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Abstract 

Heterogeneity is a pertinent issue in Information Systems (IS) research because human behavior often differs 
across groups. In the context of partial least squares path modeling (PLS-PM), several approaches have been 
proposed to investigate potential group differences due to observed heterogeneity. Despite the availability of 
numerous approaches, literature that compares their efficacy is sparse. Consequently, IS research lacks guidance 
on which approach is best suited to detect group differences. We address this issue by presenting the results of an 
extensive Monte Carlo simulation study that juxtaposes the various approaches’ behavior under numerous 
conditions such as group differences, no group differences, comparison of a single parameter, comparison of the 
complete structural model, and equally and unequally distributed sample sizes across groups. In doing so, we first 
provide an overview on existing approaches proposed for multigroup analysis (MGA) in the context of PLS-PM. 
Moreover, based on the simulation results, we derive important implications for applied research: Firstly, we show 
that the omnibus test of group differences (OTG) and approaches based on the comparison of confidence intervals 
are not recommendable for MGA. Secondly, we provide detailed information which approaches are suitable for 
comparing one specific path coefficient and which are recommended if the complete structural model is compared 
across groups. Finally, we show that approaches which are designed to compare a single parameter require an 
adjustment for multiple comparisons when used to compare more than two groups.  

Keywords: Partial Least Squares Path Modeling; Multigroup Analysis; Monte Carlo Simulation; Distance-Based 
Permutation Test; OTG; Confidence Interval Comparison; Group Comparison. 

Introduction 

Over the last decades, variance-based estimators for structural equation models have gained increasing attention 
and popularity (Hwang & Takane, 2004; Tenenhaus, 2008). Among these estimators, partial least squares path 
modeling (PLS-PM) (Wold, 1975) is arguably the most wide-spread estimator and has been used for research in 
numerous fields, including marketing (Hair et al., 2012), business research (Hair et al., 2014), tourism (Müller et al., 
2018), and information systems (IS) research (Benitez et al., 2020). PLS-PM was invented by Herman O.A. Wold 
(1975) and can emulate various of Kettengring’s (1971) approaches to generalized canonical correlation analysis. 
Moreover, it is a consistent estimator for structural models in which the abstract concepts are represented by 
composites (Dijkstra, 2017).1 

Many empirical studies in IS research that employ PLS-PM investigate samples collected from different populations 
(e.g., Ahuja & Thatcher, 2005; Dibbern et al., 2012), leading to heterogeneous datasets. In general, two types of 
heterogeneity can be distinguished: (i) unobserved heterogeneity, and (ii) observed heterogeneity. While the source 
of unobserved heterogeneity is unknown to the researcher (Wedel & Kamakura, 2000), observed heterogeneity can 
be traced back to observable characteristics, such as cultural background or gender (Hair et al., 2018). In both 
cases, ignoring heterogeneity can lead to severely biased results and therefore to questionable conclusions (Becker 
et al., 2013; Jedidi et al., 1997; Muthén, 1989). 

Several approaches comprising statistical tests and comparisons of confidence intervals (CIs) have been proposed 
for multigroup analysis (MGA) in the context of PLS-PM to investigate whether observed heterogeneity is an issue 
that needs to be addressed. For example, a modified unpaired samples t-test can be used to compare a single 
parameter across two groups. Similarly, non-parametric tests were introduced to compare one parameter across 
two groups. Furthermore, the comparison of CIs was proposed to examine whether a parameter differs between 
two groups (Sarstedt et al. 2011). Since researchers often deal with more than two groups (e.g., Keil et al., 2000), 
the existing literature also suggests the omnibus test of group differences (OTG) to investigate whether a single 
parameter differs across multiple groups (Sarstedt et al., 2011). Because these approaches focus on a single 
parameter and not on the complete model, Klesel et al. (2019) recently introduced a distance-based permutation 
test, that compares all parameters simultaneously across groups. In doing so, they propose to consider the average 
squared Euclidean distance or the average geodesic distance of the model-implied indicator correlation matrix 
between groups. Hence, all model parameters are taken into account, and thus, the complete model is compared 
across groups.  

Although previous literature has provided important advancements for applying MGA in the context of PLS-PM, 
there is a lack of a systematic comparison regarding existing approaches. To date, PLS-PM studies about MGA 
have primarily focused on proposing recommendations and demonstrating approaches’ efficacy by means of an 
empirical examples (Hair et al., 2018; Matthews, 2017; Sarstedt et al., 2011). Moreover, they are limited to 
approaches that were available at the time of publication. Therefore, more current approaches including the 



distance-based permutation test (Klesel et al., 2019) have not been considered (Qureshi & Compeau, 2009). Hence, 
for IS researchers and applied researchers in general, it remains unclear which approach to favor under which 
condition.  

To address this issue, we conduct an extensive Monte Carlo simulation to systematically investigate the 
performance of existing approaches. Since measurement invariance needs to be established before conducting 
MGA, the focus of our simulation study is on the structural model where, in principle, all parameters can vary across 
groups. To limit the scope of our simulation, we focus on the two most important scenarios: (i) only a specific 
parameter is compared across groups, and (ii) the complete structural model is compared across groups. The 
former is commonly applied in IS studies and is particularly relevant for IS researchers who have prior expectations 
about which effects in the model differ. For example, Sia et al. (2009) compare the effect of portal affiliation and 
peer endorsement on trusting beliefs across different cultures, i.e., individualist and collectivist. The comparison of 
the complete structural model is advantageous if researchers either have no prior expectations about which parts 
of the model differ or if they are interested in whether a complete postulated theory/model functions differently 
across groups. The latter might be a relevant research question itself. For example researcher might investigate 
whether the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003) functions 
differently for different cultural backgrounds. Against this background, we examine the approaches’ behavior when 
a single parameter and the complete structural model, respectively, is compared across groups. 

This study contributes to extant literature in four ways. Firstly, we provide an overview of existing approaches to 
detect group differences in the context of PLS-PM. Secondly, we systematically investigate the performance of 
these approaches by means of an extensive Monte Carlo simulation. The results can be used to guide the selection 
of a specific test in empirical research. Thirdly, we show that the use of the OTG and the comparison of CIs are not 
recommendable as the former is misdesigned and the latter presents a misuse of CIs. Consequently, they either 
detect too often or too rarely group differences that do not exist. Fourthly, we show that approaches that are 
designed to compare a single parameter across groups require an adjustment for multiple comparisons if the 
complete structural model is compared. Otherwise, the family-wise error rate is inflated.  

The remainder of this study is organized as follows: In Section 2, we give a brief overview of existing approaches 
that can be used to compare groups in the context of PLS-PM. Section 3 describes the design of our Monte Carlo 
simulation conducted to assess the approaches' performance. In Section 4, we present the results of our simulation. 
The paper closes with a discussion of the results, a recommendation which approach should be used in which 
situation, and an outlook on future research in Section 5. 

Multigroup Analysis using PLS-PM 

Generally, two types of heterogeneity are distinguished in the context of PLS-PM: (i) unobserved heterogeneity, and 
(ii) observed heterogeneity. As implied by its name, unobserved heterogeneity cannot be directly observed, and its 
source is often unknown to the researcher (Wedel & Kamakura, 2000). To uncover unobserved heterogeneity, 
several approaches have been proposed, such as the response based unit segmentation partial least squares 
(REBUS-PLS)(Esposito Vinzi et al., 2008), finite-mixture partial least squares (FIMIX-PLS) (Hahn et al., 2002), 
prediction-oriented segmentation (PLS-POS) (Becker et al., 2013), partial least squares genetic algorithm 
segmentation (PLS-GAS) (Ringle et al., 2010), and the Pathmox approach for PLS-PM (Lamberti et al., 2017). For 
an overview on approaches to reveal unobserved heterogeneity, we refer to Sarstedt et al. (2017). In contrast to 
unobserved heterogeneity, observed heterogeneity implies that heterogeneity stems from observable 
characteristics, such as cultural background (Srite & Karahanna, 2006), gender (Ahuja & Thatcher, 2005), or age 
(Lee & Kim, 2014). Usually, there are two ways to deal with observed heterogeneity. On the one hand, heterogeneity 
can be directly modeled, e.g., by including interaction terms (Henseler & Fassott, 2010). On the other hand, the 
observable characteristics can be used to partition the original dataset into groups (Henseler et al., 2009). 
Subsequently, the model is estimated for each group separately. Finally, to examine whether group differences due 
to observed characteristics exist in the population, MGA can be used. 

To conduct a MGA in the context of PLS-PM various approaches have been proposed. An overview is given in Table 
1 and a brief description is provided in the following. For a detailed discussion on the technical details of each 
approach, we refer to existing literature (Klesel et al., 2019; Matthews, 2017; Sarstedt et al., 2011) and the 
references mentioned in Table 1. 

 

 



----------------------------------------------------------------- 

Insert Table 1 About Here 

----------------------------------------------------------------- 

To compare a single model parameter across two groups, parametric and non-parametric tests have been proposed. 
The former comprises the t-test based on bootstrap standard errors for two independent samples assuming equal 
variances across groups  (Parametric Test Equal variances) (Keil et al., 2000). Likewise, a modification of this test 
can be applied allowing for unequal variances across groups (Parametric Test Unequal variances)(Nitzl, 2010; 
Sarstedt et al., 2011). In both cases, the p-value to draw conclusions about the parameter difference is based on 
the Student’s t-distribution. Examples in IS literature can be found in Hsieh et al. (2008), Ahuja and Thatcher (2005), 
and Keil et al. (2000).  

Besides parametric tests, two non-parametric tests have been suggested to compare a parameter across two 
groups. Firstly, a one-sided bootstrap-based test that compares the absolute size order of the parameter estimates 
from the bootstrap runs across the two groups to draw conclusion about the parameter difference in the population 
(Non-parametric Bootstrap-based Test) (Henseler, 2007; Henseler et al., 2009). Secondly, a permutation test was 
proposed for comparing a single parameter across two groups (Non-parametric Permutation-based Test) (Chin, 
2003; Dibbern & Chin, 2005; Keil et al., 2000). As the name suggests, it builds on permutation to obtain the reference 
distribution of the parameter difference from which the critical values are drawn that are used to make the decision 
whether a parameter difference is statistically significant. An IS example for the NBT are given in Hew et al. (2017), 
and for the NPT, IS examples can be found in Wolf et al. (2012); Dibbern et al. (2012); Srite and Karahanna (2006). 

Moreover, although not a statistical test, the comparison of CIs has been proposed to investigate for a parameter 
difference between two groups (Sarstedt et al, 2011). It comes with two flavors: Firstly, it is proposed to investigate 
whether the CIs constructed around a specific parameter estimate of the two groups overlap (Confidence Interval 
Overlap); if not, it is concluded that the parameter differs between the two groups. Secondly, it is suggested to 
examine whether the CI constructed around a specific parameter estimate of one group covers the corresponding 
parameter estimate of the other group, and vice versa (Confidence Intervals Covers Parameter); if not, it is 
concluded that, the parameter differs between the two groups. To the best of our knowledge, so far no IS study has 
applied this approach. 

To compare a single parameter across more than two groups, the Omnibus Test of Group Differences (OTG) was 
introduced, which, in principle, mimics the F-test known from analysis of variance (ANOVA) (ANOVA, Sarstedt et 
al., 2011). It calculates the mean of the bootstrap parameter estimates for each group and uses these means to 
compute the F-test statistic known from ANOVA. Subsequently, permutation is used to obtain reference distribution 
of the F-test statistic. An IS example is given in Papagiannidis et al. (2017).  

Only recently, a new permutation test was introduced (Non-parametric Distance-based Test) (Klesel et al., 2019), 
which opens new research avenues, namely, that researchers can investigate whether their postulated 
theories/models function differently across groups. In doing so, the average distance between the model-implied 
indicator correlation matrices is investigated to draw conclusions about whether the complete model is different 
across two or more groups. Specifically, the test examines either the average squared Euclidean distance or the 
average geodesic distance of the model-implied indicator correlation matrix between groups. Similar to the NPT, it 
builds on permutation to obtain the reference distribution of the distances. If there are no group difference of the 
model-implied indicator correlation matrix in the population, both distances should be closely distributed around 
zero within the limits of sampling variation. In contrast, if the model-implied correlation matrix differs across groups, 
the differences should substantially exceed zero and the test should turn to be significant. As the test has been 
proposed only recently, to the best of our knowledge, it has not been applied in IS research yet.  

Although the performance of some of these approaches has already been assessed by simulation studies, e.g., the 
efficacy of the PTE (Qureshi & Compeau, 2009), the NPT (Chin & Dibbern, 2010), and the NDT (Klesel et al., 2019), 
this has mainly been done in isolation, i.e., only a very limited selection of approaches was considered in the 
simulation. Moreover, numerous approaches remain unassessed. Hence, there is a lack of research that juxtapose 
the approaches’ performance systematically. Therefore, it remains unclear which approach is most suited when it 
comes to MGA in the context of PLS-PM. 

Monte Carlo Simulation 



To address this shortcoming, we conducted an extensive Monte Carlo simulation to assess the performance of the 
approaches shown in Table 1Error! Reference source not found. for comparing the complete model and only a 
single parameter, respectively, across groups. In comparing the complete model, only the structural model is 
compared, as measurement invariance must be established before conducting MGA (Henseler et al., 2016; 
Steenkamp & Baumgartner, 1998; Vandenberg & Lance, 2000), see Henseler et al. (2016) on how to assess 
measurement invariance in the context of PLS-PM. Hence, all path coefficients and the correlations among the 
exogenous constructs are compared jointly across groups. Thus, we test the following null hypothesis: H0: Σ1 = 
Σ2=…= ΣG, where 𝚺𝑖 is the model-implied construct correlation matrix of group i and G is the total number of groups. 
This reflects a situation in applied research in which a researcher has established measurement invariance and 
wants to investigate whether a postulated theory functions differently across groups. Against this background, in 
case of the NDT, the model-implied construct correlation matrix instead of the model-implied indicator correlation 
matrix, as originally proposed, is compared across groups. For the approaches that are designed to compare only 
a single parameter across groups, the null hypothesis that the complete structural model is equal across groups is 
rejected if at least one difference of the path coefficient or the correlation among exogenous constructs is 
significantly different from zero. Since the NBT is a one-sided test, it requires a-priori expectations about the 
direction of the population parameter difference. As it is not clear how to compare several parameters across groups 
without such expectations, it was not taken into account for the case where the complete structural model is 
compared. Considering the comparison of CIs, the literature provides various types of CIs such as the normal CI 
and the percentile bootstrap CI (Davison & Hinkley, 1997; Efron & Tibshirani, 1993). In our simulation, we followed 
the advice of Sarstedt et al. (2011) and employed the bias-corrected and accelerated (BCa) bootstrap CI (Efron, 
1987).  Finally, the NDT was also employed for the scenarios where only a single path coefficient is compared 
across groups to examine its performance when only a single population path coefficient varies across groups. It is 
noted that the NDT has not been designed to compare a single path coefficient. Hence, as in the case of the 
complete model comparison, the model-implied construct correlation matrix is compared across groups in these 
scenarios. This represents a situation where a researcher expects the complete model to differ, but in fact only a 
single path coefficient is different across groups.  

To examine the tests’ performance, we investigated their type I error rates and power. The type I error refers to the 
rejection of the null hypothesis of no group differences when indeed no group differences exist in the population. In 
specific, we investigated whether the considered approaches yield rejection rate close to the predefined significance 
levels of 1%, 5%, and 10%, respectively. In contrast, the power of a test refers to a test’s ability to reject the null 
hypothesis of no group differences when it is indeed false. Hence, large rejection rates are desired in the case of 
group differences in the population. According to Cohen (1988), the power of a test should be at least 80%. Although 
CIs are no statistical tests, they are often employed for statistical inference (Wood, 2005). This is also true for MGA 
in the context of PLS-PM, in which the comparison of CIs was proposed (Sarstedt et al., 2011). Hence, they were 
included in the following and the same criteria as for statistical test, namely type I error rate and power, were applied 
to judge their performance. 

To examine different types and magnitudes of group differences, we considered various population models. Since 
measurement invariance must be established before conducting MGA, we only varied the magnitude of the path 
coefficients in the structural model. In designing the structural model, we used a model comprising two exogenous 
and five endogenous constructs. This reflects a model complexity that IS researchers employing PLS-PM typically 
encounter in their studies (Ringle et al., 2012). Figure 1 displays the structural model containing seven constructs. 
All constructs were specified as composites and, following Grace and Bollen (2008), are displayed as hexagons in 
the structural model to distinguish composites from latent variables.  

----------------------------------------------------------------- 

Insert Figure 1 About Here 

----------------------------------------------------------------- 

As illustrated in Figure 1, the correlation between the two exogenous composites η1 and η2 was set to zero. 
Moreover, the structural error terms (ζ) were assumed to be mutually independent and independent of the 
corresponding explanatory variables. 

To investigate the approaches’ performance in case of comparing the complete structural model across groups, we 
employed the path coefficients as displayed in Table 2. Group 1 represents the reference group. Compared to Group 



1, for Groups 2, 3, 4, and 5, all path coefficients, except of β43 and β53, were either increased or decreased 
by .05, .1, .15, and .2, respectively. 

----------------------------------------------------------------- 

Insert Table 2 About Here 

----------------------------------------------------------------- 

Similarly, in case of comparing only a single parameter across groups, we used the population parameters from 
Group 1, shown in Table 2, and only varied β31 from .2 to .6 by .1. Consequently, in case of the comparison of a 
single parameter, β31 was chosen as follows: β31 = .2 for Group 1, β31 = .3 for Group 2, β31 = .4 for Group 3, β31 =
 .5 for Group 4, and β31 = .6 for Group 5.   

Since the path coefficients were varied systematically, the explained variance of the endogenous constructs (R²) 
was not fixed. As a consequence, the R² values varied across the groups. As shown in Table 3, the R² values range 
from 0.13 to 0.71, which are common observed R² values in the IS literature (e.g., Venkatesh et al., 2003). 

----------------------------------------------------------------- 

Insert Table 3 About Here 

----------------------------------------------------------------- 

The population weights to form the corresponding composites were chosen as follows: 𝒘1
′ = (0.6 0.4 0.2), 𝒘2

′ =
(03. 0.5 0.6), 𝒘3

′ = (0.4 0.5 0.5), and 𝒘4
′ = (0.4 0.5 0.5), 𝒘5

′ = (0.6 0.4 0.2), 𝒘6
′ = (0.3 0.5 0.6), and 

𝒘7
′ = (0.4 0.5 0.5).  

Moreover, we varied the following aspects including those that already proved to be relevant in the context of MGA 
(e.g., Qureshi & Compeau, 2009): number of groups in the comparison; adjustment for multiple comparisons; total 
sample size; sample size distribution between groups; and the data distribution. An overview of the various design 
factors and their variations is provided in Table 4.  

----------------------------------------------------------------- 

Insert Table 4 About Here 

----------------------------------------------------------------- 

Number of groups in the comparison 

In many situations, researchers deal with more than two groups. Therefore, we varied the number of compared 
groups from 2, 3 to 5 to examine whether the approaches are capable to detect differences across multiple groups. 

To assess whether the approaches keep the predefined significance level, we compared Group 1 to itself, i.e., we 
draw different samples from the same population and therefore no group differences are present. In contrast, to 
examine the power of the considered approaches, we compared groups that function differently, i.e., group 
differences are present. Table 5 presents the made comparisons and displays the values of the average geodesic 
distance (dG). It is noted that in the scenarios where a single parameter was compared across groups, only β31 was 
compared, except for the NDT which by design compares the model-implied construct correlation matrix across 
groups. Hence, we expect a lower statistical power of the NDT in these scenarios compared to tests that were 
originally designed to compare a single parameter. Overall, it is expected that the approaches produce rejection 
rates close to the significance level if no group differences are present and rejection rates above the significance 
level if group differences exist in the population. Moreover, the rejections are expected to increase in case of larger 
differences.  

----------------------------------------------------------------- 

Insert Table 5 About Here 

----------------------------------------------------------------- 

Multiple comparisons adjustment 



We considered various approaches proposed for MGA in the context of PLS-PM to test whether the complete 
structural model or a single path coefficient differs across two or more groups. Since most of the approaches were 
originally designed to compare only one parameter across two groups, they face the well-known problem of multiple 
comparisons if applied to compare one parameter across more than two groups. Similarly, if they are used to 
compare several parameters jointly. This is also recognized in the PLS-PM literature on MGA, see for example Hair 
et al. (2018). For example, if the PTU was applied to compare the complete structural model across five groups, 
120 single tests were conducted (10 group-comparisons times 12 compared parameters). As a consequence, the 
family-wise error rate will be inflated. Table 6 displays the number of conducted tests that are necessary to come 
up with the desired conclusion about the null hypothesis. 

----------------------------------------------------------------- 

Insert Table 6 About Here 

----------------------------------------------------------------- 

To address this issue, the literature provides various corrections for multiple comparisons that can be applied to 
adjust the p-values of the numerous conducted tests. In our study we employed the Bonferroni correction and the 
corrections proposed by Holm (1979), Hochberg (1988), Hommel (1988), and Benjamini and Hochberg (1995). In 
the following, adjustments for multiple comparisons were applied to the PTE, the PTU, the NPT, and the OTG. For 
the NBT no adjustment was applied, as it is a one-sided test and thus requires expectations about the sign of the 
parameter difference. Without such expectations, a proper adjustment of the p-values is not possible. Similarly, for 
the CIO, and the CIP no adjustments were applied. Although in general adjustments for CIs are possible (Benjamini 
& Yekutieli, 2005),  the CIO and CIP present a misuse of CIs (see e.g., Altman, 2000), and thus, are expected to 
not perform well in general. In this case, the investigation of the performance of the various adjustments would only 
contribute marginally. Moreover, and as displayed in Table 5, the NDT is designed to compare the model-implied 
construct correlation matrix across several groups, hence, it does not require a correction for multiple comparisons. 
Finally, a proper p-value adjustment requires p-values different from 0. Otherwise, the adjusted p-values are also 
equal to 0 leading always to a rejection of the null hypothesis regardless of whether an adjustment was applied. 
Consequently, for the NPT, the number of permutation runs plays an important role in the context of p-value 
adjustment. The same is true for the number of bootstrap runs in the NBT if an adjustment for multiple comparisons 
is applied. A sufficient number of runs is required to obtain a sufficiently accurately estimated distribution of the test 
statistic under the null hypothesis. As proposed by Chin et al. (2003), we employed 1,000 permutation runs. As 
shown in Section 4.2, 1,000 permutation runs were not sufficient in the case of a large number of comparisons and 
led to an abnormal test’s behavior, i.e., too high rejection rates.   

As known from the literature on the multiple comparisons problem, we expect that the family-wise error rate is higher 
than the predefined significance level in case of no adjustment, while it is expected to be close to the significance 
level if a correction for multiple comparisons is applied.  

Total sample size 

The PLS-PM literature on MGA highlights the role of a sufficient sample size (Qureshi & Compeau, 2009). Therefore, 
we varied the total sample size, i.e., the sum of sample sizes across all groups, from 300, 600, 1500, to 3000. As 
expected from statistical significance tests, with increasing sample size, the statistical power should increase in 
case of group differences, and in case of no group differences, the predefined significance level should be 
maintained with more precision. 

Sample size distribution between groups 

The existing literature on PLS-PM showed that tests for group comparisons suffer from a loss of statistical power in 
the case of unequal group sizes (Chin & Dibbern, 2010). Therefore, we also took differences in the sample size 
distribution between groups into account. In doing so, we considered equally distributed, moderately unequally 
distributed, and severely unequally distributed sample sizes across groups. An overview of the different sample size 
distributions for the two and three group-comparison is shown in Table 7 and for the five group-comparison, it is 
given in Table 8. It is cautioned that for some comparisons the sample size per group is very small. This is particularly 
relevant in terms of multiple groups which result in a high number of comparisons. Since studies employing PLS-
PM often face small sample sizes (see e.g., Ringle et al., 2012), we deliberately investigated the tests’ performance 
in these situations although the tests are expected to show a very low statistical power.  Likewise, we expect that 



compared to equally distributed sample sizes, the statistical power decreases in the case of unequal sample sizes 
across groups. 

----------------------------------------------------------------- 

Insert Table 7 About Here 

----------------------------------------------------------------- 

----------------------------------------------------------------- 

Insert Table 8 About Here 

----------------------------------------------------------------- 

Data distribution 

In empirical studies, researchers rarely deal with samples that stem from a normal distribution. Hence, we 
additionally investigated the approaches’ performance in the case of non-normally distributed data. To generate 
these datasets, we rescaled each standard normally distributed indicator by a scaling factor, as proposed by Dijkstra 
and Henseler (2015a), leading to an excess kurtosis of approximately 1.71. In the case of non-normally distributed 
datasets, we expect a lower statistical power of the approaches compared to a situation in which normality is given. 

Data generation and analysis 

The complete simulation was conducted in the statistical programming environment R (R Core Team, 2020). The 
multivariate standard-normally distributed datasets were drawn using the mvrnorm function of the MASS package 
(Venables & Ripley, 2002). We used the csem function provided by the cSEM package to conduct the PLS-PM 
estimations (Rademaker & Schuberth, 2020). In doing so, all composite models were estimated by Mode B and the 
path weighting scheme was used for inner weighting. Mode B was applied because it provides consistent estimates 
for composite models (Dijkstra, 2017), regardless of whether the composite was formed by correlation or regression 
weights in the population. Composites formed by correlation weights are a special case of composites formed by 
regression weights (Cho & Choi, 2020). Since the cSEM package is still under development, we cross-checked the 
initial estimations with ADANCO (Henseler, 2017a) and SmartPLS (Ringle et al., 2015). Since all software packages 
provided the identical results for the estimation, we carried out the complete simulations with the cSEM package. 
The approaches for MGA were conducted by using the testMGD function from the same package. For each 
condition, we executed 500 simulation runs. The number of bootstrap runs was set to 1000. Similarly, as proposed 
by Chin (2003), we set the number of permutation runs to 1000. Finally, inadmissible estimations, i.e., estimations 
that have not converged or produced no positive semi-definite model-implied indicator/construct correlation matrix, 
were replaced by admissible one. As a consequence, each simulation run is based on 1,000 valid bootstrap and 
permutation runs, respectively. 

Results 

In this section we highlight the most important findings of our simulation study. The complete results can be found 
the Supplementary Material. Since applied research oftentimes deals with non-normally distributed data and 
unequal group-sizes, the rejection rates presented in the following are based on non-normally distributed datasets, 
moderately unequally distributed sample sizes across groups, and a significance level of 5% if not explicitly 
indicated otherwise. Moreover, as shown in Section 4.3, the type of adjustment hardly influences the results. 
Therefore, only the results based on the adjustment proposed by Holm (1979) are reported in case that a correction 
for multiple comparisons is applied. The Holm correction is well established and more powerful compared to the 
well-known Bonferroni correction (Aickin & Gensler, 1996).   

The following Subsections 4.1 and 4.2 show the results in case of comparing only single path coefficient and the 
complete structural model, respectively, across groups. Finally, in Subsections 4.3 and 4.4 we provide specific 
results related to the performance of the various adjustments for multiple comparisons and the impact of the data 
and sample size distribution. 

Comparison of one path coefficient 



Figure 2 shows the rejection rates for all approaches in case of no group differences and different numbers of group 
comparisons. The dashed line represents the predefined significance levels of 5%. Additionally, the grey area 
highlights the 95% normal CIs constructed around the reject rates.2  

Considering the two group-comparison, the results show that most of the tests, namely the PTE, PTU, NBT, NPT, 
and the NDT3 produce rejection rates close to the predefined significance levels. In contrast, the CIO indicates too 
rarely group differences, i.e., it is too conservative. Similarly, the CIP and the OTG indicate group differences too 
often although they do not exist. This is especially striking for the OTG, which produces rejection rates close to 
100%. 

With regard to three and five group-comparisons, the PTE and the PTU show rejection rates that are bit too low 
compared to the assumed significance levels. However, for an increasing total sample size, the rejection rates seem 
to converge towards the significance level. The NDT produces rejection rates close to the predefined significance 
level. Similarly, the rejection rates of the NPT are close to predefined significance levels, while the rejection rates 
produced by the NBT are too high, which becomes worse for the five group-comparison. This highlights the 
importance of the multiple comparisons adjustment, which was not applied to the NBT. Similar to the two group-
comparison, the CIP and the OTG show rejection rates that are much higher than the assumed significance level. 
Considering the CIO, for the three group-comparison, it produces rejections rates that are below the desired 5% 
level. In contrast, for the five group-comparison, it produces rejection rates close to predefined significance level. 
This can be explained by the fact that the CIO originally indicates too rarely group differences (see the two group-
comparison), which is counterbalanced by the number of comparisons for which it was not corrected in the three 
and five group-comparison. As more pairs of CIs need to be compared in the five group-comparison, it is more likely 
that CIs overlap by chance. Overall, the total sample size has only a minor impact on the approaches’ performance 
with regard to maintaining the predefined significance level. 

 

----------------------------------------------------------------- 

Insert Figure 2 About Here 

----------------------------------------------------------------- 

 

Figure 3 depicts the rejection rates for the different number of group-comparisons in case that the considered 
parameter 𝛽31 differs across groups. As expected, the rejection rates of all approaches increase with an increasing 
total sample size. Similarly, the rejection rates increase with an increasing parameter difference across groups. 
However, small and small-medium parameter differences are oftentimes undetected, i.e., rejection rates below 80% 
are observed. This is not true for the CIP and the OTG, which overall produce the highest rejection rates. Especially, 
the OTG produces rejection rates of almost 100%, regardless of the parameter difference. Although the rejection 
rates are fairly similar between the PTE, the PTU, the NBT, and the NPT in case of the two group-comparison, the 
latter is slightly more powerful. In contrast, for the cases that more than 2 groups are compared, the NBT produces 
the highest rejection rates among the four tests as no adjustment for multiple comparisons is applied to this test in 
these cases. Finally, the NDT, which compares the complete structural model in form of the model-implied construct 
correlation matrix across groups, shows the lowest rejection rates compared to the other approaches. This can be 
explained by the fact that the NDT compares effectively the complete structural model.  

 

----------------------------------------------------------------- 

Insert Figure 3 About Here 

----------------------------------------------------------------- 

 

Comparison of the complete structural model 

In the following, we present the results with regard to the comparison of the complete structural model. Figure 4 
presents the rejection rates for the case that the complete structural model does not differ across groups. As can 
be seen, the PTE, the PTU, the NPT, and the NDT keep the 5% significance level when two groups are compared. 



In case that more than two groups are compared, the rejection rates of the PTE and the PTU are a bit too low, 
despite the adjustment for multiple comparisons. However, for an increasing total sample size, the rejection rates 
converge towards the desired 5% level.  Considering the CIO, the CIP, and the OTG, they produce rejection rates 
remarkably above the predefined significance level of 5%. For the former two, this can be explained by the fact that 
no adjustment for multiple comparisons is applied for the approaches that rely on CIs. Although in case of CIO and 
the two-group comparison the rejection rates seems to meet the desired 5%, it should not be generally concluded 
that it keeps the predefined significance level. This can be explained by the fact that the number of comparisons 
counterbalances the too low rejection rates in case of comparing a single parameter across two groups leading to 
rejection rates that seem to keep the 5% significance level.  

 

----------------------------------------------------------------- 

Insert Figure 4 About Here 

----------------------------------------------------------------- 

 

Considering the NPT, it produces rejection rates close the assumed significance level in the case of three compared 
groups. However, if five groups are compared the rejection rates are a bit too high. This can be explained by the 
ratio of permutation runs to the number of involved comparisons. If the number of permutation runs is not sufficiently 
large compared to the number of comparison, in some instances p-values of exactly zero are produced by the NPT.4 
As a consequence, these p-values remain zero after the p-value adjustment for multiple comparisons leading to too 
high rejection rates. Figure 5 illustrates this behavior of the NPT in case of the five group-comparison and no group 
differences. In doing so, the rejection rates obtained for 1,000 permutation runs (see Figure 4) are contrasted to 
those obtained for 5,000 permutation runs. As can be seen, 1,000 permutation runs are not sufficient to maintain 
the 5% significance level, however, if 5,000 permutation runs are employed, the rejection rates are close to the 
desired 5%. This emphasize the importance of choosing a sufficiently large number of permutation runs. It is noted, 
that this problem does not occur for the PTE and the PTU, as their p-values are derived from a t-distribution. As a 
consequence, the p-value of single test is never exactly equal to zero. 

 

----------------------------------------------------------------- 

Insert Figure 5 About Here 

----------------------------------------------------------------- 

 

Figure 6 displays the approaches’ rejection rates in case that the structural model differs across groups. Similar to 
the comparison of one path coefficient, for the comparison of the complete structural model, the results show that 
for an increasing total sample size and group differences, the rejection rates increase. For small total sample sizes 
(particularly 300 observations in total), none of the approaches, except the CIP and the OTG, are capable to reliably 
detect small and small-medium group differences. This is not surprising, as shown in the case of no group 
differences, the CIP and the OTG lead to the highest type I error rates. Among the approaches that reliably kept the 
significance level in case of no group-difference, the NDT show most of the times the highest rejection rates.   

 

----------------------------------------------------------------- 

Insert Figure 6 About Here 

----------------------------------------------------------------- 

 

Addressing multiple comparison issue 

We highlighted the fact that researchers conducting a MGA in the context of PLS-PM might face multiple comparison 
issues. In this case, a proper way of adjusting p-values for multiple comparisons is required. To shed more light into 
the various adjustments’ performance, we selected a specific condition which is representative for the multiple 



comparison issue to show the similarities and differences of the various corrections. It is noted that the adjustments’ 
behavior is similar in the remaining conditions where an adjustment was applied.    

Figure 7 depicts the rejection rates for the PTE, the PTU, and the NPT using five different p-value adjustment and 
the original rejection rates where no adjustment is applied. In specific, the rejection rates for the comparison of the 
complete structural model across three groups are contrasted for the cases of no group-differences and medium-
large group differences. The results clearly show that without an adjustment, the family-wise error rate is inflated. 
However, this can be overcome by applying an adjustment for multiple comparisons. Moreover, the results suggest 
that in our case, all adjustments fulfill their purpose and there is no superior adjustment, i.e., all adjustments lead 
to almost identical rejection rates regardless of whether group differences are present. 

 

----------------------------------------------------------------- 

Insert Figure 7 About Here 

----------------------------------------------------------------- 

 

Data and sample size distribution 

As observed in the literature and argued earlier, data and sample size distribution can have negative effects on the 
approaches employed in MGA (Chin & Dibbern, 2010). To highlight these effects, Figure 8 contrasts the 
performance of various tests applied to compare the complete structural model across three groups in case of small-
medium group differences. It can be observed that all approaches produce the highest rejection rates if the data is 
normally distributed and the sample sizes are equal between groups. In contrast, the rejection are the lowest if the 
data is non-normally distributed and the sample size is severely unequally distributed between groups. The 
difference in the approaches’ performance can be substantial. For example, in case of a total sample size of 1,500 
observations, the difference in the rejection rates can be almost 40%-points implying that tests do not reliably detect 
group differences, i.e., the rejection rates are below the desired threshold of 80%. However, it is noted that for an 
increasing total sample size, the difference in the rejection rates decreases. Similar effects can be observed in the 
remaining conditions.   

----------------------------------------------------------------- 

Insert Figure 8 About Here 

----------------------------------------------------------------- 

Discussion and Outlook 

Discussion of the results 

It is well known that ignoring observed heterogeneity can lead to severely biased results, and therefore to erroneous 
conclusions (Jedidi et al., 1997; Muthén, 1989). Consequently, investigating group differences has become an 
essential endeavor when dealing with datasets that stem from potentially different populations. Several approaches 
have been suggested for MGA in the context of PLS-PM including statistical tests and the comparison of CIs. This 
study contributes to the existing body of knowledge presenting the results of a systematic comparison of existing 
approaches within an experimental setting. Therefore, we substantiate existing recommendations and raise issues 
that have not been uncovered yet. We also contribute to studies which have investigated a very limited number of 
approaches. For instance, Klesel et al. (2019) exclusively focused on the NDT in their simulation study, Chin and 
Dibbern (2010) studied only the performance of the NPT, and Qureshi and Compeau (2009) compared only two 
approaches including the PTE. To gain more detailed insights about the approaches’ performance and the current 
recommendations, the study at hand is the first that compares the performance of a broad range of approaches in 
a controlled environment. 

 Based on the review of existing approaches, applied researchers employing PLS-PM can choose from a variety of 
approaches to compare a single parameter or the complete structural model across groups. While the usefulness 
of comparing single parameters across groups is widely acknowledged, the comparison of the complete structural 
model is particularly relevant if researchers either have no prior expectations about which parameters differ across 
groups or if they want to examine whether a proposed theory/model functions differently across groups, e.g., 



females and males. To the best of our knowledge, the comparison of the complete structural model has not been 
done so far in empirical research. This might be due to the fact that before the development of the NDT, no approach 
has been available that is designed for that specific purpose. As a consequence, researchers might be not aware 
of that opportunity.  

While this diversity provides manifold opportunities, it is important to choose the approach in accordance to the 
research question, i.e., comparing the complete structural model or only a subset of single parameters, to avoid 
pitfalls such as an inflated family-wise type I error rate. In general, the simulation results are in line with our 
expectations, i.e., the power increases for an increasing sample size and an increasing group difference. In contrast, 
the power decreases in case of non-normally distributed samples compared to datasets that stem from a normally 
distributed population. Similarly, the power decreases if the sample size distribution varies between groups. As 
consequence, researchers should strive for a sufficiently large total sample size if they conduct a MGA in the context 
of PLS-PM, particularly if their samples are non-normally distributed and/or the number of observations substantially 
varies between groups. Otherwise, researchers will likely face approaches that are statistically underpowered for 
detecting postulated group differences. This is in line with the results of previous simulation studies (e.g., Qureshi 
& Compeau, 2009) and particularly important, if researchers only assume a small difference between groups, 
regardless of whether a single parameter or the complete structural model is compared. As our simulation study 
showed, small group differences mainly remain undetected, even for total sample sizes of 3,000 observations. Our 
findings are particularly important in the context of PLS-PM because a small sample size is often used to justify its 
application (see e.g., Nitzl, 2016; Ringle et al., 2012). To address this issue, it is recommended to determine the 
necessary sample size in advance to achieve a sufficient statistical power of the applied statistical tests. This can 
be done in several ways, for example by applying heuristic rules such as Cohen’s power tables (Cohen, 1992)  or 
conducting a Monte Carlo simulation. 

Based on our simulation findings, if researchers are interested in comparing a single parameter between two groups, 
we recommend to use the NPT. Although our simulation results showed that the NPT, the PTU, the PTE and the 
NBT perform similar in this situation, the NPT showed a slightly higher power while maintaining the predefined 
significance level compared to the other approaches that are designed to compare a single parameter. This 
recommendation is in line with current recommendations from the PLS-PM literature (e.g., Hair et al., 2018; 
Matthews, 2017). Moreover, in contrast to the PTE and the PTU, it does not rely on distributional assumptions. If 
the NPT is used to compare one or more parameters across more than two groups, an adjustment should be 
employed to avoid an inflation of the family-wise error rate. This is in line with literature related to the multiple 
comparisons issue (e.g., Aickin & Gensler, 1996) and has been echoed in the PLS-PM literature (Hair et al., 2018). 
To employ the NPT in this situation, it is emphasized that researchers should use a sufficiently large number of 
permutation runs to ensure that the adjustment for multiple comparisons works properly. Consequently, researchers 
employing the NPT for multiple comparisons should examine before the adjustment whether some of the p-values 
are exactly equal to zero. If this is the case, it is recommended to increase the number of permutation runs. With 
regard to the p-value adjustments, our simulation study showed that all of them produced very similar results.  

 In contrast, if researchers want to compare the complete structural model, they should rely on the NDT, which was 
specifically designed for that purpose, and showed the highest power in most of the situation. This is particularly 
apparent, in case of small group differences and a large total sample size and in case of smaller total sample sizes 
if the group differences are moderate and large, i.e., small-medium to large. Subsequently, they can use the NPT 
in combination with a correction for multiple comparison to examine which parameters differ. This procedure 
resembles the approach commonly used in the context of ANOVA, where first a F-test is conducted and 
subsequently, multiple comparison procedures are employed to investigate which means actually differ significantly. 

Considering the OTG, the CIO, and the CIP, their use is not recommended, regardless of whether only a single 
parameter or the complete structural model is compared. As shown by our simulation, the OTG proposed by 
Sarstedt et al. (2011) almost always rejects the null hypothesis of no group differences. This can be explained by a 
misconception in the design of the test. The OTG investigates whether the average bootstrap estimates of a 
parameter differ significantly across groups, but not the estimated parameters. Typically, the mean of the bootstrap 
estimates of a specific parameter is close to the corresponding parameter estimate. Therefore, for an increasing 
number of bootstrap runs the value of the ANOVA F-test statistic, which compares the bootstrap means across 
groups, increases, as the within group variation, i.e., variance of the bootstrap means, decreases, even in case of 
no group-difference in the population. In contrast, the F-test statistics based on the permutation samples that are 
used to approximate the reference distribution under the null hypothesis of no group differences, are relatively small 
and therefore closely distributed right of the zero. As a consequence, for a large enough number of bootstrap runs, 
the OTG almost always rejects the null hypothesis of no parameter difference across groups. Similarly, the CIO and 



the CIP generally do not keep the predefined significance level. This is due to the fact that CIs are misused as they 
are compared across groups to draw inferences (see e.g., Altman, 2000). To overcome this problem, researchers 
can construct a CI around the parameter difference to examine whether it covers the zero, instead of investigating 
whether two CIs overlap.  

Recommendations 

Based on the results of this simulation, we propose several guidelines for MGA in the context of PLS-PM. First, the 
scope of the analysis should be clearly articulated. Specifically, it should be clarified whether a single path, multiple 
paths or the complete model is compared. Second, a test procedure should be selected that matches the scope of 
the analysis. For instance, if a complete model is compared, it is beneficial to employ the NDT. However, if only a 
single parameter is compared across two groups the NPT is recommended. Third, our study highlights the 
importance of a sufficient sample size to achieve a satisfactory test’s power. Particularly if researchers expect only 
small group differences, more than 1,000 observations per group are required. Therefore, researchers are advised 
to determine the sample size before the data collection that is necessary to achieve a satisfactory statistical power 
for the employed testing procedure.  Fourth, if tests whose p-values are directly based on the bootstrap or the 
permutation runs are combined with a p-value adjustment for multiple comparison, special attention should be given 
to the number of bootstrap and permutation runs, respectively. As shown by our results, an insufficiently small 
number of runs can lead to p-values that are exactly equal to 0 and thus render any adjustment useless. Therefore, 
it is recommended to examine the size of the p-values before the adjustment and rerun the test with an increased 
number of runs if p-values are observed that are exactly equal to zero.  

Limitations and future research 

A Monte Carlo simulation is always limited to its design which invites future research. In specific, applied researchers 
using PLS-PM also face structural models that contain both latent variables and composites (Benitez et al., 2020). 
Therefore, future research could investigate the approaches’ performance for structural models containing a mixture 
of composites and latent variables. To estimate models containing latent variables, PLSc should be employed as 
original PLS-PM is known to produce inconsistent estimates (Dijkstra, 1981). Moreover, future studies investigating 
the approaches’ performance, might consider the effect of model complexity, i.e., number of path coefficients and 
constructs, on the approaches’ performance. This is particularly relevant for the case that the complete structural 
model is compared across groups. In our simulation we either varied one path coefficient or all path coefficients 
across population groups. For future research, situations should be examined in which a researcher compares the 
complete structural model across groups but only a subset of path coefficients differs across groups in the 
population. In doing so, it is of particular interest to compare the performance between the NDT and tests that have 
been designed to compare only a single coefficient to figure out when the use of the NDT becomes advantageous.  
Moreover, in this study, we varied the population path coefficients across groups without fixing the R² values of the 
endogenous constructs. Future research should investigate the effect of not fixing the R² values on the tests’ 
performance. 5  Considering the NDT, future research might examine and contrast its performance for other 
discrepancy measures than the (average) geodesic distance. Furthermore, our study solely focused on PLS-PM. 
Hence, further simulation studies are necessary to examine how the approaches perform in combination with other 
estimators for composite models such as generalized structured component analysis (Hwang et al., 2017; Hwang 
et al., 2020; Hwang & Takane, 2004). Finally, it might be worthwhile for future research to design a two-sided version 
of the NBT which facilitates its use for comparing the complete structural model. 

 

Notes

 

1 The literature on structural equation modeling usually distinguishes two ways of representing abstract concepts, namely, (i) by 
a latent variable, and (ii) by a composite (Benitez et al., 2020; Henseler, 2017b, 2021; Henseler & Schuberth, 2020; McDonald, 
1996; Rhemtulla et al., 2020; Rigdon, 2012; Rigdon et al., 2017; Schuberth et al., 2018a). Originally, PLS-PM estimates 
consistently structural models that contain only composites. However, in its current form, known as consistent partial least 
squares (PLSc), it is a consistent estimator for structural equation models containing both latent variables and composites 
(Dijkstra & Henseler, 2015b; Rademaker et al., 2019). While parameters that are related to latent variables are corrected for 
attenuation by PLSc, the parameters associated with composites remain untouched, see e.g., Schuberth et al. (2018b). 

2 The 95% normal confidence interval is calculated as p̂ ± Φ−1(0.975)√p̂(1 − p̂)/500, where p̂ represents the rejection rate and 

Φ−1( ) is the quantile function of the standard normal distribution. 



 

3 It is noted that for the NDT the model-implied construct correlation matrix and not a single path coefficient was compared 
across groups. 

4 For the NPT, the p-value is calculated as the sum of shares of parameter differences from the permutation runs that exceed 
the positive original parameter difference and fall below the negative original parameter difference. If a large number of 
comparisons is performed, it is likely that in some instances, the original absolute parameter difference is larger than all absolute 
parameter differences from the permutation runs. As a consequence, a p-value of exactly zero is produced, which cannot be 
properly adjusted for multiple comparisons.  

5 We thank an anonymous reviewer for this suggestion.  

References 

Ahuja, M., & Thatcher, J. B. (2005). Moving beyond intentions and toward the theory of trying: Effects of work 
environment and gender on post-adoption information technology use. MIS Quarterly, 29(3), 427–459. 
https://doi.org/10.2307/25148691 

Aickin, M., & Gensler, H. (1996). Adjusting for multiple testing when reporting research results: The Bonferroni vs 
Holm methods. American Journal of Public Health, 86(5), 726–728. https://doi.org/10.2105/ajph.86.5.726 

Altman, D. G. (2000). Confidence intervals in practice. In D. G. Altman, D. Machin, T. Bryant, & M. Gardner 
(Eds.), Statistics with confidence: Confidence intervals and statistical guidelines (2nd ed., pp. 6–14). BMJ 
Books. 

Becker, J.‑M., Rai, A., Ringle, C. M., & Völckner, F. (2013). Discovering unobserved heterogeneity in structural 
equation models to avert validity threats. MIS Quarterly, 37(3), 665–694. 
https://doi.org/10.25300/misq/2013/37.3.01 

Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis 
using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & 
Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300. 

Benjamini, Y., & Yekutieli, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected 
parameters. Journal of the American Statistical Association, 100(469), 71–81. 
https://doi.org/10.1198/016214504000001907 

Chin, W. W. (2003). A permutation procedure for multi-group comparison of PLS models. In M. Vilares, M. 
Tenenhaus, P. Coelho, V. Esposito Vinzi, & A. Morineau (Eds.), Proceedings of the International Symposium 
PLS’03. PLS and related methods (pp. 33–43). 

Chin, W. W., & Dibbern, J. (2010). An introduction to a permutation based procedure for multi-group PLS 
analysis: Results of tests of differences on simulated data and a cross cultural analysis of the sourcing of 
information system services between Germany and the USA. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & 
H. Wang (Eds.), Handbook of partial least squares (pp. 171–193). Springer. 

Cho, G., & Choi, J. Y. (2020). An empirical comparison of generalized structured component analysis and partial 
least squares path modeling under variance-based structural equation models. Behaviormetrika, 47(1), 243–
272. https://doi.org/10.1007/s41237-019-00098-0 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates. 
https://doi.org/10.4324/9780203771587 

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037//0033-
2909.112.1.155 

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge University Press.  
Dibbern, J., & Chin, W. W. (2005). Multi-group comparison: Testing a PLS model on the sourcing of application 

software services across Germany and the USA using a permutation based algorithm. In F. Bliemel, A. 
Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch PLS-Pfadmodellierung: Methode, Anwendung, 
Praxisbeispiele (pp. 135–160). Schäffer-Poeschel Verlag. 

Dibbern, J., Chin, W. W., & Heinzl, A. (2012). Systemic determinants of the information systems outsourcing 
decision: A comparative study of German and United States firms. Journal of the Association for Information 
Systems, 13(6), 466–497. https://doi.org/10.7892/BORIS.43287 



Dijkstra, T. K. (1981). Latent variables in linear stochastic models: Reflections on ‘‘maximum likelihood’’ and 
‘‘partial least squares’’ methods (Ph.D. thesis). Groningen University, Groningen, a second edition was 
published in 1985 by Sociometric Research Foundation.  

Dijkstra, T. K. (2017). A perfect match between a model and a mode. In H. Latan & R. Noonan (Eds.), Partial least 
squares path modeling: Basic concepts, methodological issues and applications (pp. 55–80). Springer 
International Publishing. 

Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural 
equations. Computational Statistics & Data Analysis, 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008 

Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297–
316. https://doi.org/10.25300/MISQ/2015/39.2.02 

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 
171–185. https://doi.org/10.1080/01621459.1987.10478410 

Efron, B., & Tibshirani, R. J. (1993). An Introduction to the bootstrap. Chapman & Hall.  
Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., & Tenenhaus, M. (2008). REBUS-PLS: a response-based 

procedure for detecting unit segments in PLS path modelling. Applied Stochastic Models in Business and 
Industry, 24(5), 439–458. https://doi.org/10.1002/asmb.728 

Grace, J. B., & Bollen, K. A. (2008). Representing general theoretical concepts in structural equation models: The 
role of composite variables. Environmental and Ecological Statistics, 15(2), 191–213. 
https://doi.org/10.1007/s10651-007-0047-7 

Hahn, C., Johnson, M. D., Herrmann, A., & Huber, F. (2002). Capturing customer heterogeneity using a finite 
mixture PLS approach. Schmalenbach Business Review, 54(3), 243–269. 
https://doi.org/10.1007/BF03396655 

Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation 
modeling (PLS-SEM). European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-
0128 

Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares 
structural equation modeling. Sage.  

Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares 
structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 
414–433. https://doi.org/10.1007/s11747-011-0261-6 

Henseler, J. (2007). A new and simple approach to multi-group analysis in partial least squares path modeling. In 
H. Martens, T. Naes, & M. Martens (Eds.), PLS’07 international symposium on PLS and related methods - 
causalities explored by indirect observation. 

Henseler, J. (2012). PLS-MGA: A non-parametric approach to partial least squares-based multi-group analysis. In 
W. A. Gaul, A. Geyer-Schulz, L. Schmidt-Thieme, & J. Kunze (Eds.), Challenges at the interface of data 
analysis, computer science, and optimization (pp. 495–501). Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-642-24466-7_50 

Henseler, J. (2017a). ADANCO 2.0.1. Kleve, Germany: Composite Modeling. 
Henseler, J. (2017b). Bridging design and behavioral research with variance-based structural equation modeling. 

Journal of Advertising, 46(1), 178–192. https://doi.org/10.1080/00913367.2017.1281780 
Henseler, J. (2021). Composite-based structural equation modeling: Analyzing latent and emergent variables. The 

Guilford Press.  
Henseler, J., & Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of available 

procedures. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least 
squares (Vol. 51, pp. 713–735). Springer. https://doi.org/10.1007/978-3-540-32827-8_31 

Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial 
least squares. International Marketing Review, 33(3), 405–431. https://doi.org/10.1108/imr-09-2014-0304 

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in 
international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), Advances in International Marketing (Vol. 
20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014 

Henseler, J., & Schuberth, F. (2020). Using confirmatory composite analysis to assess emergent variables in 
business research. Journal of Business Research, 120, 147–156. 
https://doi.org/10.1016/j.jbusres.2020.07.026 

Hew, J.‑J., Badaruddin, M. N. B. A., & Moorthy, M. K. (2017). Crafting a smartphone repurchase decision making 
process: Do brand attachment and gender matter? Telematics and Informatics, 34(4), 34–56. 
https://doi.org/10.1016/j.tele.2016.12.009 



Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800–
802. https://doi.org/10.2307/2336325 

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 
65–70. 

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. 
Biometrika, 75(2), 383–386. https://doi.org/10.2307/2336190 

Hsieh, Rai, A., & Keil (2008). Understanding digital inequality: Comparing continued use behavioral models of the 
socio-economically advantaged and disadvantaged. MIS Quarterly, 32(1), 97. 
https://doi.org/10.2307/25148830 

Hwang, H., Cho, G., Jung, K., Falk, C., Flake, J., Jin, M., & Lee, S.‑H. (2020). An approach to structural equation 
modeling with both factors and components: Integrated generalized structured component analysis. 
Psychological Methods(forthcoming). 

Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69(1), 81–99. 
https://doi.org/10.1007/BF02295841 

Hwang, H., Takane, Y., & Jung, K. (2017). Generalized structured component analysis with uniqueness terms for 
accommodating measurement error. Frontiers in Psychology, 8(2137). 
https://doi.org/10.3389/fpsyg.2017.02137 

Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). Finite-mixture structural equation models for response-based 
segmentation and unobserved heterogeneity. Marketing Science, 16(1), 39–59. 
https://doi.org/10.1287/mksc.16.1.39 

Keil, M., Tan, B. C. Y., Wei, K.‑K., Saarinen, T., Tuunainen, V., & Wassenaar, A. (2000). A cross-cultural study on 
escalation of commitment behavior in software projects. MIS Quarterly, 24(2), 299–325. 
https://doi.org/10.2307/3250940 

Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58(3), 433–451. 
https://doi.org/10.1093/biomet/58.3.433 

Klesel, M., Schuberth, F., Henseler, J., & Niehaves, B. (2019). A test for multigroup comparison in partial least 
squares path modeling. Internet Research, 29(3), 464–477. https://doi.org/10.1108/IntR-11-2017-0418 

Lamberti, G., Banet Aluja, T., & Sanchez, G. (2017). The Pathmox approach for PLS path modeling: Discovering 
which constructs differentiate segments. Applied Stochastic Models in Business and Industry, 33(6), 674–689. 
https://doi.org/10.1002/asmb.2270 

Lee, J. H., & Kim, J. (2014). Socio-demographic gaps in mobile use, causes, and consequences: A multi-group 
analysis of the mobile divide model. Information, Communication & Society, 17(8), 917–936. 
https://doi.org/10.1080/1369118x.2013.860182 

Matthews, L. (2017). Applying multigroup analysis in PLS-SEM: A step-by-step process. In H. Latan & R. Noonan 
(Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 219–
243). Springer International Publishing. https://doi.org/10.1007/978-3-319-64069-3_10 

McDonald, R. P. (1996). Path analysis with composite variables. Multivariate Behavioral Research, 31(2), 239–
270. https://doi.org/10.1207/s15327906mbr3102_5 

Müller, T., Schuberth, F., & Henseler, J. (2018). PLS path modeling – a confirmatory approach to study tourism 
technology and tourist behavior. Journal of Hospitality and Tourism Technology, 9(3), 249–266. 
https://doi.org/10.1108/JHTT-09-2017-0106 

Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54(4), 557–585. 
https://doi.org/10.1007/bf02296397 

Nitzl, C. (2010). Eine anwenderorientierte Einführung in die Partial Least Square (PLS)-Methode. Universität 
Hamburg, Institut Für Industrielles Management, Hamburg. 

Nitzl, C. (2016). Partial least squares structural equation modelling (PLS-SEM) in management accounting 
research: Critical analysis, advances, and future directions. Journal of Accounting Literature, 37, 19–35. 
https://doi.org/10.2139/ssrn.2469802 

Papagiannidis, S., Pantano, E., See-To, E. W., Dennis, C., & Bourlakis, M. (2017). To immerse or not? 
Experimenting with two virtual retail environments. Information Technology & People, 30(1), 163–188. 
https://doi.org/10.1108/ITP-03-2015-0069 

Qureshi, I., & Compeau, D. (2009). Assessing between-group differences in information systems research: A 
comparison of covariance- and component-based SEM. MIS Quarterly, 33(1), 197–214. 
https://doi.org/10.2307/20650285 

R Core Team. (2020). R: A language and environment for statistical computing. https://www.R-project.org/ 
Rademaker, M. E., & Schuberth, F. (2020). cSEM: Composite-based Structural Equation Modeling (Version: 

0.2.0.9000). https://m-e-rademaker.github.io/cSEM/ 



Rademaker, M. E., Schuberth, F., & Dijkstra, T. K. (2019). Measurement error correlation within blocks of 
indicators in consistent partial least squares. Internet Research, 29(3), 448–463. https://doi.org/10.1108/IntR-
12-2017-0525 

Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences of 
inappropriate latent variable measurement models. Psychological Methods, 25(1), 30–45. 
https://doi.org/10.1037/met0000220 

Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range 
Planning, 45(5-6), 341–358. https://doi.org/10.1016/j.lrp.2012.09.010 

Rigdon, E. E., Sarstedt, M., & Ringle, C. M. (2017). On comparing results from CB-SEM and PLS-SEM: Five 
perspectives and five recommendations. Marketing ZFP, 39(3), 4–16. https://doi.org/10.15358/0344-1369-
2017-3-4 

Ringle, C. M., Sarstedt, M., & Schlittgen, R. (2010). Finite mixture and genetic algorithm segmentation in partial 
least squares path modeling: Identification of multiple segments in complex path models. In A. Fink, B. 
Lausen, W. Seidel, & A. Ultsch (Eds.), Advances in data analysis, data handling and business intelligence 
(Vol. 14, pp. 167–176). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-01044-6_15 

Ringle, C. M., Sarstedt, M., & Straub, D. W. (2012). Editor's comments: A critical look at the use of PLS-SEM in 
MIS Quarterly. MIS Quarterly, 36(1), iii-xiv. https://doi.org/10.2307/41410402 

Ringle, C. M., Wende, S., & Becker, J.‑M. (2015). SmartPLS 3. www.smartpls.com 
Sarstedt, M., Henseler, J., & Ringle, C. M. (2011). Multigroup analysis in partial least squares (PLS) path 

modeling: Alternative methods and empirical results. Advances in International Marketing, 22, 195–218. 
https://doi.org/10.1108/s1474-7979(2011)0000022012 

Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Treating unobserved heterogeneity in PLS-SEM: A multi-method 
approach. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, 
methodological issues and applications (pp. 197–217). Springer International Publishing. 

Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018a). Confirmatory composite analysis. Frontiers in Psychology, 
9(2541). https://doi.org/10.3389/fpsyg.2018.02541 

Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018b). Partial least squares path modeling using ordinal categorical 
indicators. Quality & Quantity, 52(1), 9–35. https://doi.org/10.1007/s11135-016-0401-7 

Sia, C. L., Lim, K. H., Leung, K., Lee, M. K., Huang, W. W., & Benbasat, I. (2009). Web strategies to promote 
internet shopping: Is cultural-customization needed? MIS Quarterly, 33(3), 491–512. 
https://doi.org/10.2307/20650306 

Srite, M., & Karahanna, E. (2006). The role of espoused national cultural values in technology acceptance. MIS 
Quarterly, 30(3), 679–704. https://doi.org/10.2307/25148745 

Steenkamp, J.‑B. E. M., & Baumgartner, H. (1998). Assessing measurement invariance in cross‑national 
consumer research. Journal of Consumer Research, 25(1), 78–107. https://doi.org/10.1086/209528 

Tenenhaus, M. (2008). Component-based structural equation modelling. Total Quality Management & Business 
Excellence, 19(7-8), 871–886. https://doi.org/10.1080/14783360802159543 

Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: 
Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 
3(1), 4–70. https://doi.org/10.1177/109442810031002 

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Statistics and computing. Springer.  
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: 

Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540 
Wedel, M., & Kamakura, W. A. (2000). Market segmentation conceptual and methodological foundations (Vol. 8). 

Springer US. https://doi.org/10.1007/978-1-4615-4651-1 
Wold, H. (1975). Path models with latent variables: the NIPALS approach. In H. M. Blalock, A. Aganbegian, F. M. 

Borodkin, R. Boudon, & V. Capecchi (Eds.), Quantitative sociology (pp. 307–357). Academic Press. 
https://doi.org/10.1016/B978-0-12-103950-9.50017-4 

Wolf, M., Beck, R., & Pahlke, I. (2012). Mindfully resisting the bandwagon: Reconceptualising IT innovation 
assimilation in highly turbulent environments. Journal of Information Technology, 27(3), 213–235. 
https://doi.org/10.1057/jit.2012.13 

Wood, M. (2005). Bootstrapped confidence intervals as an approach to statistical inference. Organizational 
Research Methods, 8(4), 454–470. https://doi.org/10.1177/1094428105280059 

 

About the Authors 

Michael Klesel Michael Klesel is IT Consultant and is visiting Scholar at the University of Twente, The Netherlands. 



His research interests include the individualization of information systems and structural equation modeling. He has 
published in various journals including Internet Research or Communications of the Association of Information 
Systems (CAIS) and in leading conferences including the International Conference on Information Systems (ICIS), 
the European Conference on Information Systems (ECIS) and the American Conference on Information Systems 
(AMCIS). 

Florian Schuberth obtained his PhD in Econometrics in the Faculty of Business Management and Economics at 
the University of Würzburg, Germany. Currently, he is Assistant Professor in the Faculty of Engineering Technology 
at the University of Twente, the Netherlands. His main research interests are focused on SEM, in particular on 
composite-based estimators and their enhancement. His work has been published in various journals such as 
Behaviormetrika, Information and Management, Internet Research, Journal of Business Research, and Quality & 
Quantity. 

Björn Niehaves is Full Professor and holds the Chair of Information Systems at the University of Siegen, Germany. 
He received a PhD Degree in Information Systems and a PhD Degree in Political Science from the University of 
Münster, Germany. Björn holds or held visiting positions at Harvard University (USA), the London School of 
Economics and Political Science (UK), Waseda University (Japan), Royal Institute of Technology (Sweden), 
Copenhagen Business School (Denmark), and Aalto University (Finland). He has published more than 200 research 
articles. 

Jörg Henseler holds the Chair of Product-Market Relations in the Faculty of Engineering Technology at the 
University of Twente, the Netherlands, and he is Visiting Professor at NOVA Information Management School, 
Universidade Nova de Lisboa, Portugal. His broad-ranging research interests encompass empirical methods of 
Marketing and Design research as well as the management of design, products, services, and brands. He is co-
inventor of consistent partial least squares (PLSc), the heterotrait-monotrait ratio of correlations (HTMT), and 
confirmatory composite analysis (CCA). He is a highly cited researcher according to Web of Science; his work has 
been published in Computational Statistics and Data Analysis, European Journal of Information Systems, 
International Journal of Research in Marketing, Journal of the Academy of Marketing Science, Journal of Supply 
Chain Management, MIS Quarterly, Organizational Research Methods, and Structural Equation Modeling-A 
Multidisciplinary Journal, among others. He chairs the Scientific Advisory Board of ADANCO, software for 
composite-based SEM (http://www.composite-modeling.com). 


