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Abstract—This paper offers a new approach to estimating time-varying
covariance matrices in the framework of the diagonal-vech version of the
multivariate GARCH(1,1) model. Our method is numerically feasible for
large-scale problems, produces positive semidefinite conditional covari-
ance matrices, and does not impose unrealistic a priori restrictions. We
provide an empirical application in the context of international stock
markets, comparing the nev̂  estimator with a number of existing ones.

I. Introduction

THE goal of this paper is to estimate conditional covari-
ance matrices. Since the covariance matrix is an essen-

tial ingredient in risk management, portfolio selection, and
tests of asset pricing models, this is a very important
problem in practice. Estimating conditional covariance ma-
trices is a multivariate extension of the simpler prohlem of
estimating conditional variances. In the univariate case,
many methods are available, ranging from the simple rolling-
window estimation method to the sophisticated models of
latent stochastic volatility. The most popular method, how-
ever, for estimating conditional variances is the
GARCH(1,!) model. We do not claim that it is the best
method, because a method that is uniformly better than the
others does not seem to exist. On the other hand, many
studies have shown that the univariate GARCH(],1) gives
reasonable results, and it can be safely assumed that it will
remain in use for some time to come; for example, see
Andersen, BoUersIev, and Lange (1999) and Lee and Sal-
toglu (2001). For these reasons, multivadate extensions of
the univariate GARCH(1,1) model have long been of inter-
est.

The most general multivariate GARCH-style model com-
monly considered is defined by

(1)

(2)

where fi,., denotes the conditioning information set avail-
able at time t - 1, and x,,, denotes the realization of the i^^
variable (i = I, . . . , N) at time t. The parameter values
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satisfy a^, b/j > 0 V/, 7 - 1, N, and c^ > 0 V/ =
1, . . . , N. Equation (2) is known as the diagonal-vech
model. It assumes that the conditional covariance of vari-
ables Xi and Xj depends on its lagged value and on past
realizations of the product XiXj only (Bollerslev, Engle, and
Wooldridge, 1988). Also, equation (1) assumes that the
variables have zero conditional mean, which can always be
justified by taking them to be residuals coming from some
regression model. Although more general models can be
thought of, they typically involve too many parameters to be
of practical interest.

The natural way to estimate the conditional covariance
matrix is to compute the (quasi) maximum likelihood esti-
mates of the parameters Cij, a^^, and hi^ from observations of
all the variables in the vector x. Unfortunately, this is not
computationally feasible for matrices of dimension N > 5
(Ding and Engle, 1994): there are too many parameters,
3A'(A^ -I- l ) /2 , and they interact in a way that is too intricate
for existing optimization algorithms to converge. Another
problem is that the estimation of the general diagonai-vech
model does not necessarily yield conditional covariance
matrices that are positive semidefinite.

The existing literature avoids these difficulties by impos-
ing additional structure on the problem. Eor example. Ding
and Engle (1994) give a sequence of 20 nested models that
are particular special cases of equation (2), by specifying,
for example, that the conditional correlations should be
constant, or that there is some factor structure in the con-
ditional covariance matrix. Additional models can be found
in Engle and Kroner (1995), Engle and Mezrich (1996), and
Engle (2002), among others. Apart from being tractable,
these models typically also ensure that the resulting condi-
tional covariance matrices are positive semidefinite.

Although it can be useful to impose sensible restrictions
for forecasting purposes, there is also the danger of employ-
ing restrictions that are strongly violated by the data. We
therefore seek a way to estimate the unrestricted model, to
later compare it against more restrictive models using data
from international stock markets.

Our basic idea proceeds in two steps. The first step is to
obtain each set of coefficient estimates c,y, a.y, and Bjj
separately for every (/, J). This can be achieved simply by
estimating a two-dimensional or one-dimensional GARCH(1,1)
model (for i ^ j or / = j respectively), which is compu-
tationally feasible using a traditional method such as max-
imum likelihood. We bring together the outputs of these separate
esfimation procedures into matrices t = [c,j]/.y=| N^ ^ =
[^y]y=i 'V, and B = [bij]ij=i ,̂. However, the coef-
ficient matrices C, i , and 5 are generally incompatible with each
other in the sense that they yield conditional covariance
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matrices that are not positive semidefinite. Therefore, our
second step is to transform the estimated parameter matrices
t. A, and B in such a way that they yield conditional
covariance matrices that are guaranteed to be positive
semidefinite, where the transformation is chosen to be the
least disruptive possible (according to some metric). In
addition, we obtain GARCH(1,1) parameters that corre-
spond to covariance-stationary processes, in contrast to the
implicit model behind the exponential smoothing scheme
that is quite popular for large-dimensional covariance ma-
trices and used by RiskMetrics, for example.

In summary, the main advantage of our estimation
method is that it is the first to allow estimation of the
full-blown diagonal-vech model for dimensions larger than
N ^ 5 without imposing any a priori restrictions. Our
conditional covariance matrices are only forced to be pos-
itive semidefinite, but they generally tum out to be positive
definite and well conditioned, which is a characteristic that
(purely on economic grounds) we would expect from the
true covariance matrix (as long as we consider a menu of
nonredundant assets). An additional advantage is the re-
duced computational cost compared to traditional multivar-
iate models; see section IIIC.

The paper proceeds as follows. Section II develops the
new estimation method. Section III gives an empirical
application to international stock markets. Section IV con-
cludes. An appendix highlights some computational issues.

^ II. Estimation Method

It is important to understand precisely why it is so
difficult to estimate the unrestricted diagonal-vech model in
equation (2) by maximum likelihood. Although there are
many parameters, 3NiN + l)/2, this cannot be the only
source of the problem. The number of parameters in the
unconditional covariance matrix is of the same order of
magnitude, N(N + l)/2, and estimating the unconditional
covariance matrix by the sample covariance matrix is com-
putationally trivial. Computing the sample covariance ma-
trix is easy because it can be done in a decentralized
fashion: for every variable, compute its sample variance
(this is a univariate problem) and insert it into the diagonal;
for every pair of variables, compute their sample covariance
(this is a bivariate problem) and insert it at the appropriate
place off the diagonal. Thus, a large-sample covariance
matrix can be constructed by solving N(N -i- 1)/ 2 univar-
iate or bivariate estimation problems.

Could the same decentralized process be used to compute
the diagonal-vech estimator? Not directly. The crucial prob-
lem is the compatibility of the parameters that come out of
all the univariate or bivariate estimations. The compatibility
constraint is that the resulting covariance matrices must be
positive semidefinite. To pursue our analogy, in the case of
the sample covariance matrix, the mathematical form of the
estimators guarantees that the sample covariance matrix
constructed by putting together the individual sample vari-

ances and sample covariances is positive semidefinite. On
the other hand, for the diagonal-vech model, positive defi-
niteness is not automatic.

