural lime NHL2 – classified according to the latest version of NP EN 459-1:2011, which was recently released on the market – and mortars based on an air lime CL90 (with known characteristics), both made in Portugal and classified according to regulation.

In addition, the aggregate, more specifically its grain size, also plays an important role in the mortar's characteristics. In this study, a fine sand, a course sand and a mixture of sands with a grain size distribution similar to the CEN sand, were used as a siliceous aggregate. Thus, the objective of this dissertation was to learn the physical and mechanical behavior of the mortars, and the way the binder (feebly hydraulic and air) and the sand's grain size affects them.

Six different composition of mortar, with a volumetric trace of 1:3 of NHL2 and CL90 with three different aggregate's grain sizes, were produced and characterized, in both fresh and hardened state, at the age of 28 and 90 days,.

The results show that the NHL2 mortar exhibits big spherical pores, usually observed in hydraulic binders, and big pore-fissure, usually observed in air binders. The existence of these two sorts of pores causes a reduction of the mechanical capabilities as long as the cure processes as well as higher values of open porosity in comparison to CL mortars. The mortars produced with the mixture of sand similar to the CEN sand attained higher mechanical resistances, lesser porosity and a better behavior to water in comparison to mortars produced with a single grain size sand.

Key words: Natural Hydraulic Lime; Hydrated Air Lime; Aggregate; Grain-size Distribution; Mortar.

Índice geral

1	Int	rodução	1
	1.1	Enquadramento e motivações	1
	1.2	Objetivos	2
	1.3	Estrutura e organização do texto	2
2	Arg	gamassas de cal	5
_	2.1	Argamassas de substituição	
	2.2	Matérias-primas das argamassas à base de cal	
	2.2.		
	2.2.		
	2.2.		
	2.3	Microestrutura das argamassas de cal	
	2.3.		
	2.3.		
	2.3.	•	
	2.4	A influência dos agregados nas argamassas	
	2.4.		.12
		ado fresco	12
	2.4.		
		ado fresco	. 12
	2.4.		
		ado endurecido	. 13
	2.4.		
		ado endurecido	.13
	2.4.		. 10
		lurecido	. 15
	2.5	Síntese	
_			
3		mpanha experimental e resultados	
	3.1	Matérias-primas e sua caracterização	
	3.1.		
	3.1.		
	3.1.	Ü	
	3.1.		
	3.1.		
	3.1.	.6 Baridade dos constituintes secos	. 23

3	3.2	Preparação das argamassas	25
3	3.3	Ensaios de caracterização das argamassas no estado fresco	26
	3.3.1	Consistência por espalhamento	26
	3.3.2	Massa volúmica fresca	28
	3.3.3	Teor de ar incorporado	29
	3.3.4	Retenção de água	31
3	3.4	Preparação dos provetes e sua cura	33
	3.4.1	Observação das condições dos provetes no início do tempo de cura	34
3	3.5	Ensaios de caracterização das argamassas no estado endurecido	34
	3.5.1	Condutibilidade térmica	35
	3.5.2	Massa volúmica geométrica	37
	3.5.3	Porosidade aberta e massa volúmica aparente por vácuo e pesagem hidrostática	38
	3.5.4	Porosimetria por intrusão de mercúrio (MIP)	40
	3.5.5	Módulo de elasticidade dinâmico	43
	3.5.6	Resistências à tração por flexão e à compressão	45
	3.5.7	Carbonatação por análise do pH	48
	3.5.8	Absorção de água por capilaridade	49
	3.5.9	Secagem	53
	3.5.1	0 Observação na lupa binocular	57
4	Disc	cussão dos resultados obtidos	63
4	ł.1	Comparação dos resultados no estado fresco	63
4	ł.2	Comparação dos resultados no estado endurecido	
4	l.3	Adequação das argamassas para rebocos antigos	
4	l.4	Síntese dos resultados	
5	C	alara a a a	75
		clusões	
	5.1	Conclusões finais	
	5.2	Desenvolvimentos futuros	76
Bil	oliogi	afia	79
AN	EXOS)	83
		0 1 - Ficha técnica da cal NHL2	
		0 2 - Ficha técnica das areias	
,	ANEXO	3 - Resultados individuais dos ensajos realizados	91

Índice de figuras

Figura 3.1 - Areias monogranulares e mistura de areias Mix	20
Figura 3.2 - Curvas granulométricas das areias que compõem a mistura e da areia Mix	22
Figura 3.3 – Curvas granulométricas das areias MS, FS e Mix	23
Figura 3.4 – Ensaio da baridade dos constituintes secos	24
Figura 3.5 – Sequência na preparação das argamassas	26
Figura 3.6 - Argamassa na mesa de consistência por espalhamento	27
Figura 3.7 – Relação água ligante e resultados do ensaio de consistência por espalhamento	28
Figura 3.8 – Pesagem do recipiente no ensaio de massa volúmica no estado fresco	29
Figura 3.9 – Massa volúmica das argamassas no estado fresco	29
Figura 3.10 – Equipamento de ensaio do teor em ar incorporado	30
Figura 3.11 – Teor de ar da argamassas no estado fresco	31
Figura 3.12 – Utensílios para o ensaio de retenção de água	32
Figura 3.13 - Retenção de água da argamassa no estado fresco	33
Figura 3.14 - Provetes nos moldes antes de serem acondicionados	34
Figura 3.15 – Sequência de ensaios que foram realizados aos provetes prismáticos	35
Figura 3.16 – Ensaio de condutibilidade térmica	36
Figura 3.17 – Condutibilidade térmica das argamassas aos 28 e aos 90 dias de cura	36
Figura 3.18 – Massa volúmica das argamassas aos 28 e 90 dias de cura	37
Figura 3.19 – Ensaio de porosidade aberta e massa volúmica aparente	38
Figura 3.20 – Porosidade aberta das argamassas aos 28 e aos 90 dias de cura	39
Figura 3.21 - Massa volúmica aparente das argamassas aos 28 e aos 90 dias de cura	40
Figura 3.22 – Porosimetro de mercúrio	41
Figura 3.23 – Porosimetria de mercúrio das argamassas de NHL aos 28 e 90 dias de cura	42
Figura 3.24- Porosimetria de mercúrio das argamassas de CL aos 28 e 90 dias de cura	42
Figura 3.25 – Ensaio do módulo de elasticidade dinâmico	44
Figura 3.26 – Módulo de elasticidade dinâmico das argamassas aos 28 e aos 90 dias de cura	45
Figura 3.27 – Equipamento de tração "ZWICK Z050"	46
Figura 3.28 – Resistência à tração por flexão das argamassas aos 28 e aos 90 dias de cura	47
Figura 3.29 – Resistência à compressão das argamassas aos 28 e aos 90 dias de cura	48
Figura 3.30 – Ensaio de pH	48
Figura 3.31 – PH das argamassas aos 28 e 90 dias de idade	49
Figura 3.32 – Ensaio de absorção de água por capilaridade	50
Figura 3.33 – Curvas de absorção capilar das argamassas aos 28 e 90 dias de cura	51
Figura 3.34 – Coeficiente de capilaridade das argamassas aos 28 e aos 90 dias de cura	52
Figura 3.35 – Valor assintótico das argamassas aos 28 e aos 90 dias de cura	53

Figura 3.36 – Ensaio de secagem	54
Figura 3.37 – Curvas de secagem das argamassas de NHL2 aos 28 e 90 dias de cura	55
Figura 3.38 – Curvas de secagem das argamassas de CL aos 28 e 90 dias de cura	55
Figura 3.39 – Taxa de secagem das argamassas aos 28 e aos 90 dias de cura	56
Figura 3.40 – Índice de secagem das argamassas aos 28 e aos 90 dias de cura	56
Figura 3.41 – Detalhes da microestrutura das argamassas com MS	58
Figura 3.42 – Detalhes da microestrutura das argamassas com FSFS	59
Figura 3.43 – Detalhes da microestrutura das argamassas com MixMix	60
Figura 3.44 – Detalhes da microestrutura das argamassas com NHL2	61
Figura 3.45 – Detalhes da microestrutura das argamassas com CL	61
Figura 4.1 – Comparação entre o Teor em ar e a Massa volúmica no estado fresco	63
Figura 4.2 – Comparação entre o Teor de ar e a Retenção de água	66
Figura 4.3 – Comparação entre a Retenção de água e a Consistência por espalhamento	66
Figura 4.4 – Comparação entre Pa e pH aos 90 dias de idade	67
Figura 4.5 – Comparação entre Rt, Rc e Ed aos 28 dias de cura	68
Figura 4.6 – Comparação entre Rt, Rc e Ed aos 90 dias de cura	69
Figura 4.7 – Comparação entre Ed e MVap aos 90 dias de cura	69
Figura 4.8 – Distribuição da dimensão dos macroporos das argamassas de CL aos 28 e 90 dias de	
cura	70
Figura 4.9 - Comparação entre Pa e CC	70
Figura 4.10 – Comparação entre Pa e VA	. 72

Índice de quadros

Quadro 2.1 – Requisitos estabelecidos para as características mecánicas e o comportamento á
água de argamassas de substituição para edifícios antigos [Veiga et al., 2010]6
Quadro 2.2 - Classificação do diâmetro dos poros [Sing et al., 1985]11
Quadro 2.3 – Valores obtidos de resistência à tração, resistência à compressão de módulo de
elasticidade dinâmico de argamassas de cal hidráulica natural16
Quadro 2.4 – Valores obtidos de resistência à tração, resistência à compressão de módulo de
elasticidade dinâmico de argamassas de cal aérea17
Quadro 3.1 - Composição química da cal hidráulica natural NHL2 (% em massa)19
Quadro 3.2- Composição química da cal aérea (% em massa) [Gameiro et al., 2014]20
Quadro 3.3 – Peneiros utilizados na análise granulométrica [Rato, 2006]22
Quadro 3.4 – Valores da máxima dimensão (D), mínima dimensão (d) e módulo de finura (MF)
das areias MS, FS e Mix23
Quadro 3.5 – Massa volúmica da água em função da temperatura [Grilo, 2012]24
Quadro 3.6 – Baridades dos constituintes secos das argamassas25
Quadro 3.7 – Traços em massa e volumétricos e relação mássica água/ligante26
Quadro 4.1 - Valores médios e desvios padrão (quando existentes) das argamassas no estado
fresco: Consistência por espalhamento, Massa volúmica, Teor de ar e Retenção de água 64
Quadro 4.2 - Valores médios e desvios padrão das argamassas no estado endurecido aos 28 e 90
dias: Massa volúmica geométrica Porosidade aberta e Massa volúmica aparente64
Quadro 4.3 – Valores médios e desvios padrão (quando existentes) das argamassas no estado
endurecido aos 28 e 90 dias: Módulo de elasticidade dinâmico, Resistência à tração e à
compressão e pH65
Quadro 4.4 – Valores médios e desvios padrão das argamassas no estado endurecido aos 28 e 90
dias: Coeficiente de capilaridade, Valor assintótico, Índice de secagem e Taxa de secagem 65
Quadro 4.5 – Verificação do cumprimento dos requisitos mecânicos de Veiga et al (2010) por
parte dar argamassas

Lista de abreviaturas, siglas e símbolos

Abreviaturas

- CEN Comité Européen de Normalisation
- **DEC** Departamento de Engenharia Civil
- EN European Norm
- FCT-UNL Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
- LNEC Laboratório Nacional de Engenharia Civil
- IPQ Instituto Português da Qualidade, I.P.
- NP Norma Portuguesa

Parâmetros de ensaios

- **CC** Coeficiente de capilaridade
- E_d Módulo de elasticidade dinâmico
- **IS** Índice de secagem
- MV Massa volúmica aparente geométrica
- MVA Massa volúmica aparente
- PA Porosidade aberta
- R Retenção de água
- R_c Resistência à compressão
- Rt Resistência à tração (por flexão)
- TS Taxa de secagem
- VA Valor assintótico (absorção capilar)
- Wt Teor de água
- λ Condutibilidade térmica

Argamassas

- NHL_MS Argamassa de cal hidráulica natural NHL2 com areias monogranular APAS20
- NHL_FS Argamassa de cal hidráulica natural NHL2 com areias monogranular APAS60
- CL_Mix- Argamassa de cal hidráulica natural NHL2 com mistura de areias
- **CL_MS** Argamassa de cal aérea com areias monogranular APAS20
- **CL_FS** Argamassa de cal aérea com areias monogranular APAS60
- CL_Mix- Argamassa de cal aérea com mistura de areias

1 Introdução

1.1 Enquadramento e motivações

A reabilitação urbana tem constituído uma das linhas prioritárias das autarquias das principais cidades portuguesas há mais de dez anos, mas esse esforço continua abaixo da média europeia. Segundo estudo publicado pelo INE, em 2013 houve um decréscimo da percentagem de licenciamentos de construções novas em Portugal, comparando com as percentagens de 2012 e 2011, o que evidencia a trajetória decrescente das construções novas e a crescente importância da reabilitação de edifícios [INE, 2014; Vilhena, 2011].

Até ao início do século XX as argamassas à base de cal eram utilizadas muito na construção, tendo sido a cal a partir daí gradualmente substituída pelo cimento Portland. Em Portugal, em algumas regiões, como por exemplo o Alentejo, o uso corrente de argamassas de cal perdurou até aos anos 50-60 do século XX [Veiga et al., 2010; Margalha, 1997].

Para que a intervenção de reabilitação sobre rebocos antigos seja eficaz é necessário que haja um conhecimento dos revestimentos existentes para que os novos revestimentos a aplicar sejam compatíveis física e mecanicamente com os pré-existentes. Em ações de conservação, o uso de argamassas de cimento em rebocos antigos tem efeitos adversos devido à sua elevada rigidez e impermeabilidade ao vapor de água, provocando fissuras e deterioração do reboco que se quer preservar. Na prática, assegurar esta compatibilidade pode ser uma tarefa complexa, visto que nos materiais tradicionais, como a cal aérea, o conhecimento das suas propriedades e preparação não está completo [Veiga et al., 2010;Paiva et al., 2010; Santos e Veiga, 2012], embora seja objeto de larga investigação nos últimos anos.

A influência da qualidade dos agregados nas propriedades das argamassas é conhecida há pelo menos dois mil anos. Nessa época preferiam-se areias angulares a areias arredondadas porque sabiam que aquelas produziam argamassas mais fortes. Palladius, um autor romano, referiu que "aquelas (areias) que continuam juntas depois de as pressionares com o punho são boas para a construção" [Pavía e Toomey, 2008].

A composição mineralógica, rugosidade, granulometria e forma da partícula de agregado afeta o comportamento das argamassas no estado fresco e no estado endurecido. A granulometria do agregado influência o desempenho das argamassas, principalmente porque interfere na sua porosidade. É geralmente aceite que as argamassas mais resistentes são fabricadas com agregados bem graduados, limpos e angulares [Haach et al., 2011; Rato, 2006; Henriques e Faria, 2008; Pavía e Toomey, 2008].

A cal hidráulica natural é um ligante com características entre o cimento Portland e a cal aérea. Tem um endurecimento inicial característico dos ligantes hidráulicos, mas por ter resistências mecânicas inferiores às do cimento Portland, torna-se mais adequada para rebocos antigos [Faria et al., 2012].

A cal hidráulica natural NHL2, por ser uma cal fracamente hidráulica, pode ser um ligante compatível com os suportes e rebocos antigos. Em Julho de 2012 entrou em vigor a versão mais recente da norma NP EN 451-1:2011, que proíbe quaisquer adições nas cais hidráulicas naturais Com a obrigatoriedade dos produtores seguirem as restrições desta última versão, não é ainda bem conhecido o comportamento deste tipo de ligantes.

O estudo sobre a influência da granulometria dos agregados nas cais aéreas e com propriedades hidráulicas é limitado. A preferência de estudar as características do cimento Portland e a adição de agregados e adições não tradicionais faz com que o estudo sobre a base das argamassas seja posto um pouco de lado. Com a necessidade de otimizar as propriedades das argamassas de cal e poder classificá-las quanto ao uso é necessário que haja mais estudos sobre esta matéria.

1.2 Objetivos

Os objectivos gerais da presente dissertação são contribuir para um conhecimento mais amplo das características das argamassas de cal hidráulica natural NHL2 de produção nacional, comparativamente a argamassas de cal aérea também de produção nacional. Em termos mais específicos pretende-se:

- Avaliar a influência do ligante e da idade nas características físico-mecânicas das argamassas de cal fracamente hidráulica com base em NHL2 e de cal aérea CL90;
- Avaliar a influência da granulometria do agregado no comportamento físico-mecânico dessas argamassas de cal.

1.3 Estrutura e organização do texto

A presente dissertação foi dividida em cinco capítulos. No primeiro e presente capitulo é feito um enquadramento do tema onde são apresentados os objetivos e a estrutura e organização do texto.

No segundo capítulo é feita uma revisão da literatura onde se apresenta as características das argamassas para reparação de rebocos antigos, as características das matérias-primas e a influência dos agregados nas argamassas.

No terceiro capitulo é apresentada a campanha experimental, as matérias-primas utilizadas e os resultados dos ensaios aos 28 e 90 dias de cura.

No quarto capitulo é apresentada a discussão dos resultados onde se faz uma comparação entre os parâmetros determinados e entre outros autores.

No quinto capitulo é feita uma síntese dos principais resultados e trabalhos futuros que poderão ser realizados na continuação do tema desta dissertação.

Nos Anexos serão presentadas as fichas técnicas dos materiais e um artigo realizado no âmbito desta dissertação.

2 Argamassas de cal

No presente capitulo é feita uma revisão literária sobre argamassas de substituição de rebocos antigos, as matérias-primas das argamassas de cal e a influência dos agregados nas argamassas à base de cal e à base de cimento.

2.1 Argamassas de substituição

As paredes dos edifícios antigos eram normalmente constituídas por materiais muito porosos, com resistências mecânicas inferiores aos que são utilizados atualmente em construção de edifícios novos. Este tipo de construção apresenta alguma permeabilidade à água mas que é compensada com uma rápida secagem [Santos e Veiga, 2012] .

Há diferenças funcionais entre os rebocos e os outros elementos de construção. Em primeiro lugar, os rebocos são substituíveis e fáceis de reparar; em segundo lugar, os rebocos têm o papel de proteger a alvenaria e os elementos adjacentes, que se sobrepõem à sua própria preservação. Os rebocos eram produzidos com ligantes à base de cal e os agregados provenientes dos locais perto das construções. Desde que preparados e aplicados corretamente, estes rebocos apresentam uma durabilidade elevada [Veiga e Santos, 2010; Gonçalves e Rodrigues, 2007].

Nos dias de hoje, a seleção de materiais compatíveis – em características químicas, físicas e mecânicas – é fundamental. Nem todas as intervenções de reabilitação realizadas nas últimas décadas têm contribuído para a saúde dos edifícios intervencionados. A utilização de determinados materiais, como é o caso de ligantes com base em cimento, e de processos construtivos adequados à construção nova podem acelerar os mecanismos de degradação. Uma das principais formas de degradação dos revestimentos exteriores constituídos por cal é a perda da resistência mecânica das camadas do reboco devido ao enfraquecimento das ligações entre as partículas [Veiga e Santos, 2010; Faria et al., 2008; Kalagri et al., 2014; Tavares e Veiga, 2007; Scannell et al., 2014].

O desempenho das argamassas depende da sua microestrutura. A microestrutura de cada argamassa é condicionada por diversos aspetos, como o tipo de ligante e a granulometria do agregado, as proporções dos componentes da argamassa, a cura e os procedimentos de aplicação e o tipo de suporte onde a argamassa é aplicada [Veiga e Santos, 2010].

As argamassas de substituição devem respeitar os critérios de compatibilidade com os elementos pré-existentes. Jamais devem contribuir para a degradação dos elementos já existentes, devem ter a capacidade de serem duráveis e o mais reversíveis possível. É importante que tenham um bom comportamento à água mas não podem prejudicar o processo de secagem. As resistências

mecânicas devem ser inferiores às do suporte e o módulo de elasticidade pouco elevado. As argamassas não devem conter sais solúveis e, quando o suporte contém esse tipo de sais, as argamassas devem apresentar uma boa resistência à degradação por eles induzida [Veiga e Santos, 2010; Gulotta et al., 2013].

Veiga estabeleceu requisitos para as características mecânicas e o comportamento à água das argamassas de substituição de edifícios antigos, que estão apresentados no Quadro 2.1 [Veiga et al., 2010].

Quadro 2.1 – Requisitos estabelecidos para as características mecânicas e o comportamento à água de argamassas de substituição para edifícios antigos [Veiga et al., 2010]

_	Característica	Coeficiente de			
Argamassa	Rt Rc		Ed	capilaridade [kg/(m².min ^{0,5})]	
Reboco exterior	0,2 - 0,7	0,4 - 2,5	2000 - 5000	1 – 1,5	
Reboco Interior	0,2 - 0,7	0,4 - 2,3	2000 - 3000	-	
Juntas	0,4 - 0,8	0,6 - 3,0	3000 - 6000	1 - 1,5	

Rt – Resistência à tração por flexão; Rc – Resistência à compressão; Ed – módulo de elasticidade dinâmico por frequência de ressonância.

Os resultados obtidos por Veiga sugerem que argamassas com base em cal aérea são as mais adequadas para o revestimento de paredes antigas mas que argamassas de cal hidráulica, produzida com as exigências da versão mais recente da norma, podem ser uma boa solução para edifícios localizados em zonas muito húmidas ou em contacto com água [Veiga e Santos, 2010].

2.2 Matérias-primas das argamassas à base de cal

Devido à compatibilidade entre as argamassas de substituição e as argamassas existentes nos edifícios antigos é necessário conhecer bem as diferenças entre a cal aérea e as cais com propriedades hidráulicas. Os agregados também têm uma influência significativa no comportamento das argamassas, desse modo também é importante conhecer as suas características.

2.2.1 Cal aérea

Usada desde a antiguidade, a cal aérea é o ligante que resulta da rocha mais abundante na natureza, o calcário [Sousa-Coutinho,1988; Faria Rodrigues,2004].

As cais aéreas são principalmente constituídas por óxidos ou hidróxidos de cálcio que, depois de amassados com água secam lentamente ao ar e começam a reagir com o dióxido de carbono; como não tem propriedades hidráulicas o endurecimento não ocorre quando a cal aérea é submersa em água [Sousa-Coutinho,1988; Faria Rodrigues,2004].

A cal aérea cálcica resulta da decomposição de uma rocha calcária cuja natureza mineralógica é o carbonato de cálcio (CaCO₃), podendo conter até 5% de argila [Martins,2010].

Na presença de uma temperatura de cerca de 900 °C, o carbonato de cálcio liberta dióxido de carbono e transforma-se em óxido de cálcio, também conhecido como cal viva. Antes de ser aplicada, a cal viva tem que ser extinta por imersão ou aspersão com água [Sousa-Coutinho,1988]. Em presença de água, o óxido de cálcio transforma-se em hidróxido de cálcio, usualmente designado por cal apagada, cal extinta ou cal hidratada. O endurecimento da pasta de cal aérea dá-se por carbonatação do hidróxido de cálcio, através da reação com o dióxido de carbono presente na atmosfera. Desta reação resulta a formação de carbonato de cálcio, vapor de água e calor [Rato,2006].

Durante a secagem, a pasta vai contrair com ocorrência de fissuração. Para diminuir a contração é necessário utilizar areia ou pó de pedra nas argamassas. Estes materiais vão dividir o produto numa enorme quantidade de pequenas "frações" localizadas, que arejam a argamassa, permitindo a sua carbonatação ao mesmo tempo que decorre a secagem [Sousa-Coutinho,1988; Faria Rodrigues,2004].

O hidróxido de cálcio é solúvel em água (1,3 g/l) e na água salgada torna-se ainda mais solúvel, sendo impossível ganhar presa ou endurecer nestas condições. Assim, argamassas de cal aérea hidratada, sem quaisquer adições, não podem ser usadas em obras marítimas ou hidráulicas [Bandeira, 2012 citando Sousa Coutinho].

O endurecimento da cal aérea faz-se em duas fases. Na primeira fase, que se denomina presa inicial, ocorre a evaporação da humidade em excesso, em que no seu final a cal está firme ao tacto mas ainda marcável com a unha. Na segunda e última fase, a carbonatação, ocorre uma reação química muito lenta, ao ar, em que o hidróxido de cálcio converte-se em carbonato de cálcio por recombinação com o dióxido de carbono; esta fase pode demorar anos até terminar e depende da temperatura, humidade e da estrutura porosa da argamassa.

2.2.2 Cais com propriedades hidráulicas

A estrutura da cal hidráulica é diferente da estrutura das cais aéreas, uma vez que é obtida de rochas constituídas por uma mistura de argila e calcário (marga); quando a quantidade de argila fica compreendida entre e 5% e 20% (calcário margoso) e a pedra calcária é sujeita à ação da temperatura (entre 900°C e 1200°C) é formado óxido de cálcio que reage e combina a alumina da argila durante o processo de calcinação, formando silicatos e aluminatos de cálcio. Designam-se por cais hidráulicas os produtos formados por estes silicatos e aluminatos de cálcio que, hidratando-se, dão origem a produtos que endurecem tanto na água como ao ar. Os compostos resultantes da calcinação são: o silicato bicálcico, 2CaO.SiO₂ (belite); o aluminosilicato bicálcico, 2CaO.Al₂O₃.SiO₂

(gehlenite); o aluminato tricálcico, $3CaO.Al_2O_3$ (celite); e o aluminoferrato tetracálcico, $4CaO.Al_2O_3.Fe_2O_3$ (ferrite).

As cais hidráulicas naturais são produzidas mantendo a temperatura da queima do calcário com argila abaixo da temperatura de sinterização, a 900°C segundo o fabricante para evitar a formação de clinquer [Faria et al.,2012; Gulotta et al., 2013; Sequeira et al., 2007; Cardoso, 2013]. Em Portugal a produção é feita a temperaturas semelhantes às temperaturas de produção da cal aérea, não superiores a 900°C.

Quando o silicatos bicálcico reage com a água (2.1) liberta hidróxido de cálcio e aumenta o pH do ligante [Sousa-Coutinho,1988].

$$2(2CaO.SiO_2) + 4H_2O = 3,3CaO.2SiO_2.3,3H_2O + 0,7Ca(OH)_2$$
(2.1)

Esta reação faz que o pH das argamassas de NHL numa idade passe a ser muito semelhante ao valor de pH das argamassas de cal aérea.

Existem duas fases de endurecimento da cal hidráulica natural. A primeira fase é predominantemente hidráulica: após a amassadura ocorre a hidratação dos aluminatos tricálcicos e dos silicatos bicálcicos. A segunda é a fase aérea, na qual o endurecimento se dá a longo prazo, ocorrendo a carbonatação, ou seja, a reação do hidróxido de cálcio com o dióxido de carbono atmosférico [Sequeira et al., 2007;Lanas,2004].

Em Portugal a produção de cais para construção rege-se pela norma NP EN 459-1:2011. Na anterior versão, de 2002, as cais eram divididas em quatro grupos: cais dolomíticas (DL), cais cálcicas (CL), cais hidráulicas (HL) e cais hidráulicas naturais (NHL ou NHL-Z). Na versão atualmente em vigor, apenas existem dois grandes grupos: cais aéreas e cais com propriedades hidráulicas. As cais com propriedades hidráulicas dividem-se em três famílias:

- Cal hidráulica natural (NHL): cal com propriedades hidráulicas produzida pela queima de calcários argilosos ou siliciosos. Sem quaisquer aditivos, é reduzida a pó por extinção com ou sem moagem e endurece por hidratação ou carbonatação;
- Cal formulada (FL): cal com propriedades hidráulicas constituída por cal aérea ou cal hidráulica natural com adição de material hidráulico ou pozolânico. Endurece por hidratação ou carbonatação;
- Cal hidráulica (HL): cal constituída por cal e materiais como cimento e pozolanas, com a capacidade de endurecer por hidratação ou carbonatação.

Algumas das cais que, antes da alteração da norma, eram denominadas como cais hidráulicas naturais são atualmente classificadas como FL (cal formulada) ou HL (cal hidráulica). Os produtores que quiseram continuar a produzir cais hidráulicas naturais tiveram que reformular

as matérias primas e/ou processos de fabrico, por forma a cumprir os requisitos da norma [Faria & Silva, 2012].

2.2.3 Agregados

Numa argamassa, os materiais que podem ser encontrados em maior quantidade são os agregados. Por este motivo, têm uma influência significativa na estrutura porosa e nas propriedades reológicas e mecânicas das argamassas. Torna-se crucial que a sua escolha seja rigorosa e adequada às utilizações previstas [Rato, 2006; Gonçalves, 2007; Grilo, 2013; Haach et al., 2011].

As propriedades essenciais que se exigem aos agregados para argamassas são de natureza mecânica, física e química [Sousa-Coutinho,1988;Faria Rodrigues,2004]:

- Inalterabilidade aos agentes externos, como o ar ou a água;
- Compatibilidade química com os outros constituintes da argamassa;
- Resistências mecânicas e à erosão adequadas;
- Isenção de substâncias prejudiciais, como impurezas de origem orgânica ou mineral (sais).

