International comovement of stock market returns: A wavelet analysis

António Rua\textsuperscript{1} \hspace{1cm} Luís C. Nunes\textsuperscript{2}

Abstract

The assessment of the comovement among international stock markets is of key interest, for example, for the international portfolio diversification literature. In this paper, we re-examine such comovement by resorting to a novel approach, wavelet analysis. Wavelet analysis allows one to measure the comovement in the time-frequency space. In this way, one can characterize how international stock returns relate in the time and frequency domains simultaneously, which allows one to provide a richer analysis of the comovement. We focus on Germany, Japan, UK and US and the analysis is done at both the aggregate and sectoral levels.

Keywords: International stock markets; Comovement; Wavelets; Time-frequency space.


1 Introduction

The analysis of the comovement of stock market returns is a key issue in finance as it has important practical implications in asset allocation and risk management. Since the seminal work of Grubel (1968) on the benefits of international portfolio diversification (see also, Levy and Sarnat (1970) and Agmon (1972)) this topic has received a lot of attention in international finance. In fact, a growing body of

\textsuperscript{1} Banco de Portugal and ISEG, Technical University of Lisbon. Address: Economics Research Department, Banco de Portugal, Av. Almirante Reis no 71, 1150-012 Lisboa, Portugal. Email: antonio.rua@bportugal.pt

\textsuperscript{2} Faculdade de Economia, Universidade Nova de Lisboa.
literature has emerged more recently on studying the comovement of international stock prices (see, for example, King et al. (1994), Lin et al. (1994), Longin and Solnik (1995, 2001), Karolyi and Stulz (1996), Forbes and Rigobon (2002), Brooks and Del Negro (2005, 2006)). In particular, most of those studies have found that the comovement of stock returns is not constant over time. For instance, Brooks and Del Negro (2004) and Kizys and Pierdzioch (2008) found evidence of increasing international comovement of stock returns since the mid-90’s among the major developed countries. It has been current practice to evaluate the comovement of stock returns through the correlation coefficient while the evolving properties have been investigated either through a rolling window correlation coefficient (see, for example, Brooks and Del Negro (2004)) or by considering non-overlapping sample periods (see, for example, King and Wadhwani (1990) and Lin et al. (1994)).

However, the comovement analysis should also take into account the distinction between the short and long-term investor (see, for example, Candelon et al. (2008)). From a portfolio diversification view, the first kind of investor is naturally more interested in the comovement of stock returns at higher frequencies, that is, short-term fluctuations, whereas the latter focus on the relationship at lower frequencies, that is, long-term fluctuations. Hence, one has to resort to the frequency domain analysis to obtain insights about the comovement at the frequency level (see, for example, A’Hearn and Woitek (2001) and Pakko (2004)). One should note that, despite its recognized interest, analysis in the frequency domain is much less found in the financial empirical literature (see, for example, Smith (2001)).

In this paper, we re-examine the stock returns comovement among the major developed economies through a novel approach, wavelet analysis. Wavelet analysis constitutes a very promising tool as it represents a refinement in terms of analysis in the sense that both time and frequency domains are taken into account. Although wavelets have been more popular in fields such as signal and
image processing, meteorology, physics, among others, such analysis can also provide fruitful insights about several economic phenomena (see, for example, Ramsey and Zhang (1996, 1997)). The pioneer work of Ramsey and Lampart (1998a, 1998b) draws on wavelets to study the relationship between several macroeconomic variables (see, for example, Crowley (2007) for a survey). In particular, wavelet analysis provides a unified framework to measure comovement in the time-frequency space.

The study of the comovement of stock market returns is crucial for risk assessment of portfolios. A higher comovement among the assets of a given portfolio implies lower gains, in terms of risk management, stemming from portfolio diversification. Hence, the evaluation of the comovement is of striking importance to the investor so that he can best assess the risk of a portfolio. On one hand, it has been acknowledged that the comovement of stock returns varies over time. Hence, one has to be able to capture this timevarying feature as it implies an evolving risk exposure. On the other hand, the distinction between short and long-term investors should not be ignored as the first is more interested on short-run movements whereas the latter on long-run fluctuations. That is, if the degree of the comovement of stock returns varies across frequencies the risk for each type of investor will also be different. In contrast with time or frequency domain approaches which allow one to focus only on one of these issues, wavelet analysis encompasses both. In particular, through wavelets one can assess simultaneously the strength of the comovement at different frequencies and how such strength has evolved over time. In this way it is possible to identify regions in the time-frequency space where the comovement is higher and the benefits of portfolio diversification in terms of risk management are lower.

In addition, we also extend such analysis to the sectoral level. That is, besides considering the aggregate stock returns, we also distinguish ten sectors for each country. For the international diversification of equity portfolios, the assessment of the comovement at the sectoral level also plays a role (see, for example, Roll (1992), Heston and Rouwenhorst (1994) and Griffin and Karolyi (1998)). For
instance, it is important to assess if the evidence of greater interdependence of international stock markets is confined or not to a small set of sectors (see, for example, Berben and Jansen (2005)). Again, wavelet analysis can provide interesting insights on how such international comovement has evolved over time across frequencies for the different sectors.

Hence, this paper provides a fresh new look into the characterisation of the comovement among international stock returns. We focus on the major developed economies, namely Germany, Japan, United Kingdom and United States over the last four decades. Moreover, by considering the decomposition of the aggregate index in ten sectors, we also provide insights at the sectoral level.

This paper is organised as follows. In section 2, the comovement measure in the wavelet domain is presented. In section 3, a data overview is provided and in section 4 the empirical results for the major developed economies are discussed. Finally, section 5 concludes.

2 Wavelet analysis

The wavelet transform decomposes a time series in terms of some elementary functions, the daughter wavelets or simply wavelets $\psi_{\tau,s}(t)$. Wavelets are ‘small waves’ that grow and decay in a limited time period. These wavelets result from a mother wavelet $\psi(t)$, that can be expressed as function of the time position $\tau$ (translation parameter) and the scale $s$ (dilation parameter), which is related with the frequency. While the Fourier transform decomposes the time series into infinite length sines and cosines, discarding all time-localization information, the basis functions of the wavelet transform are shifted and scaled versions of the time-localized mother wavelet. More explicitly, wavelets are defined as

$$\psi_{\tau,s}(t) = \frac{1}{\sqrt{s}}\psi\left(\frac{t - \tau}{s}\right)$$  (1)
where $\sqrt{ls}$ is a normalization factor to ensure that wavelet transforms are comparable across scales and time series. To be a mother wavelet, $\psi(t)$, must fulfil several conditions (see, for example, Gençay et al. (2002), Percival and Walden (2000) and Bruce and Gao (1996)): it must have zero mean,

$$\int_{-\infty}^{+\infty} \psi(t) dt = 0;$$

its square integrates to unity, $\int_{-\infty}^{+\infty} \psi^2(t) dt = 1$, which means that $\psi(t)$ is limited to an interval of time; and it should also satisfy the so-called admissibility condition,

$$0 < C_\psi = \int_{0}^{+\infty} \frac{\hat{\psi}(\omega)^2}{\omega} d\omega < +\infty$$

where $\hat{\psi}(\omega)$ is the Fourier transform of $\psi(t)$, that is, $\hat{\psi}(\omega) = R\psi(t) e^{-i\omega t} dt$.