The rest of this section develops an approach to deal with
these problems.

A. Decentralized Estimation of Multivariate GARCH(1,1)

Consider what happens when we try to decentralize the
estimation process for the diagonal-vech model. As we said,
this constitutes the first step of our estimation procedure.
This step itself can be divided into two substeps, corre-
sponding to the estimation of the diagonal and the off-
diagonal coefficients, respectively. ' ' ••-

Diagonal Coefficients: We estimate a univariate
GARCH(1,1) process for every one of the variables by
quasi maximum likelihood, and we get consistent estima-
tors c,i, dji, and 5,,. Separately for each i = 1, . . . , N, we
solve the quasi-likelihood maximization program, assuming
conditional normality:

max
(3)

s.t. hii^, = Cii + aiixl,_i

Here, € is a small number' to ensure an -I- ba < 1; see the
discussion following equations (9)-(ll). For each /, we
have a simple univariate GARCH(1,1) estimation problem,
which many commercial packages solve quickly. The esti-
mator is in general not efficient, as the conditional distribu-
tion may be different from normal, but it is consistent (see,
for example, Campbell, Lo, and MacKinlay, 1997, section
12.2).

Off-Diagonal Coefficients: From the above, we get pa-
rameter estimates <?,,, da, and bn. We can use them to
construct conditional variance estimates ha,. In the second
stage, we use these estimates to specify quasi-likelihood
functions for the off-diagonal elements. Separately for each
i = 1, . . . , A' and 7 = f + 1, . . . , N, we solve

1
max

S.t.
flu., h-

(A)

(5)
and hijj = C/j + aijXi^,-iXj^,^i + bijhij^t-'^.

This quasi likelihood is obtained by restricting attention to
the 2 X 2 submatrix of variables Xi and Xj, fixing the

I In this work, we have used € = 10"^; this value could be changed
depending on the context.
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conditional variances at their first-stage values fin and Hjj,
and assuming normality.^ As on the diagonal, quasi-
likelihood theorems ensure consistency. The problem (4)-
(5) is easy to solve using standard optimization algorithms,
since there are only three free parameters. The positive
definiteness of the conditional covariance submatrix Hij^ is
ensured by imposing the following bounds in the estimation
process: |cy
b bb

{SaCjjy^, 0 ^ QJJ ^ {dndjjy^, and 0 ^
as Ding and Engle (1994) show.

B. Compatibility Constraints

As noted before, the estimators of the coefficients c,j, (3^,
and bij obtained separately for every (/, j) in section IIA are
not compatible with one another, in the sense that the
forecasted covariance matrix may not be positive semidefi-
nite. This subsection analyzes the mathematical relations
that they must satisfy in order to become compatible.

Positive Semidefinite Conditional Covariance Matrix:
Following the notation of Ding and Engle (1994), let C —
[Cij]ij^i N, A = [flylij^i «, andB = [bij]ij^i r^
denote matrices containing the parameters of the model. Let
^ ( — [l^ijAij^i N denote the conditional covariance
matrix at time t. Denote the matrix of cross-products of
variables observed at time r by S, = [^,-.f^y.(],j=i,... ,A'-
Then equation (2) can be rewritten as

H, = C + A *X,-i + (6)

where the symbol * denotes the Hadamard product. The
Hadamard product of two matrices U = [MyJ,j=, ^̂  and

is defined as the elementwise product
= 1,... /̂v- Similarly, let -̂  denote element-

and let A denote
U * V = [UijVij]

wise division: U ^ V = [H,J
elementwise exponentiation: U^P = [H^] ;J=I . ..,,jv

Ding and Engle (1994) show that a sufficient condition to
guarantee that the conditional covariance matrix H, is pos-
itive semidefinite almost surely (a.s.) is that C, A, and B are
positive semidefinite. We derive a somewhat weaker suffi-
cient condition.

Proposition 1. If C -̂  (1 - B), A, and B are positive
semidefinite, then the conditional covariance matrix is pos-
itive semidefinite.

Proof of Proposition 1.
itself recursively yields

Substituting equation (6) into

* C +

C ^ (1 - B) + X B"̂*̂  * A *
Jc=O

(7)

The Hadamard product of two positive semidefinite matri-
ces is positive semidefinite; for example, see Styan (1973).
In addition, the sum of two positive semidefinite matrices is
positive semidefinite. Finally, the matrix of cross products
of reahzations Xt-k-[ is positive semidefinite a.s. by con-
struction. Therefore, inspection of equation (7) shows that,
under the conditions stated in proposition 1, the conditional
covariance matrix H, is guaranteed to be positive semidefi-
nite a.s. n

A simple example for which our condition holds but not
the one in Ding and Engle (1994) is given by

B =
0.9 0.84

0.84 0.8 and C =
1.0 1.1
1.1 1.0

It is easy to check that here C -̂  (1 - B) is positive
semidefinite but C is not. While this example may or may
not be economically relevant, it illustrates that the sufficient
condition of Ding and Engle (1994) can indeed be weak-
ened.

Proposition 2. If:

• the conditional multivariate distribution of the vector
x^ is continuous with unbounded support for all t\

• Vi, \/j, bij < 1;
• the conditional covariance matrix H^ is positive

semidefinite a.s. for all t.

then it is necessary that the parameter matrix C -̂  (1
be positive semidefinite.

B)

Proof of Proposition 2. We make a proof by contradic-
tion. Suppose that C -̂  (1 - .B) has at least one negative
eigenvalue \ < 0. Expand the conditional covariance matrix
as:

i-i

r, = c -̂  (1 - B) -h 2 B'̂ * * A * ]
k={)

+ B^' * r/fa - C -̂  (1 — B)l
(8)

^ We do not have to impose the constraint a,y
the discussion foHowing equations (9M1I).

+ b^ < 1 at this stage; see

Let maxeig (•) denote the maximum eigenvalue of a matrix.
Since all the elements of B have absolute value strictly
below 1, we have
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as

- C -̂  (1 - B)] -^ 0 as

maxeig * [Ho ~ C - (1 - fi)]) 0 as

Therefore, there exists a T large enough so that maxeig
(B^^ * [7/o - C - (1 - B)]) < - \ / 2 .

The matrix A * {xx') goes to the null matrix as the vector
X goes to the null veetor. Hence, there exists a neighborhood
NQ of the null vector such that Vx E Â o- niaxeig (A *
(xx')) < —\/(2T). Since all the elements of B have
absolute value strictly below 1, that implies: Vjt E A'o,
\/k = 0, ... , T - \, maxeig (B^* * A * {xx')) <
-\I{2T). In the event that Vjt ^ 0, . . . , 7" - 1, AÎ  e //o.
we have

maxeig * A * X,-^-, + B'^'" * [//„ - C - (1 -

Therefore, by equation (8) the conditional covariance matrix
Hj is not positive semidefinite if this event occurs. Since the
conditional multivariate distribution of the vector x, is
eontinuous with unbounded support for all t, the event has
a positive probability of happening, which leads to a con-
tradiction. This proves that C -̂  (1 ~ B) cannot have any
strictly negative eigenvalue. D

The assumption that the elements of B have absolute
value strictly below 1 is innocuous, because it comes from
the variance and covariance stationarity of the multivariate
GARCH(1,1) process. Similarly, we can prove that the
positive semidefiniteness of the parameter matrix A is also
a necessary condition.

Proposition 3. If the conditional multivariate distribution
of the vector x, is continuous with unbounded support and
//, is positive semidefinite a.s. for all t, then it is necessary
that the parameter matrix A be positive semidefinite.

Proof of Proposition 3. Again we make the proof by
contradiction. Let mineig (•) denote the smallest eigenvalue
of a matrix. Suppose that A has at least one negative
eigenvalue, that is, mineig (A) — \ < 0. Recall the
multivariate GARCH(1,1) recursion // , =̂  C + A *
( X , - | A J _ I ) -H B * / / , - [ • We work conditionally on H,- i . If
Xt-\ is equal to the unit vector, then mineig (A *
{Xt-\x't-\)) - X. Therefore, by continuity, there exists a
neighborhood N] of the unit vector such that VJ: , - I £ N[,
mineig [A * (X,-IJC;_I)] < X/2. Let |x = maxeig (C + B *
H(-i). In the event that x^-i = V - 2 | x / X z for some z E
Nu we have mineig (C + A ^ (x,_|x;_,) -I- S * H,-i) <
0. Therefore, by the recursion formula, the conditional
covariance matrix H, is not positive semidefinite if this
event occurs. Because the conditional multivariate distribu-

tion of the vector x,-] is continuous with unbounded sup-
port, the event has a positive probability of happening,
which leads to a contradiction. This proves that A cannot
have any strictly negative eigenvalue. D

For B, the situation is less clear. Technically speaking, the
only necessary condition is that B-^* * A is positive
semidefinite for all ^ ^ 1. It is possible to construct a
counterexample with a matrix B that satisfies this necessary
condition but is not positive semidefinite. In the univariate
case, just take A - 0, B = - 1 . This counterexample is
mathematically correct but economically degenerate, and
we have not been able to construct a more realistic one. In
general, after extensive numerical experiments, our overall
feeling is that the pairs (A, B) that satisfy the necessary
condition and where B is not positive semidefinite are
extremely rare, and can perhaps be ruled out on econottiic
grounds. However, we have not been able to prove any
formal result along these lines. Hence, we will make the
positive definiteness of B an assumption rather than a
conclusion.

Assumption 1. The true coefficient matrix B in the mul-
tivariate GARCH(1,1) model is positive semidefinite.

Covariance Stationarity: Another common concern in
the application of GARCH models to financial returns is
that the fitted model be covariance stationary. Hence, we
want to make sure that ajj + bjj < i Vi, j = i, . .. , N.
The following proposition shows that it is only necessary to
verify this on the diagonal, as long as the coefficient
matrices are positive semidefinite.

Proposition 4. If A and B are positive semidefinite and if

au + bu< 1 Vz = 1 Â ,

then

Proof of Proposition 4.

= \

where the second to last inequality is a consequence of A
and B being positive semidefinite, and the last inequality is
a consequence of the Holder inequality. D

In conclusion, the definitive version of our set of com-
patibility constraints is; C -̂  (1 - B), A and B positive
semidefinite, and aj + bi < I ^i == I, ... , N.

C. Transformation of Coefficient Matrices

W e n o w b u i l d t h e m a t r i c e s t - [ C i j ] i j = i , , , , .w, A =
[dij]ij^^ N, and B = 1 ,̂;]/.;= i w by placing the esti-



FLEXIBLE MULTIVARIATE GARCH 739

mators from the first part of section IIA on the diagonal and
placing the estimators from the seeond part on the appro-
priate positions off the diagonal. For convenience, we also
define D = C ^ {I - B) and £> = t ^ i\ - B). Note
that D thus defined is the quasi maximum likelihood esti-
mator of D.

t). A, and B are consistent estimators of D, A, and B
respectively, but they are generally not positive semidefi-
nite. To be precise, £), A, and B converge to positive
semidefinite matrices (under assumption 1), but in a finite
sample there is no guarantee that they are positive semidefi-
nite. Practically speaking, our experience has been that, for
reasonable sample sizes, finding positive semidefinite esti-
mates is extremely rare. In other words, this decentralized
procedure yields parameters that are not compatible with
one another. This is why it has not been used in the existing
literature, and why further restrictions are commonly im-
posed on the diagonal-vech model.

Our central innovation is to transform the estimators / ) ,
A, and B to positive semidefinite matrices D, A, and 6,
which we then take to be the estimates of D, A, and B.
These matrices D, A, and B are chosen to be the closest to
t). A, and B, respectively, according to a certain norm, but
forcing the diagonal parameters obtained from univariate
GARCH(1,1) estimation to remain unchanged. This can be
formalized as:

min \p -
b

s.t. D is positive semidefinite

and Rji = Bji Vi - 1,. . . ,N,

s.t. A is positive semidefinite

and a,, = ^,, V i = 1 , . . . , iV,

min ||A ~ A\\

min ||5 - B\
B

s.t. B is positive semidefinite

(9)

(10)

(11)
a n d S ^ i ^ B i , V / =

Once we have D and B, we can recalculate C = D*(l - B).
One appealing property of this transformation is that it

guarantees that the multivariate GARCH(1,1) process will
not explode, that is, |ay + bij\ < 1 V/, _/ = 1, . . . , // . As
shown in proposition 4, it is sufficient to check the diagonal,
t>ecause the transformed matrices are by construction posi-
tive semidefinite. Because we preserve the diagonal ele-
ments of A and B, which come from covariance-stationary
univariate GARCH(1,1) processes due to the constraint
imposed in equation (3), this condition is automatically
verified. This also explains why no similar constraint has to
be imposed in equation (4).

Another useful property is that the conditional covariance
rnatrix H, is in general invertible. The parameter matrices D,
A, and B are not invertible, because, by construction, they
he on the frontier of the convex set of positive semidefinite

matrices, and only the interior of this set is made of
invertible matrices. Nonetheless, combining D, A, and S
according to equation (6) is sufficient to pull the resulting H,
into the interior of this set, thereby making it invertible,
except in some degenerate special cases.

In order to measure closeness, different matrix norms are
possible. We choose the Frobenius norm \\U\\F- =
-V f̂= 1 2f= 1 ujj, because it is intrinsically compatible with
the usual quadratic formulation of consistency results. Un-
fortunately, there does not appear to be any closed-form
solution for the minimization problems (9)-(l l) . We use a
numerical algorithm due to Sharapov (1997, Section 3.2).
For convenience, this algorithm is explained in the appen-
dix.

It is important to understand that this transformation
makes no difference asymptotically, since the limits of £>,
A, and B are positive semidefinite (under assumption 1).
Therefore, the consistency of ^, A, and B guarantees that of
D, A, and B.

A disadvantage of our method is that it does not yield
straightforward standard errors of the parameter estimates,
as the transformation of the first-step matrices to positive
semidefinite matrices is nonlinear and not available in
closed form. At the expense of greater computational cost,
however, standard errors can be obtained by using an
appropriate bootstrap method. A natural choice would be a
semiparametric bootstrap based on the fitted model. It gen-
erates bootstrap data x% .. . , x* in the following way:

(13)

Here, the €* are resampled from the fitted standardized
residuals, properly transformed to have sample mean equal
to zero and sample covariance matrix equal to the identity.
This is done as follows:

• Compute e, == HJ^''^x,, t = \, . .. , T.
• Denote by e the sample mean of the i,.
• Denote by X^ the sample covariance matrix of the e,.
• Let e, = %^^'\l^ - I), t ^ \, ... , T.
• The e^are then resampled (with replacement) from the

As a starting value for H^ in equation (13) one can use the
sample covariance matrix, for example. (To make negligible
the choice of the starting value, one can actually start the
generation of bootstrapped data at time t = -M, with M =
too say, and then discard the first M + 1 values.) The
following algorithm describes how to compute bootstrap
standard errors for the individual parameter estimates Cij,
dij, and Bij. Choosing K ^ 100 in this algorithm should be
sufficient in practice; see Efron and Tibshirani (1993).
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Country

Mean
SD
Skewness
Kurtosis

U.S.

15.16
15.10

-0.60
6.82

U.K.

17.85
19.71
0.25
9.01

TABLE 1.—SUMMARY

France

15.91
20.57
-0.49

5.29

STATISTICS OF LOG RETURNS

Germany

12.14
17.66

-0.31
4.72

Japan

tl.69
20.44

0.11
4.80

Canada

11.27
15.62

-0.47
6.54

Switzerland

15.23
16.48

-0.60
6.95

This lable presenis the ?iuiimary statistics lor the weekly percentage log returns of seven different ilock markefs. The local currency returns were transformed into US. dollar returns hy the appropriate exchange
rate; they correspond to the returns obtained by a U.S. investor who does nol hedge currency risk. The sample includes 1.356 observallons from January I, 1975 to December 31. 2000. obtained from Datastream.
The numbers lor ihe mean and the siandard deviation are annualized.

Algorithm 1 (Bootstrap Standard Errors).

1. For k = I, . .. , K, generate bootstrap data jc*,i, . . . ,
x*^k as described in equations (12)-(13).

2. Compute the estimators C, A, and B on each data set
to obtain bootstrap estimates C*, A*, and B | for k =
\, .,.,K.

3. The sample standard deviations of ĉ *,̂ , a*.^, and
B%,k> k = 1 A", are the respective bootstrap
standard errors of c^, a^, and Bjj.

IIL Application to International Stock Markets

In this section, we compare the performance of several
multivariate GARCH(1,1) eovariance estimators using his-
torical stock return data. Additionally, we compare the
multivariate GARCH(1,1) estimators with other, less so-
phisticated estimators. (Note that a less sophisticated esti-
mator is not necessarily an inferior estimator.) The multi-
variate GARCH(1,1) estimator that we developed in the
previous section will be called FlexM (for flexible multi-
variate GARCH) in the remainder of the paper.

A. Data

We use weekly stock market data from the United States,
the United Kingdom, France, Germany, Japan, Canada, and
Switzerland, as captured by the major, broad market indices
in each of these countries. The sample goes from January 1,
1975 to December 31, 2000, yielding 1,356 weekly returns
(from the close of Wednesday to the close of next Wednes-
day).

We take the point of view of a U.S. investor who does not
hedge any currency risk. For each country, we thus convert
weekly index prices to U.S. dollars (using the exchange rate
of the appropriate date) and then compute log returns. To
ease interpretation, the log returns are multiplied by 100, so
they can be read as percentage returns. All data were
obtained from Datastieam. Summary statistics of the return
data are presented in table 1; note that the numbers for the
mean and the standard deviation have been annualized.

B. Competing Estimators

For comparison, we include two popular multivariate
GARCH(l,l) estimators and two other widely used estima-
tors of conditional covariance matrices in the study.

Constant-Conditional'Correlation GARCH: Bollerslev
(1990) suggested a multivariate GARCH(1,1) model where
the conditional correlations are constant over time. To be
more specific, each conditional variance huj is modeled by
a separate univariate GARCH(1,1) model with parameters
Cii, ^ih and bn, respectively, and the conditional covariance
between variables JC, and Xj at time t is given by /z,̂ ,, =
Pij\'hnjhjj,. Hence, there are a total of N(N + 5)/2 free
parameters. This model gives positive definite and station-
ary conditional covariance matrices provided that the p,;̂
make up a well-defined correlation matrix and the parame-
ters Cii, ^ih and bn are all nonnegative satisfying an + bn <
1 V/ — 1, . . . , A'. The estimation is done by maximizing
the quasi likelihood, assuming conditional normality. In the
remainder of the paper, this estimator will be called CCC.

A problem with this model is the assumption of a constant
conditional correlation, which conceivably will not always
hold.

Diagonal BEKK GARCH: Engle and Kroner (1995)
proposed a class of multivariate GARCH models that are
guaranteed to produce positive definite conditional covari-
ance matrices. In its full generality, the corresponding
GARCH(1,1) model includes all positive definite diagonal-
vech models and suffers from its intractability for higher
dimensions. The model most commonly used in practice is
the more restrictive first-order diagonal BEKK
GARCH( 1,1) model given by

where H, denotes the conditional covariance matrix at time
t, Xl denotes the (column) vector of residuals at time t, G is
a triangular matrix, and E and F are diagonal matrices.
Again, there are a total of A'(Â  -I- 5)/ 2 free parameters, and
the conditional covariance matrices (which are positive
semidefinite by construction) are guaranteed to be stationary
iiel + fl< 1 Vi = I, . . . , N. The estimation is done by
maximizing the quasi likelihood, assuming conditional nor-
mality. In the remainder of the paper, this estimator will be
called BEKK.

A problem of this model, in the notation of the general
diagonal-vech model, is the implied constraints a^ -
\/a::a- and bn = '\/b:by,, which could easily be violated

II ]3 'J 'I JJ •'

for certain data.
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TABLE 2.—PARAMETER ESTIMATES OF THE FLEXM MODEL

741

U.S. U.K. France Germany Japan Canada Swilzerland

0.1448
0.1292
0.1560
0.0744
0.0627
0.1813
0.1495

0,0861
0.0499
0.0533
0.0641
0,0475
0.0839
0.0517

0,8835
0.8886
0.8606
0.8802
0,8896
0.8509
0.8482

0,1641
0.2120
0.1270
0.1119
0.1840
0.2062

0.07 to
0.0700
0.0680
0.0405
0.0474
0.0629

0.9066
0,8714
0.8880
0,9018
0.8616
0.8588

0,4410
0.1752
0.1666
0.1876
0.2798

0.1037
0.0940
0.0565
0.0600
0.0876

0,8426
0.8595
0.8700
0.8319
0.8292

0.1783
0.1160
0.0950
0.2575

A

0.0918
0.0600
0.0768
0.0820

a
a

0,8808
0.8873
0,8497
0,8469

0.1858
0,0732
0,1958

0,0772
0.0565
0,0521

0.9012
0.8601
0.8573

0.2929
0.1817

0.1162
0.0567

0,8233
0,8198

0.5271

0.0783

0.8179
This table presents the estiinaied paramciers ol the flexible multivariate (Re!£M)GARCH(l,l) model ba.'ied on Ihe entire sample. The model is developed and described in section U. As ihe matrices are sytnmetric.

only (he lower triangular parU are displaytd to enhance readability.

Rolling Window: The ever popular rolling-window es-
timator simply estimates the covariance matrix at time t,
conditional on the information available at time t — 1, as
the sample covariance matrix of the observations x,-^, . . . ,
x,-i, where k is some predetermined integer. A common
choice for weekly data \sk — 104, which corresponds to a
2-year window. In the remainder of the paper, this model
will be called Window.

Exponential Smoothing: The exponential smoothing es-
timator is given by

H, ~ \x,_|X,V| -f

where X is a small, positive constant. Note that this pre-
scription requires some suitable starting values. A common
approach is to use the rolling-window estimator at time k +
1 f o r ^ , , . . . , H , + i.

The exponential smoothing estimator corresponds to a
muitivadate integrated GARCH(1,1) model with a unique
autoregressive coefficient (1 ~ \ ) and a unique moving-
average coefficient (X) for all variances and covariances.
This specification is the basis of many risk measurement
systems currently in use and, for example, is advocated by
RiskMetrics. A commonly used value for X is 0.06. In the
remainder of the paper, this model will be called RiskM.

C. Estimation of the Models

When estimating the three muitivadate GARCH(1,1)
models from the entire set of 1,356 weekly data, the esti-

mation of the FlexM model took less than three minutes,
using a proprietary optimization routine in Matlab. In con-
trast, the estimation of both the CCC and the BEKK model
took over one hour, using off-the-shelf optimization routines
available in Matlab. Tables 2-5 present the estimates of the
parameters of the various models. Table 3 displays bootstrap
standard errors for the FlexM model.

However, we do not use these estimated models in our
comparisons, as this strategy would focus on the in-sample
performance of the various estimators. In-sample compari-
sons are not ideal for our purposes, for at least two reasons.
First, they are too optimistic, because the entire sample is
used in the fitting process before the fitted models are then
applied in hindsight. Second, they tend to favor models with
more degrees of freedom, so FlexM might have an unfair
advantage.

We will therefore use out-of-sample comparisons in what
follows. In general, the forecasts for time t are made using
information available up to time t - I only. The parameter
estimates of the multivariate GARCH(1,1) models are up-
dated every four weeks to reduce the computational burden
for BHKK and CCC. All forecasts start at time t = 601.

D. Forecast Criteria

The real test for a multivariate GARCH(],1) model is to
compare its estimated, or forecasted, conditional covariance
matrix with the true, realized matrix. The latter is unobserv-
able, but a proxy can be constructed. A common and
successful approach, termed integrated volatility, is to use
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TABLE 3,—STANDARD ERRORS OF THE FLEXM MODEL

U,S. U.K. France Germany Japan Canada Switzerland

0.0862
0.0497
0.0554
0.0354
0.0360
0.0759
0.0957

0.0271
0.0183
0.0186
0,0169
0.0! 77
0.0245
0.0212

0,0379
0.0319
0.0419
0.0362
0.0390
0.0428
0.0890

0.1286
0.0903
0.0550
0.0575
0.0755
0.1505

0.0220
0.0164
0.0171
0.0146
0.0179
0.0228

0.0337
0.0339
0.0288
0.0319
0.0420
0.0873

0,2221
0.0675
0,0610
0,0860
0.1898

0,0294
0,0206
0,0149
0,0197
0.0255

0.0461
0.0313
0.0350
0.0537
0.0848

0.0869
0.0456
0.0516
0.1508

A

0.0264
0.0138
0.0183
0.0284

B

0,0332
0.0283
0.0460
0,0853

0.0948
0.0439
0.1512

0,019]
0,0172
0,0177

0.0254
0.0524
0.0890

0,1406
0.1068

0,0369
0,0244

0.0551
0.0913

0.5059

0.0458

0,1320

lliis lable pre.'^nt'; bootstrap siandatd errors corresponding lo (he parameter esiimaies of lable 2. The standard errors were computed as outlined in algorithm I, using K = 100. As the matrices are symmetric,
only the lower manguiar parts are di.splayed to enhance readability.

cumulative cross-products of intraday return residuals over
the forecast horizon; for example, see Andersen, Bollerslev,
and Lange (1999) (henceforth ABL) or Andersen, Boller-
slev, Diebold, and Labys (2001). Unfortunately, we only
have daily return data available, but the same methodology
can be applied to them; this results in a less precise but still
useful proxy. We consider forecast horizons of 1, 2, and 4
weeks. Note that there are standard formulas to compute the
2-week and 4-week forecasts for multivariate GARCH
models, given the 1-week forecast and the estimated model

at time / - 1; for example, see ABL. To compute the
2-week and 4-week forecasts for RiskM and Window, we
simply multiply the 1-week forecasts by the forecast hori-
zon. Denote by (i,^k the estimated conditional covariance
matrix, based on the information available at time t — 1, for
the (t-week forecast horizon; in this notation ^,,i corre-
sponds to fi,, the 1-week forecast. Also, let X,.fc be the
cumulative cross-products of daily return residuals during
that period. The typical elements of these two matrices are
denoted by ^y.i,^ and <Jij,t,ky respectively. As do ABL, we

TABLE 4.—PARAMETER ESTIMATES OF THE CCC MODEL

U.S. U.K. France Germany Japan Canada Switzerland

0,1850 0.0733 0.3495

Cii

0,1514 0.2356 0.2992 0.5743

0.0700 0.0520 0.0731 0.0446 0.0727 0.0898 0.0467

0.8872

J.OOOO
0,4392
0.3572
0.3302
0.2469
0,6753
0,3655

0,9379

1.0000
0.4888 • '
0,4623
0.3369 . •
0.4352
0.4852

0.8819

- 1.0000
• 0.5643

0,3373
0,3459
0,5299

0.9278

Correlation Matrix

l.OCXX)

0.3688
0.3267
0,7009

0.S977

l.OOOO
0.2244
0.3891

, U.844i

1.0000
0.3450 l.OOOO

This lablc presents the estimated parameters of Ihe constant-conditional-correlalion (CCC) GARCH(l.l) model based on the entire sample. The model is described in the flrsi part of section IIIB.
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TABLE 5.—PARAMETER ESTTMATES OF THE B E K K MODEL

U.S. U.K. France Germany Japan Canada Switzerland

G

0.3034
0.1004
0.1508
0.1291
0.0842
0.2408
0.2039

0.1446

0.9786

0.1662
0.2863
0.2558
0.1154
0.0831
0.3923

0.1283

0.9885

0.2634
0.0215
0.0374

-0.0329
-0.0519

0.214t

0.9657

0.2696
0.0561

-0.0270
0.0905

Diag (E)

0.2050

Diag (F)

0.9655

0.3300
-0.0060

0.0557

0.1709

0.9769

0.2485
-0.0620

0.1567

0.9729

0.2302

0.1872

0.9557

This table presents the eslimaled parameleis of the diagonal BBKK GARCH(l.i) mode! based on the enlire sample. The model is de.scribed in ihe second part of section IIIB. Nole thai G is a lower triangular
matris, .so ihe elenienis not displayed are equal to zero.

consider the following two criteria to judge the quality of (two criteria and three horizons). FlexM is best four times
the volatility forecasts: (for both criteria at the 1-week and 2-week horizons), and

CCC is best two times (for both criteria at the 4-week

RMSE, - 77̂ , , , . horizon). RiskM and Window are always worse than the
multivariate GARCH models.

(15)

and MAD^ are multivariate versions of the root-
mean-square error and mean absolute deviation, respec-
tively. Criteria based on absolute deviations are sometimes
preferred (as, for example, in ABL), because they are more
robust and less affected by a few large outliers.

Table 6 reports estimates of the two criteria at the differ-
ent forecast horizons. There are six comparisons altogether

TABLE 6.—FORECAST CRITERIA FOR COVARIANCE MATRICES

Model

FlexM
CCC
BEKK
RiskM
Window

FlexM
CCC
BEKK
Ri.skM
Window

FlexM
CCC
BEKK
RiskM
Window

RMSE

1-Week Horizon

9.73
9.88
9.90
9.98

10.02

2-Week Horizon

15.48
15.70
15.74
16.07
16.03

4-Week Horizon

17.42
17.09
17.48
26.14
25.61

MAD

2.96
3.01
3.09
3.31
3.42

5.13
5.22
5.37
5.88
6.09

8.90
8.71
9.37

10.82
11.10

E. Standardized Residuals

Consider the standardized residuals e, = HJ^'^Xt, where
H, is the true conditional covariance matrix at time t.
Obviously, the e, have constant conditional covariance ma-
trix equal to the identity, and the cross-products e,e,' are
uncorrelated over time. It is therefore natural to test for any
left-over autocorrelation in the cross-products e,ej, where
€, = fi'^^'^x, and H, is the estimated conditional covariance
matrix at time t.

A standard test for serial correlation in a univariate time
series {y,} is the Ljung-Box test. The test statistic is

m./=!

This table compares ihe forecasted conditional covariance matrices with the realized integrated
volatility covariance matrices computed from daily data that serve as a proxy for Ihe true bul
unobservabie cotidiiional covariance matrices. The criteria RMSE and MAD are defined in equations
(I4M15). All forecasts are out of sample. Forecasts start at week / = 601,

where p(/) is the sample autocorrelation of order /, and k is
an integer which is small compared to the sample size T.
The commonly used asymptotic null distribution is xl^ the
c/i(-squared distribution with k degrees of freedom.

There are, however, two problems with applying this test
for our purposes. A general problem is that the asymptotic
null distribution is only correct under the additional assump-
tion of i.i.d. data. If the series {y,} is uncorrelated but
dependent, the x* approximation can be arbitrarily mislead-
ing (Romano and Thombs, 1996). Another problem is that
the test is designed for univariate series and not series of
N X N matrices. We address these two problems simulta-
neously by suggesting a combined test statistic that takes
into account all cross-product elements at once and by
constructing a test that, under the null, only requires that the
cross-products be uncorrelated rather than i.i.d.
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TABLE 7.^STANDARDIZED RESIDUALS

Model

FlexM
CCC
BEKK
RiskM
Window

Test Statistic

275.4
640.1
760.1
386.7
845.3

P-value

0.72
0.00
0.00
0.01
0.00

« table presents lest results for left-over autocorrelatLon in the titled standard [zed residuals. The test
statistic is the combined Ljung-Box statistic defined in equation (16) using the lirst * = 12 sample
autocorrelations. The /"-value for the nnll hypothesis of no autocorrelation is obtained hy applying the
suhsan^jling method with block size h ~ 100, as detailed in the discussion following equation (16). All
fitted standardized residuals are out of sample and are computed starting at week i = 601.

The combined test statistic we suggest is

(16)

where LBij{k) is the univariate Ljung-Box test statistic
computed from the series {e;,,ey,,}. To assess the evidence
against the null hypothesis, we compute the P-value based
on the subsampling method. To this end, let EB^omb,,,b(^) be
the combined test statistic based on the stretch of data
[i, , it+h-\}^ foTt= 1 T - b + 1. Here, the
block size b is an integer smaller than T. The subsampling
P-value is then given as

By arguments analogous to the ones of Romano and
Thombs (1996), it can easily be shown that this test is
consistent if the cross-products are uncorrelated but depen-
dent. For more details about the general use of subsampling
tests with dependent data, the reader is referred to Politis,
Romano, and Wolf (1999, chapter 3). The block size b needs
to satisfy the asymptotic conditions b -^ ^ and b/T -^ 0;
some methods for choosing b in practice are given in Politis,
Romano, and Wolf (1999, chapter 9).

Table 7 presents the test statistic and corresponding
/'-value for the five models, using/: = 12andfo= 100; the
results are similar for other values of k and b. FlexM has the
smallest test statistic and is the only model that is not
rejected at any conventional level; its P-value is 0.72, the
one for RiskM is 0.01, and all the others are 0.

F Value at Risk

An important use of the conditional covariance matrix is
in calculations of the value at risk (VaR) of a portfolio of
assets. A large number of methods to compute the VaR have
been suggested and are currently employed, such as histor-
ical simulation, RiskMetrics, Monte Carlo, GARCH, non-
parametric quantile regressions, and methods based on
extreme-value theory. We certainly do not aim to settle the
dispute as to which method is best, and it stands to reason
that a uniformly best method does not exist. However,
GARCH methods are very popular among practitioners and
tend to perform well. (In particular, recent claims that they

are dominated by methods based on extreme-value theory
do not seem to be substantiated; for example, see Lee and
Saltoglu, 2001.)

If a single portfolio is considered, it makes more sense to
fit a univariate GARCH(1,1) model to the corresponding
return series and base any VaR calculations on this model.
On the other hand, if a number of different portfolios based
on the same universe of Â  assets are considered (as is the
case with different traders of an investment bank, say), it is
common practice to base the individual VaR calculations on
a single estimate of the conditional covariance matrix of all
N assets. This also allows computing the marginal contri-
butions to risk of each position and evaluating the effect of
hedges. Hence, multivariate GARCH is certainly relevant to
risk management applications.

In our tests, we consider the following four portfolios
based on the seven market indices that make up our data:

• U.S. portfolio: United States only.
• North American portfolio: United States and Canada

equally weighted.
• European portfolio: United Kingdom, France, Ger-

many, and Switzerland equally weighted.
• Worid portfolio: all seven countries equally weighted.

We use the estimated conditional covariance matrix to
compute the one-week-ahead VaR at levels 1% and 5%. In
order to try to fit the tails of the return distributions and to
match the theoretical VaR levels, we assume a conditional
r-distribution. To be more specific, let the portfolio be
represented by the vector of weights, w. The estimated
conditional variance of the portfolio at time t is then given
by

At time t - 1, we condition on the past portfolio returns
and their corresponding estimated conditional variances to
choose the number of degrees of freedom, v*, that maxi-
mizes the likelihood .. -

r - l

n
r(v/2)

(w'x,]

over V, where r(-) denotes the gamma function. Note that
the standard formula for the r-distribution has been modi-
fied by the scale factor ^^,,(v - 2)/v, where the degree-
of-freedom adjustment is designed so that /j^.., is exactly
equal to the conditional variance of w'xj. Having thus found
V*, the 1% VaR at time / is finally computed as

Here, fv*,o.oi denotes the 0.01 quantile of the /-distribution
with V* degrees of freedom. An analogous computation
yields the 5% VaR.
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TABLE 8.—VALUE AT RISK

Hit Rate P-value

Model For 1% For 5% For 1% For 5% Av. V*

FlexM
CCC
BFKK
RiskM
Window

FlexM
CCC
BEKK
RiskM
Window

FlexM
CCC
BEKK
RiskM
Window

FlexM
CCC
BEKK
RiskM
Window

0.027
0.027
0.018
0.030
0.029

0.015
0.015
0.015
0.027
0.028

0.010
0.016
0.011
0.015
0.017

0.016
0.015
0.016
0.020
0.021

U.S. Portfolio
0.068
0.068
0.068
0.066
0.068

0.71
0.64
0.36
0.85
0.78

North American Portfolio

0.070
0.070
0.068
0.066
0.062

European Portfolio

0.054
0.060
0.054
0.058
0.052

World Portfolio

0.063
0.069
0.053
0.065
0.061

0 . ^
000
0.07
0.61
0.01

0.01
0.0g
6.04
0.55
0.00

0.03
0.00
0.03
0.18
0.02

0.82
0.93
0.99
0.83
0.24

0.86
0.68
0.79
0.44
0.51

0.18
0.01
0.09
0.30
0.00

0.44

0.00

0.00

0.26

0.00

85.3
22.7
12.7

184.6
119.3

22.0
10.9
9.0

151.3
115.3

11.8
7.6
7.2

34.S
20.7

19.9
10.1
9.2

103.2
55.4

This table compares VaR calculations al ieveU 1% and 5%. assuming a condilional r-distfibulion (suilably normaJized}. TTie hit rate is the sample mean of the hit series defined in equation (17) and should be
close lo the nominal level. The P-value corresponds to ihe null hypothesis of no autocorrelation in the hii series and is obtained from the usual r/i/-squared approximation of the univaiiate Ljuug-Bos lest statislic
tising the first * = 12 sample autocorrelations. The last column shows the average optima! number of degrees of freedom, v", for the conditional /-distribution. Ail VaR calculations are out of sample and star! al
week ( = 601.

For a certain portfolio and for a given level, define the hit
variable

hit, = I{w'x, < VaR,}, (17)

where /{•) is the indicator function and VaR, is the esti-
mated VaR at time t. If the model to calculate the VaR is
correctly specified, the series [hit,] should be uncorrelated
over time and have expected value equal to the desired
nominal level.

Table 8 presents the sample means (or hit rates) and the
Ljung-Box P-values for autocorrelation of the hit series for
the various methods, portfolios, and VaR levels. The P-
values are based on the first k = \2 sample autocorrela-
tions. Because the hit series are univariate and because a
(stationary) {0, 1} series is uncorrelated if and only if it is
independent, it is safe to use the asymptotic cAi-squared
approximation to compute the P-values here. (The table
also presents the average optimal number of degrees of
freedom, v*, of the conditional /-distribution.)

The hit rates are all reasonably close to the target levels,
although they tend to be a bit larger on average. There is no
clear winner or loser in terms of the hit rates. Judging the
serial correlation of the hit series [hit,], it is seen that
RiskM performs best: all its P-values are above 0.1. FlexM
is somewhat better than the other GARCH models.

G. Portfolio Selection

Another important application of the conditional covari-
ance matrix is as an input to the Markowitz (1952) portfolio
selection method. Hence, we examine the gains from inter-
national diversification obtained by taking into account the
time-changing nature of the covariance matrix. In order to
avoid having to specify the vector of conditional expected
returns, which is more a task for the portfoHo manager than
a statistical problem, we focus on constructing the (global)
minimum-variance portfolio, allowing for short sales.

Table 9 shows the realized (annualized) standard devia-
tion of the returns of the conditional-minimum-variance

TABLE 9.—STANDARD DEVIATION OF PoRTFOLio RETURNS

Portfolio

U.S.
Equal-weighted world
Unconditional minimum-variance
FlexM minimum-v^ance
CCC minimum-variance
BEKK mini mum-variance
RiskM minimum-variance
Window minimum-variance

Standard
Deviation

15.87
13.33
12.91
12.32
12.53
12.54
13.37
12.89

This lahie presents (annualii&3) standard deviations of various portfolios. The minimum-vanaoce
porlfolios are (hose with globally miiiimum variance; no restriction on the expected return is jtiade. and
short salw are allowed. All portfolios are constructed starting at week / = 601.
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portfolio over the entire sample period, obtained from the
three GARCH models, the RiskMetrics method, and the
rolling-window method. It compares them with the standard
deviation of the U.S. stock market, of the equal-weighted
portfolio of the seven stock markets, and of the uncondi-
tional minimum-variance portfolio obtained from the sam-
ple covariance matrix at t = 1,356. (The last portfolio
would be infeasible, but we include it nevertheless.) Not
surprisingly, fully investing in the U.S. stock market yields
the highest standard deviation, followed by the equal-
weighted world portfolio and the unconditional minimum-
variance portfolio. All three GARCH models provide a
significant improvement, with RexM being the best. Win-
dow is comparable to the unconditional minimum-variance
portfolio, and RiskM is worse than even the equal-weighted
portfolio.

IV. Conclusion

In this paper, we have developed an estimation procedure
for the general diagonal-vech formulation of the multivari-
ate GARCH(1,1) model. Our procedure is the first to be
computationally feasible for dimensions N > 5, without
constraining the coefficient matrices. Our method proceeds
in two steps: first, we decentralize the problem by estimat-
ing separately N univariate and A'̂ (A'̂  — l)/2 bivariate
GARCH models, all of which are computationally feasible
problems; second, we bring together these results to form
iV-dimensional matrices of parameter estimates, which we
transform in order to ensure the positive semidefiniteness of
the conditional covariance matrices. In doing so, we avoid
having to impose additional restrictions, which has been the
common approach so far in the multivariate GARCH liter-
ature. In addition, our method is computationally far less
demanding than traditional multivariate models, which is an
important advantage if the sample size is large, as would be
the case with high-frequency data.

We apply our procedure to 25 years of weekly data on
seven major national stock markets and compare it with two
popular traditional multivariate GARCH( 1,1) models,
namely the constant-conditional-coirelation mode! and the
diagonal BEKK model, and with two widely-used, albeit
less sophisticated, estimators, namely the rolling-window
estimator and the exponential smoothing estimator. Using a
number of criteria, such as forecast accuracy, persistence of
standardized residuals, precision of value-at-risk estimates,
and optimal portfolio selection, we find that the flexible
multivariate GARCH method does indeed offer improved
performance. The use of high-frequency data, which un-
doubtedly will increase in the future, should make our
procedure even more attractive.

Direct applications of this method involve portfolio se-
lection and tests of asset pricing models such as the inter-
national CAPM, and risk measurement uses such as the
value at risk. An interesting topic left for future research is
an extension to asymmetric multivariate GARCH{1,1).
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A APPENDIX

-'-,.:',. , Minimization of the Frobenius Norm . -

1. Problem Formulation

Given a symmetric matrix A with the property diag (A) > 0. find a
symmetric, positive semidefinite matrix M with diag (M) = diag (A) that
minimizes [[A — M\\F, where || - ||/.- is the Frobenius norm.

"• -"- ' 2. Numerical Solution • ' - '

Write the matrix A and the current approximation A/ to the solution of
the above problem as

a,, a'

a A J

an m'
m M

and let the conditions of the problem be satisfied [that is, diag (A/) = diag
(A) and A/ = A/̂  > 0]. For a matrix of the form

P ^'

(where /„_! is identity), we can introduce the next iterate by
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M =

If we enforce the condition

- 2p.j:'̂ »i + x^Hdx pm^ + x'^i

pm + Mx M
(A-l)

(A-2)

then the new approximation fvf satisfies the conditions of the problem:
A? = M^ a 0 and diag (Kl) = diag {A).

If equation (A-2) is satisfied, we have

\\A - fk\\r - \\A - M\\, = 2\\a - (pm - 2\\a -

therefore, choosing x and p that minimize \\a - (pm + MJ:)||2, from
equation (A-2) we get A? that minimizes ||i4 — A^Wf, satisfies the
conditions of the problem, and is obtained from the previous approxima-
tion M by changing its first row and column. The extension to the /*
column and row is obvious.

Remark 1. The convexity of the problem implies that the solution
matrix M is singular, that is, lies on the boundary of the feasible region.
Since det (Af) = p^ det (M), we can make the iterates stay within the
interior of the feasible region by initializing the process with a nonsingular
matrix and choosing p to be bounded away from 0. Later on we treat p as
a chosen constant between 0 and I, so the iterates become singular no
faster then expionentialty. In numerical examples, p is chosen to be 0.5.

One step of the iterative procedure becomes

min ||a ~ (pm + Jtf.)c)|}2

subject to equation (A-2); introducing

b = a — pm,

it becomes

still subject to equation (A-2).
The Lagrangian of this subproblem is

L{x, \) - \\Mx - bf^ + Up^a^i + 2p^^m

and the optimality conditions are

F{x) = p^o,| + Ipx^m +x^Mx- a,, = 0

and

, \) = 6,

- a,,).

(A-3)

which can be written as

Mh - Mb + \pm + \Mx = 0.

For any \ , equation (A-4) can be solved for x:

x(\) = (M- + kM)-'{Mb - Xpm);

and

n\) = F{x{\)) = Q

can be solved by the Newton's method:

(A-4)

(A-5)

The analytic expression for f (̂X) can be obtained from

F,(k) = V,F(x) • ;c, = 2(pm + Mx)^

By differentiating equation (A-4) with respect to \ we get

Mh^ + pm + Mx + xMxi, = 0;

therefore

(A-7)

Inserting this in equation (A-7), we get

F,(X) = ~2(pm + Mx)^(M^ + XM)-'(pm + Mx). (A-8)

We can summarize the solution of the subproblem as:

1. Initialize X (say X = 0).
2. Compute x by equation (A-5).
3. Compute F(\) and F,̂ (X) using equations (A-3) and (A-8).
4. Update \ using Newton's step (A-6).
5. Recur Newton's procedure.

Remark 2. The steps (A-3) and (A-8) involve the inverse of M^ + KM,
which is singular if M is. Restricting p to be a nonzero constant results in
nonsingular M unless it is a solution; see remark I.

A Matiab routine implementing this procedure has been written by Ilya
Sharapov and is available from the authors upon request.

3. Numerical Tests

Extensive simulation tests of the numerical routine have been imple-
mented, Numerical convergence is typically obtained after one or two
iterations with minimal error. The results of these tests are omitted for
brevity but can be obtained from the authors upon request.