De acordo com o modo de obtenção, os agregados podem ser distinguidos como naturais, artificiais ou reciclados. Os agregados naturais, de origem mineral, são sujeitos a processos físicos de desagregação ou abrasão, como as areias e os godos; o agregado natural também pode ser britado, originando as britas e as areias britadas. Os artificiais são também de origem mineral mas são resultantes de um processo industrial que envolve modificações térmicas ou outras, por exemplo a argila ou o xisto expandido. Os agregados reciclados são o resultado do processamento de materiais inorgânicos anteriormente usados na construção. A norma refere na definição de areia que esta "pode provir da alteração natural das rochas e/ou da sua britagem ou do tratamento de agregados artificiais" [IPQ, 2003; Rato,2006].

A forma das areias influencia para além da aderência da pasta de ligante ao agregado influencia a trabalhabilidade da argamassa no estado fresco e a compacidade da argamassa no estado endurecido. A trabalhabilidade é afetada pelo valor da superfície especifica da partícula de agregado na medida que a superfície especifica influencia a quantidade de água a adicionar na amassadura. As características de forma dos agregados dependem da forma volumétrica (esfericidade) e da forma superficial (angularidade). A textura também pode influenciar a ligação entre a pasta de ligante e a partícula e a quantidade de água da amassadura.

A dimensão das partículas de areia tem uma influência na estrutura porosa. A classificação segundo a dimensão das partículas, pode-se dividir em dois grupos, areias e agregados grossos; de acordo com a norma, a areia é definida como o agregado com dimensões inferiores a 4 mm. Dentro do grupo das partículas com dimensões inferiores a 4 mm pode ainda fazer-se uma distinção entre os termos *finos* e *filler*: os *finos* correspondem à " fração de partículas de um agregado que passa no

peneiro de 0,063 mm (...)"; o *filer* é definido como "agregado cuja maior parte passa no peneiro de 0,063 mm (...)". Assim, pode assumir-se que a dimensão das partículas de uma areia está compreendida entre 0,063 e 4 mm [IPQ, 2003; Rato,2006].

As areias naturais são acumulações dos fragmentos de rocha mais resistentes e grãos de minerais que foram desprendidos das suas rochas-mãe por processos físicos de desagregação, podendo ser de sedimentação hidráulica (transporte dos constituintes detríticos pela água) ou de sedimentação eólica (transporte dos constituintes detríticos pela vento). As propriedades da areia depende das rochas de onde elas derivam, embora durante o seu transporte e antes da sua deposição, os fragmentos mais fracos tendem a ser desgastados resultando num material mais resistente que areia resultante da rocha-mãe britada [Rato,2006; Smith, 2001].

Quanto à sua composição química, podem ser distinguidos dois grupos principais: areias siliciosas (quartzosas e graníticas), provenientes geralmente de rios e areeiros, e areias calcárias, resultantes de desperdícios de pedreiras de rocha calcária. As areias podem conter maior ou menor percentagem de argila. A areia de areeiro, com algum teor de argila, é geralmente denominada *amarela*; estas areias conferem maior trabalhabilidade e resistências mecânicas às argamassas devido aos finos da argila mas é necessário alguma cautela relativamente à sua utilização, visto que pode reduzir a ligação do agregado à cal e incrementar fenómenos de retração devido à adição de maior quantidade de água na argamassa. A areia de rio confere menor resistência às argamassas devido aos grãos serem rolados enquanto a areia de areeiro é geralmente mais áspera e com grãos mais angulosos; em contrapartida a areia de rio contém menos impurezas. Na areia de pedreira, quando a rocha é desfeita, é produzida uma quantidade excessiva de finos resultando numa areia com grande quantidade de finos [Faria, 2004; Westerholm, 2008].

2.3 Microestrutura das argamassas de cal

A estrutura porosa das argamassas é influenciada pelos materiais, traço, pela quantidade de água adicionada, pelo processo de amassadura, o tipo de cura, o suporte onde é aplicado e o processo de aplicação da argamassas.

As propriedades da microestrutura dividem-se em dois grupos: macroscópicas e microscópicas.

A propriedade macroscópica estudada no presente trabalho foi a porosidade. Podem-se distinguir dois tipos de porosidade: a porosidade aberta que é constituída pelos poros que comunicam entre si, formando uma rede porosa; e a porosidade fechada, constituída pelos poros que não têm contacto com a rede porosa.

Na porosidade aberta podem-se distinguir três tipos de poros:

Poros cegos, poros que contactam com a rede porosa por uma das suas extremidades;

- Poros de matriz, poros resultantes da evaporação do excesso de água ou da quantidade de ar emulsionado no processo de amassadura;
- Poros de interface, poros que se encontram entre a matriz de ligante e as partículas de areia.

As propriedades microscópicas são a porometria, dimensão dos poros, e a geometria da rede porosa, que engloba a forma dos poros e como se interligam [Rato, 2006]. Neste trabalho foi utilizada a classificação do diâmetro dos poros por Sing et al. (1985).

Quadro 2.2 – Classificação do diâmetro dos poros [Sing et al., 1985]

Classificação	Diâmetro			
Microporos	< 2 μm			
Mesoporos	2 – 50 μm			
Macroporos	> 50 µm			

2.3.1 Influência da granulometria na microestrutura das argamassas

Segundo Rato (2006), nas argamassas hidráulicas existem grandes poros que resultam do ar emulsionado no processo de amassadura. A dimensão destes grandes poros é influenciada pela dimensão das partículas de areia, através do espaço existente entre as partículas, enquanto o volume de vazios da areia influencia sobretudo a quantidade dos poros. Ou seja, o volume de vazios das areias é o parâmetro que mais influencia a porosidade aberta das argamassas.

2.3.2 Influência da microestrutura no comportamento face ao processo de carbonatação.

A conectividade da microestrutura, associada ao aumento da porosidade aberta, facilita o contacto do hidróxido de cálcio com o dióxido de carbono atmosférico. O processo de carbonatação provoca a diminuição do volume dos poros, os poros mais largos são preenchidos com CaCO₃ microcristalino ou amorfo que se expande, provocando uma alteração na microestrutura das argamassas de cal A lenta carbonatação da cal também tem implicações nas propriedades mecânicas das argamassas [Rato, 2006; Faria Rodrigues, 2004].

2.3.3 Influência da microestrutura no comportamento face à ação da água

A absorção de água dos materiais porosos depende da dimensão e da quantidade dos poros, bem como da forma como se conectam. Os poros de maior diâmetro têm uma absorção de água inicial mais rápida que os poros capilares mais pequenos; no entanto, nos capilares mais pequenos, onde a pressão capilar é maior e a pressão hidrostática da coluna de água é menor, a água absorvida atinge uma altura superior. A quantidade de grandes poros que apenas são acessíveis através de pequenos poros reduz consideravelmente a velocidade de ascensão de água, já que a quantidade de água correspondente a um pequeno diâmetro tem que preencher um volume maior com pressão capilar menor. O fluxo é sempre mais rápido nos capilares uniformes [Rato, 2006].

2.4 A influência dos agregados nas argamassas

Dos diversos estudos sobre a influência dos agregados realizados ao longo dos anos, a grande maioria está concentrada nas argamassas de cimento Portland. Nos últimos tempos houve a preocupação de estudar argamassas em que os seus agregados resultam de materiais reciclados ou de materiais menos convencionais. Assim sendo, tornam-se escassas as caracterizações de argamassas de cal com areias naturais, ideais para utilização em obras de reabilitação.

2.4.1 Influência da forma da partícula do agregado nas propriedades das argamassas no estado fresco

Agregados finos e mais angulares produzem argamassas com menor trabalhabilidade do que areias mais esféricas, para a mesma quantidade de água ou volume de pasta de ligante [Cortes et al., 2008; Westerholm et al., 2008]. Para atingir a mesma consistência, argamassas com agregados finos necessitam de 25-30% de maior adição de água [Reddy & Gupta, 2008].

As irregularidades e a rugosidade limitam a mobilidade das partículas e o volume de vazios aumenta quando as partículas se tornam mais angulares e irregulares [Cortes et al., 2008]. A forma da partícula de areia influência a viscosidade; qualquer desvio da forma esférica da partícula resulta num aumento da viscosidade [Westerholm et al., 2008; Cabrera et al., 2011].

Grande quantidade de partículas com formas irregulares é a razão para a necessidade de maior quantidade de água nas argamassas com agregados finos britados, que faz com que a viscosidade e a tensão de escoamento sejam maiores [Westerholm et al., 2008].

O espalhamento de uma argamassa com mistura de areias de rio e britada é superior do que o espalhamento de uma argamassa fabricada só com areia britada [Benabed et al., 2012]. Argamassas preparadas com areia de rio têm melhor fluidez que argamassas preparadas com agregado britado devido ao alto grau de irregularidades deste último [Harini et al. 2011]. Há redução da quantidade de água necessária nas argamassas, para obter um dado espalhamento, quando se introduz areia de areeiro [Faria et al., 2007].

2.4.2 Influência da granulometria do agregado nas propriedades das argamassas no estado fresco

Areias mais finas conferem maior trabalhabilidade mas requerem maior quantidade de água de amassadura [Margalha et al., 2007; Rao, 2001; Reddy and Gupta, 2008; Haach et al., 2011; Benabed et al., 2012].

Um agregado bem graduado proporciona à argamassa um espalhamento maior que um agregado monogranular com módulo de finura similar. Isto porque agregados bem graduados têm menor volume de vazios não compactados e precisam de menos ligante para obterem o mesmo espalhamento [Hu & Wang, 2005; Harini et al., 2011].

2.4.3 Influência da forma da partícula do agregado nas propriedades das argamassas no estado endurecido

Propriedades mecânicas

A mistura de areia de rio com areia de areeiro aumenta as resistências mecânicas das argamassas comparativamente a argamassas só com um tipo de areia. Em argamassas de cal aérea a resistência à flexão aumenta com a evolução da idade jovem da argamassa [Faria et al. 2007]. Em argamassas de cal hidráulica natural, a mistura de areia de rio com areia grossa aumenta a resistência mecânica à compressão mas diminui a resistência mecânica à flexão [Faria & Silva 2013].

Argamassas com mistura de areia britada com areia de rio e/ou areia muito fina têm resistências à compressão mais elevadas do que argamassas apenas com areia britada [Benabed et al. 2012].

Argamassas de cal hidráulica com agregados de forma angular e média de partículas de pequena dimensão têm maiores resistências. Argamassas com agregados bem graduados têm maiores valores de resistência mecânica [Pavía & Toomey 2008].

Os valores do módulo de elasticidade são maiores para as argamassas preparadas com mistura de areias de rio e areeiro [Faria et al. 2007].

Propriedades físicas

Regista-se uma diminuição genérica da porosidade aberta quando se mistura areia de rio com areia de areeiro em argamassas de ligantes correntes. As argamassas têm tendência a resultar mais compactas [Faria et al. 2007].

2.4.4 Influência da granulometria do agregado nas propriedades das argamassas no estado endurecido

Propriedades mecânicas

Para Sugrañez et al. (2013), em argamassas de cimento, a resistência à compressão diminui com o aumento das partículas do agregado. A presença de areia com partículas de grandes dimensões dão origem a poros de grandes dimensões que fazem diminuir a resistência. Mas para Reddy & Gupta (2008) a resistência à compressão diminui com o aumento da finura da areia.

Em argamassas de cal hidráulica as resistências aumentam com a diminuição do tamanho do agregado [Botas et al. 2011; Pavía & Toomey 2008].

O aumento de volume de areia muito fina de 25% para 50% do volume total de agregados, em argamassas de cimento, reduz em 13% a resistência à compressão. Esta diminuição da resistência está relacionada com o aumento da superfície específica dos agregados finos, que necessitam de mais cimento para ocupar os vazios entres as partículas de areia [Benabed et al. 2012].

A granulometria tem uma grande influência na resistência à flexão. Argamassas de cimento com areia grossa obtêm maiores resistências à flexão; a areia grossa provavelmente provoca uma melhor interligação das partículas devido aos grãos de grandes dimensões. As argamassas com areia grossa também exibem um comportamento mais dúctil e deformável, enquanto argamassas com areia fina apresentam uma maior rigidez. Este comportamento parece estar relacionado com a distribuição não uniforme das partículas da areia grossa, que influencia a microestrutura da argamassa [Haach et al. 2011].

A longo prazo argamassas que contêm agregados de maiores dimensões têm uma melhoria significativa no comportamento mecânico comparando com argamassas de cal aérea com agregados de menores dimensões [Stefanidou & Papayianni 2005; Margalha et al. 2007].

Argamassas de cal aérea fabricadas com misturas de areias de areeiro com diferentes tamanhos de partícula apresentam valores de resistência mecânica elevados [Rato, 2006].

Em argamassas de cal hidráulica natural, a mistura de areia de rio com areia grossa aumenta a resistência mecânica à compressão mas diminui a resistência mecânica à flexão [Faria & Silva 2013].

Argamassas com base em cimento com areia grossa exibem um comportamento mais dúctil e deformável enquanto argamassas com areia fina apresentam uma maior rigidez [Reddy and Gupta, 2008].

Propriedades físicas

Em argamassas de cimento, a porosidade de interface (ITZ) é diferente para areias finas e areias grossas [Herve et al. 2010; Elsharief et al. 2003]. Reduzindo o tamanho das partículas de agregado na zona de interface (ITZ), a porosidade vai reduzir e o volume de grãos de cimento não hidratados vai ser maior [Elsharief et al. 2003]. A distribuição do tamanho dos poros é pouco alterada pelo tempo de cura, ou seja, as características da microestrutura interna formam-se cedo durante o ajuste das partículas de agregado [Sugrañez et al. 2013].

Há um aumento da porosidade aberta com a diminuição do tamanho do agregado [Rato,2006; Botas et al. 2011]. Em argamassas de cal aérea, a mistura de areias com diferentes granulometrias pode levar à diminuição do volume de vazios, comparativamente a areias monogranulares, o que provoca a diminuição no número de poros e, por sua vez, uma menor porosidade aberta [Rato 2006].

Regista-se uma diminuição do coeficiente de absorção de água por capilaridade com a diminuição das partículas de agregado [Botas el al. 2011]. A mistura de areias nas argamassas faz diminuir o coeficiente de absorção de água por capilaridade [Faria et al. 2007; Margalha et al. 2007].

2.4.5 Influência da natureza do agregado nas propriedades das argamassas no estado endurecido

Propriedades mecânicas

Em argamassas de cal aérea, se o agregado for de origem calcária são obtidas maiores resistências mecânicas à compressão, em comparação com agregado silicioso [Scannel et al., 2014].

Propriedades físicas

A presença de partículas de argila no agregado pode provocar um aumento no coeficiente de absorção de água por capilaridade [Margalha et al. 2007].

Nos Quadro 2.3 e Quadro 2.4 são apresentados resultados de parâmetros mecânicos e fisicos, de argamassas de hidráulica natural e cal aérea, obtidos por alguns autores.

Apenas no estudo de Faria e Silva (2013) é que se pode observar valores de parâmetros físicos e mecânicos de argamassas produzidas com cal hidráulica natural de acordo com a nova versão da norma de cais para construção.

2.5 Síntese

As diferentes propriedades da cal aérea e da cal hidráulica natural provocam diferenças na estrutura das argamassas. Devido à alteração da norma das cais de construção não existem muitos estudos sobre as novas argamassas de cais hidráulicas naturais, sobretudo da NHL2.

Não é só o ligante que afeta as propriedades das argamassas. Também as propriedades dos agregados utilizados nas misturas têm influência nas características mecânicas e físicas das argamassas no estado endurecido.

No estado fresco, o aumento da finura, da rugosidade e da angularidade das partículas de agregado provocam um aumento da quantidade de amassadura.

No estado endurecido, a utilização de agregados bem graduados ou a utilização de uma mistura de areia de rio ou areia de areeiro confere às argamassas bons resultados de resistências mecânicas.

Quadro 2.3 – Valores obtidos de resistência à tração, resistência à compressão de módulo de elasticidade dinâmico de argamassas de cal hidráulica natural

	Traço vol. Composição	<u> </u>	R _t [MPa]	R _c [MPa]	E _{din} [MPa]	P _{ab} (%)	CC [kg/m ² .s ^{1/2}]	VA [kg/m ²]
Faria et al.	1:3 NHL5 : RS		0.10	0.30	697	32±0	0.282	18.72
	1:1.5:1.5 NHL5 : RS : AS		0.28	0.89	1519	32±0	0.248	18.38
(2007)	1:3 CL : RS		1.21	2.15	6087	27±0	0.217	15.02
	1:1.5:1.5 CL : RS : AS		1.43	2.82	6458	27±0	0.187	17.02
Rato (2006)	1:3 CL : MS		0.51±0.05 - 0.68±0.02	1.38±0.23 - 2.01±0.08	2723±67 - 5437±116	25±1 - 35±0	0.20±0.01 - 0.34±0.01	14.60±0.73 - 22.48±0.84
	1:3 CL : ADS		0.77±0.09 - 0.78±0.06	-	5076±160 - 7206±247	25±0 - 28±0	0.17±0.00 - 0.25±0.01	13.86±0.94 - 17.39±0.29
	1:3 NHL5 : CS		0.11	0.53	-	29	0.41	36.50
Botas et al. (2011)	1:3 NHL5 : RS		0.13	0.43	-	32	0.43	42.70
	1:3 NHL 5: FS			0.79	-	39	0.63	53.14
Faria e Silva (2013) NH	NHL3.5:RS	N	0.41±0.06	0.94±0.01	3098±101	26±0.3	3.01±0.12	19.6±1.6
	1:3	Α	0.44±0.03	0.89±0.03	2777±52	25±0.4	2.58±0.11	18.7±0.5
	NHL3.5:(10CS+90RS)	N	0.39±0.03		3052±42	27±0.1	3.65±0.20	21±0.5
	1:3	Α	0.49±0.05	0.88±0.02	3465±56	24±0.4	2.86±0.21	18.6±0.9
	NHL3.5:(25CS+37.5 SM+37.5FS)	N	0.42±004	1.00±0.10	3548±43	27±0.5	3.59±0.05	21.5±1.6
	1:3	Α	0.56±0.01	1.11±0.02	3841±165	23±0.4	3.06±0.38	19.2±1.7

NHL – cal hidráulica natural; CL – cal Lafarge; RS – areia de rio; AS – areia de areeiro ; MS – areia monogranular de areeiro; ADS – mistura de areias de areeiro; CS – areia grossa; FS – areia fina; SM – areia média; N – cura N; A – cura A

Quadro 2.4 – Valores obtidos de resistência à tração, resistência à compressão de módulo de elasticidade dinâmico de argamassas de cal aérea

	Traço vol. Composição		R _t [MPa]	R _c [MPa]	E _{din} [MPa]	P _{ab} (%)	CC [kg/m ² .s ^{1/2}]	VA [kg/m²]
Faria et al. (2007)	1:3 AL : RS		0.10 - 1.71	0.30 - 7.04	697 - 7041	26±1 - 36±0	0.162-0.371	15.02-23.1
	1:1.5:1.5 AL : RS : AS		0.28 - 2.54	0.89 - 11.78	1519 - 10089	25±0 - 32±0	0.110-0.248	17.02-21.18
Rato (2006)	AL: MS 1:3	AP	0.12±0.01 - 0.60±0.08	0.32±0.01 - 1.99±0.10	1555±38 - 3748±61	30±2 - 32±0	0.23±0.01 - 0.31±0.01	17.02±0.70 – 19.65±1.73
		DE	0.09±0.01 - 0.58±0.05	0.25±0.01 - 1.33±0.11	1440±29 - 3472±51	23±1 - 38±0	0.21±0.00 - 0.40±0.01	21.97±0.18 - 38.80±0.50
	AL: ADS 1:3	AP	0.30±0.01 - 0.55±0.02	0.72±0.03 - 1.47±0.05	2998±79 - 3925±75	30±1 - 35±1	0.23±0.00 - 0.27±0.00	16.92±0.628 - 18.04±0.269
		DE	0.16±0.02 - 0.49±0.04	0.42±0.01 - 1.09±0.06	2450±45 - 3452±38	24±0 - 32±0	0.20±0.00 - 0.30±0.01	28.233±0.267 - 32.370±0.214
Botas et al. (2011)	1:2 AL : CS		0.17	0.46	-	31	0.39	33.98
	1:2 AL : RS		0.30	1.01	-	34	0.26	36.31
	1:2 AL : FS		0.58	2.23	-	38	0.24	38.75

Quadro 2.3 – Valores obtidos de resistência à tração, resistência à compressão de módulo de elasticidade dinâmico de argamassas de cal aérea (cont.)

	Traço vol.	R _t	R _c	E _{din}	P _{ab}	CC	
	Composição	[MPa]	[MPa]	[MPa]	(%)	$[kg/m^2.s^{1/2}]$	VA [kg/m ²]
		28 dias	28 dias			28 dias	
		0.37	0.68	-	-	0.53	
	1:3	90 dias	90 dias			90 dias	
	AL : RS	0.60	1.30			0.51	-
		360 dias	360 dias			360 dias	
		0.83	1.73			0.49	
	1:3	28 dias 0.40	28 dias			28 dias	
			0.80			0.65	
Margalha et al.			90 dias			90 dias	
(2007)	AL : AS	360 dias	0.77	-	_	0.62	-
		0.63	360 dias			360 dias	
		0.03	1.23			0.49	
		28 dias	28 dias			28 dias	
	1:1.5:1.5 AL : RS : AS	0.43	0.82		-	0.41	
		90 dias	90 dias	-		90 dias	
		0.47	1.20			0.40	-
		360 dias	360 dias			360 dias	
		1.03	2.13			0.42	

AL – cal aérea; RS – areia de rio; AS – areia de areeiro; MS – areia monogranular de areeiro; ADS – mistura de areias de areeiro; CS – areia grossa; FS – areia fina; AP – Avaliação preliminar; DE – Desenvolvimento experimental

3 Campanha experimental e resultados

Na campanha experimental, desenvolvida nos laboratórios da Secção de Construção do Departamento de Engenharia Civil da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, pretendeu-se avaliar o comportamento de argamassas de uma cal hidráulica natural (NHL2) de produção nacional e que recentemente foi introduzida no mercado e a influência que a granulometria dos agregados pode ter nestas argamassas. As características obtidas também foram comparadas com argamassas com agregados idênticos mas formuladas com uma cal aérea (CL90) também de produção nacional e existente já há largos anos no mercado.

Para esta campanha foram formuladas seis composições de argamassas, com traço volumétrico 1:3, nas quais se variou o ligante e a granulometria do agregado. As argamassas foram caracterizadas no estado fresco e no estado endurecido aos 28 e aos 90 dias de idade.

Neste capítulo são descritas as matérias primas utilizadas, a preparação das argamassas e dos provetes, os procedimentos de ensaio adotados e os resultados de todos os ensaios realizados

3.1 Matérias-primas e sua caracterização

3.1.1 Cal hidráulica natural NHL2

As argamassas de cal hidráulica natural desta campanha experimental foram elaboradas com NHL2 produzida pela Secil Martingança, na fábrica da Maceira. A cal foi disponibilizada pelo produtor em Julho de 2014 e, segundo a respetiva ficha técnica, é classificada segundo a norma respetiva [IPQ, 2011]. A ficha técnica pode ser consultada no ANEXO 1.

A composição química da NHL2, obtida pela Secil Martingaça, encontra-se no Quadro 3.1. Segundo Grilo et al. (2014), a NHL3.5 tem na sua composição 5,70% em massa de SiO_2 e 62% de CaO.

Durante a produção das amassaduras a embalagem de cal manteve-se fechada para evitar o contacto com a humidade envolvente e possíveis contaminações.

 Na_2O Mg0 Al_2O_3 SiO₂ P_2O_5 SO_3 K_2O Ca₀ TiO₂ V_2O_5 0,038 1,061 0,939 2,990 0,017 1,128 0,330 65,061 0,130 0,032 NHL2 MnO Fe_2O_3 NiO **ZnO** Rb_2O SrO_2 Y_2O_3 ZrO_2 Ba₀ CL0,069 0,016 1,051 0,003 0,003 0,015

Quadro 3.1 - Composição química da cal hidráulica natural NHL2 (% em massa)

3.1.2 Cal aérea

Na produção de argamassas de cal aérea foi utilizada uma cal cálcica produzida pela *Lusical* designada por H100 e classificada como CL90 segundo a norma das cais de construção [IPQ, 2011].

Esta cal será a partir daqui designada por CL. No Quadro 3.2 é apresentada a composição química da CL.

Quadro 3.2 – Composição química da cal aérea (% em massa) [Gameiro et al., 2014]

CL90	SiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	PF*
	_	0,01	0,15	0,01	3,09	76,74	_	0,02	0,04	0,01	20,45

^{*}PF - perda ao fogo

Pelos valores de percentagem em massa de SiO₂ e de CaO., confirma-se que NHL2 é a cal hidráulica natural que se aproxima mais da cal aérea.

3.1.3 Água

A água adicionada nas misturas de argamassa foi proveniente da rede de abastecimento público de água. A água foi adicionada à mistura dos componentes secos da argamassa numa quantidade previamente avaliada para assegurar uma boa trabalhabilidade e foi definido um valor de 165±5 mm de espalhamento para todas as argamassas.

3.1.4 Agregados

Como um dos objetivos da presente dissertação é o estudo da influência dos agregados nas argamassas, escolheram-se três areias siliciosas quartzosas com granulometrias distintas como agregado das misturas: uma areia média monogranular (APAS 20), uma areia fina monogranular (APAS 60) e uma mistura de areias com granulometria extensa. Todas as areias usadas na campanha experimental são comercializadas pela Areipor e têm origem em areeiros da região de Salvaterra de Magos. As areias foram adquiridas em areeiro no estado seco, sujeitas a um processo de lavagem e utilizadas no estado seco. As areias são mostradas na Figura 3.1.

A mistura de areias têm uma granulometria semelhante à areia CEN de referência. É composta pelas areias monogranulares APAS 13, APAS 20, APAS 30 e FPS 120 nas percentagens, em massa, de 32%, 18%, 29% e 21%, respectivamente [Rato, 2006]. As fichas técnicas das areias APAS 20 e FPS120 utilizadas são apresentadas no ANEXO 2.

APAS 13

Figura 3.1 – Areias monogranulares e mistura de areias Mix (cont.)

3.1.5 Análise granulométrica das areias

A análise granulométrica dos agregados consiste na distribuição das partículas de uma amostra de material, e na consequente determinação das percentagens mássicas de cada intervalo de dimensões em relação à massa total da amostra.

Os três métodos de avaliação da granulometria mais comuns são a peneiração, para materiais granulares como as areias, e a sedimentação e a difração laser, para materiais finos como as argilas. Na campanha experimental da presente dissertação só foi realizado o primeiro método.

O método da peneiração, realizado de acordo com a norma NP EN 933-1:2000, consiste na passagem de uma amostra de material por uma série de peneiros com malhas de dimensões distintas, colocados por ordem decrescente de dimensão de malha. Após esta análise é feita uma representação gráfica das percentagens de massa acumuladas que passam em cada peneiro, denominada curva granulométrica. Este ensaio permite determinar, para além das curvas granulométricas dos agregados, a máxima dimensão (abertura da malha do peneiro de menor dimensão por onde passa uma quantidade igual ou superior a 90% do material), a mínima dimensão (abertura da malha do maior peneiro por onde passa uma quantidade igual ou inferior a 5% do material) e o módulo de finura (soma das percentagens totais retidas em cada peneiro da série, com exceção do peneiro de malha 0,075 mm, dividida por 100) [Sousa-Coutinho, 2006].

Antes da realização do ensaio foi colocada uma amostra de cerca de 3 kg em estufa ventilada a 60±5 °C até à condição de massa constante. O ensaio foi repetido três vezes para cada tipo de areia com amostras de 1 kg. Na execução do ensaio, a amostra passou pelos peneiros sobre um agitador mecânico de peneiros. Após a fase da agitação mecânica, registou-se a massa de areia retida em cada peneiro. No Quadro 3.3 são apresentados os peneiros e as aberturas de malha utlizadas no ensaio.

Foram calculadas as percentagens de material passado acumulado após a medição das massas retidas em cada peneiro.

Quadro 3.3 – Peneiros utilizados na análise granulométrica [Rato, 2006]

Designação do peneiro	Abertura [mm]
nº4	4,750
nº8	2,360
nº16	1,180
nº30	0,600
nº35	0,500
nº40	0,425
nº45	0,355
nº50	0,300
nº60	0,250
nº70	0,212
nº80	0,180
nº100	0,150
nº120	0,125
nº140	0,106
nº170	0,090
nº200	0,075
nº230	0,063
nº270	0,053
nº325	0,045
nº400	0,038

Na Figura 3.2 são apresentadas as curvas de todas as areias monogranulares que compõem a mistura e da areia Mix e, na Figura 3.3, as curvas das areias monogranulares MS e FS e da mistura de areias Mix.

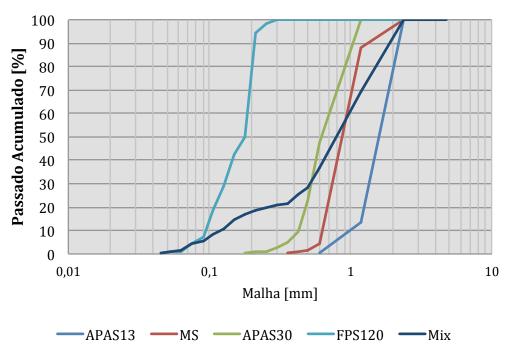


Figura 3.2 – Curvas granulométricas das areias que compõem a mistura e da areia Mix

No Quadro 3.4 são apresentados os valores da máxima dimensão (D), mínima dimensão (d) e módulo de finura (MF) das areias MS, FS e Mix.

