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Abstract: Structure, and consequently properties, of ionic liquids can be easily tailored by changing
cation/anion combinations and/or attaching functional groups. By grafting enantiopure moieties to
the framework of ionic liquid it is possible to prepare bioinspired chiral molecules that can serve as a
reaction medium, additive or even asymmetric catalyst. In this context, new chiral ionic liquids (CILs),
based on biomolecules, such as aminoacids (l-Cysteine derivatives), have been synthesised and tested
in asymmetric aldol condensation of aldehydes and ketones. The best results were obtained for CILs
composed of S-methyl-l-cysteine cation and bis(trifluoromethane)sulfonimide anion, in the reaction
of 2- or 4-nitrobenzaldehyde with acetone or cyclohexanone, giving the aldol product in moderate
yields 70–76% and high ee values (up to 96%).

Keywords: asymmetric catalysis; aldol reactions; cysteine derivatives; chiral ionic liquids; organocatalysts

1. Introduction

The major challenge in asymmetric synthesis is the pursuit of novel “green” catalysts
exhibiting both high activity and selectivity [1–3]. Frequently described as the “third pillar
of asymmetric catalysis”, organocatalysis indicates to synthetic chemists an alternative
approach towards chiral molecules that does not depend on enzymes nor on transition
metals. Since the development of the highly enantioselective amine-catalysed Diels–Alder
reaction by MacMillan and co-workers in 2000 [4], continuous improvements and new
discoveries have been reported in asymmetric organocatalysis [5,6]. The field has grown
exponentially throughout the years and found its recognition in the Nobel Prize in chemistry
awarded in 2021 to its two pioneers, David MacMillan and Benjamin List [7].

The use of chiral small organic molecules as catalysts can be successfully combined
with green chemistry methodologies [8,9]. It has been demonstrated that by involving
intensification techniques, more environmentally friendly reaction media, or renewable and
naturally occurring chiral organic scaffolds, it is possible to establish more eco-sustainable
protocols. Proline is an abundant, non-toxic, inexpensive, and easily available, in both
enantiomeric forms, amino acid. L-proline, “the simplest enzyme” [10,11], has been proven
to promote many reactions and deliver products with high stereoselectivity [12–19]. Along
the years, L-proline has been found to enantioselectively catalyse reduction, oxidation,
electrophilic α-fluorination or amination, as well as carbon–carbon bond-forming reactions,
i.e., the aldol reaction. Hajos and Parrish [16] were the first to describe the use of (S)-
proline for the asymmetric intramolecular aldol reaction, whereas List et al. [10] was the
first to report on the direct route for this process. Despite the unquestionable advance
seen with asymmetric organocatalysis, the majority of the processes employ traditional
organic solvents, such as N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), or
N-methyl-2-pyrrolidinone (NMP), and entail difficulties in catalyst recycling.

Among alternative solvents, ionic liquids (ILs) have emerged as a particularly interest-
ing media. ILs are molten salts that melt below 100 ◦C, or even at room temperature, and are
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so called Room Temperature Ionic Liquids (RTILs) [20]. Being composed of organic cations
and inorganic or organic anions, their physical properties can be easily tuned for a specific
use. This unique designer nature, combined with negligible vapor pressure (nonvolatility),
thermal stability, and excellent dissolving power for a wide range of compounds, makes
ILs suitable for a large number of potential applications in many fields [21].

The facility with which chirality elements can be introduced into an ionic liquid
structure allows for countless potential utilisations of chiral ionic liquids (CILs) as chiral
media, additives, or enantioselective catalysts [22–25]. There exist several works involving
CILs as an asymmetric catalyst for the aldol condensation of aldehydes and ketones [26–31].
The strategy in these reports relies on the modification of IL ion, imidazolium cation in
particular, with an enantiopure fragment (“ion tagging”) to provide recoverability and
reusability of the chiral catalyst. CILs serve here as soluble supports for synthesis.

Wu et al. has shown that the direct asymmetric aldol reaction can be enantioselectively
catalysed by hydrophobic l-Cysteine derivatives, in the presence of water [32]. Although
the amino acid itself is completely inactive towards preparation of enantiomerically en-
riched β-hydroxy ketones, its acetylated derivatives delivered the desired product, from
4-nitrobenzaldehyde and cyclohexanone, in good yields (93–93%) with 90–92 ee.

The aim of this study is to investigate the catalytic activity of S-methyl- and S-
carboxymethyl-l-Cysteine derivatives based on CILs in the asymmetric aldol reaction.

2. Results and Discussion

S-methyl-l-cysteine derivatives as cation or anion units were combined with appropri-
ated counter ions in order to prepare desired chiral ionic liquids (as described in Figure 1).
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Figure 1. Structures of S-methyl (3 or 4) and S-carboxymethyl l-Cysteine (5) derivatives based on
chiral ILs comparing with L-proline (1) or l-Cysteine (2) as organocatalysts.

The preparation and characterisation of the different chiral room temperature ILs
(RTILs) was described by our group in the other article recently submitted. Nevertheless,
the preparation of the cysteine-based ILs is presented in the Supplementary Information.
Using similar synthetic methodology novel S-carboxymethyl-l-Cysteine based RTILs have
been also developed.

In order to test the potential of these novel chiral RTILs based on the l-Cysteine as
organocatalyst, we decided to apply them for asymmetric aldol reaction. Initially, we
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selected acetone or cyclohexanone as ketones and 2- or 4-nitrobenzaldehyde in the presence
of 10 to 20 mol% of catalyst.

Figure 2 illustrates the asymmetric aldol reaction using acetone or cyclohexanone with
2- or 4-nitrobenzaldehyde as model compounds and chiral RTILs based on S-protected-l-
Cysteine as organocatalysts.
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Table 1 summarises the different yields and enantiomeric excesses of tested asymmetric
aldol reactions.

Table 1. Asymmetric aldol reaction using acetone or cyclohexanone with 2- or 4-nitrobenzaldehyde
as model compounds and chiral RTILs based on S-protected-l-Cysteine as organocatalysts.

Entry Ketone/Benzaldehyde [a]

(Product) Catalyst [b] dr (anti: syn)
[c] Yield [%] [d] ee% [e]

1 Acetone/2-Nitro (1) 1 - 89 89
2 Acetone/4-Nitro (2) 1 - 90 91
3 Acetone/2-Nitro (1) 2 - no reaction –
4 Acetone/4-Nitro (2) 2 - no reaction –
5 Acetone/2-Nitro (1) 3a - 70 53
6 Acetone/4-Nitro (2) 3a - 79 70
7 Acetone/2-Nitro (1) 3b - 42 37
8 Acetone/2-Nitro (1) 4a - no reaction –
9 Acetone/2-Nitro (1) 4b - 40 66

10 Acetone/4-Nitro (2) 4c - 77 68
11 Acetone/2-Nitro (1) 5a - no reaction –
12 Cyclohexanone/2-Nitro (3) 1 94:6 63 76
13 Cyclohexanone/4-Nitro (4) 1 98:2 68 84
14 Cyclohexanone/2-Nitro (3) 2 - no reaction –
15 Cyclohexanone/4-Nitro (4) 2 - no reaction –
16 Cyclohexanone/2-Nitro (3) 3a 89:11 63 88
17 Cyclohexanone/4-Nitro (4) 3a 89:11 73 90
18 Cyclohexanone/2-Nitro (3) 3b - no reaction –
19 Cyclohexanone/2-Nitro (3) 4c - no reaction –
20 Cyclohexanone/2-Nitro (3) 5a 91:9 21 n.d. [f]

[a] Reaction conditions: acetone (2 mmol) or cyclohexanone (1 mmol) in water (0.5 mL) and 2- or 4-
nitrobenzaldehyde (0.5 or 1 mmol) at room temperature, 24 h to 48 h. [b] 20 mol% and 10 mol% of catalyst
in the case of acetone and cyclohexanone, respectively. [c] Anti:syn diastereomers were determined from 400.13 Hz
1H NMR spectroscopy. [d] Isolated yield. [e] Enantiomeric excesses determined by 1H NMR after use of chiral
agent (Mosher’s acid derivatives) [f] n.d.: not determined.

The preliminary investigation confirmed that L-proline is an effective organocatalyst
for asymmetric aldol reactions (Table 1, Entries 1 and 2). However, novel chiral RTILs,
essentially [S-MeCysNH3][NTf2], 3a, catalysed the asymmetric direct aldol reaction of
2- or 4-nitrobenzaldehyde and acetone or cyclohexanone to give the aldol product in
moderate yields (70–79%), with the indicated range of ee values (53–90% ee, Table 1, Entries
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5, 6, 16 and 17). Although longer reaction times were required in comparison with cyclic
ketones, satisfactory results were obtained. As it was expected, in contrast with the o-NO2
substituent group, the p-NO2 substituent group gave higher yields as well as higher ee
values. [Choline][S-MeCysCO2], 4b, and [Emim][S-MeCysCO2], 3c, showed a moderate
performance in the case of acetone and 2- or 4-nitrobenzaldehyde (40% of yield and 66% of
ee for 4b and 77% yield with 68% ee in the case of 4c) as model substrates.

After the optimisation of the reaction conditions, we further studied the asymmetric
direct aldol reaction using several substituted benzaldehydes in the presence of a catalyst: L-
proline, S-methyl_l-Cysteine or 3a as shown in Table 2. It is important to note that changing
the position of the substituent groups in benzaldehydes leads to different results. Thus, [S-
MeCysNH3][NTf2], 3a, in the case of 4-hydroxy-3-nitrobenzaldehyde, proved to be a better
chiral catalyst than conventional L-proline (Table 2, Entries 5, 6; 76% yield, 95% ee). This
can be explained by the fact that electron-withdrawing groups enhance the electrophilicity
of carbonyl carbons in aldehydes, which facilitates the reaction, while electron-donating
groups reduce the electrophilicity. When 2-hydroxy-3-metoxy-5-nitrobenzaldehyde was
used, similar results were obtained (Table 2, Entries 9 and 10).

Table 2. Studies on asymmetric aldol reactions with different benzaldehydes.

Entry [a] Catalyst [b] Ketone Substituted
Benzaldehyde

Yield [%]
[c]

dr (anti:
syn) [d] ee% [e]

1 1 Acetone Benzaldehyde (5) 68 - 84
2 3a Acetone Benzaldehyde (5) 73 - 90
3 1 Cyclohexanone Benzaldehyde (6) 69 98:2 82
4 3a Cyclohexanone Benzaldehyde (6) 70 90:10 85
5 L-PRO Acetone 4-hydroxy-3-nitro (7) 67 - 92
6 3a Acetone 4-hydroxy-3-nitro (7) 76 - 95
7 L-PRO Acetone 2-hydroxy-5-nitro (8) 70 - 95
8 3a Acetone 2-hydroxy-5-nitro(8) 58 - 96

9 L-PRO Acetone 2-hydroxy-3-metoxy-
5-nitro (9) 41 - 94

10 3a Acetone 2-hydroxy-3-metoxy-
5-nitro (9) 76 - 93

[a] Reagents and conditions: ketone (1 mmol), benzaldehyde or substituted benzaldehyde (0.5 mmol), room temper-
ature, 24 h. [b] Legend of Catalysts (10 mol% loading) for: L-PRO- L-proline, 1) S-MeCys, 3a) [S-MeCysNH3][NTf2].
[c] Isolated yield. [d] Anti:syn diastereomers were determined from 400.13 Hz 1H NMR spectroscopy. [e] Enan-
tiomeric excesses determined by 1H NMR after use of chiral agent (Mosher’s acid derivatives).

For all the cases using l-Cysteine as organocatalyst no aldol product was observed. In
the same line, other CILs based on S-methyl-l-cysteine have been tested without any effi-
ciency to aldol reactions. Additionally, it was proved that the cysteine-based organocatalyst,
3a, can be recovered and reused. The reaction between acetone and 2-nitrobenzaldehyde
have been chosen as the model reaction (Table 1, Entry 5, Product 1). The recovered catalyst
displays almost the same activity after the recycle, giving the final aldol product in 72%
yield. Unfortunately, the ee values maintained low (53%).

3. Materials and Methods

Asymmetric aldol reaction between aromatic aldehydes and acetone/cyclohexanone
was carried out in the neat ketone reaction system (acetone) and water or DMSO (cyclohex-
anone). The suspension of the chiral catalyst based on cysteine scaffold (10–20 mol%) and
ketone (100 µL, 2 mmol) was stirred for 30 min at RT. After that time aromatic aldehyde
(0.0756 g, 1 mmol) was added and the resulting mixture was allowed to stir at RT for
24–48 h as indicated in Table 2. In the next step, the solvent was evaporated in vacuo and
the crude was redissolved in DCM, in order to be filtered through a neutral alumina pad
(1 g) and washed with diethyl ether (Et2O). The solvent was removed under vacuum to
afford the desired aldol product as colourless solid. Relative and absolute configurations
of the products and enantiomeric excess values were determined by comparison with the
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known 1 H NMR. The spectroscopic data of all the products were in agreement with the
literature data.

4. Procedure for Catalyst Recovery

Acetone (2.4 mL) was added to a vial containing the catalyst, 3a (0.1 g, 0.1 mmol).
After vigorous stirring at rt for 15 min, aromatic aldehyde (0.18 g, 0.5 mmol) was added,
and the resulting mixture was stirred at rt for 24 h. After the excess solvent was evaporated,
Et2O was added to the crude and vigorous stirred for 5 min. Later, an extraction using Et2O
(4 × 2mL) was performed. Then the organic layer was concentrated in vacuo to afford
the aldol product. The catalyst phase remaining, according to the immiscibility of the
catalyst, 3a, in Et2O, was redissolved in acetone in order to be recovered and was dried
under vacuum for 8 h. The desired product aldol product was obtained as colourless
solid 0.2206 g, yield: 88%. The recovered catalyst (0.03 g) was then reused for a second
cycle of asymmetric aldol reaction and the resulting aldol product was obtained (0.048 g,
yield: 72%).

4(R)-hydroxy-4-(2-nitrophenyl)butan-2-one (1) [32]: 93 mg, yield: 89%. 1H NMR (400.13 MHz,
CDCl3) δ 7.95 (d, 3JH3′-H4′ = 8 Hz, 1H, H3′ ), 7.90 (d, 3JH6′-H5′ = 8 Hz, 1H, H6′ ), 7.65 (t,
3JH5′-H6′ , H4′ = 8 Hz, 1H, H5′ ), 7.43 (t, 3JH4′-H5′ , H3′= 8 Hz, 1H, H4′ ), 5.68 (d, 3JH4-H3 = 8 Hz,
1H, H4), 3.13 (dd, 3JH3-H3, H4 = 8 Hz, 1H, H3), 2.79 (dd, 3JH3-H3, H4 = 8 Hz, 1H, H3), 2.23 (s,
3H, H1). 13C NMR (100.61 MHz, CDCl3) δ 208.20 (C2), 147.24 (C6′ ), 138.28 (C5′ ), 133.91 (C2′ ),
128.27 (C3′ ), 124.26 (C4′ ), 65.53 (C4), 51.18 (C3), 30.00 (C1).
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(4R)-hydroxy-4-(2-hydroxy-5-nitrophenyl)butan-2-one (8) [32]: 71 mg, yield: 70%. 1H
NMR (400.13 MHz, CDCl3) δ 8.59 (s, 1H, H6′ ), 8.43 (d, 3JH4′-H3′ = 8 Hz, 1H, H4′ ), 7.15 (d,
3JH3′-H4′ = 8 Hz, 1H, H3′ ), 3.74 (t, 3JH4-H3, = 8 Hz, 1H, H4), 3.12 (dd, 3JH3-H3, H4 = 8 Hz, 1H,
H3), 2.78 (dd, 3JH3-H3, H4 = 8 Hz, 1H, H3), 2.25 (s, 3H, H1). 13C NMR (100.61 MHz, CDCl3)
δ 195.58 (C2), 166.13 (C2′ ), 140.63 (C5′ ), 131.68 (C1′ ), 129.78 (C4′ ), 119.42 (C6′ ), 119.00 (C3′ ),
65.84 (C4), 30.92 (C3), 29.68 (C1).
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(4R)-hydroxy-4-(2-hydroxy-3-methoxy-5-nitrophenyl)butan-2-one (9) [35]: 74 mg, yield:
76%. 1H NMR (400.13 MHz, CDCl3) δ 8.20 (s, 1H, H6′ ), 7.90 (s, 1H, H4′ ), 4.00 (s, 3H,
H7′ ), 3.45 (t, 3JH4-H3, = 8 Hz, 1H, H4), 3.07 (dd, 3JH3-H3, H4 = 8 Hz, 1H, H3), 2.88 (dd,
3JH3-H3, H4 = 8 Hz, 1H, H3), 1.39 (s, 3H, H1). 13C NMR (100.61 MHz, CDCl3) δ 195.45 (C2),
156.73 (C3′ ), 148.90 (C2′ ), 140.29 (C5′ ), 120.34 (C1′ ), 118.72 (C6′ ), 111.24 (C4′ ), 56.69 (C4), 56.11
(C7′ ), 49.69 (C3), 30.02 (C1).
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