The latter condition allows the reconstruction of a time series $x(t)$ from its continuous wavelet transform, $W_x(\tau,s)$. Thus, it is possible to recover $x(t)$ from its wavelet transform through the following formula

$$x(t) = \frac{1}{C_\psi} \int_{-\infty}^{+\infty} \left[ \int_{-\infty}^{+\infty} \frac{1}{s} \psi\left(\frac{t-\tau}{s}\right) W_x(\tau,s) d\tau \right] ds \frac{ds}{s^2}$$

(2)

The continuous wavelet transform of a time series $x(t)$ with respect to $\psi(t)$ is given by the following convolution

$$W_x(\tau, s) = \int_{-\infty}^{+\infty} x(t) \psi_{\tau,s}^*(t) dt = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} x(t) \psi^s\left(\frac{t-\tau}{s}\right) dt$$

(3)

where $\cdot$ denotes the complex conjugate. For a discrete time series, $x(t), t=1,\ldots,N$ we have

$$W_x(\tau, s) = \frac{1}{\sqrt{s}} \sum_{t=1}^{N} x(t) \psi^s\left(\frac{t-\tau}{s}\right)$$

(4)

Although it is possible to compute the wavelet transform in the time domain using equation (4), a more convenient way to implement it is to carry out the wavelet transform in Fourier space (see, for example, Torrence and Compo (1998)).
The most commonly used mother wavelet is the Morlet wavelet and is defined as

$$\psi(t) = \pi^{-\frac{1}{4}} \left( e^{i\omega_0 t} - e^{-\frac{\omega_0^2}{2}} \right) e^{-\frac{t^2}{2}}$$  \hspace{1cm} (5)$$

Since the term $e^{-\frac{\omega_0^2}{2}}$ becomes negligible for an appropriate $\omega_0$, the Morlet wavelet is simply defined as

$$\psi(t) = \pi^{-\frac{1}{4}} e^{i\omega_0 t} e^{-\frac{t^2}{2}}$$  \hspace{1cm} (6)

with the corresponding Fourier transform given by

$$\hat{\psi}(\omega) = \pi^{\frac{1}{4}} \sqrt{2} e^{-\frac{1}{2}(\omega - \omega_0)^2}$$  \hspace{1cm} (7)

One can see that the Morlet wavelet is a complex sine wave within a Gaussian envelope whereas $\omega_0$ is the wavenumber (see, for example, Adisson (2002) for further details). In practice, $\omega_0$ is set to 6 as it provides a good balance between time and frequency localization (see, for example, Grinsted et al. (2004)).

Given two time series $x(t)$ and $y(t)$, with wavelet transforms $W_x(\tau,s)$ and $W_y(\tau,s)$ one can define the cross-wavelet spectrum as $W_{xy}(\tau,s) = W_x(\tau,s) W^*_y(\tau,s)$. In a similar fashion as in Fourier analysis, one can define the wavelet squared coherency as the absolute value squared of the smoothed cross-wavelet spectrum, normalized by the smoothed wavelet power spectra

$$R^2(\tau, s) = \frac{|S^{-1} W_{xy}(\tau, s)|^2}{S \left( s^{-1} |W_x(\tau, s)|^2 \right) S \left( s^{-1} |W_y(\tau, s)|^2 \right)}$$  \hspace{1cm} (8)

where $S(.)$ denotes smoothing in both time and scale (see, for example, Torrence and Webster (1999)). Likewise in Fourier analysis, smoothing is also necessary, otherwise squared coherency would be always equal to one (see, for example, Priestley (1981)).
The intuition behind the wavelet squared coherency is similar to the one of squared coherency in Fourier analysis. As it can be seen from (8), the wavelet squared coherency is essentially the ratio of the squared crosswavelet spectrum to the product of two wavelet spectra, analogously to the squared coefficient of correlation. In other words, the wavelet squared coherency plays a role as a correlation coefficient around each moment in time and for each frequency. Therefore, one can use wavelet squared coherency to measure the extent to which two time series move together over time and across frequencies (while the squared coherency in Fourier analysis only allows one to assess the latter). Likewise the squared coefficient of correlation, $R^2(\tau,s)$ is between 0 and 1 with a high (low) value indicating a strong (weak) comovement. Hence, through the graph of the wavelet squared coherency one can detect the regions in the time-frequency space where the two time series co-vary and capture both time and frequency varying features. In this way, it is possible to provide a richer picture on the comovement between two series\(^3\).

### 3 Data

Stock prices data for the major developed economies, namely, Germany, Japan, United Kingdom and United States are from Thompson Financial Datastream. For each country, we collected Datastream constructed data for the broad-based market price index as well as for the ten economic sectors that make up the index, namely: Oil and gas; Basic materials; Industrials; Consumer goods; Healthcare; Consumer services; Telecommunications; Utilities; Financials and Technology. Apart from a few exceptions, the sample period runs from January 1973 up to December 2007 comprising 420 monthly observations, end of period figures. The

---

\(^3\) Additionally, one can also compute the wavelet phase, which captures the lead-lag relationship between the variables in the time-frequency space. However, the results are not reported here as no noteworthy lead-lag relationship was found in the empirical application.
exceptions are: Oil and Gas for Germany was not included in the analysis as the time series span was too short; the Technology index for Germany only starts at December 1988; the Telecommunications index for the UK is available from December 1981 onwards and the Utilities index for the UK only begins at January 1987. We focus on monthly stock returns, defined as the log first difference of monthly stock price indices and we use returns denominated in the home currency of each respective country.\textsuperscript{4} In Table 1 some descriptive statistics are presented.

4 Empirical results

In this section, wavelet squared coherency is presented for all possible country pairs in order to assess cross-country comovement (namely, US and Germany; UK and Germany; US and UK; Japan and Germany; Japan and US; Japan and UK). The wavelet squared coherency is presented through a contour plot as we have three dimensions involved. The horizontal axis refers to time while the vertical axis refers to frequency. To ease interpretation, the frequency is converted to time units (years). The gray scale is for the wavelet squared coherency where increasing darkness corresponds to an increasing value and mimics the height in a surface plot. Hence, through the inspection of the graph one can identify both frequency bands (in the vertical axis) and time intervals (in the horizontal axis) where the series move together\textsuperscript{5}. For example, a dark area at the bottom (top) of the graph means strong comovement at low (high) frequencies whereas a dark area at the left-hand (right-hand) side denotes strong comovement at the

\textsuperscript{4} We also performed the analysis using stock prices converted to a common currency and the results do not change qualitatively. The bilateral exchange rates are also from Thompson Financial Datastream.

\textsuperscript{5} As the continuous wavelet transform at a given point in time uses information of neighbouring data points, results should be read carefully close to the beginning or the end of the time series.
beginning (end) of the sample period. Moreover, through such wavelet analysis one can also assess if the comovement has increased or decreased over time and across frequencies capturing possible varying features in the relationship between stock returns in the time-frequency space. The black bold line in the graph delimits the statistical significant area at the usual significance level of five per cent, i.e., the wavelet squared coherency is statistically significant within such delimited time-frequency area. In particular, the five per cent significance level was determined from a Monte Carlo simulation of 10 000 sets of two white noise time series with the same length as the series under analysis. All computations have been done using Matlab.

From the analysis of the results obtained for the broad-based market stock returns several interesting findings arise (see Figure 1). First, Germany presents a relatively high degree of comovement at lower frequencies with US and UK over the whole sample period. Interestingly, since the end of the 90’s, this high degree of comovement has been extended to all frequencies. Hence, there seems to be a change in the pattern of the relationship at the end of the 90’s, whereas prior to that date the strong comovement is confined only to long-run fluctuations while afterwards it is visible for all sort of fluctuations. This finding provides an additional insight on the fact, commonly found in the recent literature, that there has been an overall increasing comovement.

Second, the US and UK stock markets seem to present a high degree of comovement over the last four decades (see also, for example, Kizys and Pierdzioch (2008)). One can see that this evidence is true for all frequencies but the highest ones. In particular, for fluctuations with a duration less than a year the comovement is weaker. However, even at those frequencies one can observe episodes where it is also high, namely around the 1987 US stock market crash and at the turn of the century with the technology bubble.

Third, one can conclude that Japan presents, in general, a low comovement with all the other countries considered. This low comovement of the Japanese stock market with the other major stock markets has also been found elsewhere
(see, for example, Berben and Jansen (2005) and Longin and Solnik (1995)). From the current analysis it becomes clear that such evidence seems to be robust to the sample period and across all frequencies.

We now turn to the sectoral analysis. Through an overview of the results some findings immediately emerge. First, the results obtained support the idea of a weak correlation between the Japanese stock market and the other major developed stock markets both across sectors and across time and frequency (see also Berben and Jansen (2005)). However, there are two noteworthy exceptions, namely, in the consumer goods and technology sectors. In both sectors there is evidence of a strong comovement at lower frequencies between Japan and the other countries and in the technology sector, in particular, the comovement between Japan and US and between Japan and UK seems to have increased at other frequencies since the mid-90's.

Focusing now only on Germany, US and UK, one can see that in several sectors there is a strong comovement at long term fluctuations and interestingly, in most sectors, the US and UK stock markets present a temporary strong comovement at higher frequencies around the time of the 1987 US market crash.

Let us now run through the sectoral results in more detail. Regarding the oil and gas sector, there is a strong comovement at several frequencies between US and UK over the whole sample period. In the basic materials sector, we find a significant comovement at lower frequencies between US and Germany over the entire sample period as well as between UK and Germany and US and UK since the 90’s. Note that between US and UK there is also a strong comovement at fluctuations longer than half a year and shorter than three years since the mid-80’s. Concerning industrials, we find evidence of an increasing comovement

\[\text{For each of the ten sectors considered, we computed the squared wavelet coherency for the same country pairs as in Figure 1. To save space such figures are not presented here but are available from the authors upon request.}\]
between US and Germany and between US and UK at lower to medium frequencies range since the 90’s (and to a less extent, between UK and Germany since the turn of the century). In the consumer goods sector, there is a significant comovement at lower frequencies for all country pairs. In the healthcare sector, the strongest comovement seems to be between US and UK comprising several frequencies. Regarding consumer services, Germany presents an increasing comovement with both US and UK at the turn of the century for almost all frequencies while US and UK show a strong comovement at the typical business cycle frequency range. In the telecommunications sector, we find a strong comovement at fluctuations longer than four years between UK and Germany and US and UK over almost the whole sample period and between US and Germany since late 80’s. Concerning utilities, we find a significant comovement between UK and the other countries at lower frequencies. In the financials sector, Germany presents an increasing comovement with both US and UK since the mid90’s at several frequencies while there is a significant comovement between US and UK over most sample. Finally, in the technology sector, there is evidence of a strong comovement at long-term fluctuations since the 90’s for all country pairs whereas US and UK present an increasing comovement at all frequencies since the mid-90’s.

In summary, in terms of the aggregate index, among all the country pairs considered, the US and UK stock markets seem to present the highest comovement across time and frequencies while the Japanese market shows a low degree of comovement with any other major stock market in the timefrequency space. Regarding Germany, we find a high degree of comovement at lower frequencies with US and UK over the whole sample period and since the end of the 90’s this is also observed for all the other frequencies. At the sectoral level, the weak comovement of Japan with the other countries is also, in general, present while Germany, US and UK show a significant comovement in several sectors at lower frequencies.
Let us illustrate the importance of wavelet analysis for risk management (see also Gençay et al. (2005) and Fernandez (2005, 2006)). To highlight the implications of the above findings, we perform a Value at Risk (VaR) analysis. The VaR is a widely known tool for risk assessment and it can be interpreted as the maximum loss of a portfolio not exceeded with a given probability over a period of time. The VaR at the \((1-\alpha)\) percent confidence level of a portfolio of \(k\) assets can be written as

\[
\text{VaR}(\alpha) = V_0 \Phi^{-1}(1-\alpha) \sigma_p
\]  

(9)

where \(V_0\) is the value of the initial investment, \(\Phi(.)\) is the cumulative distribution function of the standard Normal and \(\sigma_p\) is the square root of the portfolio variance. For a portfolio of \(k\) assets, the portfolio variance is given by

\[
\sigma^2_p = \sum_{i=1}^{k} \omega^2_i \sigma^2_i + \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \omega_i \omega_j \text{Cov}(r_i, r_j)
\]  

(10)

where \(\omega_i\) is the weight of asset \(i\) in the portfolio, \(r_i\) is the return of asset \(i\) and \(\sigma^2_i\) is the corresponding variance. From (10) one can see that the portfolio variance can be decomposed into two terms whereas the first one is strictly related with the variance of stock returns while the second term reflects the comovement. To make clear the importance of the comovement for risk assessment, we compute the VaR of a portfolio assuming that there is no comovement between the assets and the VaR of the same portfolio but without this restriction. In practice, we compute the portfolio variance discarding the second term of (10) in the former case while considering both terms in the latter case. To ease the comparison of the two VaR, we compute the ratio between them which resumes to the ratio of portfolio variances. In this way, one can assess the percentage increase/decrease in the VaR due to comovement. If the ratio is equal to one then it means that the comovement does not change the VaR while
if the ratio is higher (lower) than one then it means that the comovement implies a higher (lower) VaR.

Let us consider an equally-weighted portfolio, whose value is measured in US dollars, comprised by the four country broad-based market indices. Resorting to the wavelet counterparts of variance and covariance in (10), we computed the above mentioned ratio in the time-frequency space (see Figure 2). Firstly, one can see that the ratio is almost always higher than one. That is, whatever the frequency or the moment in time, the comovement among country stock returns implies a higher VaR. Naturally, from a portfolio perspective, a positive comovement among stock returns increases risk. Moreover, as expected, given the results above discussed, the comovement has a different impact in the VaR across frequencies and time. One can see that the ratio is higher at low frequencies over the whole sample period (the VaR is higher around 80 per cent) and it has increased over time attaining higher values at all frequencies in the latter part of the sample period. This evidence reinforces the above findings regarding the fact that the benefits of international portfolio diversification vary across frequencies and over time.

5 Conclusions

The assessment of the international comovement of stock returns is crucial so as to shed light, for example, on the potential benefits of international portfolio diversification. This paper provides a new look into the comovement measurement of stock returns by resorting to wavelet analysis. Wavelet analysis allows one to assess the time- and frequency-varying comovement within an unified framework. This analysis is of particular interest in the context of the study of stock returns comovement as it is by now a stylized fact that the degree of comovement has changed over time and because one should be able to take into consideration the distinction between the short- and long-term investor, that
is, the frequency domain. In fact, with wavelet analysis one can take into account the time and frequency domains simultaneously.

In this paper, we consider the stock returns for the major developed countries, namely Germany, Japan, United Kingdom and United States over the last four decades and besides the aggregate index we also consider its decomposition in ten main sectors, so as to provide insights at the sectoral level. A noteworthy finding of this paper is that the strength of the comovement of international stock returns depends on the frequency. In general, we find that comovements between markets is stronger at the lower frequencies suggesting that the benefits from international diversification may be relatively less important in the long-term than in the short-term. Therefore, the nature of the investor, in terms of short or long-term profile, should be taken into account when addressing the international portfolio diversification problem. We also found that the strength of the comovement in the time-frequency space varies across countries as well as across sectors. For instance, even though the Japanese stock market is generally weakly correlated with the other developed countries stock markets considered (as in Berben and Jansen, 2005), there are some sectors (technology and consumer goods) displaying strong comovements at particular frequencies and time periods. Finally, it was also found that the degree of comovement has changed over time, in line with the findings of Brooks and Del Negro (2004), among others. However, such changes are found to be confined, in several cases, to particular frequency ranges. Moreover, the detected changes are of different natures regarding their persistence in time. For example, the degree of comovement of the German market with the US and UK markets is characterized by some permanent changes over time: a gradual but steady increase of the comovement at the lower frequencies, and also a sudden increase after the end of the nineties for the other frequencies. On the other hand, the episodes of stronger comovement at higher frequencies between the US and UK markets around the 1987 crash and at the end of the century technological bubble are clearly of a distinct transitory nature. The first phenomena may be
explained by the increased integration of financial markets whereas the latter may be associated with contagion. All these results highlight the importance of taking into consideration the time and frequency-varying properties of stock returns comovement in designing international portfolios as it may influence the benefits of international portfolio diversification in a non-negligible way.

References


[38] Torrence, C. and Webster, P. J. (1999) "Interdecadal changes in the ENSO-monsoon system", Journal of Climate, 12, 2679-2690.
<table>
<thead>
<tr>
<th></th>
<th>Germany</th>
<th></th>
<th></th>
<th></th>
<th>US</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>UK</th>
<th></th>
<th></th>
<th>Japan</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. equities</td>
<td>Mean</td>
<td>St. Dev.</td>
<td>Skewness</td>
<td>Kurtosis</td>
<td>No. equities</td>
<td>Mean</td>
<td>St. Dev.</td>
<td>Skewness</td>
<td>Kurtosis</td>
<td>No. equities</td>
<td>Mean</td>
<td>St. Dev.</td>
<td>Skewness</td>
<td>Kurtosis</td>
<td>No. equities</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.87</td>
<td>3.29</td>
<td>992</td>
<td>0.01</td>
<td>0.04</td>
<td>-0.63</td>
<td>2.77</td>
<td>547</td>
<td>0.01</td>
<td>0.06</td>
<td>0.22</td>
<td>9.48</td>
<td>1000</td>
</tr>
<tr>
<td>Oil and gas</td>
<td>11</td>
<td>0.00</td>
<td>0.08</td>
<td>-0.75</td>
<td>0.29</td>
<td>87</td>
<td>0.01</td>
<td>0.05</td>
<td>0.00</td>
<td>1.13</td>
<td>25</td>
<td>0.01</td>
<td>0.07</td>
<td>0.29</td>
<td>5.40</td>
<td>11</td>
</tr>
<tr>
<td>Basic materials</td>
<td>20</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.53</td>
<td>1.35</td>
<td>48</td>
<td>0.01</td>
<td>0.06</td>
<td>-0.40</td>
<td>2.63</td>
<td>27</td>
<td>0.01</td>
<td>0.07</td>
<td>-0.32</td>
<td>3.67</td>
<td>102</td>
</tr>
<tr>
<td>Industrials</td>
<td>62</td>
<td>0.01</td>
<td>0.06</td>
<td>-0.56</td>
<td>1.73</td>
<td>165</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.52</td>
<td>3.22</td>
<td>111</td>
<td>0.01</td>
<td>0.07</td>
<td>-0.26</td>
<td>4.41</td>
<td>223</td>
</tr>
<tr>
<td>Consumer goods</td>
<td>30</td>
<td>0.00</td>
<td>0.07</td>
<td>0.15</td>
<td>5.96</td>
<td>91</td>
<td>0.00</td>
<td>0.06</td>
<td>-0.67</td>
<td>2.98</td>
<td>35</td>
<td>0.00</td>
<td>0.08</td>
<td>-0.34</td>
<td>2.84</td>
<td>186</td>
</tr>
<tr>
<td>Healthcare</td>
<td>18</td>
<td>0.01</td>
<td>0.04</td>
<td>-0.51</td>
<td>1.98</td>
<td>97</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.21</td>
<td>2.98</td>
<td>18</td>
<td>0.01</td>
<td>0.06</td>
<td>0.05</td>
<td>8.01</td>
<td>50</td>
</tr>
<tr>
<td>Consumer services</td>
<td>23</td>
<td>0.00</td>
<td>0.06</td>
<td>-0.50</td>
<td>2.39</td>
<td>123</td>
<td>0.01</td>
<td>0.06</td>
<td>-0.67</td>
<td>3.21</td>
<td>81</td>
<td>0.01</td>
<td>0.06</td>
<td>0.04</td>
<td>6.71</td>
<td>163</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>1</td>
<td>0.00</td>
<td>0.08</td>
<td>-0.44</td>
<td>3.54</td>
<td>17</td>
<td>0.00</td>
<td>0.05</td>
<td>-0.11</td>
<td>2.33</td>
<td>7</td>
<td>0.01</td>
<td>0.07</td>
<td>-0.24</td>
<td>1.16</td>
<td>7</td>
</tr>
<tr>
<td>Utilities</td>
<td>10</td>
<td>0.01</td>
<td>0.04</td>
<td>0.08</td>
<td>0.86</td>
<td>63</td>
<td>0.00</td>
<td>0.04</td>
<td>-0.13</td>
<td>1.25</td>
<td>10</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.15</td>
<td>1.19</td>
<td>20</td>
</tr>
<tr>
<td>Financials</td>
<td>58</td>
<td>0.01</td>
<td>0.06</td>
<td>-0.78</td>
<td>4.21</td>
<td>205</td>
<td>0.01</td>
<td>0.05</td>
<td>-0.30</td>
<td>2.20</td>
<td>206</td>
<td>0.01</td>
<td>0.06</td>
<td>0.13</td>
<td>6.77</td>
<td>165</td>
</tr>
<tr>
<td>Technology</td>
<td>17</td>
<td>0.02</td>
<td>0.11</td>
<td>-0.43</td>
<td>2.72</td>
<td>96</td>
<td>0.01</td>
<td>0.07</td>
<td>-0.48</td>
<td>1.93</td>
<td>27</td>
<td>0.01</td>
<td>0.10</td>
<td>-0.57</td>
<td>2.78</td>
<td>73</td>
</tr>
</tbody>
</table>
Figure 1 - Wavelet squared coherency for the overall stock market

US vs. Germany

UK vs. Germany

US vs. UK

Japan vs. Germany

Japan vs. US

Japan vs. UK
Figure 2 - Ratio between the VaR of a multi-country portfolio with and without comovement.
WORKING PAPERS

2000

1/00  UNEMPLOYMENT DURATION: COMPETING AND DEFECTIVE RISKS  
         — John T. Addison, Pedro Portugal

2/00  THE ESTIMATION OF RISK PREMIUM IMPLICIT IN OIL PRICES  
         — Jorge Barros Luís

3/00  EVALUATING CORE INFLATION INDICATORS  
         — Carlos Robalo Marques, Pedro Duarte Neves, Luís Morais Sarmento

4/00  LABOR MARKETS AND KALEIDOSCOPIC COMPARATIVE ADVANTAGE  
         — Daniel A. Traça

5/00  WHY SHOULD CENTRAL BANKS AVOID THE USE OF THE UNDERLYING INFLATION INDICATOR?  
         — Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva

6/00  USING THE ASYMMETRIC TRIMMED MEAN AS A CORE INFLATION INDICATOR  
         — Carlos Robalo Marques, João Machado Mota

2001

1/01  THE SURVIVAL OF NEW DOMESTIC AND FOREIGN OWNED FIRMS  
         — José Mata, Pedro Portugal

2/01  GAPS AND TRIANGLES  
         — Bernardino Adão, Isabel Correia, Pedro Teles

3/01  A NEW REPRESENTATION FOR THE FOREIGN CURRENCY RISK PREMIUM  
         — Bernardino Adão, Fátima Silva

4/01  ENTRY MISTAKES WITH STRATEGIC PRICING  
         — Bernardino Adão

5/01  FINANCING IN THE EUROSYSTEM: FIXED VERSUS VARIABLE RATE TENDERS  
         — Margarida Catalão-Lopes

6/01  AGGREGATION, PERSISTENCE AND VOLATILITY IN A MACROMODEL  
         — Karim Abadir, Gabriel Talmain
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/01</td>
<td>SOME FACTS ABOUT THE CYCLICAL CONVERGENCE IN THE EURO ZONE</td>
<td>Frederico Belo</td>
</tr>
<tr>
<td>8/01</td>
<td>TENURE, BUSINESS CYCLE AND THE WAGE-SETTING PROCESS</td>
<td>Leandro Arozamena, Mário Centeno</td>
</tr>
<tr>
<td>9/01</td>
<td>USING THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR</td>
<td>José Ferreira Machado, Carlos Robalo Marques, Pedro Duarte Neves, Afonso Gonçalves da Silva</td>
</tr>
<tr>
<td>10/01</td>
<td>IDENTIFICATION WITH AVERAGED DATA AND IMPLICATIONS FOR HEDONIC REGRESSION STUDIES</td>
<td>José A.F. Machado, João M.C. Santos Silva</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/02</td>
<td>QUANTILE REGRESSION ANALYSIS OF TRANSITION DATA</td>
<td>José A.F. Machado, Pedro Portugal</td>
</tr>
<tr>
<td>2/02</td>
<td>SHOULD WE DISTINGUISH BETWEEN STATIC AND DYNAMIC LONG RUN EQUILIBRIUM IN ERROR CORRECTION MODELS?</td>
<td>Susana Botas, Carlos Robalo Marques</td>
</tr>
<tr>
<td>3/02</td>
<td>MODELLING TAYLOR RULE UNCERTAINTY</td>
<td>Fernando Martins, José A. F. Machado, Paulo Soares Esteves</td>
</tr>
<tr>
<td>4/02</td>
<td>PATTERNS OF ENTRY, POST-ENTRY GROWTH AND SURVIVAL: A COMPARISON BETWEEN DOMESTIC AND FOREIGN OWNED FIRMS</td>
<td>José Mata, Pedro Portugal</td>
</tr>
<tr>
<td>6/02</td>
<td>AN “ART”. NOT A “SCIENCE”? CENTRAL BANK MANAGEMENT IN PORTUGAL UNDER THE GOLD STANDARD, 1854 -1891</td>
<td>Jaime Reis</td>
</tr>
<tr>
<td>7/02</td>
<td>MERGE OR CONCENTRATE? SOME INSIGHTS FOR ANTITRUST POLICY</td>
<td>Margarida Catalão-Lopes</td>
</tr>
</tbody>
</table>
8/02 DISENTANGLING THE MINIMUM WAGE PUZZLE: ANALYSIS OF WORKER ACCESSIONS AND SEPARATIONS FROM A LONGITUDINAL MATCHED EMPLOYER-EMPLOYEE DATA SET
— Pedro Portugal, Ana Rute Cardoso

9/02 THE MATCH QUALITY GAINS FROM UNEMPLOYMENT INSURANCE
— Mário Centeno

10/02 HEDONIC PRICES INDEXES FOR NEW PASSENGER CARS IN PORTUGAL (1997-2001)
— Hugo J. Reis, J.M.C. Santos Silva

11/02 THE ANALYSIS OF SEASONAL RETURN ANOMALIES IN THE PORTUGUESE STOCK MARKET
— Miguel Baltina, Nuno C. Martins

12/02 DOES MONEY GRANGER CAUSE INFLATION IN THE EURO AREA?
— Carlos Robalo Marques, Joaquim Pina

13/02 INSTITUTIONS AND ECONOMIC DEVELOPMENT: HOW STRONG IS THE RELATION?
— Tiago V.de V. Cavalcanti, Álvaro A. Novo

2003

1/03 FOUNDING CONDITIONS AND THE SURVIVAL OF NEW FIRMS
— P.A. Geroski, José Mata, Pedro Portugal

2/03 THE TIMING AND PROBABILITY OF FDI: AN APPLICATION TO THE UNITED STATES MULTINATIONAL ENTERPRISES
— José Brandão de Brito, Felipa de Mello Sampayo

3/03 OPTIMAL FISCAL AND MONETARY POLICY: EQUIVALENCE RESULTS
— Isabel Correia, Juan Pablo Nicolini, Pedro Teles

4/03 FORECASTING EURO AREA AGGREGATES WITH BAYESIAN VAR AND VECM MODELS
— Ricardo Mourinho Félix, Luís C. Nunes

5/03 CONTAGIOUS CURRENCY CRISES: A SPATIAL PROBIT APPROACH
— Álvaro Novo

6/03 THE DISTRIBUTION OF LIQUIDITY IN A MONETARY UNION WITH DIFFERENT PORTFOLIO RIGIDITIES
— Nuno Alves

7/03 COINCIDENT AND LEADING INDICATORS FOR THE EURO AREA: A FREQUENCY BAND APPROACH
— António Rua, Luís C. Nunes
WHY DO FIRMS USE FIXED-TERM CONTRACTS?
— José Varejão, Pedro Portugal

NONLINEARITIES OVER THE BUSINESS CYCLE: AN APPLICATION OF THE SMOOTH TRANSITION AUTOREGRESSIVE MODEL TO CHARACTERIZE GDP DYNAMICS FOR THE EURO-AREA AND PORTUGAL
— Francisco Craveiro Dias

WAGES AND THE RISK OF DISPLACEMENT
— Anabela Carneiro, Pedro Portugal

SIX WAYS TO LEAVE UNEMPLOYMENT
— Pedro Portugal, John T. Addison

EMPLOYMENT DYNAMICS AND THE STRUCTURE OF LABOR ADJUSTMENT COSTS
— José Varejão, Pedro Portugal

THE MONETARY TRANSMISSION MECHANISM: IS IT RELEVANT FOR POLICY?
— Bernardino Adão, Isabel Correia, Pedro Teles

THE IMPACT OF INTEREST-RATE SUBSIDIES ON LONG-TERM HOUSEHOLD DEBT: EVIDENCE FROM A LARGE PROGRAM
— Nuno C. Martins, Ernesto Villanueva

THE CAREERS OF TOP MANAGERS AND FIRM OPENNESS: INTERNAL VERSUS EXTERNAL LABOUR MARKETS
— Francisco Lima, Mário Centeno

TRACKING GROWTH AND THE BUSINESS CYCLE: A STOCHASTIC COMMON CYCLE MODEL FOR THE EURO AREA
— João Valle e Azevedo, Siem Jan Koopman, António Rua

CORRUPTION, CREDIT MARKET IMPERFECTIONS, AND ECONOMIC DEVELOPMENT
— António R. Antunes, Tiago V. Cavalcanti

BARGAINED WAGES, WAGE DRIFT AND THE DESIGN OF THE WAGE SETTING SYSTEM
— Ana Rute Cardoso, Pedro Portugal

UNCERTAINTY AND RISK ANALYSIS OF MACROECONOMIC FORECASTS: FAN CHARTS REVISITED
— Álvaro Novo, Maximiano Pinheiro
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/04</td>
<td>HOW DOES THE UNEMPLOYMENT INSURANCE SYSTEM SHAPE THE TIME PROFILE OF JOBLESS DURATION?</td>
<td>John T. Addison, Pedro Portugal</td>
</tr>
<tr>
<td>2/04</td>
<td>REAL EXCHANGE RATE AND HUMAN CAPITAL IN THE EMPIRICS OF ECONOMIC GROWTH</td>
<td>Delfim Gomes Neto</td>
</tr>
<tr>
<td>3/04</td>
<td>ON THE USE OF THE FIRST PRINCIPAL COMPONENT AS A CORE INFLATION INDICATOR</td>
<td>José Ramos Maria</td>
</tr>
<tr>
<td>4/04</td>
<td>OIL PRICES ASSUMPTIONS IN MACROECONOMIC FORECASTS: SHOULD WE FOLLOW FUTURES MARKET EXPECTATIONS?</td>
<td>Carlos Coimbra, Paulo Soares Esteves</td>
</tr>
<tr>
<td>5/04</td>
<td>STYLISED FEATURES OF PRICE SETTING BEHAVIOUR IN PORTUGAL: 1992-2001</td>
<td>Mónica Dias, Daniel Dias, Pedro D. Neves</td>
</tr>
<tr>
<td>6/04</td>
<td>A FLEXIBLE VIEW ON PRICES</td>
<td>Nuno Alves</td>
</tr>
<tr>
<td>7/04</td>
<td>ON THE FISHER-KONIECZNY INDEX OF PRICE CHANGES SYNCHRONIZATION</td>
<td>D.A. Dias, C. Robalo Marques, P.D. Neves, J.M.C. Santos Silva</td>
</tr>
<tr>
<td>8/04</td>
<td>INFLATION PERSISTENCE: FACTS OR ARTEFACTS?</td>
<td>Carlos Robalo Marques</td>
</tr>
<tr>
<td>9/04</td>
<td>WORKERS’ FLOWS AND REAL WAGE CYCLICALITY</td>
<td>Anabela Carneiro, Pedro Portugal</td>
</tr>
<tr>
<td>10/04</td>
<td>MATCHING WORKERS TO JOBS IN THE FAST LANE: THE OPERATION OF FIXED-TERM CONTRACTS</td>
<td>José Varejão, Pedro Portugal</td>
</tr>
<tr>
<td>11/04</td>
<td>THE LOCATIONAL DETERMINANTS OF THE U.S. MULTINATIONALS ACTIVITIES</td>
<td>José Brandão de Brito, Felipa Mello Sampayo</td>
</tr>
<tr>
<td>12/04</td>
<td>KEY ELASTICITIES IN JOB SEARCH THEORY: INTERNATIONAL EVIDENCE</td>
<td>John T. Addison, Mário Centeno, Pedro Portugal</td>
</tr>
<tr>
<td>13/04</td>
<td>RESERVATION WAGES, SEARCH DURATION AND ACCEPTED WAGES IN EUROPE</td>
<td>John T. Addison, Mário Centeno, Pedro Portugal</td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>14/04</td>
<td>THE MONETARY TRANSMISSION IN THE US AND THE EURO AREA: COMMON FEATURES AND COMMON FRICTIONS</td>
<td>Nuno Alves</td>
</tr>
<tr>
<td>15/04</td>
<td>NOMINAL WAGE INERTIA IN GENERAL EQUILIBRIUM MODELS</td>
<td>Nuno Alves</td>
</tr>
<tr>
<td>16/04</td>
<td>MONETARY POLICY IN A CURRENCY UNION WITH NATIONAL PRICE ASYMMETRIES</td>
<td>Sandra Gomes</td>
</tr>
<tr>
<td>17/04</td>
<td>NEOCLASSICAL INVESTMENT WITH MORAL HAZARD</td>
<td>João Ejarque</td>
</tr>
<tr>
<td>18/04</td>
<td>MONETARY POLICY WITH STATE CONTINGENT INTEREST RATES</td>
<td>Bernardino Adão, Isabel Correia, Pedro Teles</td>
</tr>
<tr>
<td>19/04</td>
<td>MONETARY POLICY WITH SINGLE INSTRUMENT FEEDBACK RULES</td>
<td>Bernardino Adão, Isabel Correia, Pedro Teles</td>
</tr>
<tr>
<td>20/04</td>
<td>ACCOUNTING FOR THE HIDDEN ECONOMY: BARRIERS TO LEGALITY AND LEGAL FAILURES</td>
<td>António R. Antunes, Tiago V. Cavalcanti</td>
</tr>
<tr>
<td>2005</td>
<td>SEAM: A SMALL-SCALE EURO AREA MODEL WITH FORWARD-LOOKING ELEMENTS</td>
<td>José Brandão de Brito, Rita Duarte</td>
</tr>
<tr>
<td>2/05</td>
<td>FORECASTING INFLATION THROUGH A BOTTOM-UP APPROACH: THE PORTUGUESE CASE</td>
<td>Cláudia Duarte, António Rua</td>
</tr>
<tr>
<td>3/05</td>
<td>USING MEAN REVERSION AS A MEASURE OF PERSISTENCE</td>
<td>Daniel Dias, Carlos Robalo Marques</td>
</tr>
<tr>
<td>4/05</td>
<td>HOUSEHOLD WEALTH IN PORTUGAL: 1980-2004</td>
<td>Fátima Cardoso, Vanda Geraldes da Cunha</td>
</tr>
<tr>
<td>5/05</td>
<td>ANALYSIS OF DELINQUENT FIRMS USING MULTI-STATE TRANSITIONS</td>
<td>António Antunes</td>
</tr>
<tr>
<td>6/05</td>
<td>PRICE SETTING IN THE AREA: SOME STYLIZED FACTS FROM INDIVIDUAL CONSUMER PRICE DATA</td>
<td>Emmanuel Dhyne, Luis J. Álvarez, Hervé Le Bihan, Giovanni Veronese, Daniel Dias, Johannes Hoffmann, Nicole Jonker, Patrick Lünnemann, Fabio Rumler, Jouko Vilmunen</td>
</tr>
<tr>
<td>7/05</td>
<td>INTERMEDIATION COSTS, INVESTOR PROTECTION AND ECONOMIC DEVELOPMENT</td>
<td>António Antunes, Tiago Cavalcanti, Anne Villamil</td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>8/05</td>
<td>TIME OR STATE DEPENDENT PRICE SETTING RULES? EVIDENCE FROM PORTUGUESE MICRO DATA</td>
<td>Daniel Dias, Carlos Robalo Marques, João Santos Silva</td>
</tr>
<tr>
<td>9/05</td>
<td>BUSINESS CYCLE AT A SECTORAL LEVEL: THE PORTUGUESE CASE</td>
<td>Hugo Reis</td>
</tr>
<tr>
<td>11/05</td>
<td>CONSUMPTION TAXES AND REDISTRIBUTION</td>
<td>Isabel Correia</td>
</tr>
<tr>
<td>12/05</td>
<td>UNIQUE EQUILIBRIUM WITH SINGLE MONETARY INSTRUMENT RULES</td>
<td>Bernardino Adão, Isabel Correia, Pedro Teles</td>
</tr>
<tr>
<td>13/05</td>
<td>A MACROECONOMIC STRUCTURAL MODEL FOR THE PORTUGUESE ECONOMY</td>
<td>Ricardo Mourinho Félix</td>
</tr>
<tr>
<td>14/05</td>
<td>THE EFFECTS OF A GOVERNMENT EXPENDITURES SHOCK</td>
<td>Bernardino Adão, José Brandão de Brito</td>
</tr>
<tr>
<td>15/05</td>
<td>MARKET INTEGRATION IN THE GOLDEN PERIPHERY – THE LISBON/LONDON EXCHANGE, 1854-1891</td>
<td>Rui Pedro Esteves, Jaime Reis, Fabiano Ferramosca</td>
</tr>
<tr>
<td></td>
<td><strong>2006</strong></td>
<td></td>
</tr>
<tr>
<td>1/06</td>
<td>THE EFFECTS OF A TECHNOLOGY SHOCK IN THE EURO AREA</td>
<td>Nuno Alves , José Brandão de Brito , Sandra Gomes, João Sousa</td>
</tr>
</tbody>
</table>
2/02 THE TRANSMISSION OF MONETARY AND TECHNOLOGY SHOCKS IN THE EURO AREA
  — Nuno Alves, José Brandão de Brito, Sandra Gomes, João Sousa

3/06 MEASURING THE IMPORTANCE OF THE UNIFORM NONSYNCHRONIZATION HYPOTHESIS
  — Daniel Dias, Carlos Robalo Marques, João Santos Silva

4/06 THE PRICE SETTING BEHAVIOUR OF PORTUGUESE FIRMS EVIDENCE FROM SURVEY DATA
  — Fernando Martins

5/06 STICKY PRICES IN THE EURO AREA: A SUMMARY OF NEW MICRO EVIDENCE

6/06 NOMINAL DEBT AS A BURDEN ON MONETARY POLICY
  — Javier Díaz-Giménez, Giorgia Giovannetti, Ramon Marimon, Pedro Teles

7/06 A DISAGGREGATED FRAMEWORK FOR THE ANALYSIS OF STRUCTURAL DEVELOPMENTS IN PUBLIC FINANCES
  — Jana Kremer, Cláudia Rodrigues Braz, Teunis Brosens, Geert Langenus, Sandro Momigliano, Mikko Spolander

8/06 IDENTIFYING ASSET PRICE BOOMS AND BUSTS WITH QUANTILE REGRESSIONS
  — José A. F. Machado, João Sousa

9/06 EXCESS BURDEN AND THE COST OF INEFFICIENCY IN PUBLIC SERVICES PROVISION
  — António Afonso, Vítor Gaspar

10/06 MARKET POWER, DISMISSAL THREAT AND RENT SHARING: THE ROLE OF INSIDER AND OUTSIDER FORCES IN WAGE BARGAINING
  — Anabela Carneiro, Pedro Portugal

11/06 MEASURING EXPORT COMPETITIVENESS: REVISITING THE EFFECTIVE EXCHANGE RATE WEIGHTS FOR THE EURO AREA COUNTRIES
  — Paulo Soares Esteves, Carolina Reis

12/06 THE IMPACT OF UNEMPLOYMENT INSURANCE GENEROSITY ON MATCH QUALITY DISTRIBUTION
  — Mário Centeno, Alvaro A. Novo

13/06 U.S. UNEMPLOYMENT DURATION: HAS LONG BECOME LONGER OR SHORT BECOME SHORTER?
  — José A.F. Machado, Pedro Portugal e Juliana Guimarães

14/06 EARNINGS LOSSES OF DISPLACED WORKERS: EVIDENCE FROM A MATCHED EMPLOYER-EMPLOYEE DATA SET
  — Anabela Carneiro, Pedro Portugal

15/06 COMPUTING GENERAL EQUILIBRIUM MODELS WITH OCCUPATIONAL CHOICE AND FINANCIAL FRICTIONS
  — António Antunes, Tiago Cavalcanti, Anne Villamil

16/06 ON THE RELEVANCE OF EXCHANGE RATE REGIMES FOR STABILIZATION POLICY
  — Bernardino Adao, Isabel Correia, Pedro Teles

17/06 AN INPUT-OUTPUT ANALYSIS: LINKAGES VS LEAKAGES
  — Hugo Reis, António Rua
RELATIVE EXPORT STRUCTURES AND VERTICAL SPECIALIZATION: A SIMPLE CROSS-COUNTRY INDEX
— João Amador, Sônia Cabral, José Ramos Maria
2/07  THE FORWARD PREMIUM OF EURO INTEREST RATES  
      — Sónia Costa, Ana Beatriz Galvão

3/07  ADJUSTING TO THE EURO  
      — Gabriel Fagan, Vítor Gaspar

4/07  SPATIAL AND TEMPORAL AGGREGATION IN THE ESTIMATION OF LABOR DEMAND FUNCTIONS  
      — José Varejão, Pedro Portugal

5/07  PRICE SETTING IN THE EURO AREA: SOME STYLED FACTS FROM INDIVIDUAL PRODUCER PRICE DATA  
      — Philip Vermeulen, Daniel Dias, Maarten Dossche, Erwan Gautier, Ignacio Hernando, Roberto Sabbatini, Harald Stahl

6/07  A STOCHASTIC FRONTIER ANALYSIS OF SECONDARY EDUCATION OUTPUT IN PORTUGAL  
      — Manuel Coutinho Pereira, Sara Moreira

7/07  CREDIT RISK DRIVERS: EVALUATING THE CONTRIBUTION OF FIRM LEVEL INFORMATION AND OF MACROECONOMIC DYNAMICS  
      — Diana Bonfim

8/07  CHARACTERISTICS OF THE PORTUGUESE ECONOMIC GROWTH: WHAT HAS BEEN MISSING?  
      — João Amador, Carlos Coimbra

9/07  TOTAL FACTOR PRODUCTIVITY GROWTH IN THE G7 COUNTRIES: DIFFERENT OR ALIKE?  
      — João Amador, Carlos Coimbra

10/07  IDENTIFYING UNEMPLOYMENT INSURANCE INCOME EFFECTS WITH A QUASI-NATURAL EXPERIMENT  
       — Mário Centeno, Alvaro A. Novo

11/07  HOW DO DIFFERENT ENTITLEMENTS TO UNEMPLOYMENT BENEFITS AFFECT THE TRANSITIONS FROM UNEMPLOYMENT INTO EMPLOYMENT  
       — John T. Addison, Pedro Portugal

12/07  INTERPRETATION OF THE EFFECTS OF FILTERING INTEGRATED TIME SERIES  
       — João Valle e Azevedo

13/07  EXACT LIMIT OF THE EXPECTED PERIODOGRAM IN THE UNIT-ROOT CASE  
       — João Valle e Azevedo

14/07  INTERNATIONAL TRADE PATTERNS OVER THE LAST FOUR DECADES: HOW DOES PORTUGAL COMPARE WITH OTHER COHESION COUNTRIES?  
       — João Amador, