
IEEE BROADCAST TECHNOLOGY SOCIETY SECTION

Received April 11, 2022, accepted May 30, 2022, date of publication June 10, 2022, date of current version June 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3182009

Deep Reinforcement Learning Based Routing in
IP Media Broadcast Networks: Feasibility
and Performance
PEDRO AMARAL 1,2 (Member, IEEE), AND DIOGO SIMÕES 1,3
1Departamento de Engenharia Electrotécnica e de Computadores, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica,
Portugal
2Instituto de Telecomunicações, 1049-001 Lisboa, Portugal
3Skyline Communications, 8870 Izegem, Belgium

Corresponding author: Pedro Amaral (pfa@fct.unl.pt)

This work was supported by Fundação para a Ciência e Tecnologia/Ministério da Ciência Tecnologia e Ensino Superior (FCT/MCTES)
through National Funds and When Applicable Co-Funded EU Funds under Project UIDB/50008/2020.

ABSTRACT The media broadcast industry has evolved from Serial Digital Interface (SDI) based infras-
tructures to IP networks. While IP based video broadcast is well established in the data plane, the use of IP
networks to transport media flows still poses challenges in terms of resource management and orchestration.
Software Defined Networking (SDN) based orchestration architectures have emerged in the industry that
use SDN to route the media flows of a broadcast service across the provider IP network. Several approaches
to multimedia flow routing in IP based SDN networks have been proposed in the context of streaming
applications over the Internet. These range from model based linear optimization solutions that have high
complexity to simple shortest path based routing with either Static Link Costs (SLC) or Dynamic Link
Costs (DLC). More recently model-free optimization methods such as Deep Reinforcement Learning (DRL)
have been proposed for routing and Traffic Engineering (TE) of multimedia flows in SDN networks. The
media broadcast scenario however has specific requirements, with services likeMaster Control Room (MCR)
operation and live broadcasting of events, and it has been rarely addressed in the literature. In this work we
propose a DRL based routing method for this scenario and compare it to SLC and DLC algorithms based
on Dijkstra shortest paths. This is, to our knowledge, the first work to follow this approach in the context of
media broadcast services in IP infrastructures. The algorithm is designed considering the specifications and
capabilities of one of the leading SDN orchestrators in the market and considers the more common Service
Level Agreement (SLA) requirements in the industry. Three different DRL algorithms are implemented and
compared and we evaluate them using a real service provider network topology. The results indicate that
DRL based routing is applicable in real production scenarios and that it achieves considerable performance
gains when compared to the SLC and DLC shortest path algorithms commonly used today.

INDEX TERMS Media broadcast networks, artificial intelligence, deep reinforcement learning, network
orchestration, routing, software defined networks.

I. INTRODUCTION
The media broadcast industry has evolved in recent years,
from SDI [1] based infrastructures to all IP broadcast net-
works with aspects like the transport, synchronization, and
description of separated video, audio and ancillary data
streams over the IP data plane being well defined in the
SMPTE 2110 set of standards [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Jian Song.

A. MOTIVATION
When it comes to the orchestration and management of the
underlying infrastructure there are still several challenges to
overcome. These come mainly from the use of a non-linear
IP network to transport linear media flows that need to be
switched quickly and frame-accurately. In some scenarios,
like MCR operation, feeds can be booked ahead of time
and neither are time critical nor have to be frame accurate,
leaving enough time for an orchestrator to make resource
management decisions in advance to guarantee capacity and
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availability. However, when it comes to live broadcasting,
typical vendor-specific broadcast controllers do not handle
capacity and underlying network topology constraints, leav-
ing no option but to resort to over provisioning solutions
that lead to network under-utilization. This leads to situations
were either there is a high cost due to over provisioning or
the transport networks might introduce frame drops, jitter
and latency due to network congestion caused by bottlenecks.
An orchestration layer is needed that is able to manage media
broadcast networks considering the underlying infrastructure
capabilities, capacities and availability. To achieve this, net-
work capacity must be managed in a centralized way, manag-
ing resources that can include legacy hardware, software or
even virtual appliances.

Some efforts have been made to propose orchestration
architectures for all IP broadcast networks like the works
described in [3] and [4], that define use cases and ser-
vice definitions as well as general architectural function-
ality. SDN based solutions to provide this orchestration
layer have emerged in the market (e.g. the offer by Sky-
line Communications [5]), in these solutions media flows
need to be routed across a media broadcast network to
one or multiple destinations. In the SDI world, this was
done by setting a cross-point in the SDI router [1], in the
all IP scenario an SDN controller routes the media flow
that originates from a source to a destination. The prob-
lem is how to perform this routing in a near-optimal
way.

B. AVAILABLE APPROACHES
Several approaches have been proposed over the years for
SDN based multimedia flow routing in the context of stream-
ing applications over the Internet [6]. These can be broadly
divided into categories according to the followed approach.
A first category are solutions based in linear optimization
formulations that are usually NP-hard [7]. This type of solu-
tions usually establish a static model of the network based
in a complex analysis of its traffic, which many times leads
to an intractable problem that needs to be approximated to
be solvable using heuristic approximations. A second type of
approach, that is still the most broadly used in real deploy-
ments due to its robustness and low complexity, is short-
est path routing based on link cost. This approach can be
further divided into SLC and DLC routing algorithms with
the latter being more difficult to implement due to the need
to obtain accurate network state information [8]. A recently
explored alternative is the use of model free optimization
methods such as DRL to provide routing algorithms to solve
TE problems in SDNs. Several works have studied the use
of DRL for routing and TE in the context of SDN with
promising results. However, there are still challenges: state
space can explode with network size [9]; there is still a gap in
performance when compared with optimization based heuris-
tics [10]; it can be difficult to generalize training to unseen
scenarios [11].

C. CONTRIBUTIONS
Despite this body of research available for the context of
Internet streaming applications, the applicability to the all-IP
broadcast media network scenario, has not, to our knowl-
edge, been addressed in the literature. Also, most of the
existing proposals are evaluated either using numerical or
event-driven simulations and either use simple publicly avail-
able IP backbone network scenarios or synthetic topologies
that do not accurately represent all-IP Broadcast Networks.

In this work we study the use of DLC shortest path rout-
ing and DRL based routing for media flow routing in a
real production media broadcast network scenario assuming
the orchestration capabilities offered by a real commercial
orchestrator [5]. We show that DRL based media flow routing
is applicable in a real production all-IP media broadcast
network scenario and compare its efficiency with both SLC
and DLC shortest path routing algorithms.

II. RELATED WORK
Approaches for multimedia flow routing in SDN networks
have been proposed mainly in the context of streaming appli-
cations over the Internet [6]. The routing of media flows in
the context of all-IP broadcast networks is a TE problemwere
the main objective is to avoid Quality of Service (QoS) and
Quality of Experience (QoE) degradation due to frame drops,
jitter and high latency caused by link congestion. This can
be achieved through routing optimization in order to avoid
routing traffic through congested links. Routing optimization
has been traditionally approached in terms of a shortest (or
k shortest) path algorithm, were link weights can be static
(SLC algorithms) or dynamic (DLC algorithms), the routing
optimization is then done by optimizing the link costs in order
to optimize a metric or a set of metrics.

A. OPTIMIZATION BASED SOLUTIONS
Optimizing the link costs is usually an NP-complete prob-
lem [12]. In [13], a survey of QoS routing algorithms in
SDN networks is presented with several examples of global
offline QoS routing algorithms that involve complex opti-
mization problems, such as integer or mixed integer linear
programs [14], [15]. These are complex and hard to imple-
ment due to the difficulty in modeling modern networks and
their difficulty in dealing with network dynamism. In this
work we did not consider this approach due to the dynamism
of the scenario, especially in live broadcasting, and also
because contrary to the scenarios in [14], [15], multimedia
transmission in broadcast media networks is more bandwidth
hungry than delay sensitive, and avoiding link congestion is
more important than assuring strict delay bounds.

B. DLC APPROACHES
SDN can allow the use of network state information to
enhance traditional shortest path routing protocols (based
in some variation of the Dijkstra’s algorithm), allowing the
use of dynamic routing costs according to current network
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state [16]. In [8], a comparison of SLC and DLC heuristic
routing algorithms in the context of SDN is presented. It is
shown that, as expected, DLC algorithms have a better per-
formance than SLC algorithms in terms of accepted flows (i.e.
flows that are placed in the network) and total traffic through-
put. However, the cost of obtaining accurate network state
information in SDN environments is reflected in terms of con-
trol overhead. DLC performance is also adversely impacted
by network state information inaccuracies [8], resulting in a
trade-off between the amount of times the network is probed
and the overall efficiency of the protocol.

C. DRL BASED APPROACHES
In recent years there has been an interest in taking advan-
tage of the programmable nature and the ability to gather
network information of SDN to use model-free Machine
Learning (ML) methods to optimize routing [17]. From these
approaches DRL [18] based routing is particularly interesting
due to its independence of existing labeled data sets, that are
very hard to obtain for routing, and its adequacy for dynamic
optimization problems.

In [17], a list of DRL based routing approaches using
SDN is reviewed for the general problem of routing opti-
mization. Approaches vary in the used DRL algorithm from
value function basedmethods such as DeepQ-Networks [19],
to combined action and policy value algorithms, known as
actor-critic methods, such as Deep Deterministic Policy Gra-
dient (DDPG) [20]. From this body of work, we emphasize
a set of approaches that tackle a similar problem to ours,
although not for the broadcast network scenario [21]–[25].

In [21], a DDPG algorithm is used to optimize the
cumulative QoE while routing multimedia flows across an
SDN network. The reward is evaluated by a Mean Opinion
Score (MOS) of the clients reported QoE. This is difficult
to obtain in real time, and the authors use a Deep Neural
Network (DNN) trained to map flow statistics to reported
QoE using past experiences to solve the problem. The state
reflects the bandwidth, delay, jitter and packet loss of the cur-
rently transported flows and the actions consist in choosing
a path and the respective bandwidth allocation for a flow.
Simulations are performed using an event-driven simulator
to mimic an SDN network and use topologies from a public
available repository whose realism is hard to verify. A DDPG
based agent with a very similar model to the one in [21] is
proposed in [23], but in this case the problem is formulated as
a weight optimization problem for shortest path calculation.
The DRL agent provides an action that consists in the set
of link weights attributed to the links of the network and
the paths are then calculated using this set of link weights.
The reward is calculated according to the chosen optimiza-
tion metric that can be delay or throughput and the traffic
matrix is the input state for the agent. The proposal is eval-
uated via simulation in an event-driven simulator using an
old topology (2011) from the IP backbone of an American
Internet provider. Xu et al. [22] proposed an extension to
DDPG, replacing the exploration based in random noise by

an exploration based in a baseline method (e.g. shortest path
routing) and using a prioritized experience replay instead of
the simple uniform sampling of DDPG. The state input for the
DRL algorithm is formed by a set of throughput and delay
tuples from each communication session, the work is eval-
uated via simulation using two commonly used topologies,
the National Science Foundation Network (NSFNET), the
Advanced Research Projects Agency Network (ARPANET),
as well as a randomly generated topology.

An issue with DRL approaches is the state and action space
sizes that exponentially grow with the size of the network
topology. In [9], [25], the authors follow a link pinning strat-
egy to select only a set of critical links to be controlled in order
to reduce the state and action space sizes. The link selection
algorithm is performed offline and the DRL agent adjusts
the link’s weights online, thus optimizing the paths that are
calculated. The used DRL algorithm is an actor-critic method
where the state is formed by the critical links traffic distribu-
tion and the action space is the set of link weights for posterior
path calculation. Once again, this work is evaluated through
an event-driven simulator and uses generated topologies.

These approaches all have in common the formulation
of the problem in a continuous control structure, since they
either use link weight arrays as their action [9], [23], [25],
a path bandwidth continuous value [21], or an array of path
choice probabilities [22]. On the other hand, the authors
in [24] propose a solution, called RL-Routing, which uses
a discrete action space and targets throughput maximization
and communication delay minimization. RL-Routing uses a
Duelling Double Deep Q-Network (Duelling DDQN) DRL
algorithm with an agent for each individual router. The state
space is an array of link and router statistics, the action
space is the set of available paths (pre-calculated k-shortest
paths) and the reward is obtained by measuring the delay
and throughput rate. In this case, the work was evaluated via
network emulation using a virtual software network built in
Mininet [26] and the NSFNET and ARPANET topologies
were used for the evaluation scenarios.

III. ROUTING VIDEO STREAMS ACROSS A PRODUCTION
ALL-IP BROADCAST NETWORK
To our knowledge, at the time of writing, there are no DRL
based proposals in the literature specifically addressing the
routing of video streams in the broadcasting scenario. The
problem is similar to the routing and TE problems discussed
in the related work section, but there are requirements and
limitations that need to be considered when dealing with a
real production broadcast network scenario.

In this work we consider a scenario as close as possible
to a real production deployment. We assume the use of an
orchestrator with the characteristics of the Network Manage-
ment System (NMS) described in [5] and we evaluate the
proposed solution in a topology that is a real all-IP broad-
cast service provider infrastructure. The considered NMS
is one of the leading commercial offers in the market for
SDN based orchestration of services in Broadcast networks.
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It can act as an SDN controller and is capable of using sev-
eral southbound protocols in networks with different levels
of control-plane/data-plane separation. We also use a real
service provider IP Broadcast network topology to test the
developed algorithms.

In many production broadcast networks in use today a
control plane broker SDN flavour is used, this means that
there is still control plane operation on the hardware devices
and the SDN controller acts like a mediator between appli-
cations and the network devices. The controller can retrieve
information from the devices and manipulate their control
planes (e.g. installing routes in the Forwarding Information
Base) using protocols like SNMP, NETCONF, RESTCONF
or dedicated APIs. In this scenario, depending on the used
protocol, obtaining flow statistics can be a costly operation
in terms of time overhead and the available information also
varies. For this reason we only consider simple network
metrics like total bandwidth capacity and current utilization
of interfaces (and not individual flows) that can be obtained
by even the simpler protocols such as SNMP. This invalidates
any approach that needs individual flow statistics in their
DRL model like the ones in [21], [22].

Approaches that use link weight arrays as their action [9],
[23], [25] are also not suitable for our real deployment sce-
nario, The reason is that the only possible implementation
implies using one of the supported southbound APIs to set
the new link weights and Dijkstra to calculate the new set of
paths. This is computationally heavy when implemented in
the considered NMS system [5], so we opted for solutions
where the action space is a set of candidate paths available to
forward the media flows [24]. The same reasoning applies to
DLC shortest path algorithms that have similar implementa-
tion implications in terms of setting the new link weights.

Another issue to consider is the nature of the SLAs in
the broadcast industry. In most cases, like MCR and live
broadcast scenarios, the practice is to stipulate a determined
and fixed flow bandwidth that clients expect to be available at
all times regardless of the actual utilization. This means that
the bandwidth allocation is user defined and cannot be part of
the action of the agent, so approaches like the one described
in [21] can not be applied.

IV. SYSTEM DESIGN
We consider the scenario of multimedia broadcast services
transported over an IP infrastructure network. Additionally,
it is assumed that the services are orchestrated by a controller
and that this controller has the capabilities and limitations
of the controller offered by Skyline Communications [5],
so that the implementation is realistic for real production
environment use.

Each service is served by a scheduled resource reservation
that comprises three distinct time periods: pre-roll, active
and post-roll. During the pre-roll, resources, such as SDI
encoders, SDI decoders, switches, routers, or antennas, are
configured for the specific type of requested service. The
service requirements are defined in a service definition (see

FIGURE 1. Transport service definition.

fig. 1) that includes at least one SDI encoder, where the
multimedia source is originated and translated into IP, a trans-
port network, a nested service definition that defines how the
routing of video stream data is made, and one SDI decoder
connected to the exit edge node of the transport network.

The service reaches its end when the active time has
elapsed and enters the post-roll phase where the reserved
resources are released.

The media stream routing algorithm runs on top of the
transport block of Figure 1. It retrieves the interface metrics
of the topology (total bandwidth capacity and current uti-
lization) and uses that information to compute paths that are
then installed in the transport devices. Finally, the algorithm
decides, for each media stream, which of the available paths
are used.

One SLC and two DLC routing algorithms were imple-
mented to serve as baseline methods. These are then
compared with the DRL based routing solution that is
implemented with three different algorithms.

V. BASELINE ALGORITHMS
The first baseline protocol is a simple SLC solution that uses
Dijkstra with fixed link costs that we call Minimum Hop
Algorithm (MHA). The second baseline protocol is a DLC
algorithm that uses updated information of the interfaces
state to dynamically, and accordingly, update the costs of the
links. This information is retrieved in 5 second intervals and
new paths are calculated according to the current costs. Two
different DLC models were implemented: dynamic shortest
path (DSP) [8], which considers a link cost C(u,v) that is
inverse to the currently available bandwidth RBW(u,v)

DSP : C(u,v) =
1

RBW(u,v)
, (1)

and Least Interference Optimization Algorithm (LIOA) [8]
that adds a metric related to the quantity of flows carried by
network links by multiplying the link cost equation of DSP
by the number of flows being transported Iu,v and raising it to
a constant α

LIOA : C(u,v) =

(
I(u,v)

RBW(u,v)

)α
. (2)

The total bandwidth capacity and the current utilization
are metrics that can be obtained directly from the physical
interface by all of the southbound protocols supported by
the considered controller [5] in our design. The number of
transported flows must be calculated in the controller and is
updated every time a flow is placed in a path, with the number
of flows of an interface being incremented for all interfaces in
the chosen path.When a flow stops, this value is decremented.
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VI. DRL BASED ALGORITHMS
In a DRL model an agent interacts with an environment, that
generates relevant data for the model’s objective. The current
state of the environment St ∈ S reflects the environment in a
given time t while S is the state space. The agent chooses an
action at ∈ A(St ), where A(St ) is the action space in the cur-
rent state St . The performed action impacts the environment
that enters a new state St+1 and produces a reward rt+1. Such
reward indicates how the action taken in a given time step and
environment state contributes to the agent’s objective.

DRL can be modeled has a Markov Decision Pro-
cess (MDP) since it has no memory requirement, with every
state having enough information on its own for the agent to
choose the best action. The goal of an MDP is to find the
optimal policy that leads to the maximization of the reward
function. The policy function π is responsible for mapping
states to either a deterministic action or a probability distri-
bution over actions that returns the highest reward. An alter-
native way to choose the best actions is to calculate the value
of a state. In this case, the value function Vπ (St ) maps a state
to its expected reward that is defined by the long-term reward
average from being in a state or taking an action in that state,
provided that a certain policy is consistently followed.

A. DEEP Q-NETWORKS (DQNS)
The Q-function is an action-value function used in a
class of DRL algorithms called Deep Q-Network models
(DQNs) [27]. This function is defined as Q(s, a), and maps
a state-action pair input to the value of action a at state s. The
function is updated during training according to the following
equation:

Q(St ,At ) = Q(St ,At )+ α[R(St ,At )

+ γmaxQ(St+1, a′)− Q(St ,At )]. (3)

The α[R(St ,At )+γmaxQ(St+1, a′)−Q(St ,At )] term is the
Temporal Difference (TD), where R(St ,At )+
γmaxQ(St+1, a′) is the predicted Q-value and Q(St ,At ) the
current Q-value. In this equation, γ is the discount factor and
α is the learning rate. In other words, the updated Q-value
is equal to the current predicted Q-value plus the amount of
value expected in the future [27].

Q-values greatly depend on the observed rewards, this can
lead to instability in Q-values since rewards are commonly
unstable, divergent (i.e same state-action pairs resulting in
different rewards) or sparse, depending on the application.

Experience replay is one of the techniques used to try and
solve this problem. It uses a replay buffer to continuously
store experiences containing the state, the action taken, the
reward and the resulting state (st , at , rt , st+1). A few of these
experiences are then sampled from the buffer as input to the
Q-learning algorithm. Then, actions are chosen according to a
renewed policy generating new experiences, which are added
to the buffer which starts to contain new and old experi-
ences that can be sampled together stabilizing the algorithm.
The sampling of experiences from the replay buffer can be

prioritized according to low error values in past transitions or
other criteria that makes them more valuable to the training
process.

Another technique for training stabilization is the use of a
target network, which is a copy of the main DQN that learns
the Q-function. This copy Q̂ has its parameters updated with
a certain lag, which helps stabilizing the back-propagation
training process. Additionally, by using this network to cal-
culate the target Q-value to train the main DQN, the effect of
recent updates is decreased.

B. DOUBLE DEEP Q-NETWORKS (DDQNS)
This concept is at the origin of the DDQN algorithm that
tries to overcome the tendency of DQNs to over-estimate
the value of some actions. This over-estimation neglects the
possibility of other actions being more suitable in certain
conditions [28]. DDQNs use two value functions, which are
initialized as a copy of each other, to separately select and
evaluate action values. One of these functions will select
an action based on the updated weights (i.e. argmax) and
the other will estimate the value of the current Q-function
using lagged weights. The weights of the second Q-network
are updated according to the weights stored in the target
network Q̂, while the target network’s weights θ ′ are updated
periodically according to the online weights θ as is done in
traditional DQNs. The θ weights are optimized to minimize
the loss given by equation 4.

[rj + γ Q̂(st+1, argmaxa′Q(st+1, a
′
; θ ); θ ′)

−Q(st , at ; θ )]2. (4)

C. DUELLING DEEP Q-NETWORKS (DUELLING DQNS)
Duelling DQNs decompose the state action value function
Q(s, a) in two separate functions. A state-value function V (s),
that gives the value of being in a given state s, and an
action-value function A(a) that represents the value of an
action compared to its alternatives. These functions corre-
spond to different layers in the DQN that generate a combined
Q-value given by:

Q(s, a;α, β) = V (s;β)

+

(
A(s, a;α)−

∑
a′ A(s, a

′
;α)

|A|

)
, (5)

where α is a parameter of the advantage function, β of
the value function, and |A| is the number of actions in the
action space. This division of the Q-value in two functions
has the goal of increasing training stability and accelerating
convergence.

D. DRL MODEL
The DRL problem is modeled by M = 〈S,A,R〉, with S
being the space state, A the action space and R the reward
function. The network is modeled by a graphG(V ,E), where
V is the set of vertices and E the set of edges. The set of host
nodes (i.e. connection points to the SDI encoders/decoders)
is denoted by H .
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A state St ∈ S is sampled at time step t and is repre-
sented by a 3-dimensional tensor with dimensions [N ,N , 1],
where N is the number of hosts h ∈ H in the network (i.e.
N = |H |), and the rightmost index of the tensor dimensions
corresponds to a network representation metric. At the start
of the algorithm training, k paths pk (ns, nd ) are computed,
using theDijkstra algorithm, between each source/destination
pair. The network representation metric is equivalent to the
available bandwidth in the bottleneck link of one of the pre-
computed paths. This value is calculated by determining the
available bandwidth in the bottleneck link of each of the k
paths, selecting the path pl with the lowest value and using
that bandwidth value, depicted as Lbw(pl(ns, nd )), to be part
of the state. An alternative that was considered and tested
was to use each of the bottleneck links for the k paths in
the state definition. This changes the state dimensions to
[N ,N , k, 1], decreasing the scalability of the state space,
without visible gains in the results. Using only the smallest
value among the k paths still forces the algorithm to pursue
path diversification since the algorithmwill try to maintain an
equilibrium between each path’s utilization to optimize (i.e.
maximize) the state representation metric value, achieving
similar results with a much smaller state space.

The action space A is defined as:

A = {a1, a2, . . . , ak},

where k is the number of pre-computed paths and

ai = pai (ns, nd ), i ∈ 1, 2, . . . , k.

R(s, a) is the reward function that translates an action ai in
state St to a reward value that is calculated according to the
available bandwidth of the selected path’s bottleneck link in
the resulting state. It is defined as:

R(s, a) =



+50, if Lbw(pl(ns, nd )) ≥ 75
+30, if Lbw(pl(ns, nd )) ≥ 50
0, if Lbw(pl(ns, nd )) ≥ 25
−10, if Lbw(pl(ns, nd ))) ≥ 0
−100, if Lbw(pl(ns, nd )) < 0
∀(ns, nd ) ∈ N and plns, nd ∈ k. (6)

For each combination (ns, nd ) and pl(ns, nd ), the reward
function will increase or decrease the total reward according
to the respective Lbw(pl(ns, nd )). This function is designed
to maximize available bandwidth while severely penalizing
requests that are assigned to paths with links that will become
congested.

E. TRAINING LOOP
Training the three Deep Q-Learning algorithms requires mul-
tiple environment episodes. Each of these episodes consists
of a set of video stream requests, from a service booking,
that have to be placed in the environment. The placement
of these streams results in new states and rewards that feed
the Q-networks learning process. The inputs of the training

loop algorithm are the number of video streams requests, the
communicating pairs of nodes and the reserved bandwidth for
each stream of an episode.

Algorithm 1 Training Loop Algorithm
1: Initialize replay buffer Rb
2: Q← Q_Network(θ )
3: Q̂← Q_Network(θ ′)
4: for i episodes do
5: requests← 0
6: done← false
7: max_requests← N
8: while not done do
9: at = (1− ε)× argmax(st , at , θ)
10: st+1← take_action(at )
11: rt ← evaluate(st+1)
12: requests← requests+ 1
13: store (st , at , rt , st+1) in Rb
14: θ ← update_model(sample(Rb))
15: if i == update frequency then
16: Q̂← Q
17: end if
18: if requests == max_requests then
19: done← True
20: end if
21: end while
22: end for

Algorithm 1 provides an overlook of the training process.
It starts with the initialization of the replay buffer Rb, the
main Q-network Q and the target Q-network Q̂, and then
runs during the defined i number of episodes. For each
episode, the current number of active requests for video
stream communication (requests), the control variable for the
loop (done) and the maximum number of requests for the
episode (max_requests) are initialized.
In each iteration of the episode’s training loop, the action at

that returns the highest value considering the current state st
and the current model weights θ is selected with probability
(1 − ε) (exploration is performed by selecting a random at
with ε probability). That action is then performed in the envi-
ronment by placing themedia stream of the request in the path
corresponding to action at . This results in an updated state
st+1, that already reflects the placement of this request in the
network. This state is then evaluated according to equation 6,
resulting in a reward rt . The current transition (st , at , rt , st+1)
is then added to the replay buffer Rb and the model is updated
using a sample of transitions from the replay buffer and the
update rule of the specific Deep Q-Learning method (this is
the only step that differs between the three different DQN
methods that were implemented). The target model weights
θ ′ are then equaled to the main model weights θ , with a
given update frequency. Finally, the number of requests is
incremented and if it has reached the total number of requests
of the episode, the loop stops and a new episode starts.
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TABLE 1. DQN and DDQN network’s layers.

FIGURE 2. DQN and DDQN architecture.

TABLE 2. Duelling DQN network layers.

F. Q-NETWORKS ARCHITECTURES
We implemented three different DeepQ-Network algorithms:
DQN, DDQN and Duelling DQN. For the DQN and DDQN
algorithms, the network layers of the Q-networks both fol-
low the structure summarized in Table 1 and illustrated in
Figure 2.

Given its architecture, which separates the value and
advantage functions, the layers in the Q-Network for the
Duelling DQN algorithm are organized differently, as Table 2
and Figure 3 illustrate. In Figure 3, the top blocks at the
final layers correspond to the value segment of the Duelling
DQN and the lower blocks to the advantage. After calculating
the state value and the advantage of each action, the results
are aggregated and the Q-value for each state-action pair is
generated. These Q-values are calculated as the sum of the
value function and the respective advantage subtracted by the
average advantage of all actions.

In both cases the input layer has an input size correspond-
ing to the state size of the model, which corresponds to the
size of the flattened tensor of [N ,N , 1] dimensions described
in section VI-D. The output layer has the size of the number
of possible actions, in our case the number of paths between
the communicating hosts. The sizes of the inner layers are
dependent on the topology the algorithm is applied to. If the
network size increases (i.e. additional edges and possible
paths between them), the state flattened tensor size increases

FIGURE 3. Dueling DQN architecture.‘‘N’’ stands for ‘‘N_ACTIONS’’.

TABLE 3. Training loop hyper-parameters.

meaning that more nodes will be used in each layer. The
chosen activation function for every layer in the models is the
Rectified Linear Unit function given by f (x) = max(0, x).
The hyper-parameters for the training loop are listed in

Table 3.
Finally the loss function used for the update of the

Q-networks weights θ is the Mean Squared Error function
(MSE):

MSE =
1
2m

m∑
i=1

(ŷ− y)2, (7)

And the error is minimized using an adaptive stochastic
gradient descent algorithm called Adam [29].

VII. RESULTS AND DISCUSSION
We evaluated the proposed DRL solution using the three dif-
ferent deep Q-network algorithms and compared the results
with the SLC and DLC base line methods.

A. DEVELOPMENT AND SIMULATION ENVIRONMENT
The system was designed for use in real production scenarios
as described in section IV. For that purpose, we selected one
of the leading existing SDN orchestrators in the market [5]
as the implementation target and designed the system assum-
ing its capabilities and limitations. We also asked providers
for information on the Service Level Agreements that are
commonly used in the broadcast industry and obtained a
real production network topology used to transport broadcast
services.
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However, it is not feasible to train a DRL based solution in
a real production network, so a simulation environment was
implemented that mimics those real life conditions as closely
as possible.

This environment was built using Mininet to set up a
network containing virtual hosts, switches and links, on top
of which the different tested approaches will operate. The
orchestrator is simulated using the Ryu OpenFlow controller
to install forwarding rules into the switches according to the
results of the algorithms.

The experiments were performed using two topologies,
depicted in Fig. 4: the ARPANET network, and the real
media broadcast network topology, depicted as Network RW.
Network RW is a real topology from a service provider that
uses the SDN orchestrator described in [5] to manage the
broadcast services in their infrastructure. Given the respective
topologies dimensions, we defined the k number of available
paths between end-points as k = 5 for ARPANET, and
k = 10 for Network RW. It is also worth mentioning that
all ARPANET links have a 100 Mb capacity, while Network
RW uses a set of link capacities that range between 100 and
1000 Mb.

B. EVALUATION METRICS
The evaluation of developed media stream routing algorithms
is based on three metrics:

1) Flow average bitrate.
2) Flow average round-trip-time (RTT).
3) Number of uncongested flows. The number of services

that meet the requested requirements. This value is
calculated by counting the number of flows with an
average bitrate equal to the requested bandwidth in the
SLA.

These metrics have a strong influence on each other. When
the network becomes congested, the bitrate of a flow and
the average RTT decrease. Moreover, that same bitrate drop
makes the number of uncongested flows also decrease.

C. TRAINING SETTINGS
Three different DQN-based agents were trained (DQN, Dou-
ble DQN and Duelling DQN), both for ARPANET and Net-
work RW.

Also, four distinct DRL environment setupswere designed,
picturing different broadcast service profiles.

Setup 1 uses fixed settings in each training episode, this
recreates a scenario where the network use is constant.
For this setup each episode will have 32 concurrent stream
requests all requiring a 15 Mb Bandwidth for the ARPANET
topology and 24 requests of 20 Mb for Network RW. The
sources and destinations of the requests are selected by com-
puting the worst-case traffic scenario based on link centrality,
resulting in the selection of the host pairs that, when commu-
nicating, will make the network suffer from congestion faster.
These sources and destinations remain fixed during the entire
training process.

FIGURE 4. Simulation network topologies (source hosts are represented
in blue, destination hosts in red and switches in green): (a) ARPANET with
20 switches, 13 hosts and 45 links; (b) Network RW with 10 hosts,
98 switches and 131 links.

Setup 2 was designed to simulate irregular network uses.
This is achieved through the randomization of the number of
requests per episode between 1 and the number of requests
used in setup 1.

Setup 3 simulates a tailored network use where some vari-
ation may still occur. Thus, it uses a smoother change of the
number of requests per episode that is achieved by sampling
values from a normal distribution centered around an average
of 24 concurrent requests. Each request, can have a bandwidth
requirement of 5, 10, 15 or 18 Mbits/s.

Lastly, setup 4 is the only one that does not use the
worst-case traffic scenario for the selection of the source and
destination of the requests. Instead, these are sampled from
two lists of possibilities. The remaining settings from setup
3 are not altered.

For the Network RW topology only setup 1 was used, since
it is the closest to what is defined by the SLAs in real-world
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FIGURE 5. Evolution of the reward during the agents’ learning processes
in Network RW using setup 1.

FIGURE 6. Evolution of the reward values during the agents’ learning
processes in ARPANET. Setup 1.

situations (i.e. fixed bandwidth must be available throughout
all of the media stream duration and the number of streams
in a service is known). Figure 5 shows the evolution of the
reward for the Network RW topology using setup 1.

For the ARPANET topology, the agents were trained for all
setups. Figure 6 shows the reward evolution for setup 1 and
Figure 7 for setups 2, 3 and 4.

In order to smooth the reward plots, averages of batches
of epochs were used. Thus, the real horizontal axis value of
each plot is found by multiplying it by the size of the batch,
indicated in the vertical axis. Also, in figure 7, the average
reward per episode is represented instead of the total episode
reward due to the reward value oscillation introduced by using
a variable number of requests per episode.

For setup 1, 4000 epochs were used. For setups 2, 3 and 4,
the different agents were trained with a higher number of
epochs (up to a maximum of 7000 epochs) due to the use
of randomization. The training time of each agent varies
according to the used Deep Q-Network algorithm variant
(DDQN is the slowest andDQN the fastest) and the number of
epochs. In the conducted experiments, the training processes
took between 3 and 5 hours for the ARPANET topology and
between 6 and 8 hours for Network RW. The training was
performed in a single machine with an Intel Core i5 processor
and 8Gb of RAM, without using a GPU.

FIGURE 7. Evolution of the reward values during the agents’ learning
processes in ARPANET. (a) Setup 2; (b) Setup 3; (c) Setup 4.

D. TRAINING RESULTS
Figures 6 shows the results for setup 1 in the ARPANET
topology. The reward increased for all of the implemented
agents that begin the training with similar reward values (the
variation is mostly due to the random initial θ weights of
the Q-networks). DDQN stabilizes its reward value at around
-425, a significant improvement over DQN and Duelling
DQN, both stabilizing at around -525. This stabilization
occurs faster for DDQN than Duelling DQN while DQN is
the slowest to converge. The results observed are negative due
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to the chosen reward function and its application to a worst-
case scenario, where even if the best paths for each request
are chosen, some links will always be overly booked given
that multiple requests are concurrently being transported.

For the remaining setups, shown in figure 7, the DDQN
agent continues to converge faster and to higher reward values
than the DQN and Duelling DQN agents. The reward values
are much more unstable in setups 2, 3 and 4. This is due to the
variable number of requests these setups use in each episode,
resulting in fluctuations in the average reward of the episodes.
In episodes with a small number of requests, poor action
selection will have a smaller impact on the network state
due to the reduced number of requests and can therefore still
result in good reward values. On the other hand, in episodes
with a high number of requests, poor actions accumulate over
the requests and have a higher impact in the network state
resulting in lower reward values. For this reason, even though
the plots still show an increasing reward value as the agents
learn, there is a higher variance in the results.

In setup 1, the request rewards in the beginning of an
episode are positive and start decreasing as more flows are
allocated due to the increase in congestion. Since our reward
function is not linear and severely penalizes congestion, the
requests allocated last result in exponentially lower rewards,
resulting in a negative sum of rewards per episode. In setups
2 to 4, the average of the episodes requests rewards are
positive. This occurs because the number of requests per
episode is lower, leading to lower congestion and, conse-
quently, higher rewards.

The performance differences verified between agents can
be explained by their distinct behaviours. The superior per-
formance of the DDQN agent can be related to its use
of a double estimator for Q-values, which prevents some
actions from overshooting and getting constantly selected.
This allows for a better exploration of the network with the
agent being able to test different actions in situations where
the other algorithms do not. The Duelling DQN algorithm
only had a marginal increase of performance compared to
the DQN algorithm. In Duelling DQN, the state and action
values are decoupled, which, in some problems, facilitates
the learning of action values, thus improving performance.
However, in this topology, the action and the state values are
too correlated for this approach to be beneficial.

Fig. 5 introduces the training process of the three agents in
Network RW for setup 1. In this case, the Duelling DQN algo-
rithm has the best performance of the three algorithms with
a similar convergence time than DDQN, but a much higher
reward value. This can be explained by the topology itself
that allows the Duelling DQN to benefit from the state-action
values separation. DDQN is still marginally superior to DQN
in terms of reward, while DQN as a much slower convergence
time.

The rewards obtained in the Network RW topology are
higher than in the ARPANET topology. This indicates that
the agents were able to assign paths that are better at avoiding
congestion in this topology. This will be further analysed, but

TABLE 4. Comparison between dynamic link cost algorithms (LIOA and
DSP) and Static link cost Dijkstra (MHA).

it is easy to see that Network RW has a topology that is more
suitable for load balancing than the ARPANET topology.
Additionally, the different environment settings, such as the
number of requests per episode and their bandwidth require-
ments, might also positively affect the agents performance.

E. PERFORMANCE COMPARISON
After the training phase of the DRL based algorithms, three
comparative performance analysis were performed:

1) Comparison between the baseline algorithms: MHA;
DLC and LIOA.

2) Performance evaluation of the three agents trained in
ARPANET and the four setups presented, measured
against MHA.

3) Performance evaluation of the three DRL algorithms in
Network RW compared with MHA.

1) COMPARISON BETWEEN BASELINE ALGORITHMS
The following results were obtained using 32 stream requests
that last 180-seconds and have a 15 Mbits/s bitrate require-
ment.

The results in Table 4 show that the two DLC solutions
can slightly improve the performance of the MHA approach.
This improvement is explained by how DSP and LIOA can
better avoid the concentration of all requests in the same
popular links by changing their weights. This results in higher
bitrate levels because there is less congestion. However,
this decrease in congestion is marginal, since they do not
show significant improvement on the number of uncongested
flows. In terms of RTT, the results are identical among the
three algorithms. Finally, a DLC solution is operationally
difficult to implement in the realistic scenario that we consid-
ered, since obtaining the network state can be a time intensive
operation.

2) DRL VERSUS SLC IN THE ARPANET TOPOLOGY
The results in Fig. 8 allow us to compare the performance
of the trained DRL agents to the baseline static link weight
Dijkstra in the ARPANET topology, for each of the four
training setups.

After an analysis of the obtained results, we can see that
DDQN is the best performing agent across all setups, which is
consistent with its higher reward values in the training phase.

Regarding the average bitrate, it is clear that in setups
1 and 2, all theDRL agents outperformDijsktra. Additionally,
between them, there is not much difference. In setups 3 and 4,
however, DQN starts to fall back from the remaining agents’
performance and to match Dijkstra based MHA.
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FIGURE 8. Performance of the different developed agents in the four
setups and Dijkstra in ARPANET, according to the three evaluation
metrics. (a) Average bitrate; (b) Average round-trip-time; (c) Number of
uncongested flow requests.

In terms of average RTT, the trend continues.
In setups 1 and 2, the DRL agents are much better than
Dijkstra, but tend to deteriorate in setups 3 and 4.

The last evaluation metric is the number of uncongested
flow requests. The optimization of this value is the most
important goal of video stream routing algorithm due to
the nature of the SLA that are used in real life scenarios.
DRL approaches show a strong increase in performance over
Dijkstra in this metric, specifically in the DDQN agent in
setup 1. The DQN and Duelling DQN agents are also capable
of outperforming the baseline routing mechanism in almost
every scenario, expect for the DQN agent in setup 4.

TABLE 5. Performance of the DRL agents compared to SLC Dijkstra
(MHA).

A common trend for all metrics and agents is the perfor-
mance degradation in setups 3 and 4, especially in the RTT
values. This can be explained by the introduction of bitrate
variation in the training episodes. Since bandwidth is the
indicator of the network state used in theDRLmodel, changes
to its value impact the performance of the agents by making it
more difficult for them to understand the underlying network.
Setup 1 is also clearly the most favorable environment for the
algorithms, mainly because of its smoother learning process.
Setup 2, despite using a random number of requests per
episode, still manages to achieve better results that the last
two, which supports the idea of the bitrate requirement per
request having a stronger influence on the agents perfor-
mance than the number of video streams to transmit.

Based on these observations, we can conclude that the
DRL approach to routing is especially efficient when the
communication sessions occur between the same endpoints
and maintain their requirements (i.e. bitrate) throughout a
service, something that matches the most common scenario
in video broadcast services.

3) DRL VERSUS SLC IN THE NETWORK RW TOPOLOGY
In Table 5, the performance of the DRL agents trained using
setup 1 in the Network RW topology is presented and com-
pared to the SLC using Dijkstra. In the evaluation, 25 video
stream requests were placed between the source hosts and
every destination host in the network, with a bitrate require-
ment of 20 Mbits/s.

It is clear that all three DRL agents outperform MHA.
For all agents, the average bitrate achieved for the
25 stream requests reaches levels close to their bitrate
requirement. Additionally, 16 out of the 25 achieved the
requested 20 Mbits/s bitrate during the entire stream trans-
mission. The RTT also decreases up to 60% compared to
MHA. This is possible because the agents learn to place
flows in less congested paths, balancing the load evenly
across the network. These results indicate that the use of DRL
algorithms is applicable to real production all IP broadcast
networks, since not only the network capacity is maximized
(i.e. more uncongested video streams), but each stream bitrate
and RTT are optimized versus traditional link cost based
approaches.

The results achieved by the DRL approach in the Net-
work RW topology also reveal a much more pronounced
improvement than in the ARPANET topology. Network RW,
is a production network topology of an operator, with more
path diversity than in the ARPANET topology, which seems
to favour the agents’ ability to learn how to make more
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efficient routing decisions with more choices of actions to
explore.

VIII. CONCLUSION
This work demonstrates the use of model-free DRL based
algorithms for routing video streams in IP networks. Our
DRL model shows that under the requirements and charac-
teristics of real production environments, we have treatable
state and action spaces and that the agents converge and learn
to increase the reward. The results show that the routing per-
formance significantly increases with the use of DRL versus
the standard methods that are currently used in production
networks. They also show that the enhancements introduced
by the Duelling DQN algorithm increase the performance
of the DRL agent in this scenario. Finally, this work differs
from existing DRL based routing proposals by tackling a
previously untreated scenario and using conditions very close
to real production scenarios, serving as a motivating example
for the use of this type of approach in the industry.
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