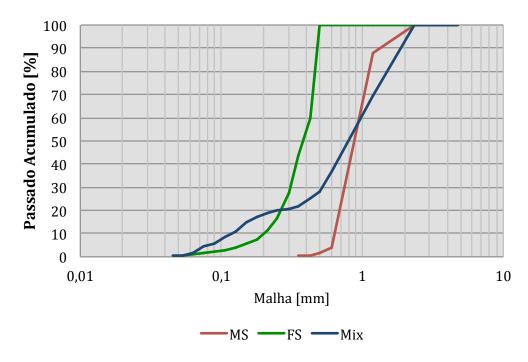


Figura 3.3 – Curvas granulométricas das areias MS, FS e Mix

Quadro 3.4 – Valores da máxima dimensão (D), mínima dimensão (d) e módulo de finura (MF) das areias MS, FS e

Areia	D [mm]	d [mm]	MF		
MS	2,36	0,600	2,4		
FS	0,50	0,125	1,7		
Mix	4,75	0,075	2,6		

É possível verificar que a mistura de areias tem uma granulometria extensa, com maior variação de dimensões de partículas de agregado.

3.1.6 Baridade dos constituintes secos

A baridade pode ser descrita como a massa de um material por unidade do seu volume aparente. Este ensaio, apresentado na Figura 3.4, é realizado em materiais granulares, considerando o volume de vazios entre as partículas. O ensaio realizou-se segundo a norma NP EN 1097–3:2000 [IPQ, 2000] e consiste na determinação da massa de material seco que preenche um recipiente de capacidade conhecida. Esta grandeza permite relacionar o traço volumétrico dos constituintes das argamassas com o seu traço ponderal, permitindo calcular posteriormente a quantidade exata de material necessário para cada amassadura.

Na primeira fase é determinado o volume do recipiente, de massa m_0 , cheio com água a temperatura ambiente t_a , apresentada no quadro 3.4. A parte superior do recipiente deve ser tapada com uma placa de acrílico, de massa m_1 , garantindo que não existem quaisquer bolhas de ar na superfície de contato entre a água e a placa de acrílico; por fim, o conjunto é pesado, m_2 . O volume do recipiente é obtido pela equação 3.1.

$$V = \frac{[m_2 - (m_1 + m_0)]}{\rho}$$

(3.1)

onde V [cm³] – volume do recipiente; m_0 [g] – massa do recipiente; m_1 [g] – massa da placa de acrílico; m_2 [g] - massa do recipiente cheio de água tapado com a placa de acrílico; ρ [g/cm³] - massa volúmica da água a temperatura t_a (Quadro 3.5).

Figura 3.4 – Ensaio da baridade dos constituintes secos

:

Quadro 3.5 – Massa volúmica da água em função da temperatura [Grilo, 2012]

assa verasa da aBaa e rangas da temperatar			
Temperatura da água, ta [°C]	ρ [g/cm ³]		
10	0,9997		
15	0,9991		
23	0,9976		

Depois de determinado o volume do recipiente este é posicionado sob um funil de sólidos, com o bordo inferior colocado a uma distância de 73 mm do topo do recipiente. Preenche-se com o material a ensaiar até formar um cone no topo e rasa-se com uma régua metálica, sem compactar o material no recipiente. O conjunto é pesado e a baridade do material é calculada a partir da equação 3.2.

$$Ba = \frac{[m_3 - m_0]}{V}$$

(3.2)

onde Ba $[g/cm^3]$ – baridade; $m_0[g]$ – massa do recipiente; $m_3[g]$ – massa do recipiente cheio com o material; $V[cm^3]$ – volume do recipiente

As pesagens do recipiente e dos materiais foram realizadas numa balança com uma precisão de 0,1 g. Foram realizadas três medições de baridade para cada material, sendo o valor final da baridade a média das três medições. No Quadro 3.6 são apresentadas as baridades das areias e dos ligantes.

Quadro 3.6 - Baridades dos constituintes secos das argamassas

Baridade [g/cm ³]			
NHL2	0,683		
CL	0,361		
APAS 13	1,386		
APAS 20	1,377		
APAS 30	1,390		
APAS 60	1,335		
FPS 120	1,290		
Mistura de areias	1,624		

Verifica-se que a mistura de areias tem uma baridade mais elevada do que as areias monogranulares devido ao arranjo de partículas de diferentes dimensões, tornando o arranjo mais compacto.

3.2 Preparação das argamassas

A preparação das argamassas teve como base a norma NP EN 196-1:2006 [IPQ, 2006] mas com tempos de amassadura diferentes [Grilo, 2013].

Para fácil distinção entre as argamassas foram utilizadas designações próprias para a sua identificação que sintetizam a sua diferente composição, em termos de agregado e de ligante. As argamassas que têm como agregado a areia monogranular APAS 20 têm como sigla de identificação MS e as argamassas com areia monogranular APAS 60 têm FS como sigla. No caso das argamassas com mistura de areias a sigla atribuída foi de Mix. Em relação aos ligantes, as argamassas de cal hidráulica natural NHL2 são identificadas como NHL2 e quando o ligante é cal aérea CL90 a sigla de identificação das argamassas é CL. No Quadro 3.7 são apresentados os traços em massa e volumétrico e a relação mássica água/ligante.

Em primeiro lugar, os componentes secos da argamassa, areias e ligantes, foram pesados numa balança com precisão de 0,1 g e colocados num tabuleiro para serem manualmente homogeneizado com auxilio de uma pá. O passo seguinte foi colocar a mistura dentro da cuba misturadora com o cuidado de não levantar poeiras e evitar o desperdício de material. A pá foi acionada e lentamente se colocou a água com recurso a uma proveta, numa quantidade previamente definida (vd. 3.3.1), durante os primeiros segundos da amassadura. A misturadora permaneceu em funcionamento durante 150 segundos, seguindo-se uma pausa de 30 segundos, para se raspar os bordos da cuba e

envolver o material, e mais uma vez colocou-se em funcionamento por mais 30 segundos. Findo esse tempo foi dada por finalizada a amassadura (Figura 3.5).

Quadro 3.7 – Traços em massa e volumétricos e relação mássica água/ligante

Designação da argamassa	Traço Ponderal	Traço Volumétrico	Relação mássica água/ligante
NHL2_MS	1:6,0	1:3	1,3
NHL2_FS	1:5,9	1:3	1,6
NHL2_Mix	1:7,1	1:3	1,2
CL_MS	1:11,4	1:3	2,6
CL_FS	1:11,1	1:3	3,1
CL_Mix	1:13,5	1:3	2,6

Figura 3.5 – Sequência na preparação das argamassas

3.3 Ensaios de caracterização das argamassas no estado fresco

Terminado o período das amassaduras procedeu-se seguidamente aos ensaios das argamassas no estado fresco. Os ensaios realizados foram:

- consistência por espalhamento;
- massa volúmica;
- teor de ar incorporado;
- retenção de água.

A caracterização das argamassas no estado fresco permite estudar as propriedades das argamassas no momento em que acabam de ser fabricadas e a sua influência nas argamassas no estado endurecido, quando a sua microestrutura já está pratica formada. Os valores médios de cada ensaio são apresentados graficamente neste subcapítulo e apresentados globalmente no Quadro 4.1. Os valores individuais de cada ensaio encontram-se no Anexo 3.

3.3.1 Consistência por espalhamento

Terminada a amassadura, o primeiro ensaio realizado com a argamassa no estado fresco foi o de consistência por espalhamento com base na norma europeia EN 1015-3:1999. Os valores obtidos neste ensaio quantificam a fluidez das argamassas frescas, fornecendo uma informação sobre a deformabilidade dessas argamassas quando submetidas a determinado tipo de tensão [Faria, 2004].

Nas argamassas produzidas no presente trabalho consideraram-se à partida valores de espalhamento de 165±5 mm, e assim foi determinada a quantidade de água necessária para se obterem argamassas trabalháveis.

Antes de se iniciar o ensaio, todos os utensílios, incluindo a mesa de espalhamento, foram humedecidos. Como a mesa não foi utilizada nas 24 horas anteriores deram-se algumas pancadas antes do ensaio propriamente dito.

A argamassa foi colocada no interior do molde tronco-cónico, centrado na mesa, em duas camadas, ambas compactadas com 10 pancadas do pilão; a superfície foi rasada e o cone retirado lentamente. Foram dadas 15 pancadas em 15 segundos por rotação da manivela da mesa de espalhamento. Por fim, foi medido o diâmetro da argamassa com o auxílio de uma craveira, em três direções distintas, determinando-se posteriormente a média dos valores de espalhamento em milímetros (Figura 3.6).

Figura 3.6 – Argamassa na mesa de consistência por espalhamento

Na Figura 3.7 são apresentados a relação/água ligante e os resultados médios, com o respectivo desvio padrão, do ensaio de espalhamento com as argamassas no estado fresco. A mesa de espalhamento foi manobrada por um único operador de forma a minimizar as variações entre os valores obtidos. No Quadro 4.1 encontram-se os valores obtidos.

Todas as argamassas apresentam uma trabalhabilidade adequada para aplicação em rebocos, dentro ou muito perto do intervalo de 165±5 mm. Pela Figura 3.7 é bem notório que as argamassas de cal aérea necessitam do dobro da quantidade de água que as argamassas de cal hidráulica.

Em ambos os ligantes a argamassa que necessitou de mais quantidade de água foi aquela em que o agregado era areia fina, e mesmo assim obteve menores valores de espalhamento que as outras argamassas com o mesmo ligante.

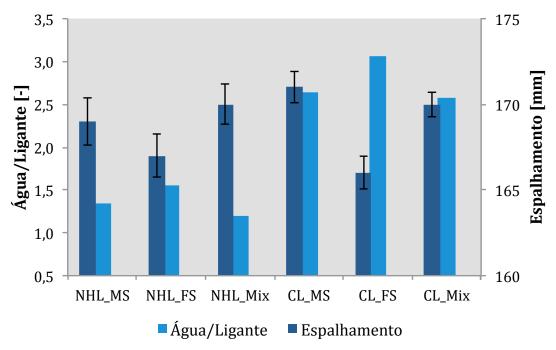


Figura 3.7 – Relação água ligante e resultados do ensaio de consistência por espalhamento

3.3.2 Massa volúmica fresca

O ensaio foi realizado com base na norma europeia EN 1015-6:1998. A massa volúmica no estado fresco é determinada pelo quociente da massa pelo volume que é ocupado por essa massa, quando introduzida e compactada num recipiente cilíndrico de capacidade conhecida.

Em primeiro lugar, o recipiente vazio, com capacidade de 1 L, foi pesado numa balança com precisão de 0,1 g. Depois de preparada, a argamassa foi colocada no interior do recipiente, até metade da sua capacidade. O recipiente foi sujeito a oscilação em direções alternadas, inclinando-o cerca de 30 mm e deixado cair, repetindo-se este procedimento para as outras direções. Encheu-se completamente o recipiente e voltou-se a compactar do modo anteriormente referido. O bordo superior do recipiente foi rasado com uma colher de pedreiro de forma a retirar a argamassa em excesso. Por fim, o recipiente é limpo exteriormente e pesado com a argamassa no interior, como se pode observar na Figura 3.8. A massa volúmica no estado fresco é calculada a partir da equação 3.3.

$$\rho = \frac{M_{recip+arg} - M_{recip}}{V}$$
(3.3)

onde ρ [kg/m³] – massa volúmica da argamassa no estado fresco; $M_{recip+arg}$ [kg] – massa do conjunto do recipiente cilíndrico com argamassa no interior; M_{recip} [kg] – massa do recipiente cilíndrico; V [m³] - volume do recipiente cilíndrico (1 L = 1 × 10-3 m³).

Apenas se realizou um ensaio para cada argamassa e o seu resultado tem como unidade kg/m³.

Figura 3.8 – Pesagem do recipiente no ensaio de massa volúmica no estado fresco

Os resultados do ensaio da massa volúmica das argamassas no estado fresco correspondem aos valores de uma única amassadura e são apresentados na Figura 3.9, no Quadro 4.1.

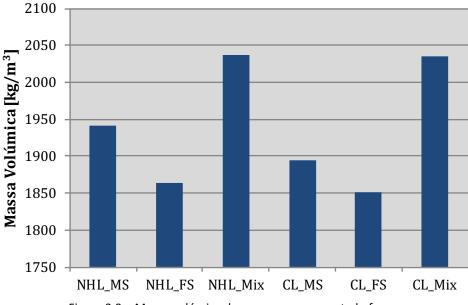


Figura 3.9 – Massa volúmica das argamassas no estado fresco

A massa volúmica é superior nas argamassas de NHL2, para todos os agregados. Independentemente do ligante, as argamassas com mistura de areias (Mix) apresentam valores superiores de massa volúmica e as argamassas com areia fina (FS) apresentam os valores mais baixos.

3.3.3 Teor de ar incorporado

Este ensaio foi realizado à argamassa no estado fresco, de acordo com a norma europeia EN 1015-7:1998. O princípio deste ensaio consiste na introdução de água no topo da superfície da argamassa, previamente colocada num recipiente específico e, pelo método da pressão ou pelo método do

álcool, a água é forçada a entrar na argamassa e deslocando o ar que existe dentro dos poros. A quantidade de água reflete o volume de ar deslocado na argamassa, em percentagem, e deve ser relacionado com a trabalhabilidade, a massa volúmica.

Antes de se iniciar o ensaio, a câmara de pressão é devidamente calibrada. Colocou-se a argamassa fresca até meio volume do recipiente, próprio para encaixar a câmara de pressão, e compactou-se através da oscilação do recipiente em quatro direções; introduziu-se a segunda camada, preenchendo totalmente o contentor, e voltou-se a compactar do mesmo modo.

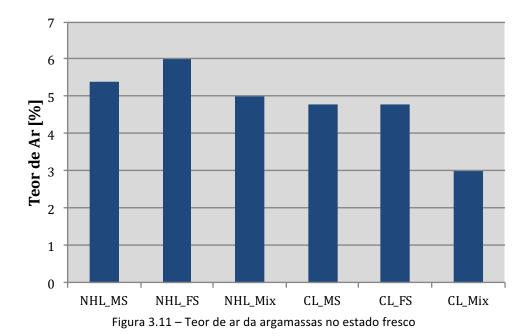

O excesso de argamassa foi retirado com uma colher de pedreiro e os bordos limpos com um pano húmido. A câmara de pressão foi fixa ao recipiente com os grampos e foi colocada a água numa válvula, com auxílio de um esguicho, até sair sem bolhas na válvula oposta. O ponteiro do manómetro foi ajustado e colocado a zeros através do bombeamento de ar para a câmara; em seguida, as válvulas foram fechadas e a válvula de escape foi pressionada durante 20 segundos (para estabilização). O mostrador do manómetro fornece a leitura, arredondada a 0,1% (Figura 3.10).

Figura 3.10 – Equipamento de ensaio do teor em ar incorporado

Na Figura 3.11 são apresentados resultados do ensaio do teor de ar das argamassas no estado fresco, correspondentes aos valores de uma única amassadura. No Quadro 4.1 encontram-se os valores obtidos no ensaio.

O teor em ar é superior nas argamassas de cal hidráulica natural, para os três tipos de agregado. Comparando as argamassas com o mesmo ligante, em ambas as cais as argamassas com valores mais elevados de teor de ar são as que contêm areia fina (FS) e os valores mais baixos pertencem às argamassas com mistura de areias como agregado (Mix).

3.3.4 Retenção de água

O procedimento seguido neste ensaio teve como base a norma europeia prEN 1015-8:1999 e com ele podemos conhecer a quantidade de água que fica retida na argamassa quando é aplicada sobre um suporte poroso.

Antes de se iniciar o ensaio foi necessário pesar as cápsulas vazias e as folhas de papel de filtro numa balança com precisão de 0,001 g. As cápsulas – com diâmetro exterior de 100 mm e 25 mm de altura – foram cheias de argamassa até metade, com auxílio de uma colher de pedreiro, e compactadas através da oscilação da mesmas, inclinando-as de uma altura de 20 mm e deixando-as cair, em quatro direções alternadas; encheu-se totalmente as cápsulas e compactou-se da forma anteriormente referida. O excesso de argamassa foi rasado com uma colher de pedreiro e o exterior das cápsulas limpas com um pano húmido.

Pesou-se a cápsula preenchida e cobriu-se a argamassa com gaze de algodão, para que não ficasse muita argamassa aderente à primeira folha de papel de filtro, e colocou-se o conjunto de papéis de filtro por cima da argamassa. Posicionou-se um azulejo retangular por cima do conjunto de papéis de filtro e inverteram-se as cápsulas; já com as cápsulas sobre uma superfície plana foi colocado um peso 2 kg sobre o conjunto durante 5 minutos ± 5 segundos. Ao fim desse tempo, o conjunto foi colocado na posição inicial e os papéis de filtro retirados e pesados novamente. Na Figura 3.12 são apresentados os materiais e utensílios utlizados no ensaio.

A retenção, dada por uma percentagem de água inicialmente presente na argamassa, depende da massa de água que constitui a argamassa colocada na cápsula. Essa massa de água pode ser calculada através da equação 3.4.

$$m_{a} = \frac{a_{g} \times (m_{c} - m_{v})}{\sum_{i=1}^{n} c_{i} + a_{g}}$$
(3.4)

onde $m_a[g]$ – massa de água que constitui a argamassa colocada na cápsula; $a_g[g]$ – massa de água utilizada na amassadura; $m_c[g]$ – massa da cápsula preenchida com argamassa; $m_v[g]$ – massa da cápsula vazia; $c_i[g]$ – massa de cada constituinte seco utilizado na amassadura.

A retenção, em percentagem, é dada pela equação 3.5.

$$R = \frac{m_a - (m_h - m_f)}{m_a} \times 100$$
(3.5)

onde R [%] – retenção de água; m_a [g] - massa de água que constitui a argamassa colocada na cápsula; m_h [g] – massa do conjunto de folhas de papel de filtro no final do ensaio; m_f [g] – massa do conjunto de folhas de papel de filtro secas.

O resultado deste ensaio consiste na média das três cápsulas da mesma amassadura, em percentagem.

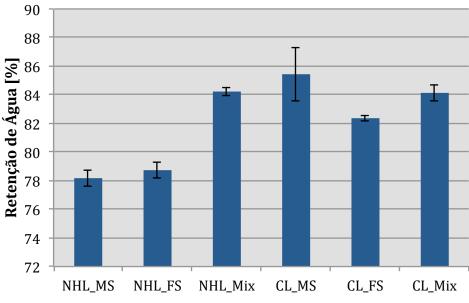


Figura 3.12 – Utensílios para o ensaio de retenção de água

Os resultados do ensaio de retenção de água das argamassas no estado fresco correspondem à média das amostras colocadas nas três cápsulas, provenientes de uma única amassadura e apresentados na Figura 3.13, no Quadro 4.1.

Neste ensaio, os valores mostram que, com areias média (MS) e fina (FS), a retenção é superior nas argamassas de cal aérea, o que encontra correspondência na variação da quantidade de água necessária para um espalhamento similar. Por outro lado, nas argamassas com a mistura de areias (Mix), os valores de retenção são muito aproximados entre ligantes. A maior variação entre

argamassas com o mesmo agregado encontra-se nas misturas com areia monogranular média, em que a variação é superior a 7%.

Figura 3.13 – Retenção de água da argamassa no estado fresco

3.4 Preparação dos provetes e sua cura

Antes das amassaduras serem realizadas todos os moldes prismáticos, com dimensões aproximadas de $40 \times 40 \times 160$ [mm], foram medidos e o óleo descofrante aplicado; cada molde metálico permitiu produzir três provetes. Terminada a amassadura e verificada a consistência a argamassa foi colocada dentro do molde, previamente posicionado no compactador mecânico, em duas camadas, sendo cada camada compactada com 20 pancadas. Depois de retirado o molde do compactador , este foi rasado com uma colher de pedreiro de forma a retirar o excesso de argamassa da superfície livre dos provetes (Figura 3.14). Depois de todos os provetes estarem preparados passam para o processo de cura.

Todos os provetes foram acondicionados após a moldagem dentro de sacos de polietileno fechados, em ambiente de laboratório, onde permaneceram durante 7 dias. Os provetes de argamassas de cal hidráulica natural foram desmoldados ao fim de 4 dias e ao sétimo dia retirados da base do molde. As argamassas de cal aérea foram desmoldadas ao sétimo dia mas como ainda não se encontravam totalmente endurecidas foram mantidos sobre a base do molde.

O tipo de cura utilizado nesta campanha experimental foi o padrão, considerado como uma cura de referência. Ao sétimo dia de idade todos os provetes foram colocados numa sala condicionada, onde as condições de temperatura e humidade relativa são controladas, ou seja, HR = 65±5% e T = 20±3 °C. Os provetes estiveram nessas condições desde o sétimo dia até à idade de ensaio – 28 ou 90 dias de idade.

Figura 3.14 – Provetes nos moldes antes de serem acondicionados

3.4.1 Observação das condições dos provetes no início do tempo de cura

Analisando a retração das argamassas no molde, de forma a avaliar a retração inicial da secagem, foi possível verificar, antes da desmoldagem, que nenhuma das argamassas apresentava retração visível (todos os provetes se encontravam aderentes às paredes ao molde). Ao fim dos 7 dias dentro dos sacos de polietileno todos os provetes de cal aérea ainda apresentavam uma consistência mole, que não permitia que fossem retirados de cima do molde, enquanto os de NHL2 já estavam endurecidos.

3.5 Ensaios de caracterização das argamassas no estado endurecido

Os ensaios de caracterização das argamassas no estado endurecido foram realizados aos 28 e aos 90 dias de idade nos laboratórios do DEC-FCT/UNL genericamente a 6 provetes de cada argamassa. Os ensaios realizados foram:

- Condutibilidade térmica;
- Massa volúmica aparente geométrica;
- Porosidade aberta e massa volúmica aparente;
- Porosimetria por intrusão de mercúrio (MIP);
- Módulo de elasticidade dinâmico;
- Resistências à tração por flexão e à compressão
- Carbonatação por análise do pH.
- Absorção de água por capilaridade;
- Secagem;
- Observação na lupa binocular

A caracterização das argamassas no estado endurecido permite estudar as alterações das propriedades com a evolução do tempo, com a mudança de ligante e do tipo de areia. Os valores

obtidos correspondem à média dos seis provetes de cada argamassa para cada ensaio, excepto no ensaio de condutibilidade térmica e no caso em que os provetes ficaram danificados durante os ensaios. A Figura 3.15 representa a sequência de ensaios que foram realizados aos provetes prismáticos. Os valores de cada provete para cada ensaio encontram-se no Anexo 3.

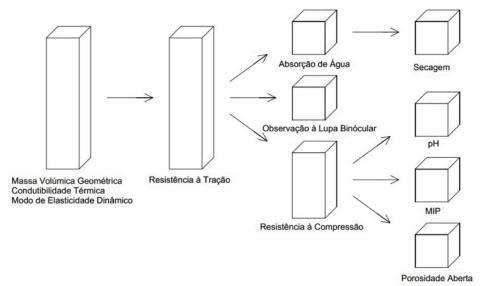


Figura 3.15 – Sequência de ensaios que foram realizados aos provetes prismáticos

3.5.1 Condutibilidade térmica

O ensaio de condutibilidade térmica, que analisa a capacidade de um material se deixar atravessar pelo calor, foi realizado com base no manual do equipamento, "ISOMET Model 2104" (Heat Transfer Analyser) com a respetiva sonda de superfície "API 210412", com gama de 0,3 – 2,0 W/m°C.

A sonda deveria estar em total contacto com o provete, o que não aconteceu neste trabalho uma vez que os provetes têm uma área inferior à área de contacto da sonda. Os dados obtidos só poderão ser comparados com valores de condutibilidade térmica em provetes ensaiados nas mesmas condições.

O provete foi colocado sobre uma placa de poliestireno expandido, de forma a evitar a transferência de calor para o suporte onde ocorreu o ensaio. A sonda, devidamente ligada ao aparelho, foi colocada sobre uma face do provete (Figura 3.16) e iniciou-se o ensaio. Registou-se o valor da condutibilidade térmica e colocou-se a sonda noutra face, repetindo-se o processo. Realizou-se uma terceira leitura.

Na Figura 3.17 são apresentadas os valores da condutibilidade térmica dos provetes aos 28 e 90 dias de cura. Neste ensaio só foram medidas as condutibilidades de dois provetes de cada argamassa. No Quadro 4.2 encontram-se os valores médios de cada argamassa.

Aos 28 e aos 90 dias a condutibilidade é ligeiramente inferior nas argamassas de NHL2, para todos os agregados. Para os dois ligantes, as argamassas com mistura de areias (Mix) apresentam valores

superiores de condutibilidade térmica e as argamassas com areia fina (FS) apresentam os valores mais baixos.

Figura 3.16 – Ensaio de condutibilidade térmica

As argamassas NHL_MS e CL_Mix sofreram um aumento de condutibilidade térmica um entre os 28 e 90 dias de idade, e as outras quatro sofreram uma redução. A argamassa que sofreu a maior variação de diminuição, de 9,2%, foi a CL_FS.

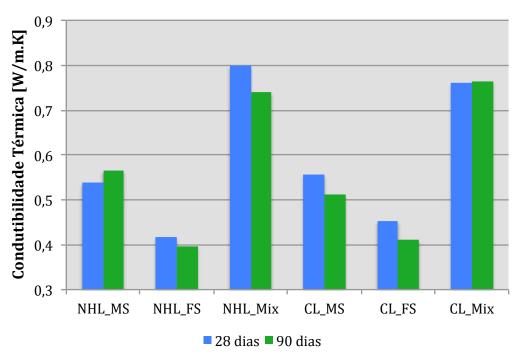


Figura 3.17 – Condutibilidade térmica das argamassas aos 28 e aos 90 dias de cura

Em ambas as idades, a massa volúmica geométrica e a condutibilidade térmica apresentam a mesma tendência.

3.5.2 Massa volúmica geométrica

Os provetes foram medidos e pesados aos 28 e aos 90 dias de idade com o auxílio de uma craveira digital, para medir as dimensões de cada um dos provetes, e uma balança com precisão de 0,001 g, para determinar a massa. A massa volúmica de cada provete corresponde ao quociente da massa pelo volume do provete. Os valores das medições serviram depois para o ensaio do módulo de elasticidade dinâmico.

Na Figura 3.18 são apresentadas as massas volúmicas aparentes dos provetes aos 28 e aos 90 dias de cura. No Quadro 4.2 encontram-se os valores médios e respetivo desvio padrão de cada argamassa.

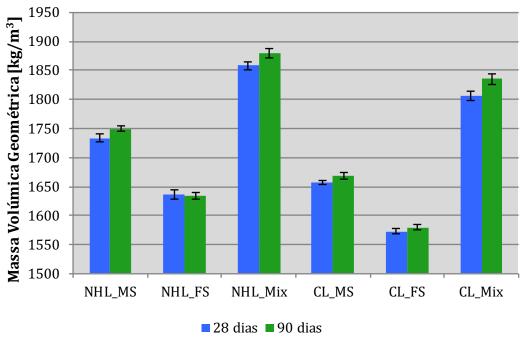


Figura 3.18 – Massa volúmica das argamassas aos 28 e 90 dias de cura

Aos 28 e aos 90 dias a massa volúmica é superior nas argamassas de NHL2, para todos os agregados. Independentemente do ligante, as argamassas com mistura de areias (Mix) apresentam valores superiores de massa volúmica e as argamassas com areia fina (FS) apresentam os valores mais baixos.

O valor da massa volúmica aos 90 dias é superior ao que se verifica aos 28 dias em todas as argamassas, com exceção da NHL_FS que sofreu uma ligeira redução. A CL_Mix foi a argamassa que sofreu maior variação de aumento de massa volúmica, de 1,6%. Pode considerar-se que a variação de massa volúmica da argamassa NHL_FS se deveu a erros de medição, visto que o seu valor ,0,2%, é inferior à amplitude do intervalo do desvio padrão.

Comparando com a massa volúmica no estado fresco, a maior redução de massa volúmica ocorreu nas argamassas com areia fina, que correspondia à argamassa com maior relação água/ligante.

3.5.3 Porosidade aberta e massa volúmica aparente por vácuo e pesagem hidrostática

Este ensaio foi realizado com base na norma europeia NP EN 1936:2008 [IPQ, 2008] para pedra natural, com algumas alterações de forma a se adaptar aos provetes em estudo.

Antes do início do ensaio os provetes, resultantes do topo dos provetes utilizados no ensaio de resistência à compressão, foram colocados numa estufa a 60 °C durante 48 h. As amostras foram limpas de modo que não haja vestígios de material solto à superfície e pesadas numa balança com precisão de 0,001 g. As amostras foram colocadas durante 24 h dentro de um exsicador selado e ligado, através de uma tubagem, a uma bomba de vácuo de modo a retirar todo o ar dos provetes e do interior do exsicador (Figura 3.19).

Passadas 24 h foi introduzida água dentro do exsicador até os provetes estarem completamente submersos; a introdução da água decorreu lentamente, com uma duração superior a 15 minutos. Os provetes permaneceram imersos com a bomba de vácuo ligada durante as 24 h seguintes. Às 48 h de ensaio a bomba foi desligada e os provetes continuaram imersos por mais 24 h.

Terminado o ensaio, os provetes foram retirados um a um do exsicador e foi realizada a pesagem hidrostática e a pesagem saturada. A pesagem hidrostática foi realizada com o auxílio de um cesto pendurado na parte inferior da balança e mergulhado dentro de água; antes de se realizar a pesagem saturada foi retirado o excesso de água superficial de cada provete.

