cRSIDAD,
B)
2.
>

o oI UNI SINgy
X

N
)

8
SD’WsA NON S*

N
(2

\S
C
S

A5

Leandro Miguel Ribeiro Galrinho

MSc Student in Computer Science and Informatics Engineering

Live Graph Databases Using DCR Graphs

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Joao Costa Seco, Assistant Professor,
NOVA University of Lisbon

Examination Committee

Chairperson: Professor Maria Armanda Simenta Rodrigues Grueau
Raporteur: Professor Francisco Cipriano da Cunha Martins
Member: Professor Jodo Ricardo Viegas da Costa Seco

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

December, 2020

Live Graph Databases Using DCR Graphs

Copyright © Leandro Miguel Ribeiro Galrinho, Faculty of Sciences and Technology, NOVA
University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,
perpetual and without geographical boundaries, to file and publish this dissertation through
printed copies reproduced on paper or on digital form, or by any other means known or
that may be invented, and to disseminate through scientific repositories and admit its
copying and distribution for non-commercial, educational or research purposes, as long as

credit is given to the author and editor.

This document was created using the (pdf)IATEX processor, based in the “novathesis” template[1], developed at the Dep. Informética of FCT-NOVA [2].
[1]1https://github.com/joaomlourenco/novathesis [2]http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Abstract

Nowadays, it is of uttermost importance for companies that want to be relevant on
the market to produce more while making fewer mistakes. Good management practices
recommend the replication of critical business operations, like hiring a new employee
and the set up he has to go through to have the company tools available, or the steps
and decisions required when producing some daily report. The possibility of creating
and refining these processes through business process systems to better suit the daily
activity of an enterprise has a direct impact on the overall productivity, organization, and
cost-reduction.

The commonly used process systems make use of notations that are like state machines,
having a somewhat imperative style depicting a narrow path where every decision in a
process is sequential — providing the user no chance to offer input on how the process
carries out — and struggle to take data into account. The proposal of several declarative
languages and notations meant to solve this problem, easily incorporating data alongside
the specified workflow, and providing actual control to the end-user on how the processes
are accomplished by stating what can/needs to be done rather than how to do it in a
step-by-step fashion.

With this dissertation we present REDA, a novel declarative, dynamic, and reactive
data-centric process language, and the mapping from its specification to a running system
(the operational semantics) implemented using the mechanisms of a graph-database, namely
neodj. We also present and evaluate a prototype of a business process system able to
emulate the process via a reactive application, addressing the challenges of having a system

that interacts with a dynamic process, and the solutions adopted.

Keywords: ReDa, ReSeda, Business Process Management, Business Process Management

Systems, neodj, Business Engines, Graph Database, Dynamic Condition Response Graph

Resumo

Atualmente, para que uma empresa possa ser relevante no mercado é bastante importante
que a sua producdo aumente e que a sua taxa de erros diminua. Regras de boa pratica no
que toca ao controlo de processos de uma empresa recomendam que as suas tarefas mais
criticas sejam efetuadas da mesma forma independentemente de quem as executa, tal como
a contratacdo de um novo empregado e todos os passos que ele precisa de executar para
que retna as condigOes necessarias para trabalhar, ou quais os pontos-chave obrigatérios
a seguir quando se submetem relatorios. A possibilidade de criar e ajustar estes processos
ao dia a dia de uma empresa tem um impacto direto na sua produtividade, organizacao e
reducao de custos.

Os sistemas de processos mais utilizados adotam notagoes semelhantes a maquinas de
estado, onde definem as suas atividades de uma forma sequencial e tém dificuldade em
incorporar dados no processo. A proposta de varias linguagens de processos declarativas
tem como objetivo solucionar este problema, permitindo a defini¢do do processo e dos seus
dados de forma simultanea e flexivel, pois ao invés de se definir uma sequéncia de execucao
é possivel estabelecer o que pode/tem de ser feito.

Com esta dissertagdo apresentamos a REDA, uma nova linguagem declarativa, dindmica
e reativa centrada em dados, e um mapeamento desta especificacdo para um sistema de
execucdo que utiliza os mecanismos de uma base de dados de grafos, nomeadamente o
neodj. Apresentamos e avaliamos também um protétipo de sistema de gestao de processos
capaz de emular processos REDA através de uma aplicacio reativa, abordando os desafios

de desenvolver um sistema que interaja com um processo dindmico e as solugoes adotadas.

Palavras-chave: ReDa, ReSeda, Business Process Management, Sistemas de Gestao de

Processos, neodj, Business Engines, Bases de Dados de Grafos, Grafos DCR

vii

Contents

List of Figures

1 Introduction

1.1 Motivation
1.2 Context e
1.3 Contributions
1.4 Document Structure

2 Related Work

2.1 Business Process Modelingo
2.1.1 BPMI . ..
2.1.2 BPMn
2.1.3 Constraint Based Models

2.1.3.1 DECLARE
2.1.3.2 Dynamic Condition Response (DCR) Graphs
2.1.3.3 OCBC: Object-Centric Behavioral Constraint Model

2134 RESEDAo

2.2 Business Process Modeling Engines
2.2.1 JBPM . ..o e
222 Camunda e

3 ReDa - Reactive Data-driven Processes

3.1 Syntax e
3.2 Semantics e e e
3.2.1 Enabledness
3.2.2 Transitions e
3.2.3 Dataexpressions
3.2.3.1 Patterns

3.2.3.2 Aggregation Functions

3.3 ReDabyexample. e

4 Compilation Procedure

4.1 Dynamic Relations o o

ix

xi

W W N =

N o ot G

10
10
11

15
18
19
21

23
23
29
29
30
32
33
33
34

39

CONTENTS

5 System Architecture

5.1 ReDa Compiler e
5.2 Neodj e

5.2.1 Cypher e
5.3 ReDa Engine

6 System Demonstration

6.1 Performance
7 Conclusions
Bibliography
Webography

I ReDa Process Translation Example
I.1 ReDa Process e
1.2 Cypher Script

IT Veterinarian Clinic with ReDa
II.1 ReDa Process
II.2 Cypher Script o

ITI Library ReDa Process
IIT1.1 ReDa Process e e e
II1.2 Cypher Script o o

53
54
95
o7
58

61
70

73

75

79

81
81
81

85
85
86

89
89
90

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4

List of Figures

Example of some BPMn activities
Example of some BPMn artifacts oL,
Example of some BPMn events.
Example of some BPMn gateways.
Example of BPMn arrows. e
BPMn diagram of the veterinarian clinic example.
Creation of a “response” like constraint on DECLARE.
DCR modeling of the veterinarian clinic example.
The OCBC model relations
OCBC model of the veterinarian clinic example
RESEDA modeling of the veterinarian clinic example.
jBPM web-based graphical user interface, present in [31].
jBPM on eclipse via plugin, present in [31].
jJBPM monitoring dashboard module in [31]
Camunda overview [30]. L
Camunda graphical interface [30]. L L.

Abbreviated Java code representing the BPMn process on Figure 2.16

Syntax of REDA
Process state after the creation of two authors.
Process state after the creation of two authors and two books.

Graphical representation of the example.

General structure of a cypher script. oL L.
Toy example to illustrate the compilation of REDA to cypher.
Excerpt of the REDA process presented in Figure 4.2.
Excerpt of the REDA process presented in Figure 4.2.

Toy example with dynamic conditions and matches.

System architecture.
REDA compiler architecture. oo
Example of a labeled property graph model[34].

Pattern matching on cypher.o

xi

© 0 0o N N

11
12
14
15
18
19
20
20
21
21
22

24
35
36
38

53
54
56
58

LIST OF FIGURES

5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

REDA engine architecture. L L

REDA library process example. oL
Engine’s Ul when there are no processes instantiated.
Engine’s Ul terminal. o
Inserting a REDA library process for translation.
The cypher script translation of the REDA library process inserted in Figure 6.4.
Engine’s Ul state after the instantiation of the library REDA process.

Modal referring to the input data-element createAuthor.
Process state after the execution of the createAuthor input data-element.
Modal referring to the input data-element createBook of the Tolkien author.
Process state after the execution of the createBook input data-element.
Modal referring to the input data-element loanBook.
Process state after the execution of the loanBook input data-element.

Modal referring to the input data-element returnBook.
Process state after the execution of the returnBook input data-element.
Normal-case scenario performance.,
REDA process used to perform the case study of a normal-case scenario. . . .
Worst-case scenario performance. oL

REDA process used to perform the case study of a worst-case scenario.

xii

58

61
62
62
63

64
65
65
66
67
67
68
69
69
70
70
71
72

CHAPTER

Introduction

Companies need to establish methods that allow the quick adaptation of their activities
to the newest market conditions — as they are constantly changing — and to improve pre-
existing ones to accommodate customer needs. Furthermore, core tasks in a company
should be executed in the same manner regardless of the employee that is working on
it, and as such, should be documented. This documentation can cause a great amount
of work, depending on how long and critical the tasks are, and if the market shifts in a
certain direction they do not cover, either they stay obsolete, or all the documentation has
to be redone. This comes down to the most simple — yet troublesome — resource of every

company: time, and how much is it worth.

1.1 Motivation

To increase productivity and automate recurrent tasks, business process management
(BPM) is widespread in enterprise companies. According to Palmer et al. [36], “BPM
is not a piece of software, but a way of thinking and practice to optimize a company’s
workflow, which is supposed to serve as a bridge between people and system, being more
reliable and understandable”. For any number of reasons the processes inside a company
may be outdated, redundant, or inefficient, and by using BPM, said processes go through
detailed scrutiny while being modeled, being tuned to achieve maximum performance
allowing not only time-saving by avoiding redundant tasks, but also cost reduction as
productivity increases.

With this in mind, several languages and notations were proposed to define processes
in information systems, and some of those are even considered a standard nowadays, such
as the BPMn 2.0 notation that is discussed in Section 2.1.2. They can also be seen as

communication bridges, as the steps that could otherwise be misleading are now expressed

CHAPTER 1. INTRODUCTION

in a standardized representation.

Process automation syncs people and system operations, and efforts are still being
made to develop and improve software capable of emulating process models, providing
real-time feedback on tasks deployed via monitoring features. Business process modeling
systems like Camunda (Section 2.2.2) and jBPM (Section 2.2.1) achieve this by allowing
the user to create, edit, and collect their analyzed model data. However, major business
systems like these are based — or even exclusively support — BPMn notation, along with
languages derived from it. This form of representation does not fully support all processes,
not having the ideal means to model many-to-many or one-to-many relationships between

activities, and not fully taking data into account, as it is detailed in Section 2.1.2.

The aforementioned motivated the proposal of several declarative languages and nota-
tions. Whilst BPMn and other similar languages specify a workflow using an imperative
style, stating what has to be done step-by-step in a sequential manner, declarative lan-
guages allow the flow control to be shifted from the system to the user, by stating what can
be done and letting the user choose the best course to get it accomplished. Notations like
the DCR (Section 2.1.3.2) or OCBC (Section 2.1.3.3) assimilate this and take advantage
of behavioral mechanisms to specify how instances of events are related amongst them. If
used in a business process system, this kind of language would be a step forward to achieve
more flexibility and in shifting from a “robot” paradigm, where process executioners have
little or no relevance at all on how the task is going to be carried out, to one where they

actually provide a meaningful contribution.

1.2 Context

In 2018, Costa Seco et al. [3] proposed a novel declarative process language RESEDA
(Section 2.1.3.4), standing for REactive SEmi-structured DAta language. It was obtained
by generalizing the reactive logic inherent in spreadsheets, and extending the DCR graph
process notation with it (Section 2.1.3.2). A good approach as it was, it still lacked the
flexibility to work with all kinds of data and not only the semi-structured one, and hence the
idea of REDA came forth: a generalization of RESED A that extended its core semantics
and syntax to a graph-like representation of data. Furthermore, a system that could
emulate said processes and enable their interaction with the user would allow to formulate
case studies and evaluate its real applicability in a business company context — ergo the
proposal of this dissertation, co-authored with the dissertation advisor and researchers

from the University of Copenhagen and DCR Solutions'.

! https://dersolutions.net/

1.3. CONTRIBUTIONS

1.3 Contributions
Our contributions with this dissertation are as follows:

o We developed REDA: a novel declarative business process language. It is a generaliza-
tion of RESED A allowing the direct mapping from its processes to a graph-based
structure. This process language is described in an accepted paper presented at
DEC2H-2020, an international workshop on declarative, decision, and hybrid ap-

proaches to processes [10].

o We developed a translation tool capable of mapping the grammar of REDA into a set
of cypher instructions (the graph-database neo4j’s native language), allowing REDA
processes to be instantiated into neo4j maintaining all its behavior and semantics in
the form of database triggers. Furthermore, case studies were also taken into account

to measure the applicability of this solution.

o We developed a system that acts as the engine of a business process. It communi-
cates with the database that has the instantiated REDA process and supports the
interaction with the user providing a correct view of its possible and mandatory

actions.

e We exported the reactive components used in the system’s engine to an online
component collaboration library to ease further development, as each component is

individually documented and maintained.

1.4 Document Structure

This current chapter provides introductory concepts and introduces context and motivation
for this dissertation, why it is interesting and relevant in current days, and its novel
characteristics. Next, on Chapter 2 we study the conventional process languages and
notations, why they became a standard, and their possible pitfalls. Some of the most
popular business management systems using these conventional languages are studied as
well, together with an alternative paradigm of declarative process languages, and their
advantages when compared with the traditional sequential ones.

The business process language REDA developed in this dissertation is presented at
Chapter 3, providing a formal approach to its syntax and semantics, as well as a practical
example of its application. The next chapter establishes a translation procedure to map
REDA processes into a set of instructions to be instantiated into a neo4j graph-database
(Chapter 4). The architecture of the proposed system is presented in Chapter 5, as well
as the technologies used to develop it.

The practical demonstration of our prototype of a business process systems is detailed
on Chapter 6, as well as some performance evaluation of case studies. At last, Chapter 7

summarizes our contributions and proposes the work that can follow from them.

3

CHAPTER

Related Work

A significant amount of work about business processes, process languages with different
areas of application and its execution has been done in the past years and is still the target
of a lot of scrutiny and research in academia and enterprise companies alike [11]. Since the
90’s there has been a real need for building software that allows the specification of the steps
of a task, their dependencies, conditions, and how these tasks are related so that a group
of users can accomplish a predetermined goal [32]. This led to a big rise in the number of
companies that tried to build workflow languages and systems capable of translating these
languages to workflow execution processes whilst maintaining its semantics. This chapter
focuses on the work previously done and how it can be crucial to determine potential
pitfalls and benefits of the REDA language and its prototype of a business management

System.

2.1 Business Process Modeling

As captured by Palmer et al.[36], BPM can be seen as a “discipline involving any com-
bination of modeling, automation, execution, control, measurement and optimization of
business activity flows, in support of enterprise goals, spanning systems, employees, cus-
tomers, and partners within and beyond the enterprise boundaries”. This means that BPM
is not a piece of software or technology, but a practice done by people of an organization
to maximize the improvement of a process or a task, minimizing its cost.

Quality in organizations can thereby be seen as a consequence of using process models,
and many efforts are still being made to build enterprise-grade applications that incorporate
them. They help in the organization and assignment of tasks by standardizing them across
an enterprise so they can be easily understood and maintained, therefore mitigating human
errors [28]. This efforts may take the form of languages like BPMI (Section 2.1.1), OCBC

CHAPTER 2. RELATED WORK

(Section 2.1.3.3), BPMn (Section 2.1.2), DCR (Section 2.1.3.2) RESEDA (Section 2.1.3.4)
or even REDA (Chapter 3), which are discussed in their respective sections. They may as
well be associated with engines (discussed on Section 2.2) belonging to full fledged business
process system applications.

In this section, the same example of a process with its behavior and data associated
is modeled using distinct languages and notations, evidencing the inherent advantages of
using a declarative approach rather than the strict sequential approach used on impera-
tive languages. The example consists of a veterinary clinic, where clients can create an
appointment for one or more pets with a veterinarian, having an option to fill a form for
each, stating its purpose as a description, and to perform the check-in of them all. Note
that one appointment may consist of several pets — having several forms — but each form
corresponds to only one appointment. To conclude, each of the check-ins corresponds to
one and only one check-out, as all pets are picked up by their respective owner at the same

time.

2.1.1 BPMI

The business process modeling language specification (BPMI) was introduced in 2000 as
a standard to specify business process management [18], with the objective of being a
specification language capable of defining any executable process via a business process
management system. It is based on the XML language and is oriented towards execution:
defines the process in a sequence of operations — atomic or not [29, 18] — performed in a

certain context.

The following listing based on the veterinarian clinic example presented on Section 2.1
depicts the common BPMI structure for a simple business process, where a sequence
(denoted by the tag <sequence>) consists of operations (denoted by the tag <operation>),
whose attributes and child nodes include the participants and activity to be described. In

this case, only the choose_pet operation is modeled (in a simplified manner).

<process name = "Veterinarian_Clinic_Example">
<sequence>
<operation name="Choose_Pet_Action">
<participant name = "Pet_Owner"/>
<output message = "Choose_Pet">
<assign to="Action">Pet Form</assign>
</output>
<input message = "Pet_Name">
<assign to="filter" from="Text" />
</input>
</operation>
...
</sequence>

</process>

2.1. BUSINESS PROCESS MODELING

As already stated, BPMI is oriented towards process specification and it is hardly
readable by humans. For that reason, an effort was made to develop a visual notation that
easily communicates process models: BPMn, discussed in Section 2.1.2. BPMI was later
deprecated in 2008.

2.1.2 BPMn

The business process modeling notation (BPMn) was created out of the necessity to visually
describe a business process. It is widely accepted in industry and academia alike, being an
ISO standard in its 2.0 version [11]. It allows modeling various types of business processes
and the way they relate to each other, by using a graph-oriented notation that shares some
resemblance to the one used in DCR (Section 2.1.3.2). BPMn elements can be divided

into the following groups:

o The activities — tasks, processes (and subprocesses that encapsulate other tasks),

and others. They are represented by a rectangle with rounded corners.

O)

(a) Call activity (b) Subprocess activity (c) Task activity

Figure 2.1: Example of some BPMn activities

e The artifacts — they do not influence execution semantics but provide an explanation

to some part of the diagram or stress the information that is needed in some activity.

[=
0" L._J.

(a) Text annotation artifact (b) Group artifact

Figure 2.2: Example of some BPMn artifacts

o The events — start event (thin outline), intermediate event (dotted outline), and
end event (thick outline). Each of these has multiple sub-events, like timed events
or message events, which are represented by circles and may contain other symbols

based on their type.

7N
e O,
<>

(a) Timed start event (b) Msg. intermediate event (c) Termination end event

Figure 2.3: Example of some BPMn events.

CHAPTER 2. RELATED WORK

e The gateways represent decisions, merges, joins, amongst other things. They are

represented by a diamond-shaped object, containing a symbol depending on the type

& <P

(a) Exclusive gateway (b) Parallel gateway

of gateway.

Figure 2.4: Example of some BPMn gateways.

e The arrows on the diagram connecting its elements are called “connecting objects”,
and they may be sequence flow arrows (represented by a full arrow), message flow
arrows (represented via a dashed arrow), or association arrows (dotted arrows regard-
ing an association of data to an element, like the textual description of the reason

motivating an appointment on our veterinarian clinic example, for instance).

s

*
L d
’
.

Figure 2.5: Example of BPMn arrows.

e Pools consisting of several lanes, each one representing a major participant of the
process with its tasks and how they relate to other lanes (an example is presented

in the modeling of our veterinarian clinic example).

Getting back to the veterinarian clinic example, Figure 2.6 depicts the modeling of said
process using a BPMn notation. There is a pool with a lane representing the pet owner, and
the process starts with him creating an appointment. Next, the owner chooses a pet and fills
out the form for him, giving the appointment description as optional information, repeating
this process for each of the pets. When finished, the owner checks-in the appointment and

picks his pets once the appointment is concluded.

Whilst the modeling of this process is possible using BPMn, it is necessary to resort
to artifacts to incorporate data into it, and the cardinality constraints between activi-
ties are unclear — it is not obvious that there is a relation of many-to-one between the
fill_out_form and the check_in activities. Furthermore, the BPMn specification is
lengthy, complex, and ambiguous, making its use susceptible to interpretation problems.
As pointed out in [2], this standard fails to be implementable due to the behavioral issues

on its concepts, making its implementation only viable on a limited subset of the language.

8

2.1. BUSINESS PROCESS MODELING

L

- Appointment
Description

Does not have
more pets

Pet_Owner

Check-in H Check-out }

Figure 2.6: BPMn diagram of the veterinarian clinic example.

Has more pets

Crgate Choose Pet Fill-out Form
Appointment

Since interpretation can be personal, and different persons can have different under-
standings of the same construct, the user may understand the business process described
in a way that differs from what it is compiled to. For instance, Borger et al. [2] sub-
stantiated this by pointing out that the life-cycle concept together with the interruption
constructs available in the BPMn 2.0 specification, like exceptions, can not specify what
happens to the process if an exception is fired at a sub-process level: one compiler could
be programmed to interrupt all the process at once, whereas another compiler could opt
to interrupt solely the sub-process that fired the exception. The major flaws present in
a list of 435 (as of November 2020) open issues — related to problems with specification

ambiguity — listed at the BPMn 2.0 official page [35] are presented next:

e Concepts are semantically underspecified leaving a window for misinterpretations;

e Poor conceptual support for numerous features relevant in the design of business
processes;

e Complex description of concepts and many of them are defined in terms of other
constructors, forcing the reader to simultaneously and repeatedly consider multiple
sections of the standard document;

e There is no systematic mechanism for refining a model from conceptualization to its

execution.

This makes the communication between different systems and the portability of models
(almost) impossible, as even a tiny bit of ambiguity can lead to big differences in the
semantics of the same process. This is a major pitfall of BPMn because it fails to be
what it intended — standardized — as the models are platform-dependent (some experts
advocated the creation of a document providing a reference implementation where the
ambiguous constructs could be clarified [2]).

Furthermore, it lacks the means to specify cardinality constraints and the interaction
between instances of the same process, thus existing no way of modeling a one-to-many or
many-to-many relationship on BPMn without creating multiples lanes containing the same
instance of one element or other similar complex solutions, as it can only model the life-
cycle of one process instance at a time [25]. According to J. Su et al [24]: “The processes
serving a common business service must be interrelated by sharing data (...). The exclusion

of data in these models limits applicability”. Indeed, if processes take data into account

9

CHAPTER 2. RELATED WORK

it becomes possible to study the relationship between different business processes via the
common data they share. This topic lead to the arrival of many languages and notations
capable of integrating data into process modeling, such as the OCBC notation [17, 25]
approached in Section 2.1.3.3, the RESEDA language [3] discussed on Section 2.1.3.4,
and the REDA language on Chapter 3.

2.1.3 Constraint Based Models

As previously stated, conventional business process models can only describe the life-cycle
of one instance at a time and in isolation and struggle to include data-elements into
account. For that reason, other forms of representation more convenient to specify process
behavior, as well as complex interactions between different types of instances, are often

used alongside them.

This is accomplished by using constraint-based models that declaratively state what
can be done in a process — the decision making is shifted from the system to the user —
instead of the traditional imperative approach, which sequentially specifies how the process
is going to be executed, providing the users limited or almost no impact on how the process
is going to be carried out [20]. The following process languages and notations discussed
next provide a relevant contribution on how to incorporate more flexibility into a business

process.

2.1.3.1 DECLARE

DECLARE is a predecessor of some of the declarative process languages used nowadays —
like the DCR, Section 2.1.3.2 — and was a prototype of a business process modeling system
(ceased to exist circa 2012) using a constraint-based process modeling language [20]. It
was able to support loosely-structured processes while maintaining the major benefits of
the conventional business process systems that used imperative languages, such as model

verification, analysis of past executions, and being able to change models at run-time.

Whereas business languages such as the BPMn (Section 2.1.2) specify step-by-step
the execution process of a certain task, declarative languages bring the flexibility of
specifying what has to be accomplished and letting the user choose the best course to get
it done. DECLARE was developed as a declarative constraint-based system, allowing the
user to customize its own relation type specification. It was possible to create many of
the nowadays existing binary and unary constraints, by specifying its unique name, its
semantics (using a linear temporal logic formula), and its graphical representation. For
instance, it was possible to create the “response” constraint present in the DCR notation

(Section 2.1.3.2), as seen in Figure 2.7.

10

2.1. BUSINESS PROCESS MODELING

£ Edittemplate A
name !IHH|III'I—J-‘ syrnbol —_— « [| symbolfil line —_— L 4
parameter ".3‘ symbol O— w [v| symbolfil [branch
parameter 2 ;El syrnbiol —> w [symhbol il v branch

exira display|response

description
VWhenever & happens, B should happen after A

l I |]

formula
QC{TA"-= <= ("B7))
al . i [v]

check syntax |

! ok cancel .

Figure 2.7: Creation of a “response” like constraint on DECLARE.

DECLARE also supported the notion of mandatory and optional constraints. The first
adopted the logic from the imperative constraint models, being useful to model a critical
part of the system prone to human errors. The latter allowed the user to decide whether

or not to follow a specific path, providing more flexibility in an otherwise linear path.

2.1.3.2 Dynamic Condition Response (DCR) Graphs

With the growth of business process design technologies came the development of many
flow-oriented process languages and notations, such as the BPMI (Section 2.1.1) and the
BPMn (Section 2.1.2). Whilst the specification of how a process should behave from start
to end in an imperative way (sequentially stating the execution steps) is important in a
business process management system, there is also a need to identify the business and
compliance rules restricting the orders between the system changes. DCR graphs focus
on the logic behind the process, describing in a declarative way the causal relationships
and pending obligations between the events in a system [5, 6]. This means that the exact
sequence of actions is left undefined but always restricted to the set of constraints they

must respect, thus giving the system maximum flexibility.

Dynamic condition response (DCR) graphs are, as the name suggests, graphs. As so,
events are represented as elements and are related to each other by relations restraining
their behavior and order of occurrence. Getting back to the veterinarian clinic example,

its DCR representation can be seen on Figure 2.8.

11

CHAPTER 2. RELATED WORK

Create Appointment

A4
A 4

Appointment
Choose Pet Fill-out Form
[e T T
>+
% '-- 6/; """"""""""
M | P
Check-in H Check-out
>+ ;
L7/ D/' """""" |‘ """ !

Figure 2.8: DCR modeling of the veterinarian clinic example.

To represent the state of a process, each element is associated with a set of properties
— the markings. One of them is the included property, denoting if an event is available
to be executed. We can see on Figure 2.8 that the fill_out_form and the check_out
elements are depicted using a dotted outline, meaning they have their included property
set to false, and cannot be executed unless they are explicitly included into the process.
Following, the executed property conveys if a specific event has already happened, and if
so, it has a value property representing its current value. Lastly, the pending property
states if an event is obliged to happen eventually for the graph to reach a valid final state.
A new DCR graph representing a process must have some of its events enabled, and when
said events are executed, new system markings are produced [16][8].

There is a total of six different kinds of relationships between events to define their
behavior (authors in [1] even added a time mechanic, proving itself very useful in some

cases):

o the condition relation, represented by e—e ¢’ and present between the choose_pet
and check_in, meaning that the latter event can only occur when choose_pet has

already occurred at least once;

o the response relation, represented by ce——e’ and present between the check_in
and check_out, meaning that the check_out must happen after check_in has been

executed;

« the exclusion relation, represented by e—% e’ and present between the check_in
and choose_pet events, as well as in the unary relations that the check_in event and
check_out event have, and denote that when the first happens the latter becomes

excluded from the process and can no longer occur unless explicitly included again;

12

2.1. BUSINESS PROCESS MODELING

o the inclusion relation (the semantic opposite of the exclusion relation), represented
by e—+ €’ and present between the check_in and check_out events, meaning that
when the first happens the latter becomes included in the process and can occur

again (if previously excluded);

o the fifth relation in DCR is the milestone relation represented by e—o ¢/, with a
semantics close to the condition relation, where e needs to be excluded or not pending

for €’ to be executed; and finally,

» Debois et al. [5] pointed out that the DCR graph notation was conceived as both
generalization of event structures and a generalization of the process matrix. This
notation kept being developed and a notion of “dynamic creation” of a sub-process
was found lacking. Hence, authors in [6] came up with this novel sixth relation that
specifies a spawn event: when a reproductive event e happens in an instance of a
process T, a copy of T (7T) is created and processed in parallel, and as the process
evolves both T and T’ can be updated. In the veterinarian clinic example, this
relation is present between the create_appointment and the appointment elements,
meaning that whenever create_appointment is executed a new sub-process with an

appointment is created, and both can be executed in parallel.

A valid DCR graph must have some of its elements enabled for execution — at least
one event must be included and have no condition or milestone relation preventing
its execution. On the veterinarian clinic process, in its initial state, only the element
create_appointment is available as all the other elements are modeled as being part of
the sub-process created when the former is executed. This event (create_appointment)
is included and has no inward condition relation at all, so it is a valid element to exe-
cute. When doing so, the remaining four elements are incorporated into the process —
the fill_out_form and check_out start initially excluded and cannot be executed, and
the check_in event has an inward condition relation where choose_pet has not yet been
executed, and as such, in this sub-process level, the only action possible is to choose a pet
to schedule an appointment to.

When executing the choose_pet activity two things happen: the £fill_out_form
becomes included and enabled, and the check_in becomes enabled as well, as its outward
condition relation element has already been executed. At this point in the process, there
are three actions possible: to check-in the appointment with only one pet chosen and
no form given, to choose more pets and do not fill any form, and to fill as many forms
as pets chosen before checking in. When checking in, the choose_pet, £ill_out_form,
and check_in activities become excluded from the process, and the check_out becomes
included and pending, meaning it has to happen eventually for the process to reach a valid
final state of execution. When executing the check-out event, this activity also excludes
itself from the process and this sub-process reaches an end, as there are no more activities

susceptible to execution.

13

CHAPTER 2. RELATED WORK

The DCR way of declaratively modeling a process provides much more flexibility than
the previously seen BPMn model, as the constraints present on the graph do not restrict

the order of execution of events, shifting the decision of which to perform to the user.

2.1.3.3 OCBC: Object-Centric Behavioral Constraint Model

In previous existing approaches (such as the widely used BPMn) there is a clear separation
between behavior and data flow in process models. That is why a declarative approach
that can describe processes with interacting instances and data dependencies provides
substantial applicability in process modeling. The Object-Centric Behavioral Constraint
model and notation introduced in [17, 25] is an approach to this problem, by using
cardinality constraints — as the ones present on Figure 2.9 — capable of specifying both
the structure and the behavior of a program in a single diagram, where different kinds of

instances can interact between them while taking data into account.

o Unary response — if left executes, then right must execute exactly once afterwards;
e Unary precedence — if left executes, then right must have been executed exactly once;
e Response — if left executes, then right must execute afterwards;

¢ Precedence — if left executes, then right must have been already executed;

e Non-response — if left executes, then right does not execute again;

e Non-precedence — if left executes, then right was never executed;

o Non-coexistence — left and right cannot be both executed; and finally,

o Coexistence — if left executes, then right must have been executed before or after.

o—>» —>®

(a) Unary Response (b) Unary Precedence
— » e
(c) Response (d) Precedence
O X—>> —HK—>>0
(e) Non-response (f) Non-precedence
o—X— o————
(g) Non-coexistence (h) Coexistence

Figure 2.9: The OCBC model relations

14

2.1. BUSINESS PROCESS MODELING

The OCBC model of the veterinarian clinic, as well as the logic behind it, are presented
next. The diagram of figure Figure 2.10 specifies that: (1) each appointment is for at least
one pet; (2) a pet can only be chosen after the appointment is created; (3) to each pet
there is a form that can be filled; (4) each form is submitted to only one check-in; (5) a
check-in may have several forms submitted; and finally, (6) there is only one check-in and
one check-out. This can be easily modeled by the OCBC notation, however, this notation

is not directly executable as it is not supported by any business process management

D ® e @0 O
® ®

Figure 2.10: OCBC model of the veterinarian clinic example

system

2.1.3.4 ReSeDa

RESEDA stands for REactive SEmi-structured DAta and it is a declarative data-centric
novel approach proposed by the authors in [3] for a process language. It generalizes and
was inspired by both the DCR notation (Section 2.1.3.2) and the reactive properties of
widely used spreadsheets [21]. As such, a RESEDA element can be either an:

e Input data-element, meaning that it expects a value to be inserted by the user that

triggers an event and assigns its value to the corresponding data field;

o Computational data-element, that is computed automatically (as done in spread-
sheets).

The semantics of RESEDA is based on the semantics of DCR, adopting its notion
of markings and the relationships between elements. Each element has a value, can be
included (excluded), pending (not pending), and executed (not executed). For the program
to reach an acceptable state, there should not exist any pending data-elements.

These elements are also restricted by the six constraints relations discussed in Sec-
tion 2.1.3.2, giving them the semantic foundation they need to specify its relative order
and response obligations, as well as the dynamic creation of new sub-processes. It is also
possible to access specific data-elements or refer to other events by their path expression
(their location). The veterinarian clinic example is modeled next using the RESED A
process language. It is also given a lightweight approach to its semantics and syntax, which
are formally defined in the paper that introduced it [3]. The example is going to have three

collections of data-elements, each establishing its own scope: the client collection, the pet

15

© 0 N o O b W

10

CHAPTER 2. RELATED WORK

collection, and the veterinarian collection, each of these can have nested data-elements
modeled in the following manner:
clients[]{
create_client[?:string]
create_client —-->> {
client[]{
client_id[freshid()],
client_name[@trigger:value]
}

}
}

The clients data-element collection has only one input data-element in line 2 (named
create_client) with type string as an expected input value. When executed, the spawn
event in line 4 creates a sub-process (identified by being enclosed in curly braces) represent-
ing a client belonging to the collection clients, and the data-element client_name will
have as value the string given as argument in the data-element that spawned it (specified
by the @trigger:value) — in this case, the data-element create_client in line 2. Thus,
this data-element is a rule of the process that creates a new data-element client in the
scope of the collection of data-elements clients when executed. The other data-element
named client_id has its value auto-computed and predefined by the function freshid (),
providing a distinct id for each client. The remaining veterinary and pet collections are
very similar to the one just described.

To execute a data-element we need to access it providing its path and a value as argu-
ment. For example, on the pet collection there could be an input data-element petName, and
for the user to provide its value it would have to access it providing: pets/pet [0] /petName
with “Pantufas” as argument, meaning that in the collection of pets it is selected the
data-element pet with the id zero, and its petName is modified to “Pantufas”.

Focusing on the workflow, if a client wants to book an appointment he needs to create
it first (create_appointment) providing its client_id and the vet_id. After this, it is
possible to choose the pet(s) for said appointment (choose_pet), and fill-out the form for
each one of them, optionally providing the reason to book the appointment as a description.
The next step is to check_in the appointment followed by its respective check_out. This
sequence of actions, with the addition of constraints from 1 to 6, are modeled using the

RESEDA notation in Figure 2.11.

e (1) each create_appointment event has at least one choose_pet event;

(2) each choose_pet event is preceded by a create_appointment event;
e (3) to each choose_pet event corresponds one and only one £ill_out_form event;

(4) the £ill_out_form event has only one check_in event that follows it;

16

2.1. BUSINESS PROCESS MODELING

e (5) each check_in event can be preceded by multiple £ill_out_form events;

e (6) to each check_in event corresponds one and only one check_out event.

The collection of appointment data-elements (line one of Figure 2.11) encapsulates all
the logic previously described. The semicolon in line three separates data-elements from
the rules of the process — the relationships in lines twenty-one to twenty-six, defining the
behavior between data-elements just like on the DCR graph notation.

In the first place, (1) states that each create_appointment data-element has at least
one choose_pet data-element: this is handled at line nine as the choose_pet data-element
is initially not executed (it has no : behind it), and is pending (it has ! as a prefix), meaning
it has to be eventually executed, and as there are no other rules that mention this data-
element, it can happen any number of times.

Next, (2) requires each choose_pet data-element to be preceded by the data-element
create_appointment. This is also handled in line nine as this data-element belongs to
the sub-process that spawns with the create_appointment data-element, and is only able
to be executed once the latter happens. Also, the condition rule in line twenty-one states
that only when a client_id is provided (which is when an appointment is created), the
choose_pet data field becomes enabled and can be executed.

The third rule states that to each choose_pet data-element corresponds one and only
one fill_out_form data-element. This is handled in lines thirteen and fourteen as each
time a pet is chosen a new sub-process to fill out the form is spawned, and the pending
data-element pet_id from line sixteen has the id from the pet chosen.

Next, (4) requires that all the forms of an appointment are preceded by one and
only one check_in data-element: this is accomplished by excluding the choose_pet data-
element after executing the check_in data-element, as stated in line twenty-four. Once this
happens it excludes itself, as stated in line twenty-three, ensuring that this data-element
can only happen once. The fifth constraint specifies that each check_in data-element can
be preceded by multiple £ill_out_form data-element, and this is obtained by allowing
multiple executions to the choose_pet data-element (as each one has its own form), and
they are all checked-in at the same time.

Lastly, (6) states that to each check_in data-element corresponds one and only one
check_out data-element. As already mentioned, it is only possible to execute the check_in
data-element once, as it excludes itself and the choose_pet data-element, which was the
only data-element that could re-include it. By saying that each check_in data-element
includes a check_out data-element, and each of the latter once executed also excludes
itself, as present at line twenty-six, (6) is guaranteed.

Semantically speaking, RESEDA is defined by a labeled transition system where
states represent the data-elements, with their respective marking information, and the

transitions correspond to the execution of said data-element, modifying their markings.

17

CHAPTER 2. RELATED WORK

appointments []{
create_appointment[?7:@/clients/client/client_id:value]
create_appointment -->>{
appointment []{
lappointment_id[freshid()],
Iclient_id[@trigger:value],
lvet_id[?7:@/vets/vet/vet_id:value],
choose_pet[?7:@/pets/pet/pet_id:valuel,
check_in[?:true],
Yicheck_out [?:true]
choose_pet —->>{
form[]{
Iform_id[freshid()],
Ipet_id[@trigger:value],
description[?:string]
}
1},
client_id -->* choose_pet,
choose_pet -->* check_in,

check_in -->% check_in,
check_in -->% choose_pet,
check_in -->+ check_out,
check_out -->J, check_out

Figure 2.11: RESED A modeling of the veterinarian clinic example.

2.2 Business Process Modeling Engines

With the increasing need for enterprise-grade quality of service requirements such as
automation and scalability in company applications [23], most of them include a way to
maximize this in the form of a workflow management component. This piece of software
may have many designations, such as Business Process Modeling Systems (BPMs) or
Workflow and Decision Automation Platforms [30], and can be implemented in different
languages and offer distinct functionalities, but at its core, they all share the same vital
piece of software responsible for the processing and monitoring of business processes: the

business process engine.

This engine may as well be implemented with different architectures: authors from [13]
discuss the perks of having a distributed engine running on a server instead of a local one,
arguing that the gains of autonomy and scalability are enough to out-value the costs of
maintaining a decentralized one. But despite its location, in a BPMs the engine has the
responsibility of loading a business process, to check which tasks are enabled, to allocate
the correct tasks for each user, to produce a new system state after a valid execution, and

even to generate global reports with key performance indicators for company analysis.

18

2.2. BUSINESS PROCESS MODELING ENGINES

The widely adapted notation on business process engines is the BPMn, however, as
there is no certification authority to check their standard conformance to the BPMn
implementation [11], and even though the direct execution of a process model enabled by
its 2.0 version meant to minimize the gap between desired and actual behavior, various
studies [11, 12, 23] prove that some BPMn features are almost never implemented, or
they are but in a differing way (as previously discussed on Section 2.1.2), and thus only a
small dialect of the language is common in the majority of engines, defeating the purpose
of standardization. On the following subsections are presented two major open-source

BPMs’s and how they implement processes as specification and its respective monitoring.

2.2.1 jBPM

jBPM is an open-source BPM engine written in Java that supports BPMn 2.0 specification,
and its currently at its 7.31.0.Final version. It can be used in a Java environment where the
engine is embedded in the application, or as a standalone service [31], where it is deployed
on the cloud. As any BPMs its intention is to shorten the gap between a business analyst
and the developer, and it accomplishes this by providing a simple graphical interface where
it is possible to specify a process by drag-and-drop of BPMn components, generating the

Java code semantically equivalent to it, remaining fix once deployed (Figure 2.12).

= o2 & @ % admine

Spaces » MySpace » Evaluation_Process » evaluation
> evaluation.bopmn - Business Process Save Delete | Rename | Copy | & B | & D Clv &~ Iy | B ~ | Migrate | Download | Latest Version ~ | | View Alerts || | x @

Model Overview

O
o 1 HR
Evaluation
]
= 2 Self ,
Evaluation
= 1
PM
LA Evaluation

Figure 2.12: jJBPM web-based graphical user interface, present in [31].

If used in a Java environment like Eclipse, at first a plug-in has to be installed *. From
there on, when creating a new jBPM project (or using it as a dependency in a Maven
project) a screen similar to the presented in Figure 2.13 shows up, and the Java code
specification of the desired BPMn process and its visual representation is visible, via an

interface on top of it.

1 Available at http://downloads.jboss.org/jbpm /release/6.0.1.Final /updatesite

19

CHAPTER 2. RELATED WORK

e JBPM - jbpm-project/src/main/resources/sample.bpmn - Eclipse

File Edit View Navigate Search Project Diagram Run Window Help

T E eI T O R T G I = s)
5w
[# Package Explorer % % Navigato =8 B sample 51
El = < palette b
- vgjbpm—pm]ve(lv . O I3 select
~ (@ src/main/java {iMarquee |
< g com.sample
o ple = Profiles
b [1 ProcessTest java e
< (8 sr¢/main/resources
B sample.bpmn [4 ProcessTest.java &
> =4 JRE System Library [jdk1.7.0_03] package com.sample; 2]
b =4 BPM Library & import org.jbpm.test.JbpnUnitBaseTestCase;[]
b munit4
b @& sic N
* This is a sample file to test a process.
b @ltestjava v,

public class ProcessTest extends JbpmUnitBaseTestCase {

@Test
public void testProcess() { k
Runti manager = createRunti ("sample.bpmn®) ; N

RuntineEngine engine = getRuntimeEngine(null);
KieSession ksession = engine.getKi ion();

ProcessInstance processInstance = ksession.startProcess("con.sample.bpmn.hello");
// check whether the process instance has completed successfully
assertProcessInstanceConpleted(processInstance.getId(), ksession);
asserthodeTriggered (processInstance.getId(), "Hello");

manager . disposeRunt ineEngine engine) ;
manager.close() ;

Figure 2.13: jBPM on eclipse via plugin, present in [31].

It also comes with a module for process monitoring (Dashbuilder) allowing data of
heterogeneous processes to be displayed with metrics and performance indicators. This
module is connected to the engine and fetches information via SQL queries related to the
data currently shown on the dashboard (Figure 2.14).

All Processes

30 22 15 15 18
Actve Processes e Presesses Sspencd Pinesses Aot Pagerssis Cormplted Broeses
Processes By Type Processes By Stan Date Processes Started By User

"|||l|||||‘|‘|

Frocesses By Running Time Processes By End Dane

- @

Figure 2.14: jBPM monitoring dashboard module in [31]

Processes By Version

r———

20

2.2. BUSINESS PROCESS MODELING ENGINES

2.2.2 Camunda

Together with jJBPM, Camunda is one of the most used and complete open-source BPMs on
the market [30]. It is also a framework built on Java that supports BPMn 2.0 specification,
and offers support for semi-structured data such as XML or JSON. It is currently on

version 7.12.

Cawemo Madeler Cockpit Tasklist Optimize

= :

D @ @ @ (0

Java / REST API

Workflow Engine Decision Engine

Figure 2.15: Camunda overview [30].

As depicted in Figure 2.16, Camunda offers an application similar to jJBPM where it
is possible for a developer to specify a business process by drag-and-drop of BPMn 2.0
components, which is translated to Java code once deployed (the Modeler). For example,
a portion of the process modeled in Figure 2.16 is represented in Figure 2.17. Furthermore,
the Camunda Cockpit — a web application much like the one of jBPM depicted in Figure 2.14
— provides monitoring features for the information related to deployed business processes.
Aside from these two components and as depicted in Figure 2.15, Camunda also provides
a range of other collaborative applications that interact with the engine via a REST API,
that help to specify and study the processes to be deployed (Cawemo), a service where
each user can see the tasks assigned to them (Tasklist), and a feature that allows the

creation of reports referring to deployed processes (Optimize).

Figure 2.16: Camunda graphical interface [30].

21

CHAPTER 2. RELATED WORK

BpmnModelInstance modelInstance = Bpmn.createProcess()
.name ("BPMN_API Invoice Process")
N
.exclusiveGateway ()
.name ("Invoice approved?")
.gatewayDirection(GatewayDirection.Diverging)
.condition("yes", "${approved}")
.userTask()
.name ("Prepare Bank Transfer")
.camundaCandidateGroups ("accounting")
.serviceTask()
.name ("Archive Invoice")
.camundaClass ("org.camunda.bpm. example. invoice.service.ArchiveInvoiceService")
.endEvent ()
.name ("Invoice processed")
.moveToLastGateway ()
.condition("no", "${'!approved}")
.userTask()
.name ("Review,Invoice")
.camundaAssignee("demo")
L]
.done();

Figure 2.17: Abbreviated Java code representing the BPMn process on Figure 2.16

22

CHAPTER

ReDa - Reactive Data-driven Processes

Current business process modeling technologies based on flow-oriented process notations,
such as the already discussed BPMn (Section 2.1.2), have some kind of support to incorpo-
rate data into the process — by referral to a specific document or database to assist in the
process decision making. However, as data is mainly handled outside the process control,

this hinders representation and reasoning about the full process behavior [4].

This chapter presents REDA — a declarative and data-driven generalization of RESEDA.
It focuses on a native graph-based representation consisting of data items and relation-
ships between them, where constraints and computations can be controlled dynamically
according to the current state of the process, and allowing elements to be queried in a
graph-based natural way by traversing the data. REDA may as well be seen as a “graph
spreadsheet” where instead of a matrix elements are nodes in a graph, and the usual
spreadsheet updates are external executions that may lead to recompute the value of
dependent nodes, thus providing a reactive behavior to the language much akin to the
one seen at spreadsheets. Additionally, the DCR constraints between elements adopted by

REDA provide more control than the present at spreadsheets.

3.1 Syntax

The formal syntax of REDA is depicted in the grammar in Figure 3.1, and the intended
semantics for each construct is explained on Section 3.2. The syntax closely follows that
of RESEDA [3], with obvious differences in the query language for data-elements and the
addition of explicit data relationships, allowing the selection of data-elements that satisfy
some criteria (related to their properties or existing relationships) and to dynamically

control the process behavior.

23

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

P 2= D:R:;Y Processes
D (np : O)[7:T):(hyi,r,v) | (np: £)[E):(h,i,7,0) Data-Elements
Y u= ¢AEle ¢ | 9{El0 ¢ | ¢e{El=¢
| ¢HE+¢ | oEP% ¢ | oE»P Control Relationships
R = ¢-n:{> ¢ Data Relationships
T = Unit | String | Number | Boolean | List 7' | {z:T } Data Types
1) = Y RETURN E | n Node Queries
¢ = MATCH Q WHERE E
| MATCH Q WHERE E WITH pipe WHERE E Match Expressions
E = c|n|Qf¢ | | Eattr | f(E1,....Ep)
| {x=FE} | EL]|[E]| hd(E) | tI(E) Expressions
c = numbers | strings | true | false | 1 | L Literals
pipe == aggASn | nASn Pipeline Term
agg == n | COUNT(E) | MAX(E) | MIN(E) | SUM(E) | AVG(E) Aggregating Functions
attr = walue | executed | included | pending Attributes

Figure 3.1: Syntax of REDA

A REDA process P comprises a sequence of data-element definitions (D), followed by

a sequence of definitions for data relationships (R) and a sequence of control relationships
(?) (the concrete syntax uses a comma as a separator in these sequences and a semicolon
as a separator between collections). These definitions are based both on a query language
on graphs and a language of expressions that manipulate a set of data types like unit,

numbers, strings, booleans, lists, and records [10].

REDA processes are composed of data-elements and the existing relationships between
them, and they can act either as a way to interact with the process allowing the input of
some required data (input data-element), or as a way to show information (output data-
element). The first ((n,:0)[?:T]:(h,i,7,v)) defines a system entry to allow the interaction
between the user and the process, and the second ((n,:£)[E]:(h,i,7,v)) defines an element in
the graph that holds the result of a computation, given by expression E. A computational
element may have data dependencies referring to values carried by other data-elements
defined by the expression F, making its re-evaluation necessary whenever one of them is

executed.

In their concrete syntax, both input and computational data-elements have: (i) a
local identifier (n), used to identify the data-element in the context it was defined and its
sub-contexts; (ii) a unique runtime identifier (p), only generated after the data-element
has actually been created; (iii) a label (¢), that represents the type of the node (e.g. if it
is an input node or a computational node, but can also be used to assign roles in a process,
e.g. manager, employee...); (iv) either a type (7', if it is an input data-element) or an
expression (E, if it is a computational data-element); and finally, (v) a marking (h,i,r,v),
which is typical on DCR related languages [3, 7, 15], and defines the current state of the

data-element on the process, being comprised of:

24

3.1. SYNTAX

1. an integer value denoted by h for happened or executed (in the concrete syntax),
greater than zero if the event has been previously executed (executions are external
events where the user interacts with the process, and each of this interactions updates

the respective data nodes executed property by one);

2. a boolean denoted by ¢ for included (in the concrete syntax) indicating whether
the data-element is currently included in the process. A data-element that is not
included is considered irrelevant: it cannot execute, and cannot prevent the execution

of others (an element that is “not included” is considered excluded);

3. a boolean denoted by r for required or pending (in the concrete syntax) indicating
whether the data-element has a pending execution. A pending element is required
to be subsequently updated (or become excluded) at some point in the future for

the process to reach a valid termination; and finally,

4. a value denoted by v indicating the current value of the data-element if it has been
executed (h > 1), or the undefined value (L) if not, meaning its initial value is

dependent on external interaction with the process.

Data-element definitions in the examples ahead are simplified by not having the mark-
ings field for abbreviation purposes, and have a symbol prefixed to them to differ from the
default markings (included and not pending): to indicate that an element is pending it
is prefixed with !, and to indicate that the element is excluded it is prefixed with %. For
instance, a computational data-element a with label A, having true as expression E would

have the following syntax:

e (a:A) [true], if included and not pending;
e %(a:h) [truel, if excluded and not pending;
e !(a:A) [true], if included and pending; and finally,

%! (a:A) [truel, if excluded and pending.

Getting back to our example of the veterinarian clinic, consider the following example of
a data-element with local identifier createAppointment: it is written in the abbreviated
syntax (it has no markings field) and has no prefix, being possible to conclude that
this data-element is both included and not pending in the process; it is also an input
data-element (it has a type T field, explicit by the use of [?: ... 1), and has record
{clientID:String, vetID:String} as input type.

(createAppointment:DataIN) [?:{clientID:String, vetID:String}]

Besides data-elements, REDA processes are rich in relationships shared between them.
There are explicit relationships present in the process definition — control relationships R
and data relationships Y — and implicit relationships between data-elements, created by

data dependencies or nested identifiers, for instance. A control relationship R can be one

25

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

of six relationships, connecting sets of data-elements ¢ and ¢’ and having a guard E as a
conditional boolean expression (the syntax of control relationships can also be abbreviated
by not having a guard if its (default) value is true). Consider the following examples of

REDA control relationships that make use of our veterinarian clinic example theme:

1. condition ¢p—{E}+e ¢’ (-—>*), indicating that if E evaluates to true data-elements on
the right cannot execute unless each data-element on the left is either marked not
included or executed. Consider for instance the condition between sedatePet and

operatePet:
sedatePet -[pet.asleep]->* operatePet

In this example, the operatePet data-element can only be executed either if there is
no sedatePet event, or once it is previously executed and if the guard pet.asleep
evaluates to true, meaning that to be able to perform an operation it is either
not necessary to sedate him, or it is required to do so and wait until he is asleep.
Note that there is a data dependency present between the data-element pet and
this relationship (it is a free name in the expression E of the relationship guard), as
whenever pet is executed it is necessary to re-evaluate all the relationships that are

dependent on its asleep property, to know if the guard evaluates to true.

2. milestone ¢p—{E}=¢ ¢’ (--<>), indicating that if E evaluates to true data-elements on
the right cannot execute unless each data-element on the left is either marked not
included or not pending. Consider the following example where it is only possible to
execute operatePet if the data-element appointmentDescription is not pending

or not included:
appointmentDescription --><> operatePet

Note that there may exist an appointmentDescription data-element included in
the process and to perform an operation without executing it, but if this description
has its pending property set to true (as it may contain valuable information that
would otherwise jeopardize the operation, for instance, some medicine allergies) it is
mandatory to execute it first. As there is no guard F it is possible to conclude that

its value is true by default, and therefore omitted.

3. response ¢e{E}>¢’ (*-->), indicating that if E evaluates to true whenever some
data-element on the left executes, all data-elements on the right become marked

pending;
callOwner *-[appointment.daysPassed > 3]-> callPETA

In this example, the guard is evaluated to true if and only if the property daysPassed

of the appointment data-element is greater than three, and whenever callOwner

26

3.1. SYNTAX

is executed the callPETA data-element is set to pending, meaning that if an owner
does not check-out its pets from the appointment in three days after it is finished,
a call is eventually made to an organization that protects animals. There is once
more a data dependency between the data-element appointment and this control
relationship, as whenever appointment is executed the boolean value of the guard

condition appointment.daysPassed > 3 may change.

. exclusion ¢—{E% ¢’ (-->%), indicating that whenever some data-element on the
left executes and if E evaluates to true, all data-elements on the right become marked

excluded;

payAppointment -[MATCH (owner)-[r:made_appointment]->(appointment)
WHERE owner.age > 60 WITH count(r) as n WHERE n>5]->J, stateIncomeTax

This is an example of a dynamic condition to represent that customers above the age
of sixty that have made more than five appointments in this veterinarian clinic do not
need to pay the state income tax, as whenever the payAppointment event is executed,
the program checks if the owner has a data relationship of type :made_appointment
with another data-element, and if the result of the aggregation function count()
applied on this explicit relationship returns more than five the event stateIncomeTax

becomes excluded from the process;

. inclusion ¢—{E}++ ¢’ (-—>+), indicating that if E evaluates to true whenever some
data-element on the left executes, all data-elements on the right become marked

included;
checkOut -->+ MATCH (e) WHERE e?animalShelterSupport RETURN e

This relationship is the semantical opposite of the exclusion relationship, and states
that whenever the checkOut data-element is executed, all data-elements e with type
animalShelterSupport are going to be included into the process (note that the
relationship guard F is true by default). This means that whenever a customer
is checking-out their pets, it is given them the possibility to contribute to animal
shelter support organizations (note also that these data-elements are just included

and not pending, and as such their execution is not mandatory); and finally,

. spawn ¢—{E}» P (-->>), indicating that whenever some data-element on the left
executes and if E evaluates to true, a new sub-process is merged into the current
process. A special identifier @trigger denotes the left-hand side (spawner) element

in the context of the new sub-process elements.

createAppointment -->> { ReDa sub-process }

27

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

For instance, in this example whenever createAppointment is executed (the control
relationship guard F is true by default) a new sub-process with new REDA data-
elements D, control relationships R, and data relationships Y is going to be added
to the process. In this sub-process context, the key-word @trigger refers to the

spawner data-element createAppointment. Consider its following definition:

(createAppointment:DataIN) [?: {clientID:String, vetID:Stringl}]

The createAppointment event is an input data-element that is both included and not
pending (note that it is being used abbreviated syntax) with type record
{clientID:String, vetID:String}. Consider now that somewhere in the process

the following spawn control relationship exists:

createAppointment -->> {

(appointment :Data0UT) [{clientID:@trigger.value.clientID,vetID:Q@trigger.value.vetID}],

..
...
..

Whenever createAppointment is executed, a new output data-element appointment
with {clientID:@trigger.value.clientID,vetID:@trigger.value.vetID} as ex-
pression F is added into the process, whose properties clientID and vetID are
evaluated to the value given to the properties clientID and vetID of the spawner

data-element (createAppointment), as the key-word @trigger references it.

In other languages, like REDA’s precursor RESEDA [3], the mechanism for relating
data items include nesting and using values as keys to identify other elements in other
locations of the state. The graph-based nature of REDA includes direct data relationships
between data-elements that guarantee the integrity of all existing relationships. Data
relationships Y of the form ¢—n : |+ ¢ create a link between all combinations of nodes
resulting from the queries on the left and right-hand-side. Match expressions (¢) closely
resemble the notation of cypher [9] for graph queries, by identifying nodes and relation-
ships via patterns (@, the match clause) and filtering and aggregating the results (¢, the
restriction after the where clause that is applied on Q). For instance, it is possible to
say that the data-element with the local identifier john has a data relationship of type

:is_owner with all the data-elements of type pet where their property owner is “john”:

john -[:is_owner]-> MATCH (p) WHERE p?pet AND p.owner="john" RETURN p

28

3.2. SEMANTICS

Finally, the expression language underlying REDA includes constructor and destructor
expressions for all the data-types referred above, predefined functions, and include the
use of match expressions to enable the runtime manipulation of data-elements and their

attributes.

3.2 Semantics

The formal semantics of REDA is defined as a transition system, where states are the
data-elements and their respective relationships combined with their marking information,
and the transitions are events corresponding to executions (i.e. value updates) of input

data-elements. To define this transition system, two functions are required:

e One that determines, for given a REDA program state, which data-elements are

currently executable (enabled), as explained in 3.2.1;

e One that determines, for given a REDA program state and a data-element, what is

the next state after executing said data-element (transitions), as explained in 3.2.2.

3.2.1 Enabledness

For a data-element p to be enabled it must satisfy that:

o Every data-element p’ that is a condition for p must be either excluded or previously

executed;
o Every data-element p’ that is a milestone for p must be either excluded or not pending;
e Every boolean expression E present on the guard of a condition or milestone rela-
tionship for p must be evaluated to true, and finally,

e The data-element p must itself be included in the process.

The enabledp(p) function makes this check. For the data-element p in the process P
its control relationships are traversed, looking for conditions and data-elements that might

prevent it from being enabled, and its semantics are defined by the following two cases:

enabledp(p) £
Vo E}e ¢’ € R.p € [¢'], = ([#]included]], = [¢[included A executed]],) A (E) p = true
A

Vo E}lso ¢’ € R.p € [¢'], = ([#]included]], = [¢[included A —pending]],,) A (E)p = true

This first case states that for each condition relationship existing on the set of all
control relationships R of the program P, if p belongs to the set of data-elements ¢’, then
its included property must evaluate to the same boolean value as the logical evaluation of

its included and executed properties, which must be true for the logical operation to be

29

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

true as well. Additionally, for the data-element p to be considered, its conditional guard
E needs to evaluate to true, and therefore the result of true A true is true. The same
logic is applied to the milestone relationship, changing only the fact that where it is read
“executed” it now reads “not pending”. The element p is considered enabled only if both

these cases are evaluated to true.

3.2.2 Transitions

In a transition system of a REDA process P, states can be seen as sub-processes P’ and
transitions to be the update of either a single data-element p or multiple data-elements p
(satisfying a given match clause), with respective values v. The set of effects of executing
a data-element (or a set of data-elements) p on a process P’ in the context of a global

process P (the set of effectsP(FP’, p)) are presented next.

The effects are inductively computed based on said data-element p control relationships,
with each of these base cases treated separately by registering which data-element may cause
what particular effect (pending, included, or excluded), and to what other data-elements

it is applied.

If the data-element to be executed (p) belongs to a set of data-elements ¢ (the left
side) of a response relationship, inclusion relationship or an exclusion relationship, all data-
elements (p') belonging to the set of data-elements ¢’ (the right side) are going to have
their pending property set to true, their included property set to true, or their included
property set to false, respectively. If the control relationship is a spawn relationship,
then whenever a data-element p belonging to the set of data-elements ¢ is executed, a
new sub-process P’ is created, where the name identifier @trigger refers to the spawner

event(s) p in this new context.

effectsp(R) = U 3, effectspr (R)

pend,p’)) | (p.p") € [8], x [¢'],}
incl, ")) | (p.p) € [¢]» x [¢']5}
excl,p)) [(p.p') € [¢] x [¢']-}
spawn(P'{#/wrigger}))) | p € [¢],}

effects pr (po-{E}->¢’
effects p/ (p—{ E>+ ¢/
effectspr (¢ E% ¢
effects p/ (p—{ E} P’

o~ o~~~

When said effects § are applied to the data-element(s) p of the program P, they have
their markings field modified accordingly to the effects function on program P’, as

presented next.

30

3.2. SEMANTICS

P < (6,p)= P
(D, (n,: 0)[2:T):(h,i,p,v));R;Y < (pend,p) = (D, (n,:0)[?:T):(h,i,t,0));R;Y
(D, (n,: 0)[E):(h,i,p,v));R;Y < (pend,p) = (D,(n,:0)E]:(h,i,t,0));RY
(D, (n,: O)[2:T):(h,i,p,v));RY < (incl,p) £ (D, (n,:0)[2:T):(h,t,p,v));R;Y
(D, (n, : O)[E):(h,i,p,0));R;Y < (incl,p) £ (D, (n,: £)[E):(h,t,p,v));B;Y
(D, (np: 0)[2:T):(hyi,p,v));R;Y < (excl,p) = (D, (n,:0)[2:T):(h,f,p,v));R;Y
(D, (n, : O)[E):(h,i,p,v));R;Y < (excl,p) = (D, (n,: 0)[E):(h,f,p,0));R;Y
D;R;Y < (spawn(D';R;Y7),p) =

D,D'o;R,R'o;Y,Y'o
o

is fresh and closes D

The first two cases (the same effect is studied when applied on an input data-element
and on an output data-element) convey that when the pending effect is applied on a data-
element p its pending property is set to true. The next two pairs of cases are the opposite
from each other: whereas the inclusion effect applied on p forces the boolean value of the
included property to true, the exclusion effect forces it to false. In the last case, when
the effect of a spawn relationship is applied by p, the substitution o replaces the names of
events defined by D’ with fresh event identifiers, in order to instantiate the sub-process.
The same names are free in R’ and Y.

Finally, the transition rules presented next are used to define the transition system,
making a distinction between computation events (rule compute) and input events (rule
update). The former transitions require which data-element is going to be executed (p),
whereas the latter requires both the data-element p and an input value v (labeled p(v)).
In both cases the selected data-element p must be enabled, and the effects of the data-
elements execution are applied to a process P’ where the target data-element is already

(re)computed /updated. Computing a transition involves in either case three steps:

o The data-element in question (p) must be enabled;

e Then, for an input data-element p, the value of p is updated with the value of input
v (updateIpD (P, p, v)). For a computation data-element, the computation is executed

(compute” (P, p)):

o Finally, the effects of executing p are computed and applied (effectsp’ (p)).

enabledp(p) P’ =updatep(p,v) 0§ = effectsp/(p)
P pras

enabledp(p) P’ =computep(p) § = effectsp:(p)
P -5 pPras

31

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

3.2.3 Data expressions

The semantics of an expression E on a program P, written (E|p, are defined by the

following cases:

(chp=c

(1)p=1

(L)p=L

G¢DP £ [[@bﬂp

(¢)p = true if 4], =0

(v) p = false if [¢], =0

(E:attr)p £ v if (E)p=A...,attr :v}
(f(E1,.s)P = f((ELD P, -, (B p)

The first three cases are trivial, as the semantic evaluation of a constant, the unit value,
or the undefined value is the constant, unit value, and undefined value, respectively. The
last two cases state that the semantic evaluation of an attribute is its current value, and
the semantics of a function with expressions is the function itself applied to the individual

semantic evaluation of its expressions.

The semantics of node queries, written [¢],, is defined by analyzing the possible cases
for ¢ and relying on the semantics of match expressions, written [¢[p, where o is a
substitution mapping names to values, o(x) is the value assigned to x in substitution o,

and Fo is the application of the substitution in expression E.

[Retunz], £ {o(z) | o€]v]r}
[Match Q Where E1[p 2 {0 | 0 €||Q|pA(E10)p = true}

[¥ With pipe Where Es[p {o" | o' €JWl, (agg ASn) € pipe, v=[agg]” A (E20'{"/n})p = true}

The first case states that the semantic evaluation of the node query is the assignment
of all substitutions o possible to the variable . The semantics of the second case are
the substitutions returned by the semantic evaluation of the pattern @ (Section 3.2.3.1)
that are true on the expression F1, and lastly, the semantics of the last case are all
the substitutions ¢’ belonging to 1 (the former case), where n are new names for the
aggregations belonging to the pipe, v are the results of the aggregation functions given
all substitutions ¢/, and where the evaluation of the substitutions obtained by replacing n

with all values v on ¢’ to E2 are true.

32

3.2. SEMANTICS

3.2.3.1 Patterns

The semantics of pattern evaluation ||Q| p are defined by the three cases below !:

Inlp={n—p | P=D;RY, n, €D}
In{Fn'lp={{n—p,n =o'} | P=DiRY A(ny,{}n,) €Y}
1Q1,Q2llp £{ o102 | 01 € |Q1llp, 02 € |Q2llp, 01//02}

L
L

The first case means that the semantic evaluation of a variable n without relationships
returns all data-elements of the program. Next, the second case returns all possible
permutations where the relationship between m and n’ belongs to the set of all data
relationships in the program, and lastly, the union of two patterns returns the union of

the substitution in each pattern where all common names have the same value.

3.2.3.2 Aggregation Functions

The semantics of the aggregation functions, written [agg|? where o represents the possible

substitutions to E, are defined below:

[n]7 = o(n)

[count(E)]° = #{o | o €]v[p A (Ec)p #null}
[maz(E)]° 2 maz({(Eo:attr)p | o €]y[p})
[min(E)]° £ min({(Eo:attr)p | o €]¢[p})
sum(B))° £ sum({(Eo:attr)p | o €[6[p})
[avg(E)17 = avg({ (Eo:attr)p | o €]v]p})

The first case returns all the possible substitutions (o) for the variable n. Next, count ()
returns the number of possible substitutions ¢ on all free names of E different from null,
and max () returns the maximum value out of all values returned by doing each possible
substitution o on all free names of E. The same logic is applied on min(), avg() and
sum (), but returning the lowest value, the average of all values and the sum of all values,

respectively.

! 56" denotes the union of the two substitutions. o//c’ means that all common names have the same

value, and thus the union is defined.

33

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

3.3 ReDa by example

In this section, REDA is exemplified with the help of a running example of a library able
to create records of authors and their books in a database, and also manages loans to
users using their names (this example was chosen rather than the veterinarian clinic
as it provides a richer approach to REDA’s syntax and semantics, but its modeling
and respective translation to cypher is present at Annex II). For the sake of briefness,
users are identified only by their name, and no further information and control is given.

REDA constructions and operations are gradually re-visited.

A REDA process definition simultaneously introduces the data model and the control
flow of a software system. The language that defines the process is the actual programming
language used to define a system’s behavior. The data model comprises interdependent
nodes, interconnected in a graph denoting either input or computation data-elements. Input
data-elements define typed points of entry for data that are linked to external systems
(e.g. web services) or user interfaces capable of any form of interaction and data input.
Output data-elements denote a value computed from their enclosed expression, and can
reactively refer to other (computation or input) elements. Thus, each output data-element

is up-to-date with its references like a spreadsheet cell.

The view of the data model provided by a REDA process is completed by the definition
of explicit data relationships that can be queried together with the data-elements and
used explicitly in control flow definitions. Furthermore, syntactic dependencies between
data-elements, from using their identifiers and properties, define an implicit control flow
layer that is complemented by the definition of explicit control flow relationships between
nodes. Both data and control relationships can be dynamically controlled by boolean

conditions (guards) on nodes and their properties.

Control relationships in REDA are inherited from DCR graphs and their process
definition language. They denote dependencies between events (condition, response,
or milestone relationships), and the control over the visibility (enabledness) of data-
elements (including or excluding them from active participation in the process). Lastly,
REDA supports the introduction of sub-processes, allowing the creation of new nodes and
relationships as an essential mechanism for the dynamic creation of new control and data
structures. In the end, data-elements are event-like structures in the sense of DCR graphs.
The occurrence of events in REDA is always associated with the input of new data or with

the (re)computation of values.

Consider the following REDA fragment defining a REDA process with three main

sections: node declarations, control relationship declarations, and data relationship decla-

rations 2.

2 Notice that in the examples a semi-colon separates sections and a comma separates individual definitions.

34

o s W

o N o

3.3. REDA BY EXAMPLE

(createAuthor:DataIN) [?: { authorName:String }]
createAuthor —-->> {

(author:DataOUT) [{ name:@trigger.value.authorName }]

>

Line 1 declares an input data-element and declares the identifier createAuthor, whose
scope are the definitions below, as accepting values as input of type record
{authorName:String}. The second declaration (line 3) denotes the spawning of a new
REDA sub-process, containing an output data-element with the identifier author, visible
inside the process on the right-hand side of a spawn relationship (-->>). The enclosed
expression of type record denotes the value associated with this computation node, where
@trigger is evaluated once in a call-by-value strategy (by copying the value and not a
reference to the original location). The third and empty section in the snippet above is
reserved for the declaration of explicit data relationships. Using this process and executing
the createAuthor input data-element — with values "Tolkien" and "Philip K. Dick" —

the process now contains the data-elements depicted in Figure 3.2.

createAuthor author "aughor
Trlkian" ["Philip K.
[?authormame] author ["Tolkien"] Dick"]

[name]

Figure 3.2: Process state after the creation of two authors.

Each data-element in the graph is stateful and has an associated marking, composed of
three properties: executed, included, and pending. Like in DCR graphs, these properties
specify if and, in this case, how many times a given data-element has already been executed,
whether it is currently included in the process activity and if it is a pending event, required
to happen at a given time, respectively. When possible, these markings are syntactically
replaced by symbols to differ from the default ones (included and not pending), by using a
% prefixed to the definition of a data-element representing its exclusion in the graph, and a
I indicating that the data-element has a pending computation. For instance, the expanded

syntax of the declaration of the input data-element createAuthor is the following:

(createAuthor:DataIN) [?:{authorName:String}] : {executed:0,included:true,pending:false}

To continue the example, the sub-process will be extended with more declarations to

allow the creation of books in the process and underlying data model.

35

N

o

o N o

10

11

13

14

15

16

CHAPTER 3. REDA - REACTIVE DATA-DRIVEN PROCESSES

(createAuthor:DataIN) [?: { authorName:String }]
createAuthor —-->> {
(author:DataOUT) [{ name:@trigger.value.authorName }],
(createBook:DataIN) [?7:{ bookTitle:String, isbn:String }]
createBook -->>{
(book:DataOUT) [{bookTitle:@trigger.value.bookTitle, isbn:Q@trigger.value.isbn, author:

author.value.name }]

author -[:WROTE]-> book
}

>

This snippet states that, in case of an occurrence of a createAuthor data-element,
it also defines a new instance of an input data-element createBook, each associated to
a different author data-element, as well as a new spawn relationship in that nested sub-
process, activated whenever createBook is executed for that particular value of author.
Also, a new data relationship labeled WROTE is created between the author and the book
nodes at the end, specifying an explicit relationship between them and meaning that this
new book was written by that specific author created in its upper scope.

Notice that, via a nested reference inside the spawn of createBook, there is a relation-
ship between every createBook data-element and the author data-element defined in the
same context. This syntactic relationship is preserved at runtime very much like a closure
preserves the values of the free names of the function originating it. So, each author in
the process has a related action or entry point in the system to create its books. Using
this process and executing once again the createAuthor input data-element — with values
"Tolkien" and "Philip K. Dick" — but now also adding a book for each one of them,

the process contains the data-elements depicted in Figure 3.3.

,7[:WROTE] 1
createAuthor author X createBook book
[Zautomane] createBook book [Tolkien'] [~ FAUOT > T e [The Hobbif]

£booktitle
[title]
author author
[name] [PhilipK. > [author] —>| CreateBock book
Dick'] [?booktitie] [Ubik]

I— [:WROTE])

Figure 3.3: Process state after the creation of two authors and two books.

36

o

© 0 N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

3.3. REDA BY EXAMPLE

(createAuthor:DataIN) [?:{authorName:String}]
createAuthor -->> {
(author:DataOUT) [{name:Q@trigger.value.authorName}],
(createBook:DataIN) [?7:{bookTitle:String, isbn:String}]
createBook ——>>{
(book:DataOUT) [{bookTitle:@trigger.value.bookTitle,
isbn:Q@trigger.value.isbn, author:author.value.namel}],
(loanBook:DataIN) [?:{username:String}]
loanBook -->% loanBook,
loanBook —-->>{
(loan:DataOUT) [{user:@trigger.value.username}],
! (returnBook:DataIN) [7]
returnBook --> returnBook,
returnBook -->+ loanBook
loan -[:BO0K]-> book,
returnBook -[:LOAN]-> loan
}
author -[:WROTE]-> book
}

)

Next, an input data-element named loanBook is introduced into the sub-process of each
book. To simplify, this input data-element only requires the name of the user requesting
to loan the book. There are also two new control relationships: the first one states that
whenever loanBook executes it excludes itself from the process (line 12), and the second
is a spawn relationship (line 13) that adds a loan data-element whose value is the name
given as input to loanBook node, as well as pending input data-element returnBook that
needs to be fired when the user wants to terminate a loan in the library.

Two control relationships are also introduced by this sub-process: the first says that
returnBook excludes itself (line 17), i.e. it cannot happen twice, and another that includes
loanBook back (line 18), allowing for new loans to happen.

The diagram that corresponds to this last complete version of the REDA library
process is shown in Figure 3.4. It is possible to see that this includes the classic DCR
graph relationships, plus graph relationships between data-elements. One detail that is not
visible in this diagram is the data dependencies introduced by expressions in computation
elements (node instances for authors, books, and loans are not shown here). REDA, as

presented above, is a core calculus that is at the heart of a process-aware system.

37

CHAPTER 3.

REDA - REACTIVE DATA-DRIVEN PROCESSES

createAuthor
[?authomame]

createBook
[?bookitie]

author
[name]

— [\WROTE] —T L[:BOOK]

book
[title]

loanBook
[?username]

loan

IreturnBook

171

0/ o

T |_ [:LOAN] _1\

Figure 3.4: Graphical representation of the example.

38

CHAPTER

Compilation Procedure

Whilst REDA (Chapter 3) is a declarative approach to model business processes, where
its semantics and data are unified, applicability is obtained in the form of business process
modeling systems and their engines (Section 2.2). In this chapter we present the procedure
to systematically transform REDA processes into cypher scripts [9] (the native language of
the neodj graph-database), maintaining all process behavior and semantics in the form of

database triggers. This procedure represents the first step to achieve process automation.

The approach is based in a design where executions (performing a given task in a
process) are translated to update queries in the database, and where data-elements and
their properties can be queried by external systems. The execution of data-elements is
conveniently guarded by the database against inadmissible operations, like the execution
of an element that is not enabled. The remaining process behavior is encoded to cypher
and executed by the database engine. The compilation procedure that systematically
transforms a REDA process into cypher code, denoting its behavior, is going to be presented

next.

The structure of a cypher script is a flat list of node and relationship declarations, graph
queries, update commands, and other (trigger) definitions. A hoisting mechanism that
statically defines explicit relationships between node instances in the graph of the target
system to represent nested relationships between node identifiers is used to transform the
nested structure of REDA processes into the flat structure of cypher code. The result is a
cypher script with top-level creation commands for top-level nodes and data relationships,

and triggers that represent the delayed inner definition contexts of spawn relationships.

A REDA process is translated into a four-part cypher script containing: (i) a set of
queries that are used to fetch related nodes from other contexts to be used in local (or
inner) definitions — empty at the top level; (ii) a set of node definitions that correspond

to local definitions of input and computation nodes; (iii) a set of relationship definitions

39

© 00 N O 0O W N

R e =
s W N = O

CHAPTER 4. COMPILATION PROCEDURE

that correspond to data dependencies, control relationships, and data relationships defined
in the current process; and finally, (iv) in the case of triggers associated to a data-element,
one update command that (re)evaluates the node’s expression with relation to the nodes it
depends on. There is one special kind of trigger, which is depicted on line six of Figure 4.1,
that contains the constraints and verifications necessary for the semantics of REDA to be
applied, and to allow matches and dynamic conditions. Nested relationships come from
the definition of sub-processes (introduced by spawn relationships), which are static and
fixed in a REDA process. Thus, all name dependencies are statically resolved and generate

cypher relationships and queries that correctly implement a static binding strategy.

-- Top level --
ii) creation of nodes
iii) creation of relationships between nodes
-- Triggers —-
Main_trigger { (...) }
Trigger_1 {
i) node lookup
ii) creation of nodes
iii) creation of relationships between nodes
iv) updates
}

...

Figure 4.1: General structure of a cypher script.

Sub-processes are compiled into cypher code enclosed in triggers, which are associated,
by the compiler, to changes (execution) in the spawner nodes. Such triggers are executed
whenever the corresponding data-element is requested to execute. The nesting of processes
results in the nesting of name declarations and the use of names defined in outer contexts.
The hoisting mechanism for processes includes the encoding of non-local names in persistent
relationships between nodes, created upon the execution of the outer context, and the
retrieval of the relationships upon the execution of the trigger that represents the inner
context. This linked structure is defined between node instances during the execution of

the process, depicting the dynamic nature of the relationships.

Finally, REDA control relationships are translated to relationships between node in-
stances. The enabledness check is translated into explicit validations that check if any
preceding element (using a relationship with labels : condition or :milestone) is included
and not executed in the case of condition relationships, or included and pending in the case
of milestone relationships. The effects of execution via the response, includes and excludes
relationships are translated to cypher queries that search for this kind of relationships
between node instances and modifies the marking of the target node accordingly. The
enabledness check and the subsequent execution of effects is performed by a main trigger

which may abort any transaction in case of error.

40

© 00 N O 0O B W N -

e e
g W N = O

(a:A) [?:Number],
(b:B) [a.value+1]
b -->% a,
a ——>> {
(c:C) [{x:a.value+b.value, y:0@trigger.valuel}]

c ——>> {
(d:D) [c.value.x+c.value.y+a.valuel

Figure 4.2: Toy example to illustrate the compilation of REDA to cypher.

To illustrate the compilation procedure, consider the REDA example of Figure 4.2,
gathering the main cases of the compilation function (data dependencies, nested processes,
and subprocesses) that we next translate into a cypher script. The resultant script of
this example is simplified for now, not taking into account matches or dynamic conditions,
which are approached in Section 4.1. First, there are two top-level node (data-element)

definitions that correspond to the defined name, label, and default values of the markings.

CREATE (a_0:A{reda_id="a_0", executed:0, included:true, pending:false, value:0})
CREATE (b_1:B{reda_id="b_0", executed:0, included:true, pending:false})

Line 1 is the declaration of the input node a, which includes the initialization of the
value to the default value appropriate for the data-type (0). Node b is declared in line 2
and its value is left uninitialized since it depends on node a and cannot be evaluated at
this stage. Notice the alpha-renaming of node names with fresh identifiers (a_0, b_1) to
avoid clashing between different declaration contexts.

Consider the syntactic dependencies between a and b created by the expression in the
definition of b, and because a spawns a subprocess using b. The compiled code of the
subprocess is emitted in a delayed cypher context in the trigger shown below. Explicit
node relationships that define a name substitution are used in order to maintain the static

resolution of names:

CREATE (a_0)-[:a]l->(a_0)
CREATE (a_0)-[:a]l->(b_1)
CREATE (b_1)-[:b]->(a_0)

Line 4 means: node a_0 in this context is the correct substitution for the free name a

in all sub-processes (and expressions) of node b_1. The data dependency of b on a is then

41

CHAPTER 4. COMPILATION PROCEDURE

reified into a control relationship dependency as follows: b cannot be executed without first
having executed — and thus gotten a value for — a (line 6); and equally clearly, whenever
the value of a changes, b must be re-computed to reflect that change in its value (line 7).

That is, the following condition and response are added:

6 CREATE (a_0)-[:condition]->(b_1)
7 CREATE (a_0)-[:response]->(b_1)

These relationships establish the essence of the reactive behaviour of REDA, following
the semantics of RESEDA (Section 2.1.3.4), and the mechanics are akin to spreadsheet
semantics: updating the “cell” a forces a re-computation of the value of b. The excludes
control relationship on line 4 of the REDA program (Figure 4.2) is compiled almost as is

(as seen below).

8 CREATE (b_1)-[:excludes]->(a_0)

This concludes the top-level declarations of nodes and relationships in the translated
program. Next, the remainder cypher program comprises a trigger declaration that im-
plements the necessary enabledness verification and the computation of effects (inclusion,
exclusion, responses) upon a successful execution of any data-element (the main_trigger
— note that it is still a simplified approach, not taking into account matches and dynamic
relationships), and trigger declarations that comprise the expected process behaviour upon

the execution of specific data-elements.

9 CALL apoc.trigger.add(‘‘Main Trigger’’,
10 ‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed")

11 as prop WITH prop.node as n WHERE n.executed>0

12

13 CALL apoc.util.validate(n.included=false, ¢‘EVENT IS NOT INCLUDED’’, [])

14 CALL apoc.util.validate(EXISTS((n)<-[:condition]-({included:true, executed:0})),
15 ¢ ‘EVENT HAS A CONDITION UNSATISFIED’’, [])

16 CALL apoc.util.validate(EXISTS((n)<-[:milestone]-({included:true, pending:truel})),
17 ¢ ‘EVENT HAS A MILESTONE UNSATISFIED’’, [])

18

19 SET n.pending=false WITH n

20 OPTIONAL MATCH (n)-[:response]l->(t) SET t.pending = true WITH n

21 OPTIONAL MATCH (n)-[:excludes]->(t) SET t.included = false WITH n

22 OPTIONAL MATCH (n)-[:includes]->(t) SET t.included = true

23
24 RETURN 1 ’,{phase:‘‘before’’});

neodj triggers are defined using the plugin apoc that receives a definition that identifies
the node being changed and some basic filters on it (lines 9-11). The trigger is set to

fire before the commit occurs (line 24) which allows to abort the modification in case of

42

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

error. This trigger first checks for the enabledness property of a node — notice that it must
be included, and all predecessors in condition relationships that are included nodes must
have executed in the past, and all predecessors in milestone relationships that are included
must not be pending (lines 13-17). Since executing a node is an operation external to
the system that updates the executed field of a data-element, these conditions represent
the necessary guards that ensure REDA semantics (Section 3.2). Whenever a given data-
element is executed, its pending property should be set to false (line 19), and the effects
of the remaining DCR inspired relationships are applied here by updating the nodes that
are related to the triggered node (lines 20-22).

We next present the behaviour of executing data-elements, including the spawning of
sub-processes, for each of the node definitions in the program. Such triggers are fired
whenever the associated executed property is changed. This is visible in the definition
below including the condition filtering the node’s reda_id, and also checking if the prop-
erty’s value is strictly positive (as a convention, the value of this property should always
grow), so that the trigger is not fired upon the creation of the node (lines 25-27). These
triggers contain the compiled code for the actions to be executed when related nodes are
(re)evaluated, including the spawning of sub-processes. Consider the example of node a_0,

compiled from the computation node a in the example.

CALL apoc.trigger.add(‘‘When a_O happens’’,
‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’)
as prop WITH prop.node as n WHERE n.reda_id="a_0" AND n.executed>0

MATCH (a_0)-[:al->(n)
MATCH (b_1)-[:b]l->(n)

CREATE (c_2:C{reda_id="c_2", executed:0, included:true, pending:false, value_y:n.value})
CREATE (a_0)-[:a]l->(c_2)

CREATE (b_1)-[:b]->(c_2)

CREATE (c_2)-[:c]->(c_2)

CREATE (b_1)-[:condition]->(c_2)

CREATE (b_1)-[:response]l->(c_2)

CREATE (a_0)-[:condition]->(c_2)

CREATE (a_0)-[:response]l->(c_2)

RETURN 1 ’,{phase:‘‘before’’});

This trigger starts by establishing the correct substitution for the free names of the
sub-process of a_0, by querying the nodes that represent a and b in this context (lines
29-30). These relationships match the relationships created at the top-level (lines 4-5 of
the translated script) — recall that both a and b are present as dependencies of ¢’s value

in the subprocess created upon executing a (Figure 4.3).

43

42
43
44
45
46
47
48
49
50

CHAPTER 4. COMPILATION PROCEDURE

...
a ——>> {
(c:C)[{x: a.value + b.value, y: @trigger.value}]

c ——>> {
(d:D) [c.value.x + c.value.y + a.value]

Figure 4.3: Excerpt of the REDA process presented in Figure 4.2.

Line 32 includes the local node definition for identifier ¢, here alpha-renamed to
c_2, and includes the partial evaluation of the node expression {x:a.value+b.value,
y:0trigger.value}. There are two observations at this stage to be made: the first is
the flattening of record values in cypher with relation to REDA, the second is that field x
depends on other nodes and cannot be computed at this stage, while field y depends on
the trigger node and should only be evaluated using a call-by-value strategy by copying
the values to the current node, meaning value_y property receives the value of the trigger
node n.value. The call-by-need semantics of node dependencies (such as the value_x) is
depicted in the trigger handling changes in node c_2. Lines 33-39 establish data dependen-
cies between identifiers for the inner scope of expressions and subprocesses as described
at the top level (notice that the identifier a crosses more than one syntactic context level

and direct links are created by all stages).

The trigger that handles node b is quite simpler since it is not used to spawn subpro-
cesses. The value of node b depends on the value of node a, so its trigger basically just
(re)computes the value of b whenever a is executed. Line 46 retrieves the substitution
for identifier a_0 in this context and updates the value attribute of node b_1 (line 48),

guaranteeing that b’s value is always equal to a’s plus one (Figure 4.4).

CALL apoc.trigger.add(‘‘When b_1 happens’’,

‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’)
as prop WITH prop.node as n WHERE n.reda_id="b_1" AND n.executed>0
MATCH (a_0)-[:a]->(n)

SET n.value=a_0.value+1l

RETURN 1°,{phase:’before’});

44

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

(a:A) [?:Number],
(b:B) [a.value + 1]

..

)

Figure 4.4: Excerpt of the REDA process presented in Figure 4.2.

The trigger for the node c starts by retrieving the substitutions for names a, b, and c,

from the previously created scoping relationships (lines 56-58) and computes the value of

c_2 (line 60) — recall that the value of ¢ depends on both a and b, and both a and ¢ appear

as free names in the value of d (Figure 4.3) . Notice once more the flattened structure of

the update structure, here solely updating the part of the record in c_2 that depends on

other nodes (call-by-need strategy), as the remainder was initialized on creation (line 32)

and does not change (call-by-value strategy). Lines 62-68 represent the creation of data

dependencies between identifiers for this scope, as seen on the previous triggers.

CALL apoc.trigger.add(‘‘When c_2 happens’’,

‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’)

as prop WITH prop.node as n
WHERE n.reda_id="c_2" AND n.executed>0

MATCH (a_0)-[:al->(n)
MATCH (b_1)-[:b]->(n)
MATCH (c_2)-[:c]->(n)

SET n.value_x = a_0.value + b_1.value

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

(d_3:D{reda_id:"d_3", executed:0, included:true, pending:false})
(a_0)-[:a]l->(@a_3)

(a_0)-[:condition]->(d_3)

(a_0)-[:response]->(d_3)

(c_2)-L[:c]->(@@_3)

(c_2)-[:condition]->(d_3)

(c_2)-[:response]->(d_3)

RETURN 1’,{phase: ‘ ‘before’’});

Finally, the trigger for node d, alpha-renamed to d_3, handles the update of its value

(line 79) upon substitution of its free names a and c (lines 76-77). Notice the use of the

flattened selection expression for both fields of the record value in node c.

45

71
72
73
74
75
76
7
78
79
80
81

CHAPTER 4. COMPILATION PROCEDURE

CALL apoc.trigger.add(‘‘When d_3 happens’’,

‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ‘ ‘executed’’)
as prop WITH prop.node as n
WHERE n.reda_id="d_3" AND n.executed>0

MATCH (a_0)-[:al->(n)
MATCH (c_2)-[:cl->(n)

SET n.value = c_2.value_x + c_2.value_y + a_0.value

RETURN 1’,{phase: ‘‘before’’});

4.1 Dynamic Relations

It is of essence to talk about helper dummy nodes to introduce the notion of matches and
dynamic conditions on a cypher script. These nodes also have markings but they differ
from the regular ones by being always included and having their value restricted to being

true or false. They are used in the following cases:

e (1) if there is a relationship without guard where one or both sides have a match,
then the dummy node’s value is always true by default, and it has explicit relationships
with the data-elements that are the correct substitution for the free names present

on either side of the relationship, at that context;

o (ii) if there is a relationship with guard then the dummy node’s value is its logical
evaluation at that stage, and it has explicit relationships with the data-elements that
are the correct substitution for the free names present on either side of the relationship,
and :response relationships with the data-elements that are the correct substitution

for the free names present on the expression.

(a:X)[?7:],

(b:X) [3],

(c:X) [true],

%(e:Y) [truel

a -[b.value>0]->> {
(d:Y) [truel

>

(MATCH (x) WHERE x?7Y RETURN x) -[c.value]l->+ e

>

b -[:relation]-> MATCH (var) WHERE var.executed>2 RETURN var
}

Figure 4.5: Toy example with dynamic conditions and matches.

46

© w0 N o

4.1. DYNAMIC RELATIONS

Figure 4.5 depicts a new example containing dynamic conditions and matches as a
way to have multiple data-elements present in one side of a relationship. The first set
of top-level creations follow the same logic seen in the previous example. Lines 1-4 on
the cypher script are the declaration of the input node a, b, ¢, and e. Notice again the
alpha-renaming of node names with fresh identifiers (a_0, b_1, c¢_2 and e_3) to avoid
clashes, that c_3 starts with its included property set to false (see Section 3.1 for this
concrete syntax modifiers), as depicted in the cypher script on line 4, and that a_0 is
an input data-element of unit type, meaning it is an input data-element where there is
no input to be given other than its actual execution, just like clicking a button in a user

interface.

CREATE (a_0:X{reda_id:"a_0", executed:0, included:true, pending:false, value:null})
CREATE (b_1:X{reda_id:"b_1", executed:0, included:true, pending:false, value:3})

CREATE (c_2:X{reda_id:"c_2", executed:0, included:true, pending:false, value:truel})
CREATE (e_3:Y{reda_id:"e_3", executed:0, included:false, pending:false, value:true})

Line 5 includes the creation of the helper node dummy_9. This dummy node has the
expression b.value>0 as guard, and a :response relationship with b_1 (line 6), stating
that whenever the latter happens this helper node has to be executed again. The value
of helper nodes is either true or false, and in this case, as it depends on the value of
b_1, it will be evaluated once the latter is executed. As present in line 7, dummy_9 is
the :spawnCondition for the input node a_0, meaning that only if this node’s value is
evaluated to true (the relationship guard) the spawn relationship is activated. On lines
8-9 are created the relationships that allow the nodes b_1 and e_3 of this context to be

fetched on the sub-context created when a_0 happens and the guard evaluates to true.

CREATE (dummy_9:DUMMY{reda_id:"dummy_9", exp:"b.value>0", executed:0, included:true,
pending:falsel})

CREATE (b_1)-[:response]->(dummy_9)

CREATE (dummy_9)-[:spawnCondition]->(a_0)

CREATE (b_1)-[:b]->(a_0)

CREATE (e_3)-[:e]->(a_0)

This concludes the top-level declarations of nodes and relationships on the cypher
script. Next we present the delayed REDA process information which is translated to
triggers. However, unlike the previous example, the main trigger is approached last as it

is where most changes needed to accommodate dynamic conditions and matches are.

47

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

31

32
33
34
35
36
37
38

CHAPTER 4. COMPILATION PROCEDURE

CALL apoc.trigger.add(‘‘When dummy_9 happens’’,
‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’) as prop
WITH prop.node as n WHERE n.reda_id=‘‘dummy_9’’ AND n.executed>0

MATCH (b_1)-[:response]->(n)
WHERE b_1.reda_id = "b_1"

SET n.value = b_1.value > 0

RETURN 1 as X
> ,{phase: ‘ ‘before’’});

The trigger activated when dummy_9 executes is just like any other: queries on lines 14-
15 are responsible to fetch the correct substitution for the free name b_1 on its expression,

and in line 17 its value is set to the correct boolean value.

CALL apoc.trigger.add(‘‘When a_0 happens’’,
‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed") as prop
WITH prop.node as n WHERE n.reda_id="a_0" AND n.executed>0

MATCH (b_1)-[:bl->(n)
MATCH (e_3)-[:el->(n)
MATCH (dummy_9)-[:spawnCondition]->(n) WHERE dummy_9.value = true

CREATE (d_4:Y{reda_id:"d_4", executed:0, included:true, pending:false, value:true})

CREATE (dummy_5:DUMMY{reda_id:"dummy_5", exp:"true", value:true, executed:0, included:
true, pending:falsel})

CREATE (dummy_8:DUMMY{reda_id:"dummy_8", exp:"c.value", executed:0, included:true,
pending:falsel})

CREATE (b_1)-[:b]l->(dummy_5)
CREATE (c_2)-[:response]->(dummy_8)
CREATE (e_3)-[:e]->(dummy_8)

RETURN 1 as X
> ,{phase: ‘ ‘before’’});

The trigger activated when a_0 executes starts with queries in lines 25-26 fetching
the correct substitutions for the free names b_1 and e_3 in this context (remember that
REDA processes have a nested structure and the same identifiers can be used in different
levels to refer to different data-elements). The instruction in line 27 guarantees that the
guard present on the spawn condition in line 6 of Figure 4.5 is satisfied: the helper node
dummy_9 that is the :spawnCondition to a_0’s execution must have its value set to true,
or else the trigger is aborted and the remaining operations are not performed. Assuming
that the guard condition is satisfied, in line 29 is created the data-element d_4 (as present

on Figure 4.5 in line 7), and introduces two new helper nodes: dummy_5 that supports the

48

39
40
41
42
43
44
45
46
47
48
49

50

51
52

53
54
55
56

57
58

4.1. DYNAMIC RELATIONS

data relationship present on line 11 of Figure 4.5, as it has a match and needs to have an
explicit relationship with all free names that occur on it (in this case is only the free name
b — line 33); and dummy_8 supports the inclusion relationship in line 9 of Figure 4.5, having
its guard as expression, a :response relationship with c¢_2 (line 34, as the guard depends

on its value), and a relationship with e_3 to perform the correct substitution (line 35).

CALL apoc.trigger.add(‘‘When dummy_8 happens’’,
‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’) as prop
WITH prop.node as n WHERE n.reda_id="dummy_8" AND n.executed>0

MATCH (c_2)-[:response]l->(n)
WHERE c_2.reda_id="c_2"

SET n.value = c_2.value

RETURN 1 as X
> ,{phase: ‘ ‘before’’});

Both these dummy nodes are very simple in their execution: dummy_5 is defined only to
know the correct substitution to the free name b, existing no need to have a trigger for it;
and dummy_8 fetches the node to whom has a :response relationship with, updating its

value accordingly (lines 43-46).

CALL apoc.util.validate(EXISTS((n)<-[:condition]-({included:true, executed:0})), ‘EVENT
HAS A CONDITION UNSATISFIED’’, [])

CALL apoc.util.validate(EXISTS((n)<-[:milestone]-({included:true, pending:true})), ¢
EVENT HAS A MILESTONE UNSATISFIED’’, [])

CALL apoc.util.validate(n.included=false, ‘‘EVENT IS NOT INCLUDED’’, [])

CALL apoc.util.validate(EXISTS((n)<-[:conditionRight]-({value:true})<-[:conditionLeft]-({
included:true, executed:0})), ¢‘EVENT HAS A CONDITION EXPRESSION UNSATISFIED’’, [])

CALL apoc.util.validate(EXISTS((n)<-[:milestoneRight]-({value:true})<-[:milestoneLeft]-({
included:true, pending:true})), ¢ ‘EVENT HAS A MILESTONE EXPRESSION UNSATISFIED’’, [])

To this step, the script remains almost as seen in the previous example. However,
the real changes are introduced on the main trigger, as a match operation is a dynamic
selection of a set of data-elements present on the process, being necessary to check if the
data-element that is being executed belongs to one of these sets, and perform the behavior
of its control relationships (remember that the main trigger is performed whenever some

data-element is executed, having no data-element restriction).

49

59
60
61
62
63
64

65
66
67
68
69
70

CHAPTER 4. COMPILATION PROCEDURE

With the addition of dummy nodes to act as relationship guards, the verification of
enabledness on the script is subject to changes as well. The instructions in lines 50-54 were
already present on the previous example, and verify if the node being executed is included,
if all predecessors in condition relationships that are included nodes have executed in the
past, and if all predecessors in milestone relationships that are included are not pending.
Furthermore, the instructions in lines 56-58 guarantee the exact same thing but with the
additional verification of the helper node’s value, and as such, the pattern has an additional
layer by splitting what was a :condition relationship (for e.g.) into a :conditionLeft

and :conditionRight, with the verification of the dummy’s value in the middle.

OPTIONAL MATCH (x_7) WHERE x_7:Y

OPTIONAL MATCH (dummy_8) WHERE dummy_8.reda_id = "dummy_8"
OPTIONAL MATCH (e_3)-[:e]->(dummy_8)

WITH dummy_8,x_7,e_3

WHERE x_7 IS NOT NULL AND e_3 IS NOT NULL AND dummy_8 IS NOT NULL
MERGE (x_7)-[:includesLeft]->(dummy_8)-[:includesRight]->(e_3)

The instruction in line 9 of Figure 4.5 is translated to the following set of instruction
(lines 59-64) that are present on the main trigger: the query in line 59 fetches all data-
elements that have label Y and gives them a local name of x_7 — if there are some —
otherwise x_7 has the value of null but the query goes on (hence the optional clause).
Queries in lines 60-61 retrieve the helper node alpha-renamed to dummy_8, as well as the
node that is the correct substitution for the free name e in this context (note that this was
the relationship created on line 35). Finally, instructions in lines 62-64 represent that if
none of this local names (x_7, e_3, dummy_8) are null, the pattern on line 64 is going to
be included into the database for every data-element belonging to the set of data-elements
x_T.

OPTIONAL MATCH (var_6) WHERE var_6.executed>2

OPTIONAL MATCH (dummy_5) WHERE dummy_5.reda_id = "dummy_5"

OPTIONAL MATCH (b_1)-[:b]->(dummy_5)

WITH dummy_5,b_1,var_6

WHERE b_1 IS NOT NULL AND var_6 IS NOT NULL AND dummy_5 IS NOT NULL
MERGE (b_1)-[:relation]->(var_6)

The listing comprised of lines 65-70 retrieves the alpha-renamed node dummy_5 and
the set of data-elements var_6 that have been executed more than twice, and creates
a relationship named :relation between the data-elements belonging to this set with
the correct substitution for the free name b in this context, which is the local name b_1,
assuming once more that each of these local names are not null (line 69), otherwise the

query aborts.

50

71
72
73
74
75
76
7
78
79
80

4.1. DYNAMIC RELATIONS

SET n.pending=false WITH n

OPTIONAL MATCH (n)-[:response]->(t) SET t.pending = true WITH n
OPTIONAL MATCH (n)-[:excludes]->(t) SET t.included = false WITH n
OPTIONAL MATCH (n)-[:includes]->(t) SET t.included = true WITH n
OPTIONAL MATCH (n)-[:responseLeft]->({value:true})-[:responseRight]->(t)
SET t.pending = true WITH n

OPTIONAL MATCH (n)-[:excludesLeft]->({value:true})-[:excludesRight]->(t)
SET t.included = false WITH n

OPTIONAL MATCH (n)-[:includesLeft]->({value:true})-[:includesRight]->(t)
SET t.included = true

Finally, to conclude the main_trigger content, whenever a given data-element is
executed its pending property should be set to false (line 71), and the effects of the DCR
inspired relationships need to be taken into account by updating the nodes that are related
to the triggered node (lines 72-74), or if they have a guard, by checking if the value of the
helper node that has its expression is set to true (lines 75-80).

Since this trigger has the verification of REDA semantics conformance, the possible
existence of several match operations and guards, and the application of effects of DCR
inspired relationships, each of this operations is treated individually and the final result of
the main_trigger is the union of them all, guaranteeing that each and every one of them
executes despite some of them being aborted. The complete REDA code and its respective

translation to a cypher script is present on Annex I.

o1

CHAPTER

System Architecture

The architecture of a business process management system developed to illustrate and
validate the REDA language is going to be described in this chapter. The overall system
is responsible for the fully automated execution of a declarative data-driven process while

providing the user the means to interact with it.

The system flow is the following: (1) it translates a fully specified REDA process
taking both data and behavior into account to its cypher representation; (2) the cypher
script is instantiated on a neo4j database, preserving all the process semantics and its
behavior in the form of database triggers; and finally, (3) the engine processes the inter-
action between the user and the process, providing a graphical interface coherent with its
state. Additionally, we compiled the Ocaml bytecode of the compiler described on (1) to
JavaScript and used it as a library on the engine (3), allowing to develop, compile, control,

and interact with the process through its graphical interface.

l Process
Cypher | m @ View

Script >
‘ Queries ’

Figure 5.1: System architecture.

ReDa
| Process

—_—D> Compiler

®

Engine

®

Process [
[Interaction

93

CHAPTER 5. SYSTEM ARCHITECTURE

5.1 ReDa Compiler

Compilers are systems that translate programs written in one representation, usually of a
higher-level, into an equivalent program in another form of representation more suitable
for execution. The phases required for the compiler to translate REDA processes into their
equivalent cypher representation (the native graph language of neo4j) are approached
here. This compiler was developed in OCaml!, whose functional style allows for a concise
and safe development [14]. We follow the usual compilation workflow where there are four
major phases — lexical analysis, syntactic analysis (parsing), static-semantic validity (type
checking), and code generation — used to sequentially analyze a program and synthesize a

new one [19].

Compiler @
L
> e)-'(-er Cypher
ReDa Parser I i Cypher Script
5| Inter | > >
Process ReDa Ty 7”1 Translator Unparser v
AST
ReDa
(€—| Unparser

Figure 5.2: REDA compiler architecture.

The first step in our compilation workflow is to transform the REDA source code
into an intermediate-level representation of it (REDA Abstract Syntax Tree), a task that
is carried out by both the lexer (ocamllez?) and the parser generator (menhir3) — thus
accomplishing the first two phases of lexical analysis and syntactic analysis. There is
also an optional step (REDA unparser) to guarantee that both these phases preserve the

original process semantics, as the original and unparsed REDA code should be the same.

The next step comprises the static-semantic validity of the intermediate-level represen-
tation of the REDA process. The typechecker takes as input the intermediate code and
determines whether it satisfies the static-semantic properties required by REDA, guaran-
teeing that errors such as the wrong declaration of identifiers or incorrect type usage (for

e.g.) arise at compile time.

The final phase of our compiler is the target code generation. After the REDA interme-
diate code is deemed semantically valid, the Intermediate Translator transforms it into an
equivalent cypher intermediate code to serve as input to the cypher unparser, generating
the cypher script of the initial REDA process (the compiler applies the behavior present
in Chapter 4). This final script is compatible with both neo4j 4.1.1 and apoc 4.1.0.2
4(Section 5.2.1).

! https://ocaml.org 2 https://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
3 http://gallium.inria.fr/fpottier /menhir 4 https://neodj.com/developer /neodj-apoc

54

5.2. NEO4J

5.2 Neo4j

REDA’s processes are translated into the graph-based database meo4j native language
(cypher), using the database computation capabilities and reactive mechanisms (triggers)
to accomplish the reactive semantics of the language. A graph database is a database
management system that supports the CRUD — create, read, update, and delete — methods
on a graph data model. They were initial built for use with transactional systems (OLTP
(online transactional processing) and as so are optimized for transactional performance.

The real criteria when choosing what kind of database to use comes to what kind
of data is going to be stored and how it is going to be queried. When graph databases
where being proposed in the market, there must have been some strong justification for
big enterprise companies like eBay, Adobe, Microsoft, IBM amongst so many others [34]
to use them instead of well-established and standardized in the market RDBMS (relational
database management systems), like the Oracle Database, MySql and so on. And as it
turns out, there really is: everything can be modeled as a graph, and there is a growing
demand for tailored information, meaning that the data to be shown nowadays has to be
related to the user and what his interests are. Furthermore, the relationships between
data can prove themselves more valuable than the data itself, stressing patterns and other
valuable “hidden” information.

By using a native graph database system, where information is stored as a graph
where nodes directly point to each other, the performance is improved by several orders
of magnitude [26]: whereas in a relational database the connections between entities are
made by inference of things like foreign keys, and the join performance degrades as the
dataset gets bigger, in a graph database its core concept are the relationships themselves,
and the result is a simpler and more expressive model, maintaining a relatively constant
performance as the dataset grows. The aforementioned is due to connected nodes pointing
to each other using index-free adjacency, and the underlying storage being designed and
optimized for graphs. These kinds of databases have a significant advantage to the ones
who consider themselves a graph database by exposing a graph data model through the
CRUD operations but serializing the graph data into some relational model, as they have an
additional overhead on translating the data to the correct model, thus lacking on scalability
potential. In a short and concise way, a comparison can be made between RDBMS and graph

databases:

o The RDBMS tables are represented as graphs;

e The rows are represented as nodes;

e RDBMS constraints are relationships in graph models;

e Columns and data are properties and their respective values; and finally,

e The join operation is a traversal search of the graph model.

95

CHAPTER 5. SYSTEM ARCHITECTURE

neo4j is the world’s most-used open source graph database. It is highly scalable and
schema-free, and provides a flexible data model, high availability, and the use of the cypher
query language (Section 5.2.1). Its graph data model is optimized to store, analyze, map,
and traverse networks and clusters of connected information to take advantage of the value
inherent in the relationships between data. It is ACID compliant, meaning it provides a

safe environment to work, guaranteeing:

e Atomicity: either all operations in a transaction succeed or every single on of them
is rolled back;

« Consistency: every operation is executed on a consistent database and its result also

leaves the database in a integrity safe state;

e Isolation: ensures that multiple transactions can occur concurrently and do not
contend with one another. At the logical level all operations are sequential; and

finally,

e Durability: the results of a transaction are permanent and persist even in case of

failure.

It also implements the most used graph data model, which is the labeled property graph
model, made up of relationships and nodes with their respective labels and properties. An
example of this model can be seen in Figure 5.3: two nodes are representing two distinct
data elements, and their role in the graph is specified by their labels, which in this case,
represent persons. A node can have multiple labels, which is extremely useful to group
them into sets, and can be viewed as data storage units to properties, which are arbitrary
key-value pairs. The relationships are used to connect nodes and provide structure to the
graph: they can have a direction from a start node to an end node (can be the same), are

identified by a name, and can have properties as well.

Figure 5.3: Example of a labeled property graph model[34].

neodj provides a wide range of libraries to support user development. One of them
is the apoc library, from neo4j Labs, offering support to the use of triggers and proce-
dures, allowing the execution of a set of predetermined actions once a specific action is
accomplished. This feature can be of great utility as reactivity is many times required in

a database — just like it is needed to fully emulate the REDA process language.

o6

5.2. NEO4J

5.2.1 Cypher

Although there are many graph query languages nowadays, cypher is considered to be
the standard and is the most widely deployed [9, 33]. It is inspired by both SQL and the
pattern matching from SPARQL (the query language used on RDF triplestores, also known
as semantic web), and what makes it so popular is the fact that the way cypher represents
a graph, is the same way we intuitively describe a graph using a diagram.

As mentioned in Section 5.2, neo4j implements the labeled property graph model, and
as such is composed of nodes, properties, values, and relationships. The cypher query
language is based on patterns, and they are used to match the desired graph structure with
the actual graph. A cypher query takes as an input a property graph and outputs a table,
and each clause (just like the where clause, for e.g.) is a function that consumes a table
and outputs a new table that can both add new information (tuples or number of fields)
or just making modifications to it [9]. Its syntax is also simple: nodes are represented by
parentheses, and their general structure is (name:label), where name is the local name of
the node variable to be identified elsewhere in the query, and label is the type of the node.
The pattern relating nodes can be even more restrictive, constraining the node properties

using key-value pairs between curly brackets:
(name : label { keyl:valuel, key2:value2, (...)})

It also allows the node to be specified with just the name (not restrictive, as the name
is only the identifier for posterior use), only the node label (selects all nodes with that
label), or the empty parentheses (meaning it is an anonymous node able to match with

all nodes):
(name) or (:label) or ()

The relationships pattern is also simple to understand: a pair of dashes represents an
undirected relationship, and the arrowhead indicates its direction, if it has one. Relation-
ships can also be restricted by using brackets to add details about variables, properties,

or type information (just like nodes):
-[name : label {key : value}]-->

Combining the syntax of nodes and relationships it is possible to build more complex
patterns. For instance, in Figure 5.3 it is possible to see a pattern that tries to match
a node of type Person with the key-value restriction name:Ann, that has a relation of
type married to with another node. The node that matches this pattern is from now on
referenced as spouse.

The match clause is the heart of every cypher query, and it provides a specification by
example, allowing the “drawing” of the pattern using ASCII characters. The constraints
are specified in a where clause, and the information to be retrieved is detailed in a return

clause. For instance:

o7

CHAPTER 5. SYSTEM ARCHITECTURE

MATCH ()= [:MARRIED_TO]—>()

Figure 5.4: Pattern matching on cypher.

MATCH (a:Person) -[:MARRIED_TO]--> (spouse)
WHERE a.name = ’Ann’
RETURN spouse

There is a wide range of clauses that can also be used, like the create clause (creates
nodes and relationships), the union clause (merges results from two or more queries), the
with clause (chains subsequent query parts and forwards the result of one to another),

amongst many others that are well specified in the official neo4j documentation [26].

5.3 ReDa Engine

A business process management system is a software able to create and manage the
execution of process workflows through workflow engines. The engine is the “brain” of
these systems, responsible for instantiating and controlling the execution of workflows,
interpreting process definitions, providing a correct process vision to the participants and
interact with them [27]. Our engine is split into two applications: one that acts as its

back-end (REDA middleware), and one that functions as its front-end (user application).

ReDa Engine @
] Process
| ! View
> RESTful >
communication
ReDa @ > User
Middleware o i Applicaton
< <t

- . Process

I Queries ReDa Compiler REACT modules Lteractio !

Figure 5.5: REDA engine architecture.

o8

5.3. REDA ENGINE

The REDA middleware — as it name suggests — bridges the gap between the user
application and the database. It acts as an application programming interface disclosing
the available endpoints (e.g. every input data-element or all pending data-elements),
communicates with the neo4; database via cypher queries, and gets the correct events
for that requests. It additionally has the REDA compiler (Section 5.1) as a built-in
service, allowing the translation of REDA processes and its respective instantiation in
the database. This service is embedded as a JavaScript file generated by js_of_ocaml®,
that compiles OCaml bytecode to JavaScript (due marshalling process — transforming
the memory representation of an object to suit different software interfaces — is necessary
to take into account). The REDA middleware itself was developed using NestJS®, a
framework for building server-side applications using TypeScript.

The front-end client application of this REDA engine was developed using React”, an
open-source framework supporting TypeScript. The components that form its graphical
interface were individually developed and exported as React modules to bit® — an online
UI library. The RESTful communication between the client-side (user application) and

server-side (REDA middleware) is made via axios”, a promise-based HTTP client library.

® https://ocsigen.org/js_of ocaml/3.7.0/manual/overview 6 https://nestjs.com/
7 https://reactjs.org/ 8 https://bit.dev/components?owners=reda__project
9 https://www.npmjs.com/package /axios

99

© 00 N O O W N -

NN NN NN NN B B R R e s B s
N OO O W N RO O 00N O W N O

CHAPTER

System Demonstration

This chapter addresses both the usage of the REDA business process system developed
and its performance. We get back to our running example of a library (where a user can
create records of authors and their books in a database and manage loans to users using
their names) discussed in Section 3.3, and show step-by-step the process evolution and

how to interact with it. The REDA library process is depicted in Figure 6.1.

(createAuthor:DataIN) [?7:{authorName:String}]
createAuthor —-->> {
(author:DataOUT) [{name:@trigger.value.authorNamel}],
(createBook:DataIN) [?7:{bookTitle:String, isbn:String}]
createBook —->>{
(book:DataOUT) [{bookTitle:Q@trigger.value.bookTitle,
isbn:@trigger.value.isbn, author:author.value.namel}],
(loanBook:DataIN) [7:{username:String}]
loanBook -->% loanBook,
loanBook —-->>{
(loan:DataOUT) [{user:@trigger.value.usernamel}],
! (returnBook:DataIN) [7]
returnBook --> returnBook,
returnBook -->+ loanBook

loan -[:BO0K]-> book,
returnBook -[:LOAN]-> loan
}

author -[:WROTE]-> book

}

3

Figure 6.1: REDA library process example.

61

CHAPTER 6. SYSTEM DEMONSTRATION

The database has no active process. Please, insert one and try again!

Toggle Terminal

Figure 6.2: Engine’s Ul when there are no processes instantiated.

The database has no active process. Please, insert one and try again!

Toggle Terminal

Place your instructions or reda process here

[Insert Instruction [Translate I Delete Triggers

Figure 6.3: Engine’s Ul terminal.

Figure 6.2 shows the engine’s interface when no REDA process is instantiated, with
a message conveying that same information. To interact with it there is a button at the
bottom of the screen, that once pressed opens a terminal just like depicted in Figure 6.3.
This terminal has three buttons: (i) the “Insert Instruction” button allows to insert a
valid cypher instruction into the neo4j database; (ii) the “Translate” button compiles
a REDA process and receive its equivalent cypher script (it makes use of the compiler
embedded in the ReDa Middleware application — Section 5.3 — via js_of _ocaml); (iii)
the “Delete Triggers” button deletes all existing triggers from the database, useful for

non-developers to stay away from apoc library calls.

62

The database has no active process. Please, insert one and try again!

Toggle Terminal

(createAuthor:DatalN) [2: {authorName:String}] : {executed:0, included:true, pending:false} i

createAuthor —-» > {

fautharNataOlITY Ename@trinner value autharNamel - fevecuted-0 included-trie nendina-faleel i

Insert Instruction Translate] Delete Triggers

Figure 6.4: Inserting a REDA library process for translation.

CALL apocriggeradd(Trigger_id_13,
“UNWIND apoc rigger perties "executed”) as prop
WITH prop.node as n
WHERE n.reda_id="createAuthor_0" AND n.executed=0

MATCH (dummy_9}-:spawnCondition}->(n)
WHERE dummy_d value = true

CREATE (author_1:DataQUTireda_id:"author_1", executed:0, included:true, pendingfalse, expr{name: @friggervalue.authorhamey”,
value_name:n.value_authoriame;)

CREATE 2.0 1" (2", executed:0, included:true, pendingfalse, type:{bookTitle:String, genre:String,
isbn:String]”, value_bookTitle:, value_genre:™, value_isbn:™})

CREATE (dummy_8:DUMMY{reda_id-dummy_8", exp-true”, value:true, executed:0, included:irue, pendingfalse))
CREATE (author_1){:author-»(createBook_2)

CREATE (dummy_8)-spawnCondition}-=(createBook_2)

[Impedir esta pagina de criar novos didlogos

Figure 6.5: The cypher script translation of the REDA library process inserted in Fig-
ure 6.4.

Getting back to our library example depicted in Figure 6.1, if we insert this REDA
process in the terminal (Figure 6.4) and then press the “Translate” button, we get its
equivalent compiled cypher script (Figure 6.5, also present on Annex III). The next step
consists on the insertion of the process into the database: this is achieved by pressing
“Insert Instruction” to the instructions of the obtained cypher script, leading us to the

screen of Figure 6.6.

63

CHAPTER 6. SYSTEM DEMONSTRATION

[Auto compute pending output elements

createAuthor_0 | id:3

Input Data Element

createAuthor 0] 3

Toggle Terminal

Figure 6.6: Engine’s Ul state after the instantiation of the library REDA process.

Figure 6.6 depicts the state of the user interface after the process insertion. There is
only one data-element in the process workflow at this step (createAuthor) present at the
left side of the screen, where all existent data-elements are listed. Each of these listed nodes
has its card component, with: (i) its alpha-renamed local identifier and database identifier
on top; (ii) its grayed-out label on the bottom; (iii) a blue execute... button on the
card’s right side, which when pressed displays all of the said data-element properties and its
respective values, and, in the case of an input node, a form with its input fields; and finally,
(iv) the card border and background color to specify if a node is pending (red border)
or excluded (gray background and without the execute. .. button) — the createAuthor
data-element is both included and not pending, and has such has the default card. Still
on the left side of the screen but now at its top, we have a check-box to “Auto compute
pending output elements”, meaning that when ticked all pending output data-elements are
automatically executed by the system. To conclude, at the right side of the screen we have
a visual representation of the process graph, updated at each execution that may cause
it to change, where each node is identified by its alpha-renamed identifier and database
identifier.

If we now press the createAuthor’s “execute. . .” button, the modal of Figure 6.7 with
all its properties and respective values is displayed. As an input data-element with type
record, there is also a form to insert the authorName that when executed with “Tolkien”
as a value causes the system UI to render the screen of Figure 6.8. Here there are two new
data-elements: the Tolkien and its createBook data-element (notice that the graph that
represents the process state has an implicit :author relationship between these elements,
as the author data-element is a free name inside the spawn of createBook — defined in
line 9 of Figure 6.1).

64

createAuthor_0

DBid: 3
Label : DatalN
Executed : 0
Included : true
Pending : false

value_authorName:

Tolkien

Figure 6.7: Modal referring to the input data-element createAuthor.

[Auto compute pending output elements

BolS 2.1 evalustion

createAuthor 0 | id:3 {6} 1886-2020 Nortroods Softmare
Not for istibution or production tse

Input Data Element Execute... gojsnet

Tolkien

Output Data Element _

createBook 2 | id:7
Input Data Element
t
]

Toggle Terminal

Figure 6.8: Process state after the execution of the createAuthor input data-element.

65

CHAPTER 6. SYSTEM DEMONSTRATION

createBook_2

DB.id:7
Label : DatalN
Executed : 0
Included : true
Pending : false
wvalue_isbn:

9780547928227

value_genre:

Fantasy

value_bookTitle:

The Hobbit

Figure 6.9: Modal referring to the input data-element createBook of the Tolkien author.

Continuing the process workflow, if the input data-element createBook is executed
with “The Hobbit” as a value for the bookTitle, “Fantasy” as a value for the genre,
and “97805479288277” as a value for the isbn (Figure 6.9), the screen of Figure 6.10 is
displayed with the graph that represents the process state having;:

e two new data-elements: The Hobbit output data-element and the loanBook input

data-element, as specified on lines 4 and 5 of Figure 6.1;

o the explicit data relationship :WROTE between the output data-element Tolkien and
the output data-element The Hobbit (specified on line 24 of the library process Fig-
ure 6.1), as well as the implicit relationships :author, :response, and :condition,
stating that only and whenever the Tolkien data-element is executed the output
data-element The Hobbit is set to pending, as author is a free name in its properties
(line 9) — therefore a dependency — and its occurrences need to be evaluated to the

data-element Tolkien;

o the implicit :book relationship between the input data-element loanBook and the
output data-element The Hobbit, as book is a free name in the sub-process of
loanBook (line 20 of Figure 6.1), and this relation guarantees that every occurence
of the free name book inside the scope of the sub-process created in the execution of
loanBook is evaluated to The Hobbit; and finally,

e the loanBook data-element also has an explicit :excludes relationship with itself
(line 12 of Figure 6.1), meaning that when it is executed it excludes itself from the

process.

66

[Auto compute pending output elements

createAuthor 0| id:3
Input Data Element

Tolkien
Output Data Element

createBook 2 | id:7
Input Data Element

The Hobbit
Output Data Element

loanBook 4 | id:9

Input Data Element

loanBook 4

DB_id: 9
Label : DatalN
Executed : O
Included : true

Pending : false

value_username:

Not for distribution or production use

gois net

/ _,[_:m___ﬁ, —
. OP/ /

exch

lo k

Toggle Terminal

Figure 6.10: Process state after the execution of the createBook input data-element.

‘ John Dog|

Figure 6.11: Modal referring to the input data-element loanBook.

Close

67

CHAPTER 6. SYSTEM DEMONSTRATION

~
[Auto compute pending output elements
createAuthor_0 | id:3
Input Data Element
Tolkien
Output Data Element createBook 2| 6 createAuthor_0] 3.
createBook 2 | id:7 e
Input Data Element //_mpans\
The Hobbit \Wm e ~—800K_ loan5
Qutput Data Element e /
bol
. excludes LOAN
%loanBook 4 | id:9 ()
Input Data Element loanBook_4] 8
\mdu ‘
‘DgnBo)ok des— rewumBook 6| 11
loan 5| id:10 l)
Output Data Element explies
IreturnBook_6 | id:11
Input Data Element
v

Toggle Terminal

Figure 6.12: Process state after the execution of the loanBook input data-element.

If we now want to loan a book in the library, we do so by executing loanBook (Fig-
ure 6.11) with “John Doe” as an argument (for e.g.), causing the engine to render the
screen of Figure 6.12 where the remainder of the explicit relationships defined in Figure 6.1
are added (lines 17-18 and 20-21), as well as a new loan output data-element with infor-
mations concerning the loaned book (The Hobbit in this case) and the name of the loaner,
and a pending input data-element returnBook for that loan (listed with a red border
card component on the left side of the screen). This action also causes the loanBook
data-element to exclude itself from the process, reflected in the list of data-elements as the
loanBook has now the excluded card component (gray background without the button to

be executed).

Next, if we execute the returnBook input data-element (the screen depicted in Fig-
ure 6.13 — notice that it is an input data-element with type unit having no required
information to be submitted) it excludes itself from the process and includes once again
the previously excluded loanBook data-element, allowing the book The Hobbit to be
loaned again (as depicted in Figure 6.14). As there are no pending data-elements, and
having seen the effect of every possible action in the process, we can terminate our process

execution here.

Notice also that this is just an example of a possible workflow for this process using
the context of one author and the sub-context of one book, as it was also possible to
have a workflow with one author and n books, each with its loanBook input data-element
and therefore being independent from each other, or even n authors and n books, and

interchangeably loan and return different books from the same author or different authors.

68

returnBook_6

DB_id: 11
Label : DatalN
Executed : 0
Included : true

Pending : true

Figure 6.13: Modal referring to the input data-element returnBook.

[J Auto compute pending output elements

i GoJS 2.1 lusti
createAuthor 0 | id:3 S .

Not for distribution or production use.

Input Data Element Bxecute...
gois.net

Tolkien

Output Data Element Execute. P -
author

createBook 2 | id:7

Input Data Element Execute... //_uspom\
. ___———eonditi r
e T oot
. hof————
The Hobbit \W e ~~BOOK— 0.5
Output Data Element Exeaute... ROH

loanBook 4 | id:9
Input Data Element Brecute.

loan_5 | id:10
Output Data Element Execute...

%returnBook 6 | id:11

Input Data Element

gle Terminal

Figure 6.14: Process state after the execution of the returnBook input data-element.

69

© 00 N O O W N

-
o

CHAPTER 6. SYSTEM DEMONSTRATION

6.1 Performance

We tested the communication time between the database and the engine in scenarios where
there are thousands of nodes and relationships between them to measure the scalability
potential of our prototype (note that the database triggers are static, and therefore their
number remains constant throughout all execution). We used two case studies for this
purpose: one that represents a so-called “normal” program, and another that consists
of a worst-case scenario. These programs are purposely developed to grow linearly in
twenty-five executions, each performed ten times. These case studies were executed in
a database neodj 4.1.1 with APOC 4.1.0.2, and the engine hosted on Firefox Developer
Edition 83.0, in a Windows 8.1, Intel Core i7-4510U CPU @ 2.00GHz 2.60GHz with 8Gb
RAM system.

= AVG

15000

12500

10000
g
=
«®
=
E

s 7500
2
E

5000

2500

500

0,

3 3 92 48y 910 329 a8 =31 @6 1D god @90 989 401Y (160 049 (338 (1 \5‘6 \6“5 1694 1183 4812 o6 2020
Number of Nodes
Figure 6.15: Normal-case scenario performance.
(a:X)[31,

(d:X) [a.valuel

d ——>> {
(87 nodes split into labels X, Y and Z are created here)

>

(MATCH (var) WHERE var?Y RETURN var) -[:rell]-> (MATCH (var) WHERE var?X RETURN var)
}

Figure 6.16: REDA process used to perform the case study of a normal-case scenario.

70

6.1. PERFORMANCE

The “normal” case scenario consists of a program where nodes and relationships
are split amongst different clusters. As present in Figure 6.16, this case study starts
with only two data-elements belonging to one cluster (line 1-2, cluster X), with each
further execution of the data-element d adding eighty-seven new data-elements that
are split almost equally into three clusters (X, Y and Z). Each data-element has ei-
ther no relationships (spawner input data-elements, label Z), or has between one to
a third of the existent data-elements relationships (line 8 states that each element
of cluster Y has a relationship :rell with all elements of cluster X), as they also tend to

grow alongside the program.

As depicted in Figure 6.15, the time difference between the request and the response

tends to grow in a somewhat linear to sub-linear fashion with each execution.

== AVG

34000

30000

25000

20000

15000

Milliseconds Taken

10000

5000

A

1003 . /"ﬁ\\tf;ua—f -F

1915 45 15 8d eh 8h 8h h 3B (050 168 py1h gqTd 4660 4280 23D (1h 18% guaB (140 1858 A0A (A0, (118

Number of Relationships

Figure 6.17: Worst-case scenario performance.

However, the same thing does not happen when dealing with the worst-case scenario
(Figure 6.18). Here, we have three different process levels: (i) the outer context with
data-elements of label X, and where a is the single data-element in the whole process that
does not have a dependency on any other data-element, as b depends on a, ¢ depends on b,
and d depends on both b and c (lines 1-4); (ii) whenever d is executed a new sub-process
with data-elements of label Y dependent on all the data-elements of label X are included
(lines 7-10), as well as an explicit relationship between them (line 23); (iii) whenever
h is executed a new sub-process with data-elements of label Z dependent on all the data-
elements of label X and Y are included (lines 13-16), as well as an explicit relationship
between elements of label Z and every other data-element (themselves included, line 20),

and a response relationship between every data-element (with an aggregation guard that

71

© 0 N O O W N e

A e i S
0w N o O W N = O

19
20
21
22

24
25

CHAPTER 6. SYSTEM DEMONSTRATION

evaluates always to true but adds an overhead to process it, line 18).

This means that we have only one giant cluster where data-elements are highly de-
pendent on each other (the number of data-elements here ranges between 4 in the first
execution to 113 in the last, growing linearly), and the time difference between the re-
quest and the response tends to grow in a linear to super-linear fashion, as depicted in
Figure 6.17.

(a:X) [3],

(b:X) [a.value],

(c:X) [b.value],

(d:X) [c.value + b.valuel

d -—>> {
(e:Y) [a.value+b.value+c.value+d.value],
(f:Y) [a.value+b.value+c.value+d.value],
(g:Y) [a.value+b.value+c.value+d.value],
(h:Y) [a.value+b.value+c.value+d.value]

h -—>> {
(i:Z) [a.value+b.value+c.value+d.value+e.value+f.value+g.value+h.value],
(j:Z) [a.value+b.valuetc.value+d.value+te.value+f.value+g.value+h.value],
(k:Z) [a.value+b.value+c.value+d.value+e.value+f.value+g.value+h.value],
(1:2) [a.value+b.value+c.value+d.value+e.value+f.value+g.value+h.valuel

(MATCH (var) WHERE true RETURN var) *-[MATCH (var) WHERE true WITH COUNT(var) AS count
WHERE count>0]-> (MATCH (var) WHERE true RETURN var)

(MATCH (var) WHERE var?Z RETURN var) -[:rel2]-> (MATCH (var) WHERE true RETURN var)
}

(MATCH (var) WHERE var?Y RETURN var) -[:rell]-> (MATCH (var) WHERE var?X RETURN var)
}

Figure 6.18: REDA process used to perform the case study of a worst-case scenario.

To conclude, triggers are many times sources of performance issues in database systems.
With this in mind, we made every effort to encode all the reactivity and behavior of a REDA
process into static triggers, remaining constant in number throughout all execution. There
are in maximum two triggers activated each time a specific data-element is executed: (i)
the trigger regarding that specific data-element, containing the specific behavior defined
in the process; and (ii) the main_trigger that is always activated despite the data-
element being executed, containing the enabledness verification, the match and guard
verification (to see if the data-element being executed belongs to the set of data-elements
selected by the match clause, or if the guard of a dynamic relationship changes its value),
and the application of DCR effects (like the inclusion relationship, for instance). With
this information and the results of our case study, we can infer that the main cause
for performance deterioration is the number of control relationships that the node being
executed has, as it is necessary to analyze each of them in the main_trigger to have the

next REDA process state.

72

CHAPTER

Conclusions

This dissertation introduced REDA, a declarative process definition and programming
language for describing REactive DAta-driven processes, where data is intuitively stored
in a graph-based structure to define explicit and implicit relations between data-elements,
generalizing both the relational and the semi-structured data model used in related ap-
proaches [3]. We also presented a compilation procedure to systematically transform a
REDA process into a cypher script to be used by our prototype of a business process
system, embedding the computations and control-flow defined by the process using the
native capabilities of a standalone graph-database neo4j and the REDA middleware.

The proposal of this thesis meant to work on and improve a draft of a process language
that would generalize RESED A — what is now the REDA process language — and develop
a compiler that would translate it to be instantiated in a graph-database, while fully pre-
serving its semantics and reactive properties. As our initial goals were being accomplished
we sought more: a business process system that could emulate said processes and provide
interaction with the user would be a way to measure its applicability. It is safe to say that
our ambitions are met.

Another positive remark is what can follow this line of work: the next steps can include
the definition of a bidirectional procedure that allows the live edit of REDA processes
while verifying the integrity of existing data and control upon the introduction of new
process elements, and the addition of user roles in the process language, restricting events
and providing a notion of hierarchy. Another interesting path to follow is to explore the
work on reactors [22] (application-defined OLTP databases) as a possible target language
for REDA instead of neo4j.

73

Bibliography

D. Basin, S. Debois, and T. T. Hildebrandt. “In the nick of time: Proactive preven-
tion of obligation violations.” In: Proceedings - IEEE Computer Security Foundations
Symposium 2016-Augus (2016). 1SSN: 19401434. po1: 10.1109/CSF.2016. 16.

E. Borger. “Approaches to modeling business processes: A critical analysis of
BPMN, workflow patterns and YAWL.” In: Software and Systems Modeling 11.3
(2012), pp. 305-318. 1ssN: 16191366. DOI1: 10.1007/s10270-011-0214~z.

J. Costa Seco, S. Debois, T. Hildebrandt, and T. Slaats. “RESEDA: Declaring
live event-driven computations as reactive semi-structured data.” In: Proceedings -
2018 IEEE 22nd International Enterprise Distributed Object Computing Conference,
EDOC 2018 May (2018), pp. 75-84. DOT: 10.1109/EDOC.2018.00020.

S. Debois, T. Hildebrandt, and T. Slaats. “Hierarchical declarative modelling with
refinement and sub-processes.” In: International Conference on Business Process

Management. Springer, Cham. 2014, pp. 18-33.
S. Debois, T. Hildebrandt, and T. Slaats. “Hierarchical declarative modelling with

refinement and sub-processes.” In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8659 LNCS.September (2014), pp. 18-33. 1SSN: 16113349. pDO1: 10.1007/978-3~
319-10172-9_2.

S. Debois, T. Hildebrandt, and T. Slaats. “Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes.” In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 9109.grant 33295 (2015), pp. 143—
160. 1ssN: 16113349. por1: 10.1007/978-3-319-19249-9_10.

S. Debois, T. T. Hildebrandt, and T. Slaats. “Replication, Refinement & Reachabil-
ity: Complexity in Dynamic Condition-Response Graphs.” en. In: Acta Informatica
55.6 (Sept. 2018), pp. 489-520. 1SSN: 0001-5903, 1432-0525. DOI1: 10.1007/s00236~
017-0303-8.

R. Eshuis, S. Debois, T. Slaats, and T. Hildebrandt. “Deriving consistent GSM
schemas from DCR graphs.” In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

75

https://doi.org/10.1109/CSF.2016.16
https://doi.org/10.1007/s10270-011-0214-z
https://doi.org/10.1109/EDOC.2018.00020
https://doi.org/10.1007/978-3-319-10172-9_2
https://doi.org/10.1007/978-3-319-10172-9_2
https://doi.org/10.1007/978-3-319-19249-9_10
https://doi.org/10.1007/s00236-017-0303-8
https://doi.org/10.1007/s00236-017-0303-8

BIBLIOGRAPHY

[12]

[13]

9936 LNCS (2016), pp. 467-482. 1ssN: 16113349. por1: 10.1007/978-3-319-
46295-0_29.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor. “Cypher: An Evolving Query Language
for Property Graphs.” In: Proceedings of the 2018 International Conference on Man-
agement of Data. SIGMOD ’18. Houston, TX, USA: Association for Computing Ma-
chinery, 2018, 1433-1445. 1SBN: 9781450347037. DO1: 10.1145/3183713.3190657.
URL: https://doi.org/10.1145/3183713.3190657.

L. Galrinho, J. Costa Seco, S. Debois, T. Hildebrandt, and T. Slaats. “ReDa: Reac-
tive Data-driven Processesas Graph Databases.” In: DEC2H 2020 : 8th International
Workshop on DEClarative, DECision and Hybrid approaches to processes (2020).

M. Geiger, S. Harrer, J. Lenhard, M. Casar, A. Vorndran, and G. Wirtz. “BPMN
conformance in open source engines.” In: Proceedings - 9th IEEE International
Symposium on Service-Oriented System Engineering, IEEE SOSE 2015 30 (2015),
pp. 21-30. DOT: 10.1109/S0SE.2015.22.

M. Geiger, S. Harrer, J. Lenhard, and G. Wirtz. “BPMN 2.0: The state of support
and implementation.” In: Future Generation Computer Systems 80 (2018), pp. 250—
262. 1ssN: 0167739X. poI: 10.1016/j . future.2017.01.006. URL: http:
//dx.doi.org/10.1016/j.future.2017.01.006.

Y. B. Han, J. Y. Sun, G. L. Wang, and H. F. Li. “A cloud-based BPM architecture
with user-end distribution of non-compute-intensive activities and sensitive data.”
In: Journal of Computer Science and Technology 25.6 (2010), pp. 1157-1167. 1SSN:
10009000. por1: 10.1007/511390-010-9396~-z.

J. Hickey, A. Madhavapeddy, and Y. Minsky. Real World OCaml. 2014. 1SBN:
144932391. URL: http://www.worldcat.org/isbn/144932391.

T. Hildebrandt and R. R. Mukkamala. “Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs.” In: Post-Proceedings of PLACES
2010. Vol. 69. EPTCS. 2010, pp. 59-73. DOI: 10.4204/EPTCS.69.5.

T. T. Hildebrandt and R. R. Mukkamala. “Declarative Event-Based Workflow as
Distributed Dynamic Condition Response Graphs.” In: FElectronic Proceedings in
Theoretical Computer Science 69 (2011), pp. 59-73. 1SSN: 2075-2180. DOI: 10.
4204/eptcs.69.5.

G. Li, R. M. de Carvalho, and W. M. P. van der Aalst. “Object-centric behavioral
constraint models.” In: (2019), pp. 48-56. DOI: 10.1145/3297280.3297287. arXiv:
1703.05740.

H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed, and G. E. Boussaidi.
“Business process modeling languages: Sorting through the alphabet soup.” In: ACM
Computing Surveys 43.1 (2010). 1sSN: 03600300. DOI: 10.1145/1824795.1824799.

76

https://doi.org/10.1007/978-3-319-46295-0_29
https://doi.org/10.1007/978-3-319-46295-0_29
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1109/SOSE.2015.22
https://doi.org/10.1016/j.future.2017.01.006
http://dx.doi.org/10.1016/j.future.2017.01.006
http://dx.doi.org/10.1016/j.future.2017.01.006
https://doi.org/10.1007/s11390-010-9396-z
http://www.worldcat.org/isbn/144932391
https://doi.org/10.4204/EPTCS.69.5
https://doi.org/10.4204/eptcs.69.5
https://doi.org/10.4204/eptcs.69.5
https://doi.org/10.1145/3297280.3297287
https://arxiv.org/abs/1703.05740
https://doi.org/10.1145/1824795.1824799

BIBLIOGRAPHY

[21]

[22]

[24]

[26]

[27]

S. S. Muchnick. Advanced Compiler Design and Implementation. 1997. 1SBN:
1558603204.

M. Pesic, H. Schonenberg, and W. M. Van Der Aalst. “DECLARE: Full support
for loosely-structured processes.” In: Proceedings - IEEE International Enterprise
Distributed Object Computing Workshop, EDOC May 2014 (2007), pp. 287—298.
ISSN: 15417719. por1: 10.1109/EDOC.2007.4384001.

P. Sestoft. Spreadsheet implementation technology. Basics and extensions. United
States: MIT Press, 2014. 1SBN: 978-0-262-52664-7.

V. Shah and M. A. Vaz Salles. “Reactors: A Case for Predictable, Virtualized
Actor Database Systems.” In: Proceedings of the 2018 International Conference on
Management of Data. SIGMOD ’18. 2018, 259-274. 1sBN: 9781450347037. DOI:
10.1145/3183713.3183752. URL: https://doi.org/10.1145/3183713.3183752.

M. Skouradaki, D. H. Roller, F. Leymann, V. Ferme, and C. Pautasso. “On the
road to benchmarking BPMN 2.0 workflow engines.” In: ICPFE 2015 - Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering (2015),
pp. 301-304. DOTI: 10.1145/2668930.2695527.

J. Su, L. Wen, and J. Yang. “From Data-centric Business Processes to Enterprise
Process Frameworks.” In: Proceedings - 2017 IEEE 21st International Enterprise
Distributed Object Computing Conference, EDOC 2017 2017-Janua.October (2017),
pp. 1-9. DOI: 10.1109/EDOC.2017.11.

W. Van Der Aalst, A. Artale, M. Montali, and S. Tritini. “Object-centric behav-
ioral constraints: Integrating data and declarative process modelling.” In: CEUR
Workshop Proceedings 1879 (2017). 1SSN: 16130073.

J. Webber and E. Eifrem. Graph Databases. Second Edi. O’Reilly, 2015. 1SBN:
9781491930892.

M. Weske. Business Process Management: Concepts, Languages, Architectures. 3rd
ed. Springer Berlin Heidelberg, 2019. 1SBN: 978-3-662-59431-5;978-3-662-59432-2.
DOTI: 10.1007/978-3-642-28616-2.

77

https://doi.org/10.1109/EDOC.2007.4384001
https://doi.org/10.1145/3183713.3183752
https://doi.org/10.1145/3183713.3183752
https://doi.org/10.1145/2668930.2695527
https://doi.org/10.1109/EDOC.2017.11
https://doi.org/10.1007/978-3-642-28616-2

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Webography

AIIM. What is Business Process Management? 2020. URL: https://www.aiim.
org/What-is-BPM (visited on 01/17/2020).

I. K. Center. Business Process BPML Components. 2018. URL: https://www.ibm.
com/support/knowledgecenter/en/SS3JSW_5.2.0/com.ibm.help.bpml.doc/SI_
BusinessProcessBPMLComponents.html (visited on 01/17/2020).

C. S. GmbH. Workflow and Decision Automation Platform | Camunda BPM. 2020.
URL: https://camunda.com/ (visited on 01/18/2020).

JBPM. jBPM - Open Source Business Automation Toolkit - jBPM Business Au-
tomation Toolkit. 2020. URL: https://www.jbpm.org/ (visited on 01/19/2020).

Kissflow. What Is a Workflow Process? 2019. URL: https://kissflow.com/
workflow/workflow-vs-process-whats-difference/ (visited on 01/17/2020).

Neodj. Cypher Graph Query Language. 2020. URL: https://neo4j.com/cypher-
graph-query-language/ (visited on 01/24/2020).

Neodj. Neo4j Graph Platform — The Leader in Graph Databases. 2020. URL: https:
//neo4j.com/ (visited on 01/23/2020).

Object Management Group. BPMN — Open Issues - OMG Issue Tracker. 2020.
URL: https://issues.omg.org/issues/spec/BPMN/2.0 (visited on 02/03/2020).

N. Palmer. What is BPM? 2014. URL: https://bpm.com/what-is-bpm (visited
on 01/17/2020).

79

https://www.aiim.org/What-is-BPM
https://www.aiim.org/What-is-BPM
https://www.ibm.com/support/knowledgecenter/en/SS3JSW_5.2.0/com.ibm.help.bpml.doc/SI_BusinessProcessBPMLComponents.html
https://www.ibm.com/support/knowledgecenter/en/SS3JSW_5.2.0/com.ibm.help.bpml.doc/SI_BusinessProcessBPMLComponents.html
https://www.ibm.com/support/knowledgecenter/en/SS3JSW_5.2.0/com.ibm.help.bpml.doc/SI_BusinessProcessBPMLComponents.html
https://camunda.com/
https://www.jbpm.org/
https://kissflow.com/workflow/workflow-vs-process-whats-difference/
https://kissflow.com/workflow/workflow-vs-process-whats-difference/
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/cypher-graph-query-language/
https://neo4j.com/
https://neo4j.com/
https://issues.omg.org/issues/spec/BPMN/2.0
https://bpm.com/what-is-bpm

g s W N

© w0 N o

10
11
12
13

o s W N

© 0 N o

10
11
12

ANNEX

ReDa Process Translation Example

I.1 ReDa Process

(a:xX)[:7],
(c:X) [true],
%(e:Y) [truel
a -[b.value>0]->> {
(d:Y) [truel
(MATCH (x) WHERE x?Y RETURN x) -[c.value]l->+ e

b -[:relation]-> MATCH (var) WHERE var.executed>2 RETURN var

I.2 Cypher Script

CREATE (a_0:X{reda_id:"a_0", executed:0, included:true, pending:false, value:null})

CREATE (b_1:X{reda_id:"b_1", executed:0, included:true, pending:false, value:3})

CREATE (c_2:X{reda_id:"c_2", executed:0, included:true, pending:false, value:truel})

CREATE (e_3:Y{reda_id:"e_3", executed:0, included:false, pending:false, value:true})

CREATE (dummy_9:DUMMY{reda_id:"dummy_9", exp:"b.value>0", executed:0, included:true,
pending:falsel})

CREATE (b_1)-[:response]->(dummy_9)

CREATE (dummy_9)-[:spawnCondition]->(a_0)

CREATE (b_1)-[:b]->(a_0)

CREATE (e_3)-[:e]l->(a_0)

CALL apoc.trigger.add(‘‘Main Trigger’’,

81

13
14
15
16

17

18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

ANNEX I. REDA PROCESS TRANSLATION EXAMPLE

‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’) as prop
WITH prop.node as n WHERE n.executed > O

CALL apoc.util.validate(EXISTS((n)<- [:condition] - ({included:true, executed:0})), ¢
EVENT HAS A CONDITION UNSATISFIED’’, [])

CALL apoc.util.validate(EXISTS((n)<- [:milestone] -({included:true, pending:true})), ¢
EVENT HAS A MILESTONE UNSATISFIED’’, [])

CALL apoc.util.validate(n.included=false, ‘‘EVENT IS NOT INCLUDED’’, [])

CALL apoc.util.validate(EXISTS((n)<- [:conditionRight] -({value:true})<- [:
conditionLeft] -({included:true, executed:0})), ¢‘EVENT HAS A CONDITION EXPRESSION
UNSATISFIED’’, [1)

CALL apoc.util.validate(EXISTS((n)<- [:milestoneRight] -({value:true})<- [:
milestoneLeft] -({included:true, pending:true})), ‘‘EVENT HAS A MILESTONE EXPRESSION

UNSATISFIED’’, [1)

RETURN 1 as X

UNION

UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’) as prop
WITH prop.node as n WHERE n.executed > 0O

OPTIONAL MATCH (x_7) WHERE x_7:Y

OPTIONAL MATCH (dummy_8) WHERE dummy_8.reda_id = "dummy_8"
OPTIONAL MATCH (e_3)-[:el->(dummy_8)

WITH dummy_8,x_7,e_3

WHERE x_7 IS NOT NULL AND e_3 IS NOT NULL AND dummy_8 IS NOT NULL
MERGE (x_7)-[:includesLeft]->(dummy_8)-[:includesRight]->(e_3)

RETURN 1 as X

UNION

UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ‘ ‘executed’’) as prop
WITH prop.node as n WHERE n.executed > 0O

OPTIONAL MATCH (var_6) WHERE var_6.executed>2

OPTIONAL MATCH (dummy_5) WHERE dummy_5.reda_id = "dummy_5"

OPTIONAL MATCH (b_1)-[:b]->(dummy_5)

WITH dummy_5,b_1,var_6

WHERE b_1 IS NOT NULL AND var_6 IS NOT NULL AND dummy_5 IS NOT NULL
MERGE (b_1)-[:relation]->(var_6)

RETURN 1 as X

UNION

UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ‘ ‘executed’’) as prop
WITH prop.node as n WHERE n.executed>0

82

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104

[.2. CYPHER SCRIPT

SET n.pending=false WITH n

OPTIONAL MATCH (n)-[:response]->(t) SET t.pending = true WITH n
OPTIONAL MATCH (n)-[:excludes]->(t) SET t.included = false WITH n
OPTIONAL MATCH (n)-[:includes]->(t) SET t.included = true WITH n
OPTIONAL MATCH (n)-[:responselLeft]->({value:true})-[:responseRight]->(t)
SET t.pending = true WITH n

OPTIONAL MATCH (n)-[:excludesLeft]->({value:true})-[:excludesRight]->(t)
SET t.included = false WITH n

OPTIONAL MATCH (n)-[:includesLeft]->({value:true})-[:includesRight]->(t)
SET t.included = true

RETURN 1 as X
> {phase: ¢ ‘before’’});

CALL apoc.trigger.add(‘‘When a_0 happens’’,

‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed") as prop
WITH prop.node as n WHERE n.reda_id="a_0" AND n.executed>0

MATCH (b_1)-[:b]->(n)
MATCH (e_3)-[:e]l->(n)
MATCH (dummy_9)-[:spawnCondition]->(n) WHERE dummy_9.value = true

CREATE (d_4:Y{reda_id:"d_4", executed:0, included:true, pending:false, value:truel})

CREATE (dummy_5:DUMMY{reda_id:"dummy_5", exp:"true", value:true, executed:0, included:
true, pending:false})

CREATE (dummy_8:DUMMY{reda_id:"dummy_8", exp:"c.value", executed:0, included:true,
pending:false})

CREATE (b_1)-[:b]->(dummy_5)
CREATE (c_2)-[:response]->(dummy_8)
CREATE (e_3)-[:e]l->(dummy_8)

RETURN 1 as X
> ,{phase: ‘ ‘before’’});

CALL apoc.trigger.add(‘‘When dummy_9 happens’’,

‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’) as prop
WITH prop.node as n WHERE n.reda_id=‘‘dummy_9’’ AND n.executed>0

MATCH (b_1)-[:response]l->(n)
WHERE b_1.reda_id = "b_1"

SET n.value = b_1.value > 0

RETURN 1 as X
> ,{phase: ‘ ‘before’’});

83

ANNEX I. REDA PROCESS TRANSLATION EXAMPLE

105 CALL apoc.trigger.add(‘‘When dummy_8 happens’’,

106 ‘UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, ¢ ‘executed’’) as prop
107 WITH prop.node as n WHERE n.reda_id="dummy_8" AND n.executed>0
108

109 MATCH (c_2)-[:response]->(n)

110 WHERE c_2.reda_id="c_2"

111

112 SET n.value = c_2.value

113

114 RETURN 1 as X

115’ ,{phase: ‘ ‘before’’});

84

11
12
13
14
15
16
17
18
19
20
21
22
23

ANNEX

Veterinarian Clinic with ReDa

II.1 ReDa Process

(createAppointment:DataIN) [?: {clientID:String, vetID:String}]
createAppointment -->> {
(appointment:DataOUT) [{clientID:@trigger.value.clientID, vetID:@trigger.value.vetID }],
(choosePet:DataIN) [?:{name:String, age:Number, breed:String}]
(checkIn:DataIN) [7]
%(checkOut :DataIN) [7]
choosePet ——>> {
(pet:DataOUT) [{name:Q@trigger.value.name, age:Qtrigger.value.age, breed:Qtrigger.value.
breed}],
(form:DataIN) [?:{description:String, petName:@trigger.value.name}]
pet -[:has_appointment]-> appointment
1,
choosePet —-->* checkln,
checkIn -->J checklIn,
checkIn -->% choosePet,
checkIn -->+ checkQOut,
checkOut -->% checkOut

>

85

© 0o N O

11
12
13
14
15
16
17
18
19
20

21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

ANNEX II. VETERINARIAN CLINIC WITH REDA

I1.2 Cypher Script

CREATE (createAppointment_O : DataIN { reda_id: "createAppointment_0", executed: O,
included: true, pending: false, type: "{clientID: String, vetID: Stringl}",

value_clientID: "", value_vetID: ""})

CREATE (dummy_8: DUMMY {reda_id: "dummy_8", exp: "true", value: true, executed: O,
included: true, pending: false})

CREATE (dummy_8)-[:spawnCondition]->(createAppointment_0)

CALL apoc.trigger.add(’EVERYWERE’,
>UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, "executed") as prop

WITH prop.node as n WHERE n.executed>0

CALL apoc.util.validate(EXISTS((n)<-[:condition]-({included:true, executed:0})),
"EVENT HAS A CONDITION UNSATISFIED", [1)

CALL apoc.util.validate(EXISTS((n)<-[:milestone]-({included:true, pending:truel})),
"EVENT HAS A MILESTONE UNSATISFIED", []1)

CALL apoc.util.validate(n.included=false, "EVENT IS NOT INCLUDED", [])

CALL apoc.util.validate(EXISTS((n) <-[:conditionRight]- ({value:true}) <-[:
conditionLeft]- ({included:true, executed:0})),
"EVENT HAS A CONDITION EXPRESSION UNSATISFIED", [1)

CALL apoc.util.validate(EXISTS((n) <-[:milestoneRight]- ({value:true}) <-[:
milestonelLeft]- ({included:true, pending:true})),
"EVENT HAS A MILESTONE EXPRESSION UNSATISFIED", [1)

RETURN 1 as X

UNION
UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed") as prop
WITH prop.node as n WHERE n.executed>0

SET n.pending = false

WITH n

OPTIONAL MATCH (n)-[:response]->(t)
SET t.pending = true

WITH n

OPTIONAL MATCH (n)-L[:excludes]->(t)
SET t.included = false

WITH n

OPTIONAL MATCH (n)-L[:includes]->(t)
SET t.included = true

86

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73

74
75
76
7
78
79
80
81
82
83
84
85
86
87
88

II.2. CYPHER SCRIPT

WITH n

OPTIONAL MATCH (n)-[:responselLeft]->({value:true})-[:responseRight]->(t)
SET t.pending = true

WITH n

OPTIONAL MATCH (n)-[:excludesLeft]->({value:true})-[:excludesRight]->(t)
SET t.included = false

WITH n

OPTIONAL MATCH (n)-[:includesLeft]->({value:true})-[:includesRight]->(t)
SET t.included = true

RETURN 1 as X

)
3

{phase:’before’});

CALL apoc.trigger.add(’Trigger_id_9°,

>UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed") as prop

WITH prop.node as n WHERE n.reda_id="choosePet_2" AND n.executed>0

MATCH (appointment_1)-[:appointment]->(n)

MATCH (dummy_7)-[:spawnCondition]->(n)
WHERE dummy_7.value = true

CREATE (pet_5: DataOUT {reda_id: "pet_5", executed: 0, included: true, pending: false,
expr: "{breed: Qtrigger.value.breed, age: Q@trigger.value.age, name: Qtrigger.value.

name}", value_breed :n.value_breed, value_age: n.value_age, value_name: n.value_name

b

CREATE (form_6 : DatalIN {reda_id: "form_6", executed: 0, included: true, pending: false,
type:"{description: String, petName: Stringl}", value_description: "", value_petName

n ||})

CREATE (pet_5)-[:hasAppointment]->(appointment_1)

RETURN 1 as X

)
B

{phase:’before’});

CALL apoc.trigger.add(’Trigger_id_10’,

>UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed") as prop

WITH prop.node as n WHERE n.reda_id="createAppointment_0" AND n.executed>0

87

89
90
91
92
93

94
95

96
97

98
99

100
101

102
103
104
105
106
107
108
109
110
111

113
114
115
116
117
118
119
120

ANNEX II. VETERINARIAN CLINIC WITH REDA

)
>

MATCH (dummy_8)-[:spawnCondition]->(n)
WHERE dummy_8.value = true

CREATE (appointment_1 : DataOUT{ reda_id: "appointment_1", executed: O, included: true,
pending: false, expr: "{vetID: Qtrigger.value.vetID, clientID: Qtrigger.value.
clientID}", value_vetID: n.value_vetID, value_clientID: n.value_clientID})

CREATE (choosePet_2 : DataIN{ reda_id: "choosePet_2", executed: 0, included: true,
pending: false, type: "{name: String, age: Number, breed: String}", value_name: "",

value_age: O, value_breed: ""})

CREATE (checkIn_3 : DataIN{ reda_id: "checkIn_3", executed: 0, included: true, pending:
false, type: "Unit"})

CREATE (checkOut_4 : DataIN{reda_id:"checkOut_4", executed:0, included:false, pending:
false, type:"Unit"})

CREATE (dummy_7:DUMMY{reda_id:"dummy_7", exp:"true", value:true, executed:0, included:
true, pending:falsel})

CREATE (appointment_1)-[:appointment]->(choosePet_2)

CREATE (checkIn_3)-[:excludes]->(checkIn_3)

CREATE (checkIn_3)-[:excludes]->(choosePet_2)

CREATE (checkIn_3)-[:includes]->(checkOut_4)

CREATE (checkOut_4)-[:excludes]->(checkOut_4)

CREATE (choosePet_2)-[:condition]->(checkIn_3)

CREATE (dummy_7)-[:spawnCondition]->(choosePet_2)

RETURN 1 as X

{phase:’before’});

88

o

0o N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

III.1 ReDa Process

ANNEX

Library ReDa Process

(createAuthor:DataIN) [?: {authorName:String}]

s

createAuthor -->> {

(author:DataOUT) [{name:@trigger.value.authorNamel}],

(createBook:DataIN) [7:{bookTitle:String, genre:String, isbn:String}]

>

createBook -->> {

(book:DatalUT) [{bookTitle:@trigger.value.bookTitle, genre:Q@trigger.value.genre, isbn:

Q@trigger.value.isbn, author:author.value.namel}],

(loanBook:DataIN) [7:{username:String}]

)

loanBook -->> {

(loan:DataOUT) [{user:@trigger.value.usernamel}],

! (returnBook:DataIN) [7]

returnBook -->), returnBook,

returnBook -->+ loanBook

loan -[:BO0K]-> book,

returnBook -[:LOAN]-> loan

},
loanBook -->% loanBook
author -[:WROTE]-> book
}

89

© 0 N o

10
11
12
13

14
15
16
17
18
19
20
21
22
23

24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

ANNEX III. LIBRARY REDA PROCESS

I1I.2 Cypher Script

CREATE (createAuthor_48:DatalN{reda_id:"createAuthor_48", executed:0, included:true,
pending:false, type:"{authorName:String}", value_authorName:""})

CREATE (dummy_57 :DUMMY{reda_id:"dummy_57", exp:"true", value:true, executed:0, included:
true, pending:false})

CREATE (dummy_57)-[:spawnCondition]->(createAuthor_48)

CALL apoc.trigger.add(’EVERYWERE’,
>UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, "executed
") as prop
WITH prop.node as n
WHERE n.executed>0

CALL apoc.util.validate(EXISTS((n)<-[:condition]-({included:true, executed:0})),
"EVENT HAS A CONDITION UNSATISFIED", [1)

CALL apoc.util.validate(EXISTS((n)<-[:milestone]-({included:true, pending:truel})),
"EVENT HAS A MILESTONE UNSATISFIED", [])

CALL apoc.util.validate(n.included=false, "EVENT IS NOT INCLUDED", [])

CALL apoc.util.validate(EXISTS((n)<-[:conditionRight]-({value:true})<-[:conditionLeft
]-({included:true, executed:0})),
"EVENT HAS A CONDITION EXPRESSION UNSATISFIED", [1)

CALL apoc.util.validate(EXISTS((n)<-[:milestoneRight]-({value:true})<-[:milestoneLeft
1-({included:true, pending:truel})),
"EVENT HAS A MILESTONE EXPRESSION UNSATISFIED", [1)

RETURN 1 as X

UNION
UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed") as prop
WITH prop.node as n WHERE n.executed>0

SET n.pending = false

WITH n

OPTIONAL MATCH (n)-[:response]->(t)
SET t.pending = true

WITH n

OPTIONAL MATCH (n)-[:excludes]->(t)
SET t.included = false

90

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64

66

67
68
69
70
71
72
73
74
75
76
7
78

79
80

81
82
83
84
85
86
87
88
89
90

II1.2. CYPHER SCRIPT

WITH n

OPTIONAL MATCH (n)-[:includes]->(t)

SET t.included = true

WITH n

OPTIONAL MATCH (n)-[:responseLeft]->({value:true})-[:responseRight]->(t)
SET t.pending = true

WITH n

OPTIONAL MATCH (n)-[:excludesLeft]->({value:true})-[:excludesRight]->(t)
SET t.included = false

WITH n

OPTIONAL MATCH (n)-[:includesLeft]->({value:true})-[:includesRight]->(t)
SET t.included = true

RETURN 1 as X

)
B

{phase:’before’});

CALL apoc.trigger.add(’Trigger_id_58’,

"UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties, "executed

") as prop
WITH prop.node as n
WHERE n.reda_id="loanBook_52" AND n.executed>0
MATCH (book_51)-[:book]->(n)
MATCH (dummy_55)-[:spawnCondition]->(n)

WHERE dummy_55.value = true

MATCH (loanBook_52)-[:loanBook]->(n)

CREATE (loan_53:DataOUT{reda_id:"loan_53", executed:0, included:true, pending:false,

expr: "{user:Qtrigger.value.username}", value_user:n.value_username})

CREATE (returnBook_54:DataIN{reda_id:"returnBook_54", executed:0, included:true, pending

:true, type:"Unit"})

CREATE (loan_53)-[:B0O0K]->(book_51)

CREATE (returnBook_54)-[:LOAN]->(loan_53)

CREATE (returnBook_54)-[:excludes]->(returnBook_54)

CREATE (returnBook_54)-[:includes]->(loanBook_52)

91

ANNEX III. LIBRARY REDA PROCESS

91 RETURN 1 as X

92 7,

93 {phase:’before’});

94

95

96

97 CALL apoc.trigger.add(’Trigger_id_59°,

98 ’UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed

") as prop

99 WITH prop.node as n

100 WHERE n.reda_id="book_51" AND n.executed>0

101

102 MATCH (author_49)-[:author]->(n)

103

104 SET n.value_author=author_49.value_name

105

106

107

108 RETURN 1 as X

109 7,

110 {phase:’before’});

111

112

113

114

115

116 CALL apoc.trigger.add(’Trigger_id_60’,

117 >UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed

") as prop

118 WITH prop.node as n

119 WHERE n.reda_id="createBook_50" AND n.executed>0

120

121 MATCH (author_49)-[:author]->(n)

122

123 MATCH (dummy_56)-[:spawnCondition]->(n)

124 WHERE dummy_56.value = true

125

126

127 CREATE (book_51:Data0UT{reda_id:"book_51", executed:0, included:true, pending:false,
expr:"{isbn:@trigger.value.isbn, genre:@trigger.value.genre, bookTitle:Q@trigger.
value.bookTitle}", value_isbn:n.value_isbn, value_genre:n.value_genre,
value_bookTitle:n.value_bookTitle})

128

129 CREATE (loanBook_52:DataIN{reda_id:"loanBook_52", executed:0, included:true, pending:

false, type:"{username:String}", value_username:""})

131 CREATE (dummy_55:DUMMY{reda_id:"dummy_55", exp:"true", value:true, executed:0, included:
true, pending:falsel})

132

133 CREATE (author_49)-[:WROTE]->(book_51)

92

II1.2. CYPHER SCRIPT

134

135 CREATE (author_49)-[:author]->(book_51)
136

137 CREATE (author_49)-[:condition]->(book_51)

139 CREATE (author_49)-[:response]->(book_51)

140

141 CREATE (book_51)-[:book]->(loanBook_52)

142

143 CREATE (dummy_55)-[:spawnCondition]->(loanBook_52)
144

145 CREATE (loanBook_52)-[:excludes]->(loanBook_52)
146

147 CREATE (loanBook_52)-[:loanBook]->(loanBook_52)
148

149

150 RETURN 1 as X

151 7,

152 {phase:’before’});

155

156

157

158

159

160 CALL apoc.trigger.add(’Trigger_id_61’,

161 >UNWIND apoc.trigger.propertiesByKey($assignedNodeProperties,"executed

") as prop

162 WITH prop.node as n

163 WHERE n.reda_id="createAuthor_48" AND n.executed>0

164

165 MATCH (dummy_57)-[:spawnCondition]->(n)

166 WHERE dummy_57.value = true

167

168

169 CREATE (author_49:DataOUT{reda_id:"author_49", executed:0, included:true, pending:false,
expr:"{name:@trigger.value.authorName}", value_name:n.value_authorName})

170

171 CREATE (createBook_50:DataIN{reda_id:"createBook_50", executed:0, included:true, pending
:false, type:"{bookTitle:String, genre:String, isbn:String}", value_bookTitle:"",
value_genre:"", value_isbn:""})

172

173 CREATE (dummy_56:DUMMY{reda_id:"dummy_56", exp:"true", value:true, executed:0, included:
true, pending:false})

174

175 CREATE (author_49)-[:author]->(createBook_50)

176

177 CREATE (dummy_56)-[:spawnCondition]->(createBook_50)
178

93

179
180
181
182

ANNEX III.

LIBRARY REDA PROCESS

RETURN 1 as X

)
>

{phase:’before’});

94

	List of Figures
	Introduction
	Motivation
	Context
	Contributions
	Document Structure

	Related Work
	Business Process Modeling
	BPMl
	BPMn
	Constraint Based Models
	DECLARE
	Dynamic Condition Response (DCR) Graphs
	OCBC: Object-Centric Behavioral Constraint Model
	ReSeDa

	Business Process Modeling Engines
	jBPM
	Camunda

	ReDa - Reactive Data-driven Processes
	Syntax
	Semantics
	Enabledness
	Transitions
	Data expressions
	Patterns
	Aggregation Functions

	ReDa by example

	Compilation Procedure
	Dynamic Relations

	System Architecture
	ReDa Compiler
	Neo4j
	Cypher

	ReDa Engine

	System Demonstration
	Performance

	Conclusions
	Bibliography
	Webography
	ReDa Process Translation Example
	ReDa Process
	Cypher Script

	Veterinarian Clinic with ReDa
	ReDa Process
	Cypher Script
	Library ReDa Process
	ReDa Process
	Cypher Script