Figura 3.19 – Ensaio de porosidade aberta e massa volúmica aparente

A porosidade aberta (P_{ab}) e a massa volúmica aparente (MVA) foram calculadas com o recuso às seguintes equações 3.6 e 3.7.

$$P_{ab} = \frac{m_3 - m_1}{m_2 - m_1} \times 100$$

(3.6)

onde P_{ab} [%] – porosidade aberta; m_1 [g] – massa do provete seco; m_2 [g] – massa hidrostática do provete; m_3 [g] – massa do provete saturado.

$$MVA = \frac{m_1}{m_3 - m_2} \times 10^3 \tag{3.7}$$

onde MVA [kg/m 3] – massa volúmica aparente; m $_1$ [g] – massa do provete seco; m $_2$ [g] – massa hidrostática do provete; m $_3$ [g] – massa do provete saturado;

Os valores da porosidade aberta e da massa volúmica aparente são dados pela média dos seis provetes de cada argamassa.

Os valores médios da porosidade aberta (PA) e massa volúmica aparente (MVP) dos provetes aos 28 e 90 dias de cura são representados nas Figura 3.20 e Figura 3.21, respetivamente. No Quadro 4.2 encontram-se os valores médios e o respetivo desvio padrão de cada argamassa.

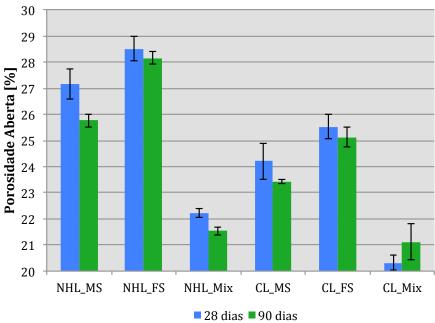


Figura 3.20 – Porosidade aberta das argamassas aos 28 e aos 90 dias de cura

Aos 28 dias as argamassas de NHL2 têm valores de PA superiores a CL. Em ambos os ligantes, as composições com FS têm valores de porosidade mais elevados e as composições com Mix têm os valores mais baixos. Observa-se também que a composição NHL_Mix tem menor porosidade que as CL_MS e CL_FS.

Aos 90 dias, não houve alteração na tendência entre areias e ligantes. As argamassas NHL_MS, NHL_Mix e CL_MS sofreram uma pequena diminuição na porosidade aberta, as restantes, devido à sua gama de valores, mantiveram-se constantes.

Como a porosidade aberta é superior nas argamassas de NHL2, a carbonatação ocorre mais rapidamente e o pH atinge valores mais baixos do que nas argamassas de CL.

Aos 28 dias, para cada agregado, a composição com NHL2 tem sempre maior valor de massa volúmica aparente (MVA) que a composição com CL. As argamassas com maior valor de MVA são as que contêm agregado Mix e as argamassas com menor valor de MVA são as que contêm agregado FS.

Aos 90 dias, as argamassas seguem a mesma tendência que aos 28 dias. Apenas na argamassa NHL_MS houve uma pequena subida da sua massa volúmica aparente, enquanto as outras argamassas mantiveram-se constantes.

A porosidade aberta e a massa volúmica aparente têm tendências inversas, como seria de esperar. A MVA e a condutibilidade térmica apresentam a mesma tendência.

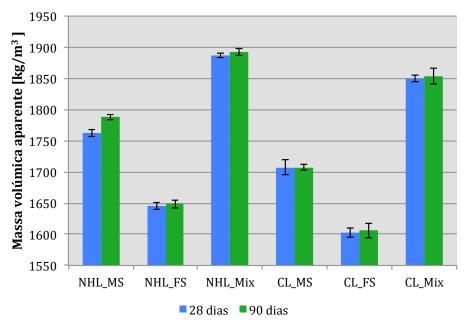


Figura 3.21 – Massa volúmica aparente das argamassas aos 28 e aos 90 dias de cura

3.5.4 Porosimetria por intrusão de mercúrio (MIP)

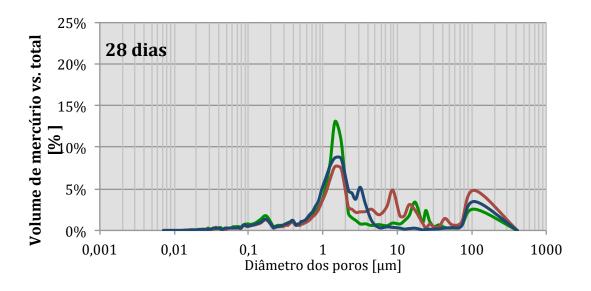
Para mais completa compreensão da estrutura porosa de cada argamassa procedeu-se à realização do ensaio de porosimetria por intrusão de mercúrio. Este ensaio permite conhecer a percentagem de cada gama de diâmetro de poros existente na amostra. O volume de mercúrio que penetra é medido em função da pressão aplicada; assim, cada patamar de pressão corresponde a uma gama de diâmetro de poro. O ensaio foi realizado no porosímetro "Autopore IV 9500" ao qual está associado um programa informático de obtenção e análise de dados (Figura 3.22).

Antes da realização do ensaio os provetes foram preparados de modo que as amostras fossem cilíndricas e de pequena dimensão, e condicionados numa estufa ventilada a 48 °C, durante pelo menos 48 h; para que a sua temperatura estabilizasse sem absorção de humidade, os provetes

foram colocados dentro de um recipiente com sílica-gel. Depois de pesados, foram introduzidos na cápsula do penetrómetro de ensaio; colocou-se uma quantidade pequena de óleo de selagem na cápsula e fechou-se a mesma.

Figura 3.22 – Porosimetro de mercúrio

Após determinada a massa do conjunto, numa balança com precisão de 0,001 g, o ensaio é iniciado no módulo de baixa pressão. Nesta fase, a amostra é acondicionada a uma pressão de 100 μmHg durante 5 minutos até estabilizar. O mercúrio é introduzido até que haja total preenchimento da zona envolvente do provete e inicia-se o processo de intrusão, subindo a pressão em 15 patamares pré-definidos entre os valores de 0,0138 MPa e 0,2068 MPa.


Terminado o módulo a baixa pressão, o penetrómetro é retirado da porta de baixa pressão e a massa do conjunto é novamente pesada. Em seguida inicia-se o módulo de alta pressão, que engloba um de processo de intrusão com 67 patamares, variando entre os valores de 0,2758 MPa e 206,8427 MPa. A extrusão de mercúrio é realizada em 27 patamares, variando os valores entre 206,8427 MPa e 0,1034 MPa.

O programa regista a intrusão de mercúrio nos poros da argamassa em função do aumento de pressão e a extrusão do mercúrio em função da diminuição de pressão.

Nas **Erro! Fonte de referência não encontrada.**23 e Figura 3.24, em cima, são apresentados os gráficos com a distribuição da dimensão dos poros das argamassas de NHL2 e CL aos 28 dias; nas mesmas Figuras 3.23 e 3.24, em baixo, os gráficos correspondentes das argamassas aos 90 dias.

Nas argamassas NHL_MS e NHL_FS, aos 28 dias, a maioria dos poros encontra-se na gama dos micro e mesoporos, enquanto na NHL2_Mix a maioria encontra-se nos microporos

Aos 90 dias houve um aumento na porometria das três argamassas, especialmente na NHL_MS em que a maioria da dimensão dos poros se situa na gama dos macroporos.

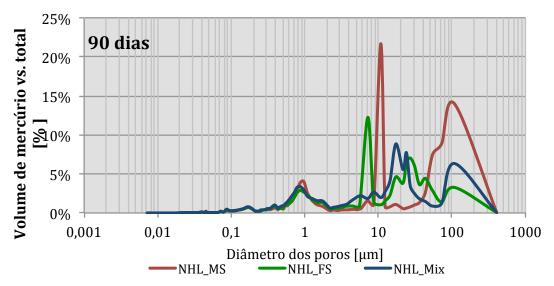


Figura 3.23 – Porosimetria de mercúrio das argamassas de NHL aos 28 e 90 dias de cura

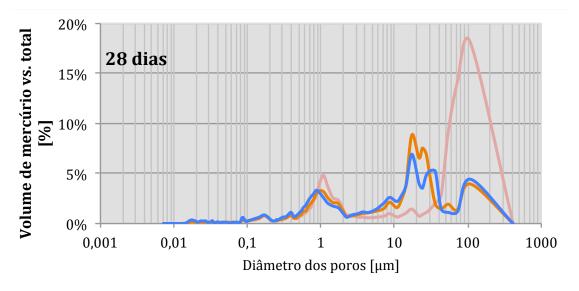


Figura 3.24- Porosimetria de mercúrio das argamassas de CL aos 28 e 90 dias de cura

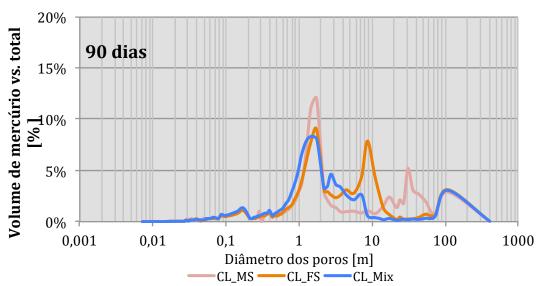


Figura 3.24 – Porosimetria de mercúrio das argamassas de CL aos 28 e 90 dias de cura (cont.)

Aos 28 dias, a argamassa CL_MS apresenta a maioria dos poros na gama dos meso e macroporos enquanto as argamassas CL_FS e CL_Mix apresenta a maioria dos poros nos micro e mesoporos.

Aos 90 dias, a argamassas de CL apresentam a maioria dos poros na gama dos micro e mesoporos.

Há claramente uma semelhança entre as estruturas porosas das argamassas de NHL2 aos 28 dias e as argamassas de CL aos 90 dias e entre as argamassas de NHL2 aos 90 dias e as argamassas de CL aos 28 dias. A explicação poderá ter origem na formação de grandes poros fissura resultantes da retração das argamassas de NHL2 numa fase em que o endurecimento progride essencialmente por carbonatação, após a fase inicial de hidratação. No caso das argamassas CL, a progressão da carbonatação do hidróxido de cálcio origina a formação de carbonato de cálcio microcristalino, CaCO₃, provocando o preenchimento parcial dos poros de maiores dimensões.

3.5.5 Módulo de elasticidade dinâmico

O ensaio do módulo de elasticidade dinâmico foi efetuado com base na norma europeia de ensaio para pedra natural, NP EN 14146:2006 [IPQ, 2006], pelo método de frequência de ressonância. O ensaio consiste em colocar os provetes num equipamento, como se pode observar na Figura 3.25, que emite vibrações e registar a frequência de ressonância fundamental longitudinal, que corresponde à frequência mais baixa para a qual se obtém uma amplitude máxima. O equipamento utilizado, "ZEUS Resonance Meter" está associado a um programa de cálculo onde foram inseridos os valores de massa e as dimensões do provete.

Antes do início do ensaio todos os provetes foram pesados numa balança com precisão de 0,001 g e medidos com uma craveira. O provete foi colocado corretamente sobre o suporte do equipamento de ensaio de modo a que um das extremidades ficasse em contacto com o vibrador e a outra extremidade com o receptor. Realizaram-se quatro leituras por provete, alternando a posição do

provete através da rotação em torno do eixo longitudinal com amplitude igual a um quarto de rotação [Rato, 2006]. O programa informático de cálculo calcula automaticamente o módulo de elasticidade dinâmico E_d através da equação 3.8.

$$E_d = \frac{4 \times L^2 \times F_L^2 \times \rho}{g} \times 10^{-6} \tag{3.8}$$

onde E_d [MPa] – módulo de elasticidade dinâmico; L [m] – comprimento do provete; F_L [Hz] – frequência de ressonância longitudinal; P [N/m³] – peso volúmico do provete; G [m/s²] – aceleração gravítica (9,8 m/s²).

Figura 3.25 – Ensaio do módulo de elasticidade dinâmico

O módulo de elasticidade dinâmico (E_d) permite quantificar a deformabilidade das uma argamassas, possibilitando a avaliação da compatibilidade entre a argamassa e o suporte onde ela é aplicado, de forma a acompanhar os movimentos do suporte sem fendilhar. As argamassas mais deformáveis apresentam menores valores de módulo de elasticidade e têm que ser menos rígidas que as paredes onde vão ser aplicadas.

O valor médio e respectivo desvio padrão de cada argamassa é apresentado graficamente na Figura 3.26 e os valores são apresentados no Quadro 4.3.

Aos 28 dias de cura existe uma clara diferença entre os valores do módulo de elasticidade das argamassas de NHL2 e as de CL, principalmente nas argamassas com areias monogranulares. A argamassa NHL_MS tem um valor médio de E_d superior a CL_MS na ordem dos 49% e nas argamassas com FS de 35%. Nas argamassas de cal hidráulica natural (NHL2) a que apresenta maior módulo de E_d é a NHL2_Mix e a que apresenta um menor valor é a NHL_FS, enquanto nas argamassas de cal aérea o maior valor continua a ser a argamassa com mistura de areias, CL_Mix, mas a que obtém o menor valor é a CL_MS.

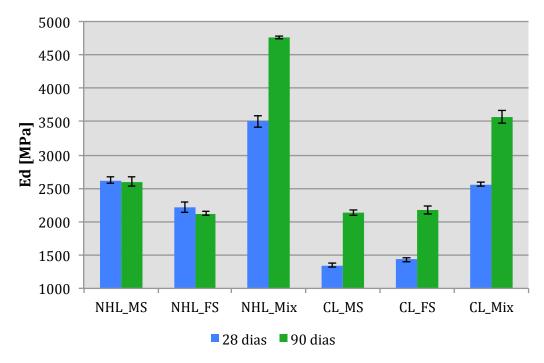


Figura 3.26 – Módulo de elasticidade dinâmico das argamassas aos 28 e aos 90 dias de cura

Aos 90 dias a diferença entre os valores do módulo de elasticidade das argamassas de NHL2 e CL diminuiu. No caso da argamassa NHL_MS passou a ter um valor superior a CL_MS na ordem dos 18% e a argamassa CL_FS passou a ter um valor médio superior a NHL_FS. Das argamassas de NHL2, a NHL_Mix é a única que apresenta uma subida do valor de Ed; a NHL_FS continua a ter o valor mais baixo das três argamassas de NHL2. A argamassa de cal aérea que sofreu maior incremento foi a CL_MS, variação de 58%, apesar de continuar a ser, entre as três, a mistura com menor módulo de elasticidade.

3.5.6 Resistências à tração por flexão e à compressão

Terminado o ensaio de determinação do módulo de elasticidade dinâmico realizou-se o ensaio de resistência à tração por flexão e de resistência à compressão, com base na norma europeia EN 1015-11:1999 [CEN, 1999].

O ensaio de resistência à tração por flexão consiste na aplicação de uma carga pontual a meio vão do comprimento do provete. Foi utilizada uma máquina universal de forças "ZWICK Z050" (Figura 3.27) equipada com uma célula de carga de 2 kN, pré-carga de 10 kN e velocidade de aplicação de 0,7 mm/min. Uma das faces lisas do provete é colocada sobre dois apoios, que se encontram distanciados de 100 mm, e a carga é aplicada na face lisa oposta. O mecanismo foi acionado e o ensaio é dado como terminado quando o provete atinge a rotura, registando-se a carga de rotura F_t.

O valor da resistência à tração por flexão é dado pela equação 3.9.

$$R_t = 1.5 \times \frac{F_t \times l}{b \times d^2} \times 10^3$$

(3.9)

onde R_t [MPa] – resistência à tração por flexão; F_t [kN] – carga de rotura de tração por flexão; I [mm] - distância entre os pontos de apoio; b, d [mm]: dimensão do lado da secção do provete.

Figura 3.27 – Equipamento de tração "ZWICK Z050"

Uma das metades resultantes do ensaio de tração por flexão foi utilizada para o ensaio de resistência à compressão. O equipamento utilizado foi o mesmo do ensaio de tração por flexão, "ZWICK Z050", com a introdução da célula de carga de 50 kN. O provete foi colocado sobre um suporte metálico, que garantiu o total contacto com a máquina; o contacto da máquina com o provete foi feito nas faces livres do provete, numa área A de cerca de $40 \times 40 \text{ [mm]}$. O mecanismo foi acionado e o ensaio é dado como terminado quando o provete atinge a rotura, registando-se a carga de rotura F_c .

O valor da resistência à compressão é dado pelo quociente da carga de rotura pela área.

Os valores de ambas as resistências são dados pela média dos seis provetes de cada argamassa ensaiados.

Na Figura 3.28 são representados os valores médios da resistência à tração por flexão (R_t) dos provetes aos 28 e 90 dias de cura. No Quadro 4.3 encontram-se os valores médios e respetivo desvio padrão de cada.

Uma análise global dos resultados permite constatar que os valores da resistência à tração das argamassas de NHL2 são sempre superiores aos valores das argamassas de CL, nas duas idades.

Aos 28 dias de cura existe a mesma tendência para os dois ligantes, os maiores valores de R_t pertencem às argamassas com a mistura de areias (Mix) e os menores valores às argamassas com a

areia monogranular de tamanho médio (MS). A maior variação de R_t entre ligantes ocorre nas argamassas com MS, onde o valor da variação de R_t entre NHL MS e CL MS é de -61%.

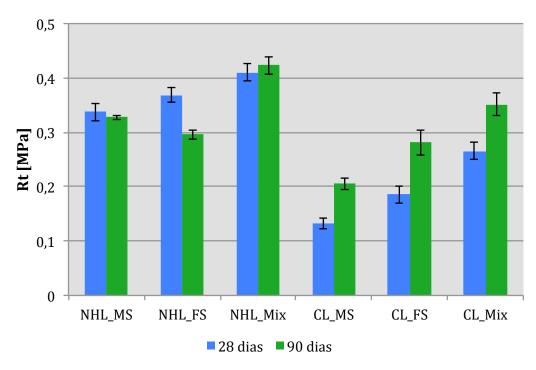


Figura 3.28 – Resistência à tração por flexão das argamassas aos 28 e aos 90 dias de cura

Aos 90 dias os valores de R_t das argamassas NHL2 continuam a ser superiores aos valores atingidos pelas argamassas de CL, contudo a diferença entre eles é mais reduzida. A tendência continua a ser a mesma que aos 28 dias nas argamassas de CL mas no caso das argamassas de NHL a tendência foi alterada. A argamassa NHL_FS sofreu uma diminuição na resistência à tração na ordem dos 19% e, deste modo, passou a ser a argamassa de NHL2 com menor R_t aos 90 dias.

Os valores médios da resistência à compressão (R_c) dos provetes aos 28 e 90 dias de cura são representados na Figura 3.29. No Quadro 4.3 encontram-se os valores médios e o respetivo desvio padrão de cada argamassa.

Uma análise global dos resultados permite constatar que os valores da resistência à tração das argamassas de NHL2 são sempre superiores aos valores das argamassas de CL, principalmente aos 28 dias.

Aos 28 dias, os maiores valores de R_c pertencem às argamassas de NHL2; o maior valor pertence à argamassa NHL_Mix e o menor valor, à argamassa NHL_FS. Nas argamassas de CL o maior valor é obtido na Cl_Mix e o menor na CL_MS. A maior variação de R_c entre ligantes ocorre nas argamassas com MS, onde o valor da variação de R_c entre NHL_MS e CL_MS é de -74%.

Aos 90 dias existe a mesma tendência para os dois ligantes *i.e.*, as argamassas com maior R_c continuam a ser as fabricadas com mistura de areias e as que apresentam o menor valor são as que

contêm areia monogranular de dimensão média (MS). A única mistura que sofreu um decréscimo de R_c foi a NHL_MS enquanto as argamassas de cal aérea duplicaram o seu valor de R_c com a evolução da idade.

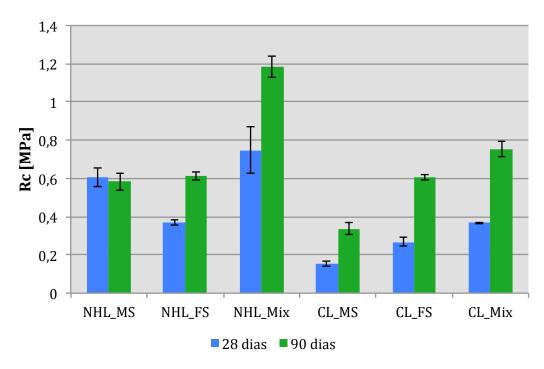


Figura 3.29 – Resistência à compressão das argamassas aos 28 e aos 90 dias de cura

3.5.7 Carbonatação por análise do pH

O pH de uma solução define-se como o logaritmo da concentração do ião hidrogénio (em mol/l) com sinal negativo. Este ensaio foi realizado o auxílio de um aparelho medidor de pH e de temperatura CRISON Basic 20 pH previamente calibrado (Figura 3.30).

Figura 3.30 – Ensaio de pH

Este ensaio foi realizado através da decantação de uma solução contendo água ultra pura e uma amostra reduzida a pó de cada provete. Após o ensaio de compressão foram colocadas pequenas amostras de cada provete dentro de sacos selados a vácuo de forma a não haver contacto entre a amostra e o CO_2 atmosférico. No dia do ensaio os sacos foram abertos e os provetes reduzidos a pó, com o auxílio de um almofariz. As amostras e a água foram colocadas dentro de recipientes estanques na proporção de 1/10. As soluções aquosas foram mantidas 24h numa sala condicionada com temperatura 20 ± 2 °C e HR de 65 ± 5 %. Passadas 24h foi medido o pH de cada solução.

Os valores médios do pH dos provetes aos 28 e 90 dias de cura são representados na Figura 3.31. No Quadro 4.3 encontram-se os valores médios de cada argamassa.

Aos 28 dias, as argamassas de cal aérea e cal hidráulica têm valores de pH semelhantes, pelo que não é possível definir uma tendência. Este fenómeno pode ser justificado pela equação 2.1, pela qual a hidratação do silicato bicálcico origina hidróxido de cálcio que pode fazer aumentar o pH para valores semelhantes aos valores das argamassas com CL.

Aos 90 dias as argamassas de NHL2 apresentam valores mais baixos de pH que as argamassas de CL. A argamassa que mais variou o valor do pH foi a NHL_FS, o que significa que nesta a carbonatação ocorreu mais rapidamente do que nas outras argamassas. Este fenómeno pode justificar o facto desta argamassa aos 90 dias aumentar o valor de $R_{\rm c}$.

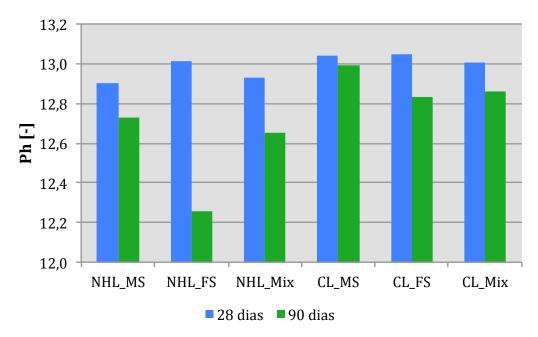


Figura 3.31 – PH das argamassas aos 28 e 90 dias de idade

3.5.8 Absorção de água por capilaridade

O ensaio foi realizado com base nas normas europeias EN 1015-18:2002 [CEN, 2002] e EN 15801:2009 [CEN, 2009] e tem como finalidade a determinação do coeficiente de capilaridade (CC) e do valor assintótico [VA]. O coeficiente de capilaridade é determinado pelo declive do troço da

parte inicial da curva de absorção, que corresponde à velocidade de absorção inicial das argamassas, e o valor assintótico corresponde à quantidade total de água absorvida no final do ensajo.

Antes de se dar início ao ensaio, os provetes foram pesados e seguidamente impermeabilizados nas faces laterais com uma mistura de pez de louro e cera de abelha. Os componentes da mistura foram derretidos num recipiente, na proporção de 1:1, e depois a mistura foi pincelada nas faces do provetes. De seguida, foram colocados na estufa a 60 °C durante 48 h.

Os provetes foram retirados de dentro da estufa minutos antes do início do ensaio de forma a arrefecerem até à temperatura ambiente. Preparou-se uma caixa estanque com uma massa de água no fundo com o intuito de criar um ambiente saturado dentro da caixa. O tabuleiro, devidamente nivelado sobre quatro suportes, onde os provetes foram colocados, continha uma rede de borracha na base e uma lâmina de água de 5 mm de altura. Os provetes secos foram pesados e colocados sobre a lâmina de água (Figura 3.32) e a caixa fechada.

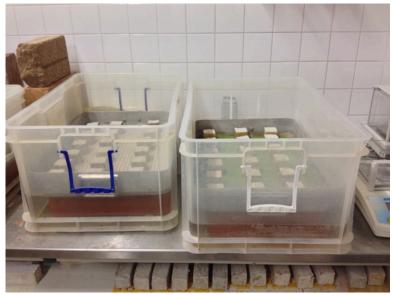


Figura 3.32 – Ensaio de absorção de água por capilaridade

Fizeram-se pesagens dos provetes aos 5, 10, 15, 30 minutos e 1 hora após a sua colocação no sistema de ensaio; a partir da primeira hora de ensaio, as pesagens foram efectuadas de hora em hora até à sétima hora e a partir daí as medições foram realizadas de 24 em 24 horas até a variação da massa dos provetes ser inferior a 2%, sempre com o cuidado de verificar a altura da lâmina de água.

Terminado o ensaio construiu-se a curva de absorção capilar de cada argamassa, com a média da massa da quantidade de água absorvida dos seis provetes de cada argamassa em ordenada, através da equação 3.10 e com a raiz do tempo em minutos em abcissa.

$$m = \frac{m_i - m_0}{A} \tag{3.10}$$

onde m [kg/m²] – massa da quantidade de água absorvida; m_i [kg] – massa do provete ao fim do tempo t_i ; m_0 [kg] – massa do provete seco no tempo t_0 ; A [m²] – área da secção do provete em contacto com a água $(0.04 \times 0.04 \text{ m})$.

O coeficiente de capilaridade (CC) foi obtido determinando o declive do troço reto das curvas de absorção capilar de cada provete e, posteriormente, a média dos seis declives de cada argamassa. O valor assintótico de cada argamassa corresponde ao valor médio da quantidade de água absorvida até à última medição de massa do ensaio.

É possível obter o valor assintótico (VA) e o coeficiente de capilaridade (CC) através da análise da curva de absorção de água por capilaridade das argamassas aos 28 e aos 90 dias. Na Figura 3.33 é apresentada a evolução do ensaio de absorção por capilaridade, nos primeiros 60 minutos de ensaio, aos 28 dias e aos 90 dias de cura. Os valores médios do coeficiente de capilaridade são apresentados na Figura 3.34 e os valores médios do valor assintótico, na Figura 3.35. No Quadro 4.4 encontram-se os valores médios e respetivo desvio padrão de cada argamassa.

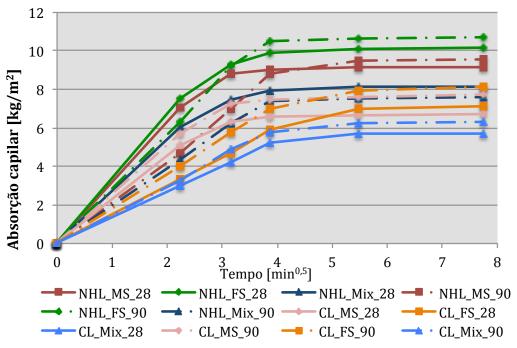


Figura 3.33 – Curvas de absorção capilar das argamassas aos 28 e 90 dias de cura

Analisando a Figura 3.33, pode verificar-se que as argamassas de cal hidráulica com 28 dias de cura têm uma absorção capilar superior às argamassas de cal aérea. Existe um comportamento semelhante nas composições NHL_MS e NHL_FS nos primeiros 5 minutos e a absorção da composição NHL_Mix é sempre inferior à das demais com o mesmo ligante. Nas argamassas de cal aérea, o comportamento das composições CL_FS e CL_Mix é semelhante nos primeiros 15 minutos. A

composição CL_FS é a argamassa que estabiliza a absorção de água por capilaridade mais tarde, aos 30 minutos, e as misturas com a areia MS estabilizam mais rapidamente, aproximadamente aos 10 minutos.

Aos 90 dias, as argamassas com mistura de areias continuam a ser, com ambos os ligantes, as argamassas com menor absorção capilar. A composição CL_FS mantém-se aquela que estabiliza a absorção mais tarde; no caso da NHL_MS, que é a argamassa que estabiliza mais cedo aos 28 dias, aos 90 dias também estabiliza aproximadamente aos 30 minutos.

Nas argamassa de NHL, quando se comparam as curvas de absorção aos 28 e 90 dias, é notório que o declive inicial na curvas é superior aos 28 dias mas a quantidade total de água absorvida é superior aos 90 dias, com exceção da argamassa NHL_Mix. Nas argamassas de CL, o declive e a quantidade total de água absorvida é superior aos 90 dias.

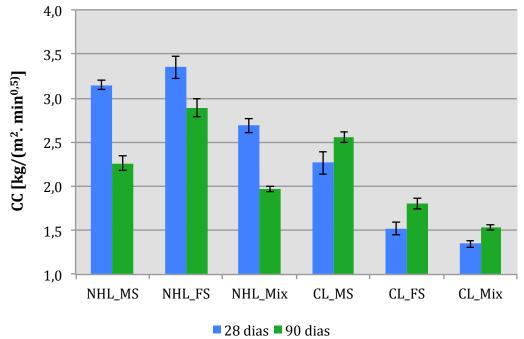


Figura 3.34 – Coeficiente de capilaridade das argamassas aos 28 e aos 90 dias de cura

Aos 28 dias, todas as argamassas de NHL2 têm valores de CC e VA superiores às argamassas de CL. Entre as argamassas de NHL2, a tendência é a mesma para os dois parâmetros: a argamassa com maior valor de CC e VA é a NHL_FS e a com menores valores é a NHL_Mix. Nas argamassas de CL, a argamassa com maior valor de CC é a CL_MS e a com maior valor de VA é a CL_FS; a CL_Mix tem o menor valor de CC e de VA.

Aos 90 dias houve diminuição do coeficiente de capilaridade nas argamassas de NHL e aumento do coeficiente nas argamassas de CL. Em relação às argamassas de areia monogranular fina, a argamassa produzida com NHL foi a que sofreu menor diminuição, 14%, e a argamassa produzida com CL foi a que sofreu maior subida do coeficiente de capilaridade, 19%; as argamassas com os

outros dois tipos de areia tiveram variações semelhantes: nas produzidas com NHL o valor de CC diminuiu sensivelmente 27% e nas produzidas com CL, aumentou aproximadamente 13%.

Em relação ao valor assintótico, as argamassas de cal aérea variaram percentualmente mais que as argamassas de NHL, entre os 28 e os 90 dias. Nas argamassas de NHL com areia média e areia fina monogranular, MS e FS, o valor assintótico aumentou 6% e na NHL_Mix, diminui 5%. No grupo das argamassas de cal aérea, a argamassa que menos variou foi a CL_Mix, 9%, e a que conheceu maior variação percentual do valor assintótico foi a CL_FS, 15%.

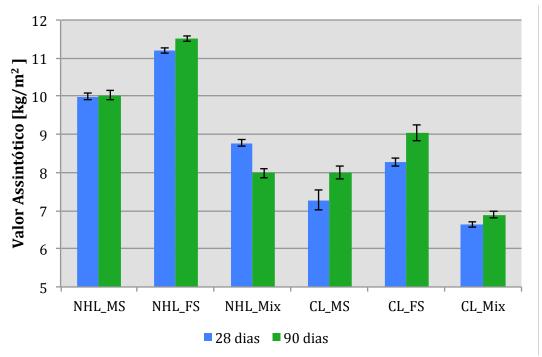


Figura 3.35 – Valor assintótico das argamassas aos 28 e aos 90 dias de cura

3.5.9 Secagem

Este ensaio foi realizado na sequência do ensaio de absorção capilar, com os provetes saturados, com o objetivo de estudar a quantidade de água que é perdida pelos provetes em função do tempo. Foi executado com base na EN 16322:2013 [CEN, 2013], e decorreu numa sala condicionada, com temperatura de 20±2 °C e humidade relativa de 65±5%.

Os provetes foram retirados da caixa estanque e pesados; a última pesagem do ensaio de capilaridade corresponde à pesagem no instante 0 horas. Foi colocada na face que estava em contacto com a lâmina de água uma película aderente de polietileno, presa com um elástico, de forma a garantir que a secagem seja unidirecional (Figura 3.36); foi realizada uma nova pesagem. No primeiro dia foram realizadas pesagens de hora em hora durante 7 horas e posteriormente de 24 em 24 horas até à estabilização da massa dos provetes.

Com os dados obtidos foi calculado o teor em água, obtido pela equação 3.11. A curva de evaporação é descrita pelo gráfico do teor em água em função do tempo. Posteriormente calculou-se

o índice de secagem (IS), com base na EN 16322:2013 [CEN, 2013], utilizando a equação 3.12 simplificada apresentada em Grilo *et al.* (2014).

$$Wt = \frac{m_i - m_o}{m_i} \times 100 \tag{3.11}$$

onde Wt [%] – teor em água; m_i [kg] – massa do provete no instante t_i ; m_0 [kg] – massa do provete seco.

$$IS = \frac{\sum_{i=1}^{i=n} \left[(t_i - t_{i-1}) \times \frac{W_{ti-1} + W_{ti}}{2} \right]}{W_{m\acute{a}x} \times t_f}$$
(3.12)

onde IS [-] – índice de secagem; t_i [h] – instante de ensaio; t_f [h] – tempo final de ensaio; W_i [%] – teor em água no provete no instante t_i ; $W_{m\acute{a}x}$ [%] – teor em água máximo no provete (início do ensaio).

Figura 3.36 - Ensaio de secagem

A taxa de secagem (TS) corresponde ao declive do troço inicial da curva de secagem, em g/(m².h), e o índice de secagem traduz a evolução da secagem global. As taxas de secagem e os índice de secagem resultam da média dos seis provetes de cada argamassa.

Nas Figura 3.37 e Figura 3.38são apresentadas as curvas de secagem nas duas idades mas separando o tipo de ligante. Os valores médios da taxa de secagem (TS) são apresentados na Figura 3.39 e os valores médios do índice de secagem (IS) na Figura 3.40. No Quadro 4.4 encontram-se os valores médios e o respetivo desvio padrão de cada argamassa.

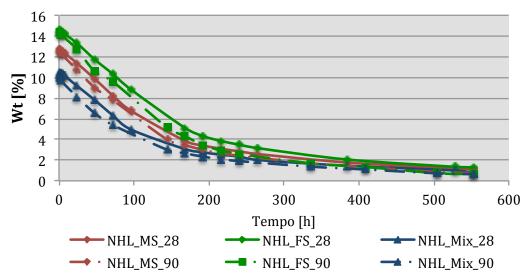


Figura 3.37 – Curvas de secagem das argamassas de NHL2 aos 28 e 90 dias de cura

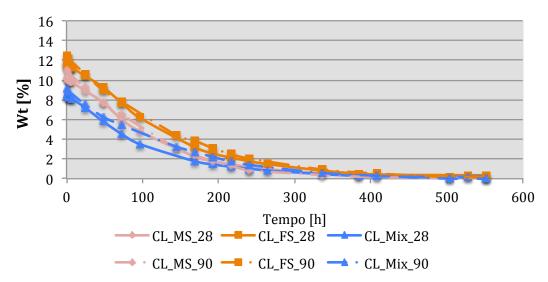


Figura 3.38 – Curvas de secagem das argamassas de CL aos 28 e 90 dias de cura

É favorável que as argamassas apresentem valores altos de TS e valores baixos de IS.

Aos 28 dias, as argamassas de NHL2 apresentam valores de TS mais elevados que as argamassas de CL, mas não há diferenças de valores entre argamassas com o mesmo ligante e diferente agregado.

Aos 90 dias, as argamassas de NHL2 continuam a ter valores de TS mais elevados, mas houve um acréscimo em relação aos 28 dias nas argamassas com areia fina (FS) e areia média (MS), embora o desvio-padrão seja elevado, e um decréscimo nos valores das argamassas com mistura de areias (Mix).

Aos 28 dias, as argamassas de NHL2 apresentam valores de IS mais elevados que as argamassas de CL. Em ambos os ligantes, as argamassas com maior valor de IS são as composições com FS.

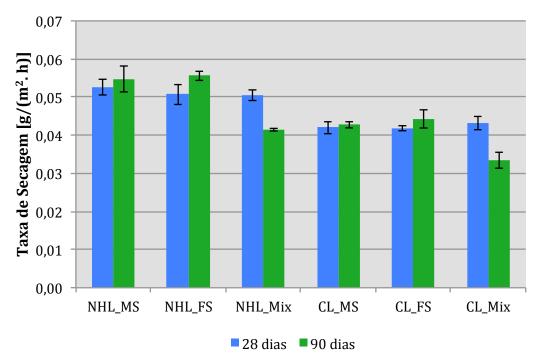


Figura 3.39 – Taxa de secagem das argamassas aos 28 e aos 90 dias de cura

Aos 90 dias, à exceção da CL_Mix, as argamassas apresentam menores valores de IS com a evolução no tempo. Essa redução no índice de secagem é mais significativa nas argamassas de cal hidráulica, em especial na NHL_FS, que sofreu uma redução percentual de 15%.

Os parâmetros de secagem também dependem da porosidade aberta das argamassas. A granulometria dos agregados parece não ser um fator determinante dos parâmetros de secagem, visto que não existe grande variação entre os valores de argamassas com o mesmo ligante.

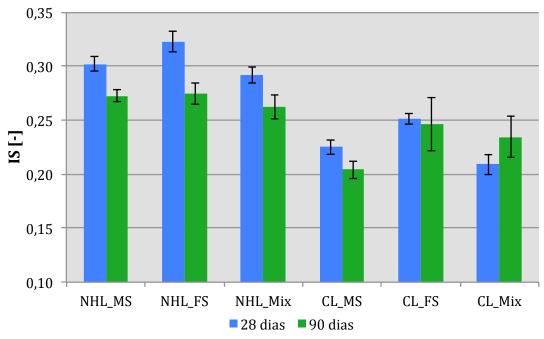


Figura 3.40 – Índice de secagem das argamassas aos 28 e aos 90 dias de cura

3.5.10 Observação na lupa binocular

Este ensaio consiste na observação de amostras sem qualquer tratamento especial e amostras das argamassas impregnadas com uma resina pigmentada para fácil distinção entre os materiais sólidos constituintes das argamassas e os vazios.

No caso das amostras impregnadas, antes da preparação, as amostras foram condicionadas numa estufa ventilada durante mais de 24h. Para a preparação da resina pigmentada utilizou-se uma resina de impregnação epoxídica, *Epofix Resin*, um agente endurecedor, *Epofix Hardner*, e um pigmento de cor amarela e propriedades fluorescentes. *Epodye*.

Em primeiro lugar misturou-se a resina com o endurecedor num recipiente, na dosagem de 5 partes de resina para 1 parte de endurecedor, e misturou-se durante uns minutos de forma a não criar bolhas de ar. A esta mistura adicionou-se o pigmento na dosagem de 5 g de pigmento para 1 litro de resina. As amostras foram impregnadas com a resina e colocadas numa bomba de vácuo durante 24h. Depois de impregnadas, as amostras foram desgastadas e polidas com lixas de água e posteriormente observadas e na lupa binocular *Olympus SZH10*.

É de notar que as fissuras que as imagem das argamassas sem impregnação possam apresentar na sua superfície não é possível garantir que são derivadas da retração das argamassas ou se serão derivadas a ações resultantes do corte das amostras.

As imagens foram captadas aos 195 dias de idade das argamassas.

Comparação entre ligante/areia

Areia média (MS)

Na Figura 3.41, as imagens da coluna esquerda pertencem à argamassa NHL_MS enquanto que as imagens da coluna da direita pertencem à argamassa CL_MS. As imagens N1, C1, N3 e C3 foram tiradas com 0,7 de ampliação da lupa; N2 tem uma ampliação de 4 e C2 tem uma ampliação de 2,0; N4 tem uma ampliação de 1,0 enquanto C4 tem uma ampliação de 1,5.

A argamassa NHL2 apresenta poros esféricos de grande dimensão, neste caso 3 mm de diâmetro enquanto que na argamassa CL_MS a maioria dos poros são de menor dimensão e de forma irregular. Nas imagens N2 e C2 é possível observar poros-fissura no interior dos poros, no caso da argamassa CL estes são de maiores dimensões e em maior quantidade. Nas imagens N4 e C4 observa-se fissuras na matriz de ligante resultantes da retração da argamassas.

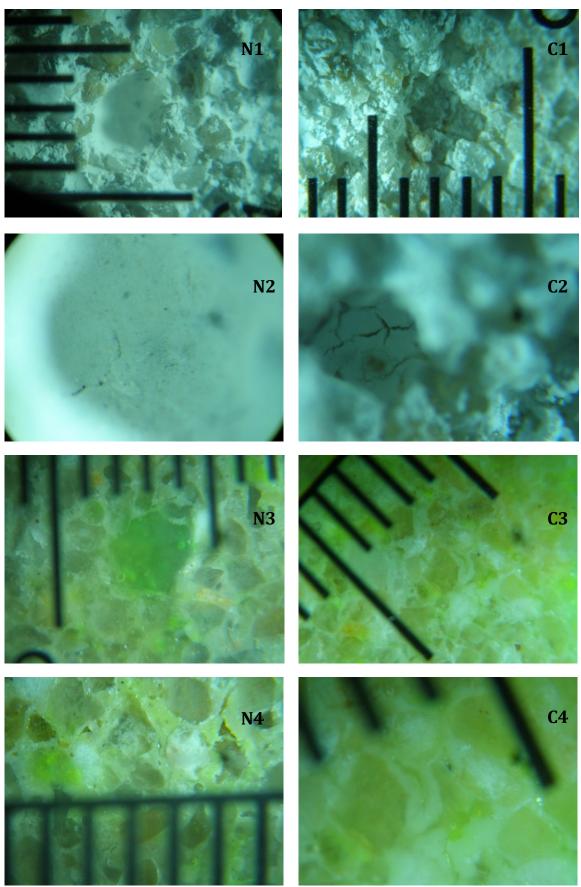


Figura 3.41 – Detalhes da microestrutura das argamassas com MS

Areia Fina (FS)

Na Figura 3.42, as imagens da coluna esquerda pertencem à argamassa NHL_FS enquanto que as imagens da coluna da direita pertencem à argamassa CL_FS. As imagens N5, C5, N7 e C7 foram tiradas com 0,7 de ampliação da lupa; N6 tem uma ampliação de 1,0 enquanto C6 tem uma ampliação de 1,5.

A argamassa NHL2 apresenta poros esféricos de grande dimensão, neste caso entre os 2 e os 4 mm de diâmetro enquanto que na argamassa CL a maioria dos poros são em menor quantidade e de menor dimensão, entre os 1 e 2 mm e de forma irregular. A imagem C6 apresenta microfissuras na sua superfície no poro apresentado na imagem C5.

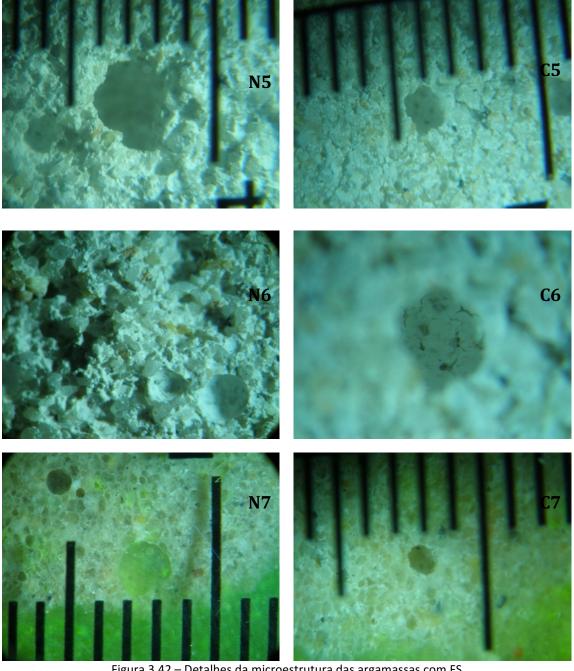


Figura 3.42 – Detalhes da microestrutura das argamassas com FS

Mistura de areias (Mix)

Na Figura 3.43, as imagens da coluna esquerda pertencem à argamassa NHL_FS enquanto que as imagens da coluna da direita pertencem à argamassa CL_FS. Todas as imagens da Figura 4.24 têm uma ampliação da lupa de 0.7.

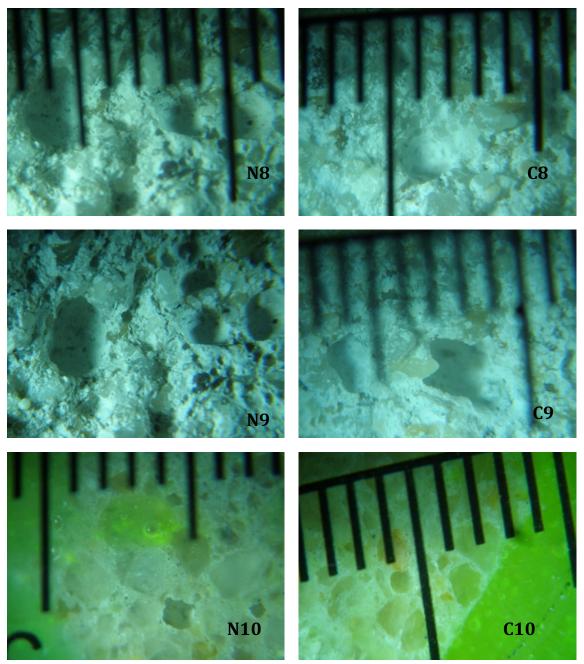


Figura 3.43 – Detalhes da microestrutura das argamassas com Mix

De igual modo que as argamassas anteriormente apresentadas, a argamassa NHL2 apresenta poros esféricos de grande dimensão, enquanto que na argamassa CL a maioria dos poros são em menor quantidade e de menor dimensão e de forma irregular

Argamassas de cal hidráulica natural NHL2

A Figura 3.44 mostra as argamassas, da esquerda para a direita, NHL2_MS, NHL2_FS e NHL2_Mix. Todas as imagens foram fotografadas com uma ampliação de lupa de 0,7.

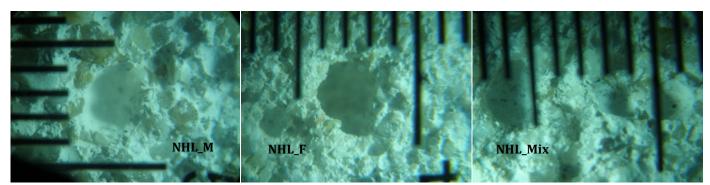


Figura 3.44 – Detalhes da microestrutura das argamassas com NHL2

As argamassas de NHL2 apresentam uma grande quantidade de poros esféricos. Nas argamassas com areias monogranulares é possível observar poros de maiores dimensões que a argamassa com mistura de areias.

Argamassas de cal aérea

As Figuras 3.45 mostra as argamassas, da esquerda para a direita, CL2_MS, CL2_FS e CL2_Mix. As imagens de C11 a C13 foram fotografadas com uma ampliação de lupa de 0,7; as imagens C14 e C16 têm uma ampliação na lupa binocular de 2,0 e a imagem C15 tem uma ampliação de 2,5.

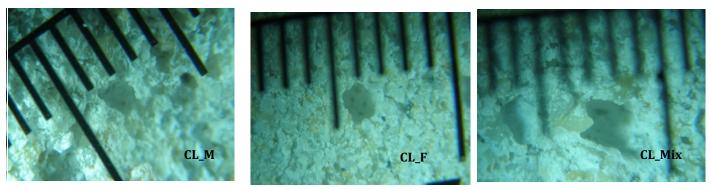


Figura 3.45 – Detalhes da microestrutura das argamassas com CL

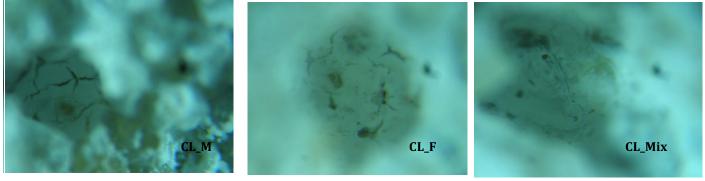


Figura 3.45 – Detalhes da microestrutura das argamassas com CL (cont.)

As argamassas de CL apresentam poros de forma irregular e de menor tamanho que as argamassas de NHL. Observando as imagens captadas no interior dos poros é possível perceber que a argamassa CL_MS apresenta microfissuras de maiores dimensões que a argamassa CL_FS e que a argamassa CL_Mix é a que apresenta menor quantidade de fissuras na superfície do poro.

4 Discussão dos resultados obtidos

Nos Quadros 4.1, 4.2, 4.3 e 4.4 apresentam-se os resultados globais dos ensaios efetuados às argamassas no estado fresco e endurecido.

4.1 Comparação dos resultados no estado fresco

Na Figura 4.1 é apresentada a comparação entre o teor em ar e a massa volúmica no estado fresco. Estes dois parâmetros apresentam tendências inversas: em ambos os ligantes, as argamassas com areia FS apresentam maior teor em ar e menor massa volúmica enquanto as argamassas com areia Mix apresentam maior massa volúmica no estado fresco e menor teor em ar.

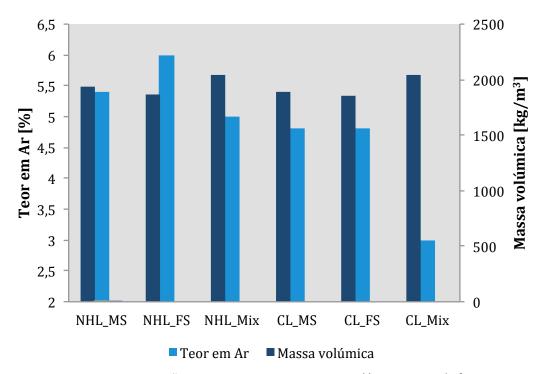


Figura 4.1 – Comparação entre o Teor em ar e a Massa volúmica no estado fresco

No estudo realizado por Dias (2013), foram analisadas argamassas de cal aérea com adição de diversas percentagens de terra que tinham como agregado uma mistura de areias composta pelas areias APAS 30, APAS 20 e APAS 12 e traço volumétrico 1:3 (ligante:areia+terra). Os valores de teor em ar e massa volúmica no estado fresco obtidos pela argamassa de referência de Dias (2013) de cal aérea sem nenhuma percentagem de terra foi de 4,3% e 1980 ± 6 kg/m³. Com estes resultados, é possível perceber a influência da areia FPS120 do presente estudo, *i.e.*, a massa volúmica aumenta e o teor em ar diminui.

Na Figura 4.2 é apresentada a comparação entre o teor de ar e a retenção de água. Nas argamassas de NHL2 os parâmetros apresentam tendências inversas. Nas argamassas de cal aérea, não é possí-

Quadro 4.1 – Valores médios e desvios padrão (quando existentes) das argamassas no estado fresco: Consistência por espalhamento, Massa volúmica, Teor de ar e Retenção de água

Argamassa	Consistência por espalhamento [mm]	Massa Volúmica [Kg/m³]	Teor de Ar [%]	Retenção de água [%]
NHL_MS	169 ± 1,4	1941	5,4	78,8 ± 0,6
NHL_FS	167 ± 1,2	1865	6,0	78,7 ± 0,6
NHL_Mix	170 ± 1,2	2037	5,0	84,2 ± 0,3
CL_MS	171 ± 0,9	1894	4,8	85,4 ±1,9
CL_FS	166 ± 0,9	1852	4,8	82, 4 ± 0,2
CL_Mix	170 ± 0,7	2036	3,0	84,1 ± 0,6

Quadro 4.2 – Valores médios e desvios padrão das argamassas no estado endurecido aos 28 e 90 dias: Massa volúmica geométrica Porosidade aberta e Massa volúmica aparente

Condutibilidade térmica Argamassas [W/(m.K)]		8		Porosidade aberta [%]		Massa volúmica aparente [kg/m³]		
	28 dias	90 dias	28 dias	90 dias	28 dias	90 dias	28 dias	90 dias
NHL_MS	0,54 ± 0,01	0,56 ± 0,03	1734 ± 7	1750 ± 5	27 ± 0,6	26 ± 0,3	1762 ± 6	1788 ± 4
NHL_FS	0,42 ± 0,02	0,40 ± 0,01	1637 ± 8	1634 ± 6	29 ± 0,5	28 ± 0,2	1645 ± 5	1649 ± 6
NHL_Mix	0,80 ± 0,02	0,74 ± 0,02	1858 ± 7	1879 ± 8	22 ± 0,2	22 ± 0,4	1887 ± 3	1893 ± 12
CL_MS	0,56 ± 0,02	0,51 ± 0,01	1657 ± 4	1669 ± 6	24 ± 0,7	23 ± 0,2	1707 ± 12	1707 ± 6
CL_FS	0,45 ± 0,01	0,41 ± 0,01	1573 ± 4	1579 ± 4	26 ± 0,5	25 ± 0,1	1603 ± 8	1606 ± 4
CL_Mix	0.76 ± 0.01	0,76 ± 0,02	1806 ± 8	1835 ± 9	20 ± 0,3	21 ± 0,7	1850 ± 6	1853 ± 12

Quadro 4.3 – Valores médios e desvios padrão (quando existentes) das argamassas no estado endurecido aos 28 e 90 dias: Módulo de elasticidade dinâmico, Resistência à tração e à compressão e pH

Argamassas	Módulo de elasticidade Argamassas dinâmico [MPa]				Resistência à compressão [MPa]		рН [-]	
	28 dias	90 dias	28 dias	90 dias	28 dias	90 dias	28 dias	90 dias
NHL_MS	2620± 43	2598 ± 70	0,34 ± 0,02	$0,33 \pm 0,00$	0,60 ± 0,05	0,58 ± 0,05	12,90	12,73
NHL_FS	2215 ± 75	2125 ± 34	0,37 ± 0,01	0,30 ± 0,01	0,37 ± 0,01	0,61 ± 0,02	13,01	12,26
NHL_Mix	3400 ± 83	4766 ± 25	0,41 ± 0,02	$0,42 \pm 0,02$	0,74 ± 0,12	1,18 ± 0,03	12,93	12,65
CL_MS	1349 ± 31	2136 ± 40	0,13 ± 0,01	0,21 ± 0,01	0,16 ± 0,02	0,34 ± 0,03	13,04	12,99
CL_FS	1430 ± 35	2178 ± 65	0,19 ± 0,02	0,28 ± 0,02	0,27 ± 0,02	0,60 ± 0,02	13,05	12,84
CL_Mix	2559 ± 34	3575 ± 99	0,27 ± 0,02	0,35 ± 0,02	0.37 ± 0.00	0,76 ± 0,04	13,01	12,86

Quadro 4.4 – Valores médios e desvios padrão das argamassas no estado endurecido aos 28 e 90 dias: Coeficiente de capilaridade, Valor assintótico, Índice de secagem e Taxa de secagem

Argamassas	Coeficiente de capilaridade Valor assintótico [kg/m²] Taxa de s [g/(m²]		capilaridade			Índice de s	ecagem [-]	
	28 dias	90 dias	28 dias	90 dias	28 dias	90 dias	28 dias	90 dias
NHL_MS	3,15 ± 0,06	2,26 ± 0,08	9,99 ± 0,09	10,03 ± 0,13	0,05 ± 0,002	0,05 ± 0,003	0,30 ± 0,01	0,27 ± 0,01
NHL_FS	3,35 ± 0,13	2,89 ± 0,10	11,20 ± 0,07	11,50 ± 0,07	0,05 ± 0,003	0,06 ± 0,001	0.32 ± 0.01	0,27 ± 0,01
NHL_Mix	2,69 ± 0,08	1,97 ± 0,03	8,77 ± 0,10	7,98 ± 0,12	0,05 ± 0,002	0,04 ± 0,000	0,29 ± 0,01	0,26 ± 0,01
CL_MS	2,27 ± 0,13	2,56 ± 0,06	7,28 ± 0,27	7,99 ± 0,16	0,04 ± 0,002	0,04 ± 0,001	0,22 ± 0,01	0,20 ± 0,01
CL_FS	1,52 ± 0,07	1,80 ± 0,06	8,27 ± 0,11	9,04 ± 0,21	0,04 ± 0,001	0,04 ± 0,002	0,25 ± 0,00	0,25 ± 0,02
CL_Mix	1,35 ± 0,04	1,53 ± 0,03	6,63 ± 0,07	6,89 ± 0,08	0,04 ± 0,002	0,03 ± 0,002	0,21 ± 0,01	0,23 ± 0,02

vel estabelecer uma tendência. As composições CL_MS e CL_FS apresentam o mesmo valor de teor em ar mas a CL_FS retém menos água.

Dias (2013) obteve um valor de retenção de água de $85 \pm 0\%$, que é ligeiramente superior ao obtido pela argamassa CL_Mix.

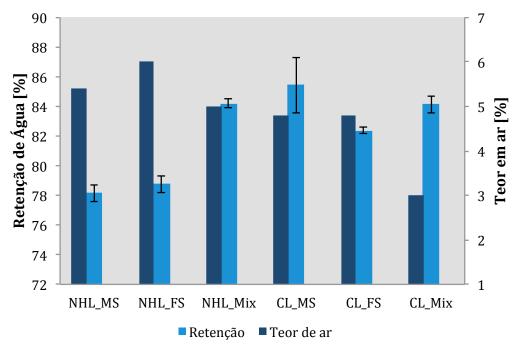


Figura 4.2 – Comparação entre o Teor de ar e a Retenção de água

A Figura 4.3 apresenta graficamente a comparação entre a retenção de água e a consistência por espalhamento.

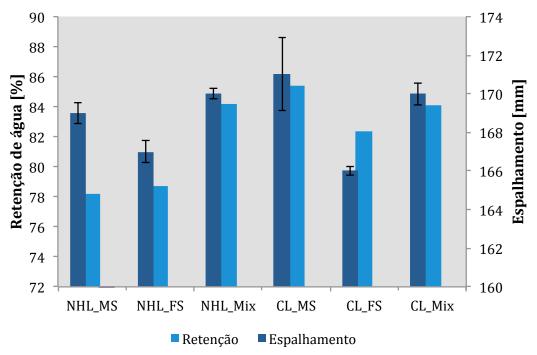


Figura 4.3 – Comparação entre a Retenção de água e a Consistência por espalhamento

Nas argamassas de NHL2, a composição com maior espalhamento tem o valor de retenção superior mas não é detetada nenhuma tendência.

Nas argamassas de CL, existe uma tendência facilmente identificada, segundo a qual as argamassas com maior espalhamento têm maior retenção. A argamassa CL_FS é a argamassa com menor retenção de água e maior relação de água/ligante.

4.2 Comparação dos resultados no estado endurecido

Porosidade aberta

Na Figura 4.4 é apresentada a comparação entre os valores de porosidade aberta e pH das argamassas aos 90 dias. Aos 28 dias não existe variação entre valores que justifique esta comparação.

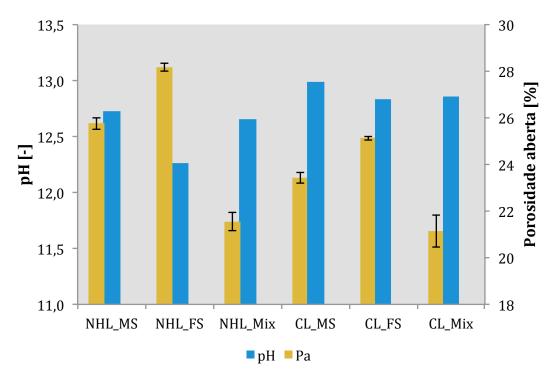


Figura 4.4 – Comparação entre P_a e pH aos 90 dias de idade

As argamassas apresentam tendências inversas entre Pa e pH. Isto significa que as argamassas mais porosas apresentam menores valores de pH, o que se justifica pelo facto de, em argamassas mais porosas, o fenómeno de carbonatação ter possibilidade de ocorrer mais rapidamente num mesmo período de tempo.

As argamassas com areia fina são mais porosas por duas razões principais: por um lado, as areias mais finas são que têm maior volume de vazios; por outro, estas são também as argamassas com maior quantidade de poros-fissura porque, necessitando de maior quantidade de água de amassadura, têm maior quantidade de água evaporável na fase de carbonatação, logo têm maior quantidade de poros resultantes da retração.

Comportamento mecânico

As Figuras 4.5 e 4.6 apresentam a comparação entre as resistências à tração por flexão e à compressão e o módulo de elasticidade dinâmico aos 28 e aos 90 dias de idade de cura.

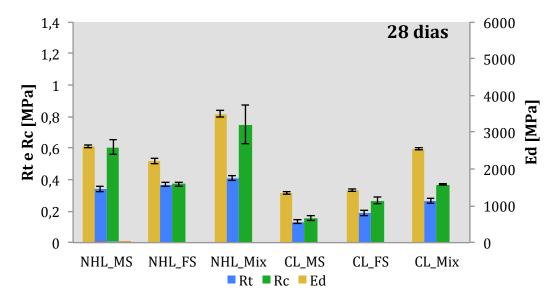


Figura 4.5 - Comparação entre Rt, Rc e Ed aos 28 dias de cura

A resistência à tração segue a mesma tendência que o módulo de elasticidade dinâmico nas argamassas de cal aérea para as duas idades em estudo. No caso das argamassas de cal hidráulica natural a tendência só se verifica aos 90 dias de cura, dado que aos 28 dias a Rt da NHL_FS é superior que a Rt da NHL_MS.

A resistência à tração segue a mesma tendência que o módulo de elasticidade dinâmico nas argamassas de cal aérea para as duas idades em estudo. No caso das argamassas de cal hidráulica natural a tendência só se verifica aos 90 dias de cura, dado que aos 28 dias a Rt da NHL_FS é superior que a Rt da NHL_MS.

A resistência à compressão segue a mesma tendência que o módulo de elasticidade dinâmico aos 28 dias de cura, em todas as argamassas. Aos 90 dias a tendência é igual para as argamassas de CL mas nas de NHL2 houve uma diferença no comportamento da NHL_FS, que aumentou o seu valor de $R_{\rm c}$ com a evolução da idade, devido a maior carbonatação que, por sua vez, é resultante da maior porosidade aberta.

A alteração das tendências nas argamassas de NHL2 está relacionada com a alteração da estrutura porosa verificada no ensaio de porosimetria. A formação de poros-fissura com o decorrer da idade da argamassa pode tornar a argamassa menos coesa e menos resistente à tração nas argamassas com areias monogranulares. A carbonatação mais rápida da argamassa NHL_FS, resultante da maior porosidade, origina neste caso um ligeiro aumento na resistência à compressão.

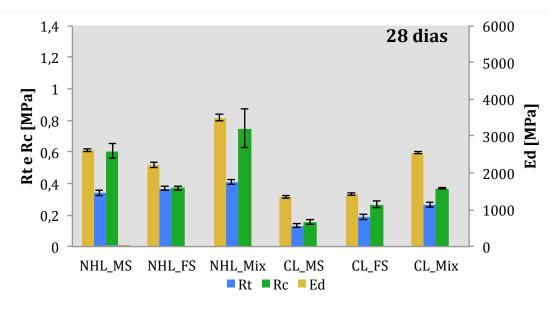


Figura 4.6 – Comparação entre Rt, Rc e Ed aos 90 dias de cura

As argamassas atingem resultados superiores de resistência mecânica e módulo de elasticidade quando são fabricadas com mistura de areias. Estas composições também são as que atingem valores mais elevados de massa volúmica aparente, como se pode observar na Figura 4.7.

O módulo de elasticidade dinâmico e a massa volúmica aparente apresentam a mesma tendência nas argamassas de NHL2 e tendência diferente nas argamassas de CL, como se pode observar na Figura 4.7. Uma vez que se verificou que a tendência é a mesma aos 28 dias e aos 90 dias, só se apresenta graficamente aos 90 dias.

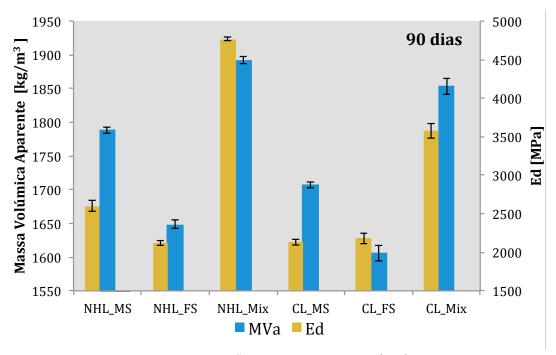


Figura 4.7 – Comparação entre E_{d} e MV_{ap} aos 90 dias de cura

Apesar de ter massa volúmica superior a CL_FS, NHL_MS tem menor valor de módulo de elasticidade dinâmico. Este fenómeno ocorre porque a argamassa CL_MS, apesar de ter maior massa volúmica, apresenta maior volume de poros na gama dos macroporos, aos 28 dias, e dos mesoporos, aos 90 dias, que as argamassa CL_FS e CL_Mix. Na Figura 4.8 é possível observar a distribuição dos poros das argamassas de CL.

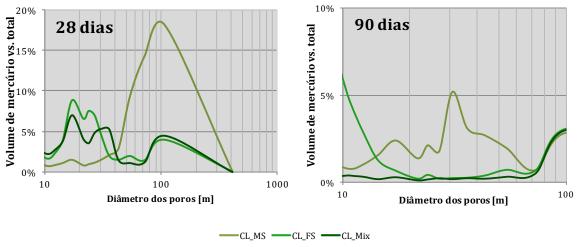


Figura 4.8 – Distribuição da dimensão dos macroporos das argamassas de CL aos 28 e 90 dias de cura

Nas argamassas com poros de menores dimensões existe maior eficácia na mobilização das ligações entre os cristais de ligante endurecido para fazer face às solicitações mecânicas [Rato, 2006].

Comportamento face à ação da água

Nas Figura 4.9 e Figura 4.10 é feita a comparação entre a porosidade aberta e a absorção de água por capilaridade. Visto que as tendências são similares para as duas idades em estudo são apenas apresentados graficamente os valores aos 90 dias de idade.

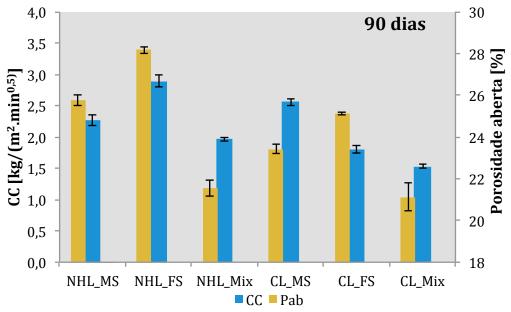


Figura 4.9 – Comparação entre Pa e CC

Nas argamassas de NHL2, o coeficiente de capilaridade e a porosidade aberta têm a mesma tendência. Como as areias mais finas têm maior volume de vazios, as argamassas com areia FS têm maiores valores de porosidade aberta. Nestas, embora os poros sejam de menores dimensões e estejam menos interligados, existe maior quantidade de poros disponíveis para a absorção de água.

Para além dos grandes poros característicos das argamassas hidráulicas, as composições de NHL2 também apresentam poros-fissura característicos das argamassas de CL (sobretudo detetados aos 90 dias). Assim, ao contrário de Faria et al. (2007), Rato (2006) e Botas et al. (2011) que utilizaram outras cais com propriedades hidráulicas, as composições com NHL2 têm maior porosidade que as composições com cal aérea.

Nas argamassas de CL, o coeficiente de capilaridade e a porosidade aberta têm tendências distintas; a argamassa mais porosa não é a argamassa que tem maior absorção inicial de água. Rato (2006) defende também que a dimensão dos grandes poros das areias monogranulares diminui com o aumento da finura das areias nas argamassas de cal aérea. Segundo diversos autores citados no subcapítulo 2.4.2, o aumento da finura da areia implica um acréscimo da quantidade de água de amassadura; assim sendo, existe maior quantidade de poros-fissura nas argamassas com areia fina. Apesar da quantidade de poros-fissura na argamassa CL_FS ser superior à CL_MS, a sua dimensão é menor. A poros de menores dimensões corresponde um menor coeficiente de absorção inicial.

Como foi visto no capitulo 4 (Figura 4.18), as tendências dos coeficientes de capilaridade sofreram alterações com a evolução da idade. As argamassas de NHL2 absorvem menos quantidade de água inicialmente enquanto nas argamassas de CL ocorre o inverso,

A variação na estrutura porosa das argamassas é justificada pela deposição de cristais de carbonato de cálcio nos poros capilares durante a carbonatação. Esta cristalização acrescida provoca a diminuição do volume dos poros capilares, uniformizando a rede porosa (vd.2.3.2).

Como visto anteriormente, a velocidade de absorção é maior quanto maior for o poro, mas esta velocidade também depende do diferencial entre os grandes e os pequenos poros. Nas argamassas de CL este diferencial diminui, como se pode ver na Figura 4. 15 a quantidade de macroporos reduz drasticamente. Nas argamassas de NHL o diferencial aumenta, devido à abertura de grandes porosfissura; de facto, a percentagem de poros está mais distribuída e a grande quantidade de poros já não se concentra entre os micro e mesoporos.

As argamassas com mistura de areias têm uma microestrutura mais complexa que as argamassas com areias monogranulares relativamente à variação da dimensão da dimensão dos poros e à forma como se encontram interligados. As composições NHL2_Mix e CL_Mix têm poros de menores dimensões apesar de terem uma granulometria mais grossa. Estas argamassas são as menos porosas, ou seja, têm menor quantidade de poros, têm poros de menores dimensões e menor

diferencial entre as diversas gamas de dimensão de poros. Assim sendo, como é expectável, têm menor coeficiente de capilaridade que as outras argamassas fabricadas com o mesmo ligante e areias monogranulares.

Nos dois tipos de ligante, o valor assintótico e a porosidade aberta seguem a mesma tendência: as argamassas mais porosas absorvem maior quantidade de água (Figura 4.10). Seria de esperar que a diminuição da porosidade, com a evolução do processo de endurecimento das argamassas, levasse à diminuição do valor assintótico, como ocorreu com Grilo et al. (2013) com argamassas com NHL3.5. No entanto, existem duas importantes diferenças relativas aos procedimentos de ensaio.

No presente trabalho, os provetes têm uma altura menor e foram impermeabilizados de forma diferente. A impermeabilização das faces laterais com cera dá origem a que a saída de ar, necessária ao preenchimento dos poros com água, apenas ocorra pelo topo do provete. No caso das argamassas de CL, existe maior uniformidade na dimensão dos poros aos 90 dias e estes necessitam de menor pressão para a água subir.

Figura 4.10 – Comparação entre Pa e VA

Os parâmetros de secagem também parecem depender da porosidade aberta das argamassas. Observando as Figuras 3.41 e 3.42 existem coincidências na evolução dos valores da porosidade aberta e de TS aos 90 dias e IS aos 28 dias.

4.3 Adequação das argamassas para rebocos antigos

Como foi referido no capitulo 2, Veiga et al. (2010) definiu uma gama de valores recomendáveis para argamassas de substituição e refechamento de juntas em edifícios antigos, definidos aos 90 dias (Quadro 2.1).

Reboco interior e exterior

Todas as argamassas ensaiadas no presente trabalho estão no intervalo proposto para valores de Rt e Ed. Em relação a Rc, a única argamassa que não atinge o valor mínimo de 0,4 MPa é a CL_MS. No entanto, nenhuma argamassa aos 90 dias tem coeficiente de capilaridade no intervalo proposto. Uma vez que isso sucede não só comas argamassas NHL2 mas também com as CL, pensa-se que tal facto pode ficar a dever-se a diferenças ao nível do tratamento de resultados.

Refechamento de juntas

Só a argamassa NHL_Mix atinge o valor mínimo de Rt para refechamento de juntas. Em relação ao módulo de elasticidade, apenas as duas composições com a areia Mix atingem o valor mínimo de Ed. Quando se faz a comparação dos valores de Rt, as duas composições com areia monogranular MS são as únicas que se encontram abaixo do intervalo proposto.

Nenhuma argamassa aos 90 dias tem o valor do coeficiente de capilaridade entre o intervalo proposto para rebocos exteriores refechamento de juntas; todas atingem valores de CC superiores ao limite recomendado por Veiga et al. (2010), de 1,5 kg/(m².min^{0.5}).

De um modo genérico, embora seja recomendável que as argamassas sejam optimizadas do ponto de vista da absorção capilar de água (de modo a aproximarem-se do valor limite da gama de Veiga et al. (2010)), admitindo-se a compatibilidade das argamassas de cal aérea, considera-se que as argamassas de NHL2 são também compatíveis e podem ser utilizadas como argamassas de substituição em edifícios antigos.

No Quadro 4.5 é expressa, a verde quando cumpre e a vermelho quando não cumpre, a verificação dos requisitos mecânicos para reboco interior, exterior ou para refechamento de juntas.

Quadro 4.5 – Verificação do cumprimento dos requisitos mecânicos de Veiga et al (2010) por parte dar argamassas

Argamassas	Reboco Interior	Reboco Exterior	Refechamento de juntas
NHL_MS	~	✓	Х
NHL_FS	✓	>	Х
NHL_Mix	~	✓	✓
CL_MS	X	Х	Х
CL_FS	~	V	X
CL_Mix	~	V	Х

Do ponto de vista mecânico, e para aplicação como argamassas e substituição para edifícios antigos, pode admitir-se que apenas as argamassas CL_MS podem ter constrangimentos em serem aplicadas em rebocos interiores e exteriores. De entre as analisadas, a argamassa NHL_MIX apresenta-se como a mais indicada para aplicação no refechamento de juntas.

4.4 Síntese dos resultados

Comparação entre pares ligante/areia

Em quase todos os parâmetros analisados, as argamassas de NHL2 obtiveram valores mais elevados que as argamassas de CL. As exceções são enumeradas e justificadas de seguida.

Aos 90 dias, nos valores de R_c e E_d , NHL_FS é menor que CL_FS devido à formação de grandes poros fissura.

Aos 90 dias, no valor de CC, NHL_MS é menor CL_MS, devido ao diferencial entre os poros pequenos e os poros grandes, que diminui a velocidade de absorção.

Influência da granulometria das areias em cada ligante

O volume de vazios das areias tem uma relação direta com a porosidade das argamassas e relação inversa à massa volúmica geométrica, condutibilidade térmica, massa volúmica aparente e módulo de elasticidade dinâmico das argamassas de NHL2. Os valores dos parâmetros mecânicos das argamassas de CL dependem da dimensão e da quantidade dos poros-fissura; maiores volumes de vazios das areias originam maior quantidade de poros-fissura nas argamassas mas areias de maiores dimensões originam poros-fissura de maiores dimensões.

Argamassas mais porosas têm valores de coeficiente de capilaridade, valor assintótico e índice de secagem mais elevados.

5 Conclusões

Os edifícios sofrem alterações devido ao envelhecimento natural e a ações agressivas, que resultam na necessidade de obras de conservação e/ou reabilitação. Devido às condicionantes técnico-económicas, o segmento da reabilitação de edifícios ganha cada vez mais terreno no sector da construção.

Desta forma, materiais como a cal, que nas últimas décadas do século XX eram dados como ultrapassados pelos materiais com maiores resistências mecânicas e melhores resultados de comportamento em relação à água, voltaram a ser utilizados em obras nos dias de hoje principalmente por nem todos os materiais mais recentes, como o cimento Portland, serem compatíveis com os suportes e rebocos de edifícios antigos.

O ponto de partida desta dissertação foi a nova versão da norma das cais de construção, que reformulou as cais com propriedades hidráulicas, principalmente as cais hidráulicas naturais. Ainda era desconhecido o comportamento da cal hidráulica natural NHL2, a mais fracamente hidráulica das cais hidráulicas naturais e era importante comparar os resultados de caracterização de argamassas produzidas com essa cal com os de argamassas de cal aérea, cujo comportamento já se encontra estudado de forma mais consolidada.

A influência da granulometria de agregados naturais não é, por sua vez, um assunto compreendido em detalhe, em comparação, por exemplo, com o estudo da influência de materiais reciclados ou adição de fibras ou pozolanas artificiais.

Esta dissertação pretende constituir um contributo, à sua escala, para o estudo de argamassas de cal hidráulica natural NHL2 e cal aérea, e para o aprofundamento do conhecimento relativo à influência dos agregados neste tipo de argamassas.

5.1 Conclusões finais

De um modo geral, os objetivos traçados inicialmente – contribuir para o conhecimento das argamassas de NHL2 comparativamente às de cal aérea e da influência da granulometria dos agregados neste tipo de argamassas – foram atingidos. Foi possível avaliar a influência do ligante e do agregado nas argamassas produzidas. Para isso, foram realizados ensaios de caracterização de argamassas no estado fresco e no estado endurecido.

Nas argamassas no estado fresco, verificou-se que as argamassas de NHL2 necessitam de muito menos água de amassadura que as argamassas de CL, para a obtenção de um espalhamento similar, devido à elevada superfície específica da cal aérea. Considerando as composições com o mesmo

ligante, as argamassas com mistura de areias são as que necessitam de menos água de amassadura, enquanto as argamassas com areia monogranular fina necessitam de maior quantidade de água, o que se deve ao maior volume de vazios dessa areia.

Nas argamassas de NHL2 no estado endurecido, foi possível observar a ocorrência de dois tipos de grandes poros: o primeiro tipo, de geometria essencialmente esférica, é característico de argamassas com ligantes hidráulicos, resultando do ar emulsionado no processo de amassadura; o segundo tipo, de morfologia mais incaracterística assumindo uma geometria do tipo fissura, é próprio de argamassas com ligantes aéreos. Estes últimos formam-se numa fase posterior do desenvolvimento do processo de endurecimento, sendo identificados apenas aos 90 dias de idade de cura. Julga-se que resultam da progressão da carbonatação numa fase do endurecimento em que as reações de hidratação estarão já, no essencial, concluídas. Quanto maior a quantidade de água de amassadura, maior é a quantidade de água evaporável, logo maior será a quantidade deste tipo de poros fissura.

Como as argamassas de NHL2 têm maior porosidade aberta, absorvem maior quantidade de água que as argamassas de CL. Ao longo da evolução da idade de cura, o comportamento em relação à velocidade inicial de absorção de água altera-se. No caso das argamassas com NHL, verifica-se uma diminuição do coeficiente de capilaridade, o que se atribui à formação daquele tipo de poros fissura. De facto, estes induzem uma alteração na rede porosa, que conduz a uma maior heterogeneidade na dimensão dos poros, provocando deste modo um atraso na absorção de água. No caso das argamassas com CL, verifica-se uma redução do coeficiente de absorção, o que se atribui à alteração ocorrida na rede porosa entre os 28 e os 90 dias. De facto, denota-se uma redução da dimensão dos poros, resultante da progressão da formação de cristais de carbonato de cálcio.

A utilização de uma areia com granulometria extensa, como é o caso da mistura de areias utilizada, é bastante benéfica no comportamento das argamassas. Em relação às areias monogranulares estudadas, as composições com a mistura obtiveram melhores valores de comportamento mecânico, absorção de água e porosidade.

Partes dos resultados obtidos foram apresentados e publicados na conferência *Patorreb 2015, no artigo "Argamassas fracamente hidráulicas para reparação de rebocos – A influência dos agregados"* [Lobato et al., 2015]. Está também a ser preparado um artigo científico para submeter a revista internacional. O artigo encontra se no Anexo 3

5.2 Desenvolvimentos futuros

Finalizado o presente trabalho, considera-se importante a continuação do desenvolvimento do estudo com o objectivo de complementar os resultados obtidos:

- Realizar o mesmo estudo mas com idades de cura mais avançadas, com o intuito de confirmar a teoria que a estrutura porosa das argamassas de NHL2 se aproxima cada vez mais da estrutura das argamassa de CL com a evolução do tempo.
- Realizar o estudo da granulometria em argamassas de NHL3.5 e NHL5, visto que já existem estudos com cimento Portland.
- Realização de ensaios complementares ao presente estudo, de diversos tipos, como sejam, por exemplo, a determinação da permeabilidade ao vapor de água, a dureza e coesão superficiais, a absorção de água sob baixa pressão, a análise termogravimétrica, a análise por difração e raios X (XRD) e a análise por microscopia electrónica de varrimento (SEM).

Bibliografia

- Bandeira, A., 2012. Caracterização de argamassas de cal aérea e de cal hidráulica natural com metacaulino. Evolução com a idade. Dissertação de mestrado. Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Lisboa.
- Botas, S.; Rato, V. e Faria, P., 2011. Influence of grain size of aggregate in freeze/thaw cycles of lime mortars. In XII DBMC, Porto, Portugal (CD-rom).
- Cardoso, D.B., 2013. Argamassas de cais e metacaulino sujeitas a diferentes condições de cura: evolução das características e dos compostos mineralógicos formados com a idade. Dissertação de mestrado. Faculdade de Ciências e Tecnologia.
- CEN, 2009. EN 15801:2009. Conservation of cultural property. Test methods. Determination of absorption by capillarity. Brussels.
- CEN, 1999. prEN 1015-8:1999. Methods of test for mortars for masonry. Part 8: Determination of water retentivity of fresh mortar. Brussels.
- CEN, 1999. EN 1015-3:1999/A1:2004/A2:2006. Methods of test for mortars for masonry. Part 3: Determination of consistency of fresh mortars. Brussels.
- CEN, 1998. EN 1015-6:1998. Methods of test for mortars for masonry. Part 6: Determination of bulk density of fresh mortar. Brussels.
- CEN, 1999. EN 1015-11:1999/A1:2006 Methods of test for mortars for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar. Brussels.
- CEN, 2002. EN 1015-18:2002. Methods of test for mortar for masonry. Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar. Brussels.
- CEN, 2013. EN 16322:2013. Conservation of Cultural Heritage. Test Methods. Determination of Drying Properties. Brussels.
- Dias, I., 2013. Desenvolvimento E Caracterização de Argamassas de Cal Aérea E Terra. A Influência Da Terra Como Agregado Parcial. Disssertação de mestrado. Faculdade de Ciências e Tecnologia.
- El-Turki, A.; Carter, M.A.; Wilson, M.A.; Ball, R.J. e Allen, G.C., 2009. A microbalance study of the effects of hydraulicity and sand grain size on carbonation of lime and cement. Construction and Building Materials, 23(3), 1423–1428.
- Faria , P.; Rato, V. e Henriques, F., 2007. Argamassas Correntes : Influência do Tipo de Ligante e do Agregado. In 2º Congresso Nacional de Argamassas de Construção, Lisboa (CD-rom).
- Faria-Rodrigues, P., 2004. Argamassas de revestimento para alvenarias antigas. Contribuição para o estudo da influência dos ligantes. Tese de doutoramento. Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Lisboa.
- Faria, P; Silva, V; Grilo, J; Carneiro, J; Branco, T., Mergulhão, D e Antunes, R. Argamassas compatíveis com alvenarias históricas com base em cal hidráulica natural. In CIRea2012 Conferência

- Internacional sobre Reabilitação de Estruturas Antigas de Alvenaria, Universidade Nova de Lisboa, 29-38
- Faria, P. e Silva, V., 2013. Natural hydraulic lime mortars: influence of the aggregates. In HMC13, 11-14 Setembro, Glasgow (CD-rom).
- Faria, P.; Henriques, F. e Rato, V., 2008. Comparative evaluation of lime mortars for architectural conservation. Journal of Cultural Heritage, 9(3), 338–346.
- Gameiro, A.; Santos-Silva, A; Faria, P; Grilo, J; Branco, T; Veiga, R e Velosa, A., 2014. Physical and chemical assessment of air lime-metakaolin mortars: Influence of binder: aggregate ratio. Cement and Concrete Composites, 45, 264-271
- Gonçalves, J.P.; Tavares, L.M.; Toledo Filho, R.D.; Fairbairn, E.M.R. e Cunha, E.R., 2007. Comparison of natural and manufactured fine aggregates in cement mortars. Cement and Concrete Research, 37(6), 924–932.
- Gonçalves, T.D. e Rodrigues, J., 2007. Argamassas de revestimento para paredes afectadas por cristalização de sais solúveis: Influência do substrato. In 2º Congresso Nacional de Argamassas de Construção, Lisboa (CD-rom).
- Grilo, J., 2013. Caracterização de argamassas de cal hidráulica natural NHL3.5 de fabrico nacional. Dissertação de Mestrado. Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Lisboa.
- Gulotta, D.; Goidanich, S; Tedeschi, S.; Nijland, T. e Toniolo, L., 2013. Commercial NHL-Containing Mortars for the Preservation of Historical Architecture. Part 1: Compositional and Mechanical Characterisation. Construction and Building Materials 38 (January), 31–42.
- Haach, V.G.; Vasconcelos, G. e Lourenço, P.B., 2011. Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25(6), 2980–2987.
- Henriques, F. e Faria, P., 2008. O papel da investigação no estudo das argamassas de substituição na conservação do património. Revista Engenharia Civil 31,29–37.
- INE, Instituto Nacional de Estatística, 2014. "Estatísticas da Construção e Habitação 2013".
- IPQ, 2011. NP EN 459-1:2011. Cal de construção. Parte 1: Definições, especificações e critérios de conformidade. Caparica.
- IPQ, 2000. NP EN 933-1:2000. Ensaios das propriedades geométricas dos agregados. Parte 1: Análise granulométrica. Método de Peneiração. Caparica
- IPQ, 2002. NP EN 1097-3:2002. Ensaios das propriedades mecânicas e físicas dos agregados. Parte 3: Determinação da baridade e volume de vazios. Caparica
- IPQ, 2003. NP EN 12620:2003. Agregados para betão. Caparica.
- IPQ, 2006. NP EN 196-1:2006. Métodos de ensaio de cimentos. Parte 1: Determinação das resistências mecânicas. Caparica

- IPQ, 2006. NP EN 14146:2006. Métodos de ensaio para pedra natural. Determinação do módulo de elasticidade dinâmico (através da medição da frequência de ressonância fundamental). Caparica.
- IPQ, 2008. NP EN 1936:2008. Métodos de ensaio para pedra natural. Determinação das massas volúmicas real e aparente e das porosidades total e aberta. Caparica.
- Kalagri, A.; Karatasios, I. e Kilikoglou, V., 2014. The effect of aggregate size and type of binder on microstructure and mechanical properties of NHL mortars. Construction and Building Materials, 53, 467–474.
- Lanas, J.; Pérez Bernal, J.L; Bello, M.A. e Alvarez Galindo, J.I., 2004. Mechanical properties of natural hydraulic lime-based mortars. Cement and Concrete Research, 34 (12), 2191–2201.
- Margalha, M.G., 1997. O uso da cal nas argamassas no Alentejo, Dissertação de mestrado, Universidade de Évora.
- Margalha, M.G., Veiga, R. e de Brito, J., 2007. Influência das areias na qualidade de argamassas de cal aérea. In 2º Congresso Nacional de Argamassas de Construção, Lisboa (CD-rom).
- Martins, A., 2010. A influência das condições de cura em argamassas de cais aéreas com e sem adição de metacaulino. Dissertação de mestrado. Escola Superior de Tecnologia do Barreiro do Instituto Politécnico de Setúbal.
- Pavía, S. e Toomey, B., 2008. Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars. Materials and Structures, 41(3), 559–569.
- Paiva, H.; Velosa, A.; Veiga, R. e Ferreira, V.M., 2010. Effect of maturation time on the fresh and hardened properties of an air lime mortar. Cement and Concrete Research, 40(3), 447–451.
- Rato, V., 2006. Influência da microestrutura morfológica no comportamento de argamassas. Tese de doutoramento. Faculdade de Ciências e Tecnologias, Universidade Nova de Lisboa, Lisboa.
- Santos, A.R. e Veiga, R., 2012. Argamassas compatíveis para edifícios antigos. In Jornadas LNEC. 1–11.
- Scannell, S.; Lawrence, M. e Walker, P., 2014. Impact of Aggregate Type on Air Lime Mortar Properties. Energy Procedia, 62, 81–90.
- Sequeira, A.C.; Frade, D. e Gonçalves, P., 2007. Cal Hidráulica Um ligante para a reabilitação. In 2º Congresso Nacional de Argamassas de Construção, Lisboa, (CD-rom).
- Sing, K.; Everett, D.; Haul, R.; Moscou, L. e Pierotti, R., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surfasse área and porosity. Pure Appl. Chem., 57, 603-619.
- Smith, 2001. Aggregates: sand, gravel and crushed rock aggregates for construction purposes, 3^a edition. The Geological Society Publishing House.
- Sousa-Coutinho, A., 1988. Fabrico e propriedades do betão Volume I, Lisboa: LNEC.
- Tavares, M.L. e Veiga, M. R., 2007. A conservação de rebocos antigos restituir a coesão perdida através da consolidação com materiais tradicionais e sustentáveis. In VII SBTA VII Seminário brasileiro de tecnologia das argamassas, Recife (CD-rom).

- Veiga, M.R.; Fragata, A.; Velosa, A.; Magalhães, A.e Margalha, G, 2010. Lime-Based Mortars: Viability for Use as Substitution Renders in Historical Buildings. International Journal of Architectural Heritage, 4(2), 177–195.
- Westerholm, M.; Lagerblad, B.; Silfwerbrand, J. e Forssberg, E., 2008. Influence of fine aggregate characteristics on the rheological properties of mortars. Cement and Concrete Composites, 30(4), 274–282.

ANEXOS

ANEXO 1 – Ficha técnica da cal NHL2

Secil NATURAL LIME NHL 2

NHL 2 – CAL HIDRÁULICA NATURAL

1. DESCRIÇÃO

A *Secil NATURAL LIME NHL 2* é uma cal hidráulica natural, ligante hidráulico constituído por hidróxido de cálcio, silicatos e aluminatos de cálcio, obtida por cozedura de calcário margoso, seguida de moagem. A *Secil NATURAL LIME NHL 2* é classificada como NHL 2 segundo a NP EN 459-1.

A *Secil NATURAL LIME NHL 2* é um ligante singular, pois além da presa hidráulica, apresenta presa aérea, obtida por carbonatação com CO_2 atmosférico.

2. DOMÍNIO DE UTILIZAÇÃO

Na fabricação de argamassas, como único ligante ou em mistura com outros ligantes hidráulicos ou aéreos, conferindo-lhes trabalhabilidade e flexibilidade, reduzindo significativamente a retracção das argamassas hidráulicas (p.ex. argamassa de reboco).

Na fabricação de argamassas de reabilitação, como único ligante, em execução de rebocos exteriores e interiores sobre suportes antigos.

3. CARACTERÍSTICAS DO PRODUTO

CARACTERÍSTICAS QUÍMICAS	VALOR	NORMA
Cal disponível Ca(OH) ₂	≥ 35,0 %	EN 459-1
Sulfato	≤ 2,0 %	EN 459-1
CARACTERÍSTICAS FÍSICAS	VALOR	NORMA
Cor	Bege	-
Água livre	≤ 2,0 %	EN 459-1
Baridade	$0,65 \pm 0,05 \text{ kg/dm}^3$	-
Finura	90 μm ≤ 15,0 % 200 μm ≤ 2,0 %	EN 459-1
Expansibilidade	≤ 2,0 mm	EN 459-1
Penetração	> 10 mm e < 50 mm	EN 459-1
Teor de ar	≤ 5,0 %	EN 459-1
Tempo de presa Início Fim	> 1 h ≤ 40 h	EN 459-1
Cor	Bege	-
CARACTERÍSTICAS MECÂNICAS	VALOR	NORMA
Resistência à compressão (28dias)	≥ 2,0 e ≤ 7,0 MPa	EN 459-1

4. APLICAÇÃO

FABRICAÇÃO DE ARGAMASSAS

A dosagem de *Secil NATURAL LIME NHL 2* numa argamassa deve adequarse ao fim a que se destina, ver exemplos no ponto 5.

Misturar previamente a *Secil NATURAL LIME NHL 2* com o agregado e posteriormente adicionar água na quantidade adequada de forma a obter uma boa trabalhabilidade.

Restrições

Não aplicar argamassas a temperaturas inferiores a 5 °C e superiores a 30 °C, evitando a aplicação em situações de elevada exposição solar e/ou sob ventos fortes.

Não utilizar argamassas amolentadas ou que tenham iniciado a sua presa.

Evitar a secagem rápida das argamassas, regando o suporte, 1 a 2 horas antes da aplicação e voltando a regar logo que a argamassa se apresente suficientemente resistente. Repetir a rega 1, 2 e 7 dias depois.

Conselhos complementares

- O excesso de água de amassadura é prejudicial às características físicas da argamassa;
- Deve ser sempre utilizada a quantidade mínima de água que permita boa trabalhabilidade;
- A água de amassadura deve estar isenta de quaisquer impurezas (argilas, matéria orgânica), devendo, de preferência, ser utilizada água potável;

Secil Argamassas Secil Martingança, S.A. Applica of Clipater Aparting 3 | 2406 - 909 - Massica - IRA - Rethreal

Apoio ao Cliente: Apartado 2 | 2406 – 909 – Maceira – LRA – Portugal
Tel: +351 244 770 220 | Fax: +351 244 777 997 | E-mail: comercial@secilargamassas.pt

Secil NATURAL LIME NHL 2

NHL 2 – CAL HIDRÁULICA NATURAL

Pedreira

Uma vez determinado o traço a utilizar para a argamassa desejada, manter as dosagens constantes e o tempo de

amassadura

6. EMBALAGEM **E VALIDADE**

Embalagem

- Sacos papel de 25 kg em paletes plastificadas;
- ► Granel para utilização em sistema de silo.

Validade

12 meses desde que permaneçam inalteradas as condições da embalagem originais e em condições de armazenagem ao abrigo de temperaturas extremas e da humidade.

7. HIGIENE **E SEGURANÇA**

(NÃO DISPENSA A CONSULTA DA FICHA DE SEGURANÇA DO PRODUTO)

- Provoca irritação da pele;
- Provoca danos graves nos olhos;
- provocar irritação respiratória;

- Manter fora do alcance das crianças; Usar luvas de proteção/ vestuário de proteção/ proteção ocular/ proteção facial;
- Evitar respirar poeiras/ vapores.

5. TRAÇOS RECOMENDADOS

TRAÇOS DE	MATÉRIAS PRIMAS (VOLUME)		Água	RESISTÊNCIA À COMPRESSÃO (MPa)			MÓDULO DE ELASTICIDADE (MPa)		
ARGAMASSA RECOMENDADOS	NHL 2	Sílica fina (< 0,6 mm)	Sílica fina (< 1,2 mm)	Sílica de rio (< 2,5 mm)	% peso do total	7 dias	28 dias	90 dias	28 dias
Argamassa de revestimento (ligante:agregado) = (1:3)	1	1,5	1,5	-	15,9	0,3	0,6	0,9	2700
Argamassa de revestimento (ligante:agregado) = (1:4)	1	2	2	-	16,6	0,1	0,3	0,4	2060
Argamassa de revestimento (ligante:agregado) = (1:3)	1	3	-	-	17,2	0,2	0,6	1,8	2460

Secil Argamassas

Secil Martingança, S.A. Apoio ao Cliente: Apartado 2 | 2406 – 909 – Maceira – LRA – Portugal Tel: +351 244 770 220 | Fax: +351 244 777 997 | E-mail: comercial@secilargamassas.pt

www.secilargamassas.pt

Secil NATURAL LIME NHL 2

NHL 2 – CAL HIDRÁULICA NATURAL

Estando as condições de aplicação dos nossos produtos fora do nosso alcance não nos responsabilizamos pela sua incorrecta utilização. É dever do cliente verificar a idoneidade do produto para o fim previsto. Em qualquer caso a nossa responsabilidade está limitada ao valor da mercadoria por nós fornecida. A informação constante da presente ficha pode ser alterada sem aviso prévio. Em caso de dúvida, e se pretender esclarecimentos complementares solicitamos o contacto com os nossos servicos técnicos.

Revisão de Outubro de 2014 TC.E.005.3

Secil Natural Lime NHL 2

EN 459-1:2011 Certificado: 1328-CPR-0215 Cal Hidráulica Natural – NHL 2 Declaração de desempenho TC.E.0637

14

Secil Argamassas Secil Martingança, S.A. Apoio ao Cliente: Apartado 2 | 2406 – 909 – Maceira – LRA – Portugal Tel: +351 244 770 220 | Fax: +351 244 777 997 | E-mail: comercial@secilargamassas.pt

ANEXO 2 – Ficha técnica das areias

DECLARAÇÃO DE DESEMPENHO

N° 10/2013

- Código de identificação único do produto-tipo: Agregado 0/2
- 2. Número do tipo, do lote ou da série, ou quaisquer outros elementos que permitam a identificação do produto de construção, nos termos do nº 4 do artigo 11º: Refa APAS 20 (registo na guia de remessa)
- 3. Utilização ou utilizações previstas do produto de construção, de acordo com a especificação técnica harmonizada aplicável, tal como previsto pelo fabricante: NP EN 13139:2005; NP EN 13139:2005/AC:2010 (agregado para argamassas).
- 4. Nome, designação comercial ou marca comercial registada e endereço de contacto do fabricante, nos termos do nº 5 do artigo 11º: Areipor - Areias Portuguesas, Lda. Rua da Alameda, Ap 755 - 2671-601 Bucelas

E-mail: geral@areipor.mail.pt Telelefone: 21 968 80 10

- 5. Sistema ou sistemas de avaliação e verificação da regularidade do desempenho do produto de construção tal como previsto no anexo V: Sistema de avaliação 2+
- 6. No caso de uma declaração de desempenho relativa a um produto de construção abrangido por uma norma harmonizada:
- E.I.C. Empresa Internacional de Certificação, organismo notificado, nº 1515, realizou a inspeção inicial e o acompanhamento, apreciação e aprovação contínuos do controlo da produção em fábrica, no âmbito do sistema 2+, e emitiu o certificado de conformidade do controlo da produção em fábrica, nº 1515-CPD-0205 de 30 de maio de 2013 e válido desde que não se alterem significativamente as condições definidas nas normas harmonizadas ou as condições de fabrico e do controlo de produção em fábrica.
- 7. Desempenho declarado

Características			
Dimensão Nominal - Tamanho das partículas	0/2	Norma harmonizada	
Descrição petrográfica	Areia quartzosa com dureza elevada. Elemento rolado de forma alongada, textura granoblástica, poligonal e heterogranular constituída por Quartzo, Zircão e Turmalina.	NP EN 13139:2005 NP EN 13139:2005/AC:2010	
Teor de finos	Categoria 1	111 E11 13137.20037AC.2010	
Massa Volúmica	$\rho_a = 2,69$; $\rho_{rd} = 2,67$; $\rho_{ssd} = 2,68$		
Absorção de água	0,3%		
Teor de cloretos	< 0.01%		
Teor de enxofre total	< 0.1%		
Teor de húmus	Mais claro que padrão		

Resultados que não constam, não foram realizados ou não solicitados. A origem dos valores dos ensaios químicos são da responsabilidade do produtor da matéria-prima.

8. O desempenho do produto identificado nos pontos 1 e 2 é conforme com o desempenho declarado no ponto 7.

A presente declaração de desempenho é emitida sob a exclusiva responsabilidade do fabricante identificado no ponto 4. Assinado por e em nome do fabricante por:

Vítor Mordido, Responsável pelo Sistema de Controlo em Fábrica

(assinatura)

Bucelas, 17 fevereiro 2014

DECLARAÇÃO DE DESEMPENHO

Nº 1/2013

- 1. Código de identificação único do produto-tipo: Agregado 0/1
- 2. Número do tipo, do lote ou da série, ou quaisquer outros elementos que permitam a identificação do produto de construção, nos termos do nº 4 do artigo 11º: Refª FPS 120 (registo na guia de remessa)
- 3. Utilização ou utilizações previstas do produto de construção, de acordo com a especificação técnica harmonizada aplicável, tal como previsto pelo fabricante: NP EN 13139:2005; NP EN 13139:2005/AC:2010 (agregado para argamassas).
- 4. Nome, designação comercial ou marca comercial registada e endereço de contacto do fabricante, nos termos do nº 5 do artigo 11º: Areipor - Areias Portuguesas, Lda. Rua da Alameda, Ap 755 - 2671-601 Bucelas

E-mail: geral@areipor.mail.pt Telelefone: 21 968 80 10

- 5. Sistema ou sistemas de avaliação e verificação da regularidade do desempenho do produto de construção tal como previsto no anexo V: Sistema de avaliação 2+
- 6. No caso de uma declaração de desempenho relativa a um produto de construção abrangido por uma norma harmonizada:

E.I.C. - Empresa Internacional de Certificação, organismo notificado, nº 1515, realizou a inspeção inicial e o acompanhamento, apreciação e aprovação contínuos do controlo da produção em fábrica, no âmbito do sistema 2+, e emitiu o certificado de conformidade do controlo da produção em fábrica, nº 1515-CPD-0205 de 30 de maio de 2013 e válido desde que não se alterem significativamente as condições definidas nas normas harmonizadas ou as condições de fabrico e do controlo de produção em fábrica.

7. Desempenho declarado

Características	Desempenho	Norma harmonizada
Dimensão Nominal - Tamanho das partículas	0/1	
Descrição petrográfica	Agregados com forma maioritariamente esférica, sub-arredondadas e com superfície rugosa, constituída por Quartzo e Turmalina	
Teor de finos	Categoria 4	
Massa Volúmica*	$\rho_a = 2,66$; $\rho_{rd} = 2,63$; $\rho_{ssd} = 2,64$	NP EN 13139:2005
Absorção de água*	0.5%	NP EN 13139:2005/AC:2010
Teor de cloretos	< 0,001%	
Teor de sulfatos solúveis em ácido	AS _{0,2}	
Teor de enxofre total	< 0,04%	
Teor de húmus	Mais claro que padrão	

Resultados que não constam, não foram realizados ou não solicitados. A origem dos valores dos ensaios químicos são da responsabilidade do produtor da matéria-prima. * Propriedades determinadas em agregado com a mesma origem (agregado 0/1 "APB 40")

8. O desempenho do produto identificado nos pontos 1 e 2 é conforme com o desempenho declarado no ponto 7.

A presente declaração de desempenho é emitida sob a exclusiva responsabilidade do fabricante identificado no ponto 4. Assinado por e em nome do fabricante por:

Vítor Mordido, Responsável pelo Sistema de Controlo em Fábrica

Bucelas, 17 fevereiro 2014

(assinatura)

ANEXO 3 - Resultados individuais dos ensaios realizados

Quadro A.1 – Consistência por espalhamento

A	·	Consistênci	· · · · · ·	mento [mm]		
Argamassa	Amassadura	Diâ	metros Medi	dos	Média	DP
	1	167	167	166		
NHL_MS	2	165	169	175	169	2,79
	3	170	169	170		
	1	166	166	168		
NHL_FS	2	170	169	168	167	2,50
	3	162	163	167		
	1	170	170	166		
NHL_Mix	2	166	172	173	170	2,31
	3	171	169	168		
	1	171	171	171		
CL_MS	2	166	169	169	171	1,81
	3	172	172	171		
	1	165	163	164		
CL_FS	2	166	168	169	166	1,87
	3	164	166	167		
	1	170	172	167		
CL_Mix	2	170	170	169	170	1,45
	3	170	169	172		

Quadro A.2 – Retenção de água

Amassadura	Água na argamassa [g]	Massa seca [g]	Massa água [g]	Quantidade de água retida [%]		
			61,069	78,713		
NHL_MS	917	4814	61,883	76,569		
			61,015	79,185		
			67,812	79,900		
NHL_FS	1062	4688	67,309	77,235		
			67,957	79,118		
			51,480	84,075		
NHL_Mix	653	4444,4	51,500	83,577		
			50,972	84,939		
			64,882	80,164		
CL_MS	955	4492	65,784	88,8723		
			65,869	87,247		
			75,394	82,890		
CL_FS	1107	4366	73,787	81,840		
			74,466	82,408		
			61,443	84,044		
CL_Mix	742	4186,78	61,241	82,758		
			61,590	85,582		

Quadro A.3 – Condutibilidade térmica de dois provetes aos 28 e 90 dias

_		utibilidade termica de do 28 dias		90 dias
Argamassa	Provete	λ [W/m.K]	Provete	λ [W/m.K]
		0,541		0,575
	3,3	0,54	3,3	0,505
		0,539		0,527
NHL_MS		0,534		0,629
	10,1	0,512	6,2	0,512
		0,567		0,639
		0,493		0,406
	7,3	0,412	5,1	0,39
50		0,432		0,397
NHL_FS		0,424		0,384
	5,2	0,329	5,3	0,385
		0,416		0,411
		0,736		0,716
	1,3	0,837	23,1	0,735
A.I.I. A.C.		0,818		0,72
NHL_Mix		0,825		0,844
	1,2	0,811	1,3	0,695
		0,765		0,728
		0,599		0,504
	21,2	0,585	15,1	0,476
CI 146		0,582		0,545
CL_MS		0,565		0,535
	15,1	0,476	24,2	0,497
		0,528		0,52
		0,49		0,381
	16,3	0,478	12,2	0,422
CI		0,449		0,385
CL_FS		0,435		0,398
	16,2	0,43	16,1	0,43
		0,438		0,454
		0,79		0,819
	20,2	0,755	22,3	0,722
CL NAS	[0,757		0,719
CL_Mix		0,751		0,751
	22,3	0,711	20,2	0,754
		0,794		0,823

Quadro A.4 – Porosidade aberta e massa volúmica aparente de todos os provetes aos 28 dias

Argamassa	Provetes	Massa seca [g]	Massa pesagem hidrostática [g]	Massa saturada [g]	Mvap [kg/m³]	Pab [%]
	3,1	51,193	29,949	58,791	1774,9	26,3
	6,3	37,992	22,255	43,555	1783,7	26,1
	8.1	58,179	34,559	67,936	1743,1	29,2
NHL_MS	8,2 A	29,086	17,216	33,755	1758,6	28,2
	8,2 B	27,398	15,821	31,433	1754,9	25,8
	8,3	54,593	31,997	62,945	1764,0	27,0
	10,3	60,02	35,199	69,362	1756,9	27,3
	9,1	61,244	34,467	71,589	1649,8	27,9
	9,2	52,552	29,704	61,696	1642,7	28,6
	9,3 A	26,897	15,086	31,376	1651,1	27,5
50	9,3 B	27,719	15,487	32,443	1634,8	27,9
NHL_FS	11,1	45,954	26,332	53,98	1662,1	29,0
	11,3 A	27,983	16,02	33,176	1631,1	30,3
	11,3 B	18,508	10,944	22,861	1553,1	36,5
	11,2		sem partes inteiras d	epois do ensaio de cor	npressão	
	2,1	65,033	30,104	73,217	1508,4	19,0
	2,2	82,648	48,436	92,279	1885,1	22,0
	2,3	52,277	30,673	58,368	1887,6	22,0
NHL_Mix	17,1	63,231	37,227	70,53	1898,7	21,9
	17,	60,851	35,793	68,126	1882,0	22,5
	17,3	68,491	40,363	76,792	1880,1	22,8
	13,1	51,887	28,703	59,093	1707,4	23,7
	13,2	47,439	26,399	53,66	1740,2	22,8
CL MC	13,3	53,826	29,943	61,205	1721,8	23,6
CL_MS	21,1	58,54	33,005	68,07	1669,5	27,2
	21,2	52,253	28,729	59,709	1686,7	24,1
	21,3	48,962	27,27	55,76	1718,6	23,9
	4,1	60,025	32,304	69,789	1601,3	26,0
	4,2	46,547	25,063	53,845	1617,2	25,4
	4,3 A	22,789	12,256	26,644	1583,9	26,8
CI	4,3 B	28,638	15,436	33,328	1600,6	26,2
CL_FS	14,1	52,428	27,885	59,972	1633,9	23,5
	14,2	38,128	20,24	44,242	1588,5	25,5
	14,3 A	27,951	14,942	32,296	1610,6	25,0
	14,3 B	23,008	12,261	26,746	1588,4	25,8
	18,1	62,584	35,819	69,585	1853,5	20,7
	18,2	67,639	38,439	75,302	1834,9	20,8
CL M:	18,3	70,439	40,295	78,221	1857,3	20,5
CL_Mix	19,1	52,236	29,788	57,78	1866,1	19,8
	19,1	56,464	31,652	62,401	1836,3	19,3
	20,1	52,591	30,121	58,49	1853,8	20,8

Quadro A.5 – Porosidade aberta e massa volúmica aparente de todos os provetes aos 90 dias

Argamassa	Provetes	Massa seca	Massa pesagem hidrostática	Massa saturada	Mvap [kg/m³]	Pab [%]
	3,2	58,349	33,807	66,419	1789,2	24,7
	3,3	49,806	29,3	57,174	1786,8	26,4
NUU A1	6,1	56,665	32,846	64,866	1769,7	25,6
NHL_A1	6,2	60,511	35,527	69,271	1793,2	26,0
	10,1	39,066	22,89	44,72	1793,2	26,0
	10,3	68,825	40,452	78,743	1797,4	25,9
	5,1 A	33,185	18,85	38,838	1660,2	28,3
	5,1 B	32,081	18,201	37,507	1642,4	28,2
	5,2	70,026	39,425	82,062	1633,7	28,5
NHL_A2	5,3	55,985	31,489	65,758	1633,7	28,5
	7,1	44,143	24,909	51,497	1660,3	27,7
	7,2	65,888	37,213	76,905	1660,0	27,8
	7,3	57,606	32,54	67,438	1650,7	28,2
	1,1	67,134	39,156	75,558	1844,2	23,1
	1,2	69,299	40,536	77,266	1886,7	21,7
	1,3	64,234	37,705	71,241	1915,4	20,9
NHL_M1	23,1	67,939	39,708	75,504	1897,9	21,1
	23,2	60,788	35,663	67,543	1906,8	21,2
	23,3	66,911	39,231	74,358	1904,8	21,2
	15,1	54,585	30,025	61,832	1716,1	22,8
	15,2	44,906	24,836	51,022	1714,9	23,4
Cl A1	15,3	52,406	28,866	59,549	1708,0	23,3
CL_A1	24,1	69,727	38,567	79,225	1715,0	23,4
	24,2	58,531	32,331	66,555	1710,2	23,4
	24,3	67,452	37,07	77,23	1679,6	24,3
	12,1	63,777	34,155	73,817	1608,0	25,3
	12,2	59,64	32,06	68,822	1622,3	25,0
CL A2	12,3	59,96	32,165	69,391	1610,7	25,3
CL_A2	16,1	68,123	36,115	78,776	1596,8	25,0
	16,2	54,7	29,044	63,296	1597,0	25,1
	16,3	65,69	34,949	75,963	1601,6	25,0
	19,2	60,226	45,205	87,514	1423,5	64,5
	20,2	58,874	34,014	66,632	1805,0	23,8
CL NAA	20,3	63,311	36,448	70,458	1861,5	21,0
CL_M1	22,1	69,384	39,696	76,95	1862,5	20,3
	22,2	72,575	41,638	80,561	1864,6	20,5
	22,3	72,604	41,597	80,346	1873,7	20,0

Valor excluído

Quadro A.6 – Módulo de elasticidade dinâmico dos provetes de todas as argamassas aos 28 dias

						Ира)	55d5 dUS 20 UIdS	
Argamassa	Provete	Massa (g)	E1	E2	E3	E4	Média	DP
	3,1	445,238	2810	2666	2688	2683	2712	57
	6,3	449,308	2714	2708	2670	2720	2703	20
	8,1	446,915	2656	2701	2711	2644	2678	29
NHL_MS	8,2	437,916	2565	2584	2567	2590	2577	11
	8,3	435,515	2534	2560	2541	2569	2551	14
	10,2	446,699	2490	2516	2488	2494	2497	11
	9,1	415,867	2365	2376	2419	2392	2388	20
	9,2	411,663	2371	2428	2387	2411	2399	22
NUU 50	9,3	414,916	2282	2266	2290	2251	2272	15
NHL_FS	11,1	416,205	2089	2062	2076	2053	2070	14
	11,2	415,227	2017	2039	2006	2080	2036	28
	11,3	419,424	2140	2166	2021	2170	2124	61
	2,1	480,839	3467	3481	2458	3490	3224	442
	2,2	482,326	3299	3318	3356	3339	3328	21
NILLI NA:	2,3	483,097	3633	3648	3630	3651	3641	9
NHL_Mix	17,1	470,796	3635	3660	3642	3659	3649	11
	17,2	476,802	3678	3640	3665	3633	3654	18
	17,3	473,92	3522	3469	3506	3491	3497	20
	13,1	419,246	1246	1202	1234	1243	1231	17
	13,2	425,119	1373	1387	1361	1358	1370	11
CL MC	13,3	424,673	1389	1419	1390	1406	1401	12
CL_MS	21,1	424,156	1326	1386	1344	1375	1358	24
	21.2	421,417	1307	1321	1326	1304	1315	9
	21,3	420,407	1418	1430	1406	1421	1419	9
	4,1	398,08	1462	1480	1478	1454	1469	11
	4,2	394,71	1494	1447	1506	1481	1482	22
CL EC	4,3	397,317	1308	1300	1324	1318	1313	9
CL_FS	14,1	393,035	1468	1479	1506	1512	1491	18
	14,2	392,62	1353	1365	1349	1360	1357	6
	14,3	397,248	1460	1446	1483	1479	1467	15
	18,1	463,739	2555	2520	2561	2546	2546	16
	18,2	456,7	2444	2462	2427	2459	2448	14
CLMiv	18,3	457,097	2595	2588	2598	2606	2597	6
CL_Mix	19,1	457,974	2500	2540	2508	2528	2519	16
	19,3	457,592	2571	2620	2577	2561	2582	23
	20,1	468,711	2672	2646	2655	2678	2663	13

Quadro A.7 – Módulo de elasticidade dinâmico dos provetes de todas as argamassas aos 90 dias

				е иег р. е	E (M		5d5 dO5 90 Uld5	
Argamassa	Provete	Massa (g)	E1	E2	E3	E4	Média	DP
	3.2	446,746	2427	2411	2439	2404	2420	14
	3.3	451,015	2400	2431	2426	2397	2414	15
	6.1	450,46	2603	2571	2601	2566	2585	17
NHL_MS	6.2	450,991	2682	2668	2678	2689	2679	8
	10.1	454,487	2756	2707	2724	2744	2733	19
	10.3	454,487	2765	2736	2772	2749	2756	14
	5.1	435,864	2117	2004	2100	2010	2058	51
	5.2	429,754	2104	2116	2001	2047	2067	46
NUU 50	5.3	432,167	2142	2035	2150	2028	2089	57
NHL_FS	7.1	417,872	2160	2143	2166	2137	2152	12
	7.2	415,142	2186	2171	2194	2231	2196	22
	7.3	420,186	2186	2209	2189	2167	2188	15
	1.1	483,726	4682	4739	4714	4691	4707	22
	1.2	484,147	4817	4791	4802	4827	4809	14
A.I.I. A.	1.3	488,87	4759	4781	4764	4789	4773	12
NHL_Mix	23.1	478,938	4761	4724	4789	4716	4748	29
	23.2	473,24	4616	4713	4648	4709	4672	41
	23.3	480,889	4852	4907	4909	4874	4886	24
	15.1	430,873	2269	2202	2049	2227	2187	83
	15.2	425,635	2095	2049	2115	2070	2082	25
CL NAC	15.3	428,405	2171	2203	2069	2190	2158	53
CL_MS	24.1	440,972	2209	2174	2201	2187	2193	13
	24.2	442,417	2010	2026	1984	2014	2009	15
	24.3	436,446	2184	2149	2203	2209	2186	23
	12.1	398,458	2005	2020	2036	2014	2019	11
	12.2	396,83	2018	2028	2005	1994	2011	13
CL FC	12.3	398,946	2129	2146	2171	2160	2152	16
CL_FS	16.1	399,298	2313	2342	2270	2296	2305	26
	16.2	396,106	2274	2227	2285	2204	2248	33
	16.3	391,312	2332	2359	2291	2358	2335	28
	19.2	462,571	3533	3569	3346	3409	3464	90
	20.2	473,269	3698	3650	3637	3648	3658	23
CL NA:v	20.3	472,556	3743	3691	3686	3709	3707	22
CL_Mix	22.1	462,598	3829	3940	3874	3889	3883	40
	22.2	463,955	3348	3307	3255	3381	3323	47
	22.3	464,997	3473	3439	3380	3371	3416	42

Quadro A.8 – Resistências mecânicas de todos os provetes aos 28 e aos 90 dias

			28 dias			90 dias						
Argamassa	Provete	Ft [N]	Fc [N]	Rt (MPa)	Rc (MPa)	Provete	Ft [N]	Fc [N]	Rt (MPa)	Rc (MPa)		
	3,1	134,88	1194,00	0,32	0,75	3.2	133,90	698,60	0,31	0,44		
	6,3	157,62	1050,60	0,37	0,66	3.3	142,98	1013,75	0,34	0,63		
NUU NAC	8,1	118,28	905,00	0,28	0,57	6.1	136,50	945,15	0,32	0,59		
NHL_MS	8,2	160,98	748,50	0,38	0,47	6.2	143,86	1110,30	0,34	0,69		
	8,3	146,04	1072,50	0,34	0,67	10.1	137,80	790,55	0,32	0,49		
	10,2	146,05	831,50	0,34	0,52	10.3	143,20	1040,00	0,34	0,65		
	9,1	177,29	582,50	0,42	0,36	5.1	120,50	871,20	0,28	0,54		
	9,2	140,71	504,30	0,33	0,32	5.2	125,68	997,80	0,29	0,62		
	9,3	161,55	635,50	0,38	0,40	5.3	128,40	1024,40	0,30	0,64		
NHL_FS	11,1	149,03	641,06	0,35	0,40	7.1	138,35	934,35	0,32	0,58		
	11,2	159,88	592,50	0,37	0,37	7.2	130,81	1105,50	0,31	0,69		
	11,3	153,12	600,00	0,36	0,38	7.3	114,74	966,00	0,27	0,60		
	2,1	171,70	723,00	0,40	0,45	1.1	200,10	1990,20	0,47	1,24		
	2,2	178,26	599,60	0,42	0,37	1.2	190,70	1672,80	0,45	1,05		
	2,3	180,29	1450,00	0,42	0,91	1.3	184,50	2206,00	0,43	1,38		
NHL_Mix	17,1	198,73	1277,00	0,47	0,80	23.1	182,25	1970,50	0,43	1,23		
	17,2	162,25	1655,00	0,38	1,03	23.2	168,10	1759,30	0,39	1,10		
	17,3	158,60	1474,00	0,37	0,92	23.3	157,50	1776,70	0,37	1,11		
	13,1	45,18	254,00	0,11	0,16	15.1	76,80	583,00	0,18	0,36		
	13,2	53,33	236,50	0,12	0,15	15.2	95,80	672,30	0,22	0,42		
CI 146	13,3	63,53	218,40	0,15	0,14	15.3	83,50	416,10	0,20	0,26		
CL_MS	21,1	65,93	202,50	0,15	0,13	24.1	77,67	435,50	0,18	0,27		
	21.2	45,95	234,61	0,11	0,15	24.2	90,97	485,00	0,21	0,30		
	21,3	63,61	345,40	0,15	0,22	24.3	101,45	650,50	0,24	0,41		
	4,1	76,83	475,00	0,18	0,30	12.1	109,50	948,00	0,26	0,59		
	4,2	57,69	323,00	0,14	0,20	12.2	104,95	941,20	0,25	0,59		
61 56	4,3	94,82	426,00	0,22	0,27	12.3	95,77	920,00	0,22	0,58		
CL_FS	14,1	84,09	543,00	0,20	0,34	16.1	145,70	1046,50	0,34	0,65		
	14,2	94,14	380,00	0,22	0,24	16.2	146,20	919,50	0,34	0,57		
	14,3	67,63	426,00	0,16	0,27	16.3	117,20	1035,00	0,27	0,65		
	18,1	115,40	583,50	0,27	0,36	19.2	124,60	1061,45	0,29	0,66		
	18,2	97,82	573,80	0,23	0,36	20.2	161,20	1401,70	0,38	0,88		
CL NA:	18,3	120,32	602,40	0,28	0,38	20.3	176,05	1234,90	0,41	0,77		
CL_Mix	19,1	111,92	613,30	0,26	0,38	22.1	154,10	1350,00	0,36	0,84		
	19,3	98,51	590,00	0,23	0,37	22.2	129,21	1104,00	0,30	0,69		
	20,1	136,34	571,00	0,32	0,36	22.3	154,40	1096,00	0,36	0,69		

Quadro A.9 –Média dos provetes da massa de água absorvida por capilaridade dos primeiros 60 minutos aos 28 dias

Tempo					Quantidad	e de ág	ua absorv	ida				
[min]	NHL_MS	DP	NHL_FS	DP	NHL_Mix	DP	CL_MS	DP	CL_FS	DP	CL_Mix	DP
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
5	7,05	0,26	7,49	0,57	6,01	0,35	5,07	0,57	3,31	0,38	2,97	0,19
10	8,81	0,23	9,27	0,64	7,46	0,39	6,32	0,70	4,71	0,45	4,24	0,27
15	9,01	0,17	9,89	0,22	7,95	0,31	6,58	0,59	5,93	0,52	5,23	0,31
30	9,13	0,15	10,12	0,18	8,12	0,25	6,68	0,58	7,01	0,23	5,67	0,21
60	9,17	0,15	10,18	0,18	8,15	0,24	6,71	0,59	7,10	0,21	5,72	0,18

Quadro A.10 Média dos provetes da massa de água absorvida por capilaridade dos primeiros 60 minutos aos 90 dias

Tempo					Quantidad	e de ág	ua absorv	ida				
[min]	NHL_MS	DP	NHL_FS	DP	NHL_Mix	DP	CL_MS	DP	CL_FS	DP	CL_Mix	DP
0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
5	4,70	0,54	6,31	0,57	4,38	0,13	5,72	0,26	4,03	0,24	3,28	0,09
10	7,02	0,70	9,20	0,62	6,22	0,21	7,26	0,26	5,75	0,37	4,90	0,24
15	8,83	0,58	10,47	0,18	7,36	0,26	7,48	0,41	6,97	0,47	5,74	0,15
30	9,51	0,22	10,66	0,10	7,50	0,23	7,58	0,28	7,93	0,46	6,22	0,16
60	9,57	0,22	10,70	0,11	7,57	0,23	7,70	0,30	8,15	0,43	6,33	0,18

Quadro A.11 – Absorção de água dos provetes aos 28 dias

					,	U A.II	<u>-</u>	lassa do p	•	1 dos 20 die						
Argamassa	Provete	0 min	5 min	10 min	15 min	30 min	60 min	120 min	180 min	240 min	300 min	24h	48h	72h	120h	144h
	3,1	107,749	118,7274	121,472	121,862	122,037	122,058	122,101	122,187	122,238	122,279	122,493	122,746	122,953	123,196	123,268
	6,3	107,692	119,43295	122,187	122,471	122,58	122,637	122,727	122,785	122,802	122,794	123,06	123,353	123,658	123,982	124,094
NILLI MC	8,1	109,279	121,05753	123,47	123,57	123,773	123,87	123,888	124,003	124,032	124,053	124,184	124,446	124,691	125,016	125,125
NHL_MS	8,2	107,881	119,2495	122,456	122,599	122,818	122,849	122,98	123,015	123,067	123,119	123,365	123,563	123,805	124,026	124,115
	8,3	105,147	115,73082	118,716	119,259	119,559	119,584	119,735	119,758	119,78	119,861	120,077	120,311	120,597	120,815	120,94
	10,3	109,401	120,6026	123,403	123,875	124,07	124,145	124,225	124,225	124,233	124,343	124,59	124,823	125,114	125,353	125,47
	9,1	103,138	115,33255	118,193	119,039	119,314	119,375	119,443	119,56	119,578	119,619	119,826	120,172	120,512	120,856	121,026
	9,2	103,73	114,79622	117,392	119,165	119,624	119,725	119,888	119,979	120,033	120,046	120,412	120,56	120,988	121,449	121,548
NHL_FS	9,3	104,16	114,7104	117,348	119,422	119,936	120,049	120,139	120,209	120,303	120,348	120,646	120,959	121,23	121,534	121,667
NHL_F3	11,1	103,527	115,70748	119,143	119,645	119,95	119,987	120,042	120,066	120,158	120,177	120,443	120,803	121,084	121,497	121,616
	11,2	102,281	115,25888	117,917	118,277	118,576	118,684	118,701	118,742	118,83	118,85	119,167	119,489	119,846	120,178	120,288
	11,3	105,524	118,48656	121,332	121,772	122,146	122,284	122,33	122,354	122,474	122,48	122,622	122,962	123,33	123,67	123,775
	2,1	112,223	121,0878	123,304	124,129	124,487	124,559	124,659	124,754	124,764	124,846	124,944	125,158	125,334	125,667	125,712
	2,2	118,855	128,76105	130,79	131,503	131,767	131,767	131,907	131,996	131,996	132,072	132,113	132,317	132,506	132,794	132,871
NILLI Miv	2,3	116,964	125,98185	128,379	129,45	129,842	129,947	129,99	130,036	130,183	130,135	130,336	130,527	130,728	131,014	131,131
NHL_Mix	17,1	117,672	127,0936	129,449	130,27	130,66	130,719	130,741	130,8	130,879	130,928	131,021	131,164	131,297	131,467	131,5
	17,2	118,643	128,9934	131,581	131,888	132,072	132,16	132,21	132,253	132,316	132,374	132,475	132,593	132,748	132,903	132,973
	17,3	119,277	129,40038	131,775	132,67	132,72	132,74	132,843	132,903	132,952	132,915	133,039	133,182	133,348	133,57	133,652

Quadro A.11 – Absorção de água dos provetes aos 28 dias (cont.)

					Quadro A.			assa do pi		20 0103 (0						
Argamassa	Provete	0 min	5 min	10 min	15 min	30 min	60 min	120 min	180 min	240 min	300 min	24h	48h	72h	120h	144h
	13,1	101,49	108,1324	109,793	110,655	110,853	110,896	110,955	110,974	110,983	110,984	111,084	111,186	111,309	111,592	111,609
	13,2	104,24	113,75528	115,844	116,052	116,091	116,219	116,259	116,267	116,418	116,439	116,379	116,449	116,505	116,692	116,771
CL MS	13,3	102,168	111,07482	113,587	113,745	113,914	113,942	114,031	114,076	114,245	114,261	114,243	114,274	114,327	114,481	114,591
CL_MS	21,1	102,46	110,29756	112,136	112,31	112,497	112,474	112,563	112,686	112,81	112,857	113,037	113,195	113,349	113,532	113,666
	21,2	100,55	108,26966	110,447	111,341	111,587	111,62	111,79	111,792	111,872	111,975	112,126	112,286	112,392	112,664	112,8
	21,3	102,266	110,29298	112,055	112,253	112,355	112,422	112,437	112,573	112,637	112,638	112,948	113,112	113,286	113,489	113,62
	4,1	101,741	107,2444	109,603	111,711	113,207	113,356	113,548	113,669	113,757	113,886	114,517	114,84	115,074	115,426	115,544
	4,2	97,274	103,13	105,082	107,048	108,281	108,337	108,543	108,677	108,803	108,872	109,33	109,581	109,771	110,078	110,197
CI ES	4,3	98,109	104,23062	106,731	108,664	109,706	109,821	109,939	110,126	110,246	110,306	110,72	110,941	111,085	111,341	111,611
CL_FS	14,1	94,784	99,7658	102,004	104,235	106,022	106,064	106,299	106,34	106,539	106,488	106,837	107,084	107,196	107,46	107,743
	14,2	103,372	107,63424	109,64	111,202	113,885	114,172	114,384	114,535	114,654	114,795	115,176	115,395	115,567	115,866	116,191
	14,3	102,372	107,4482	109,837	111,706	113,874	114,042	114,192	114,223	114,358	114,443	114,816	115,076	115,246	115,528	115,788
	18,1	113,602	118,7176	120,91	122,482	122,909	123,006	123,143	123,259	123,341	123,419	123,723	124,053	124,101	124,32	124,458
	18,2	113,278	117,8238	119,772	121,302	122,092	122,178	122,277	122,495	122,667	122,62	122,883	123,157	123,373	123,551	123,717
CL_Mix	18,3	112,33	117,4575	119,655	121,191	121,656	121,7	121,872	121,938	122,11	122,116	122,351	122,583	122,732	122,929	123,096
CL_IVIIX	19,1	112,831	117,346	119,281	120,794	121,525	121,718	121,956	121,967	121,992	122,057	122,425	122,67	122,852	123,079	123,235
	19,1	113,279	117,6071	119,462	120,937	121,988	122,104	122,296	122,282	122,407	122,441	122,664	122,891	123,178	123,45	123,595
	20,1	113,619	118,4875	120,574	122,408	123,185	123,185	123,42	123,422	123,486	123,561	123,768	123,945	124,083	124,331	124,472

Quadro A.12 – Absorção de água dos provetes aos 90 dias

Avgomena								o [min]	403 30 4143					
Argamassa	Provete	0 min	5 min	10 min	15 min	30 min	60 min	120 min	180 min	168h	192h	216h	336h	360h
	3,2	116,443	125,443	129,674	131,779	131,989	132,022	132,245	132,172	132,84	133,085	133,161	133,604	133,58
	3,3	112,152	119,731	123,556	126,531	126,993	127,051	127,085	126,927	127,887	128,116	128,13	128,848	128,885
NIIII NAC	6,1	114,553	122,243	125,085	128,67	129,244	129,311	129,153	129,153	129,869	129,991	130,089	130,593	130,571
NHL_MS	6,2	119,675	127,107	131,034	133,958	135,026	135,124	135,306	135,324	135,97	136,203	136,308	136,785	136,913
	10,1	121,983	128,03	131,513	134,227	137,242	137,495	137,39	137,421	137,992	138,243	138,324	138,784	138,825
	10,3	117,247	124,605	128,562	131,617	132,889	132,926	133,139	133,139	133,792	133,936	134,024	134,5	134,53
	5,1	112,966	122,467	127,019	129,787	130,18	130,293	130,506	130,605	131,617	131,824	131,92	132,338	132,39
	5,2	110,272	118,613	123,099	126,532	127,348	127,457	127,458	127,523	128,388	128,673	128,771	129,294	129,457
NUU EC	5,3	112,312	123,126	127,886	129,417	129,521	129,542	129,599	129,647	130,477	130,662	130,785	131,257	131,241
NHL_FS	7,1	114,84	125,724	130,376	131,877	132,029	132,038	132,18	132,228	133,035	133,232	133,351	133,818	133,842
	7,2	111,406	121,909	126,69	128,072	128,228	128,229	128,376	128,506	129,34	129,545	129,637	130,12	130,112
	7,3	113,266	123,82	128,308	129,889	130,132	130,176	130,176	130,487	131,343	131,528	131,609	132,043	132,087
	1,1	126,199	133,506	136,576	138,517	138,818	138,891	139,023	139,196	139,65	139,744	139,84	140,136	140,141
	1,2	120,438	127,137	129,859	131,754	132,398	132,552	132,756	132,87	133,225	133,387	133,459	133,749	133,732
NILLI NAS	1,3	119,881	126,928	130,139	131,641	131,666	131,93	132,108	132,208	132,58	132,674	132,758	133,02	133,077
NHL_Mix	23,1	118,977	126,05	128,892	131,162	131,226	131,295	131,358	131,547	131,906	132,074	132,104	132,459	132,49
	23,2	116,683	123,787	126,78	128,569	128,643	128,725	128,778	128,973	129,3	129,45	129,491	129,817	129,751
	23,3	115,999	122,804	125,685	127,199	127,407	127,457	127,634	127,739	128,144	128,28	128,334	128,641	128,633

Quadro A.12 – Absorção de água dos provetes aos 90 dias (cont.)

A ========	Tempo [min]													
Argamassa	Provete	0 min	5 min	10 min	15 min	30 min	60 min	120 min	180 min	168h	192h	216h	336h	360h
	15,1	107,931	116,694	119,348	119,498	119,568	119,636	119,794	119,722	120,061	120,101	120,143	120,461	120,366
	15,2	104,778	113,625	116,067	116,312	116,516	116,601	116,605	116,616	117,011	117,069	117,114	117,274	117,333
CL MC	15,3	105,349	115,06	117,362	117,478	117,561	117,787	117,738	117,741	118,267	118,26	118,353	118,706	118,643
CL_MS	24,1	107,855	117,317	119,867	120,281	120,266	120,434	120,4	120,439	120,77	120,79	120,904	121,199	121,22
	24,2	112,864	122,374	124,862	125,923	125,805	126,011	125,954	125,968	126,539	126,614	126,672	126,974	126,985
	24,3	109,94	118,552	120,883	121,014	121,805	122,145	122,195	122,199	122,816	122,806	122,926	123,211	123,282
	12,1	111,323	118,059	120,891	123,071	124,692	125,004	125,231	125,23	126,416	126,55	126,644	126,997	127,1
	12,2	106,6	113,57	116,543	118,68	120,287	120,528	120,711	120,839	121,999	122,147	122,205	122,726	122,698
CL EC	12,3	103,205	109,988	112,975	115,061	116,226	116,474	116,652	116,734	117,817	117,926	118,065	118,591	118,664
CL_FS	16,1	105,963	112,004	114,387	116,242	117,466	117,85	117,943	118,11	119,37	119,553	119,699	120,188	120,158
	16,2	111,243	117,346	120	121,614	123,599	124,186	124,294	124,422	125,711	125,783	125,962	126,537	126,566
	16,3	102,418	108,51	111,126	112,967	114,638	114,986	115,2	115,175	116,267	116,422	116,521	117,048	117,09
	19,2	116,129	121,445	124,682	125,348	126,178	126,463	126,48	126,739	127,257	127,384	127,433	127,774	127,887
	20,2	114,82	120,057	122,419	124,044	124,685	124,827	124,946	124,938	125,788	125,888	125,979	126,321	126,414
CL Miv	20,3	116,559	121,931	124,466	126,065	126,824	127,066	127,183	127,164	127,976	128,029	128,114	128,494	128,5
CL_Mix	22,1	119,075	124,172	126,659	128,104	129,295	129,426	129,566	129,631	130,164	130,26	130,365	130,621	130,72
	22,2	114,519	119,54	121,906	123,28	124,071	124,171	124,342	124,401	125,123	125,116	125,273	125,587	125,626
	22,3	112,271	117,714	120,285	121,677	122,068	122,209	122,332	122,358	123,243	123,294	123,321	123,666	123,725

Quadro A.13 – Secagem aos 28 dias

Argamassa						·		Tempo [h]							
Argamassa	Provete	0 h	3 h	24 h	48 h	72 h	96 h	168 h	192 h	216 h	240 h	264 h	384 h	528 h	552 h
	3,1	123,845	123,575	122,087	120,213	118,34	116,655	112,852	112,237	111,832	111,505	111,165	110,127	109,49	108,883
	6,3	124,706	124,406	122,83	120,902	119,047	117,435	113,377	112,718	112,292	111,946	111,622	110,607	109,869	109,193
NILLI NAC	8,1	126,082	125,761	124,026	121,981	119,781	117,745	114,44	113,97	113,65	113,389	113,122	112,246	111,576	110,558
NHL_MS	8,2	125,102	124,761	122,996	120,85	118,59	116,523	113,069	112,585	112,242	111,963	111,68	110,751	110,159	109,166
	8,3	121,77	121,462	119,583	117,204	114,855	112,872	109,915	109,459	109,199	108,949	108,693	107,803	107,225	106,326
	10,3	126,445	126,128	124,451	122,246	120,181	118,439	114,742	114,246	113,868	113,581	113,303	112,397	111,793	110,696
	9,1	121,816	121,549	120,297	118,626	116,473	114,544	109,693	108,57	107,95	107,488	107,058	105,735	105,029	104,123
	9,2	122,387	122,14	120,784	119,036	117,164	115,517	111,439	110,171	109,408	108,914	108,481	107,13	106,267	105,28
NUU EC	9,3	122,545	122,282	120,8	119,03	116,859	115,221	110,925	110,004	109,485	109,076	108,73	107,412	106,578	105,65
NHL_FS	11,1	122,443	122,113	120,164	118,977	115,655	113,367	108,924	108,281	107,878	107,554	107,239	106,157	105,522	104,627
	11,2	121,105	120,804	119,121	117,992	115,163	113,261	108,55	107,748	107,289	106,929	106,591	105,468	104,703	103,811
	11,3	124,593	124,287	122,681	117,164	118,393	116,336	111,799	111,068	110,604	110,247	109,896	108,745	107,954	107,145
	2,1	126,57	126,234	124,082	120,527	119,685	118,103	116,444	116,105	115,858	115,644	115,428	114,633	114,104	113,151
	2,2	133,683	133,37	131,516	129,669	127,573	125,75	123,339	122,964	122,698	122,478	122,256	121,467	120,938	120,096
NILLI NA:	2,3	131,995	131,677	129,844	129,441	125,555	123,877	121,602	121,201	120,915	120,684	120,435	119,594	119,012	118,076
NHL_Mix	17,1	131,323	132,017	130,348	128,16	126,43	124,593	122,234	121,851	121,578	121,352	121,113	120,265	119,727	118,843
	17,2	133,791	133,518	131,992	130,042	128,263	126,361	123,469	123,034	122,734	122,484	121,2	121,248	120,682	119,811
	17,3	134,433	134,18	132,661	130,903	129,035	127,041	124,024	123,593	123,288	123,043	122,842	121,94	121,338	119,465

Quadro A.13 – Secagem aos 28 dias (cont.)

A							_	Tempo [h]							
Argamassa	Provete	0	3	24	48	72	96	168	192	216	240	264	384	528	552
	13,1	112,497	112,314	111,135	109,971	107,931	106,267	104,014	103,662	103,409	103,195	102,994	102,619	102,695	101,827
	13,2	117,639	117,384	115,847	114,122	112,097	110,332	107,228	106,757	106,414	106,125	105,879	105,648	105,427	104,609
CL MC	13,3	115,406	115,145	113,693	111,901	110,047	108,371	105,329	104,869	104,536	104,248	103,987	103,298	103,342	102,511
CL_MS	21,1	114,504	114,263	113,028	111,572	109,802	108,238	105,61	105,178	104,877	104,613	104,37	103,664	103,653	102,807
	21,2	113,691	113,408	112,114	110,641	108,9	107,514	104,464	103,79	103,387	103,052	102,744	101,84	101,792	100,916
	21,3	114,481	114,253	113,12	111,845	109,172	108,709	105,836	105,202	104,817	104,535	104,267	103,433	103,379	102,567
	4,1	116,366	116,113	114,684	113,127	111,314	109,624	106,179	105,423	104,919	104,534	104,191	103,13	102,892	102,106
	4,2	111,065	110,809	109,436	107,923	106,158	104,5	101,365	100,679	100,246	99,913	99,601	98,65	98,501	97,692
CL EC	4,3	112,374	112,143	110,896	109,463	107,686	105,945	102,807	102,018	101,498	101,114	100,764	99,628	99,322	98,52
CL_FS	14,1	108,468	108,232	107,062	105,834	103,948	102,036	98,697	98,029	97,593	97,226	96,922	95,993	95,968	95,179
	14,2	116,909	116,654	115,339	113,786	111,933	110,178	107,126	106,549	106,168	105,845	105,544	104,597	104,417	103,617
	14,3	116,239	115,998	114,842	113,57	111,589	109,589	105,941	105,274	104,856	104,524	104,213	103,271	103,234	102,723
	18,1	124,817	124,665	123,412	121,76	120,296	119,125	116,504	115,969	115,621	115,351	115,095	114,323	114,283	113,907
	18,2	124,438	124,202	122,868	121,181	119,804	118,539	116,132	115,707	115,424	115,19	114,974	114,314	114,242	113,551
CL Miv	18,3	123,698	124,391	121,925	120,058	118,423	117,029	114,963	114,597	114,336	114,112	113,874	113,27	113,131	112,614
CL_Mix	19,1	124,001	123,69	121,957	119,823	117,993	116,607	115,119	114,836	114,624	114,436	114,269	113,777	113,792	112,996
	19,1	124,325	124,056	122,499	120,57	118,96	117,721	115,833	115,519	115,276	115,066	114,867	114,287	114,259	113,596
	20,1	125,392	125,156	123,614	121,835	120,176	118,975	116,889	116,468	116,192	115,961	115,738	115,037	114,611	113,919

Quadro A.14 – Secagem aos 90 dias

Argamassa						·	Massa	dos prove	tes [g]						
Argamassa	Provete	0h	3h	24h	48h	72h	144h	168h	192h	216h	240h	336h	408h	504h	552h
	3,2	134,059	133,651	131,458	128,827	127,232	122,051	121,17	120,507	120,073	119,769	118,907	118,492	117,96	117,855
	3,3	129,261	128,822	126,376	123,838	122,127	117,497	116,75	116,125	115,682	115,37	114,434	113,956	113,356	113,252
NULL NAC	6,1	131,089	130,603	128,265	125,595	123,973	119,448	118,854	118,33	117,951	117,682	116,871	116,467	115,931	115,816
NHL_MS	6,2	137,532	137,11	135,05	132,507	130,793	125,567	124,943	124,393	123,984	123,692	122,796	122,354	121,756	121,619
	10,1	139,429	138,999	136,782	134,186	132,578	127,333	126,667	126,05	125,703	125,438	124,563	124,13	123,538	123,410
	10,3	135,065	134,815	132,253	129,885	128,183	122,756	122,107	121,539	121,118	120,798	119,825	119,356	118,764	118,671
	5,1	133,278	132,902	130,915	128,454	126,902	121,185	119,648	118,098	117,272	116,779	115,576	115,6	114,479	114,421
	5,2	130,029	129,697	127,75	125,274	123,634	117,924	116,625	115,477	114,852	114,44	113,327	112,797	112,12	111,980
NUU EC	5,3	131,756	131,332	128,715	125,771	123,959	118,622	117,623	116,835	116,313	115,943	114,885	114,372	113,695	113,562
NHL_FS	7,1	134,195	133,778	131,36	126,692	127,011	121,182	119,987	119,047	118,476	118,092	117,056	116,58	115,962	115,854
	7,2	130,898	130,475	128,999	125,347	123,584	117,657	116,373	115,377	114,797	114,409	113,412	112,991	112,524	112,494
	7,3	132,229	132,229	129,72	127,113	125,449	119,071	118,971	118,035	117,447	117,047	115,959	115,46	114,816	114,692
	1,1	140,638	140,305	138,26	136,231	134,03	131,577	130,902	130,316	129,924	129,642	128,869	128,477	127,967	127,840
	1,2	134,605	134,263	132,16	130,151	128,865	125,314	124,825	124,393	124,072	123,838	123,15	122,798	122,32	122,210
NILLI NAS.	1,3	133,883	133,527	131,48	129,402	128,061	124,221	123,717	123,277	122,927	122,725	122,061	121,73	121,255	121,161
NHL_Mix	23,1	132,977	132,607	130,335	128,035	126,604	123,308	122,9	122,503	122,188	121,954	121,25	120,9	120,413	120,298
	23,2	130,608	130,196	127,781	125,308	123,774	120,973	120,649	120,314	120,046	119,839	119,212	118,904	118,471	118,369
	23,3	129,446	129,013	126,515	123,938	122,479	119,714	119,402	119,096	118,848	118,658	118,086	117,805	117,413	117,337

Quadro A.14 – Secagem aos 90 dias (cont.)

A								dos prove							
Argamassa	Provete	0h	3h	24h	48h	72h	144h	168h	192h	216h	240h	336h	408h	504h	552h
	15,1	121,149	120,873	119,056	116,934	115,38	111,043	110,276	109,643	109,21	108,93	108,647	108,558	108,515	108,515
	15,2	118,197	117,897	115,945	113,923	112,442	108,001	107,404	106,903	106,563	106,335	105,752	105,611	105,606	105,616
CL_MS	15,3	119,381	119,065	117,129	115,243	113,912	109,802	108,907	108,079	107,512	107,11	106,25	105,979	105,96	105,969
CL_IVI3	24,1	122,058	121,745	119,891	118,054	116,766	112,685	111,793	110,867	110,277	109,91	109,089	108,776	108,633	108,644
	24,2	127,705	127,346	125,293	123,272	121,969	117,996	117,081	116,109	115,47	114,037	114,066	113,689	113,515	113,528
	24,3	124,132	123,747	121,484	119,127	117,4	113,892	113,159	112,533	112,104	111,799	111,106	110,834	110,784	110,794
	12,1	127,898	127,646	126,026	124,321	123,13	118,94	118,018	116,936	115,925	115,173	113,526	112,981	112,36	112,345
	12,2	123,457	123,125	121,133	119,351	118,177	114,447	113,649	112,735	111,91	111,234	109,3	108,538	107,801	107,720
CL EC	12,3	119,446	119,116	117,241	115,516	114,326	109,368	109,46	108,406	107,465	106,764	105,285	104,783	104,21	104,180
CL_FS	16,1	120,889	120,371	118,452	116,117	114,466	110,559	109,743	108,959	108,409	108,043	107,197	106,859	106,654	106,694
	16,2	127,36	126,992	124,459	121,717	119,958	116,017	115,162	114,362	113,827	113,487	112,682	112,351	112,141	112,110
	16,3	117,834	117,412	114,817	111,972	110,292	106,122	105,403	104,83	104,449	104,184	103,515	103,299	103,254	103,225
	19,2	128,66	128,437	127,068	125,794	124,974	122,077	121,409	120,606	119,869	119,261	117,893	117,452	116,966	116,902
	20,2	127,152	126,855	125,032	123,19	121,937	118,93	118,278	117,579	117,064	116,72	115,916	115,734	115,405	115,458
CL Miv	20,3	129,218	128,908	126,969	125,206	124,19	121,529	120,967	120,315	119,727	119,228	118,117	117,745	117,304	117,277
CL_Mix	22,1	131,474	131,136	129,155	127,076	125,742	122,501	121,878	121,339	120,961	120,705	120,128	119,885	119,614	119,729
	22,2	126,348	125,99	123,828	121,727	120,615	118,038	117,433	116,84	116,428	116,157	115,548	115,287	115,221	115,141
	22,3	124,487	124,159	122,481	121,159	120,364	117,952	117,338	116,611	115,956	115,421	114,06	113,611	113,138	113,033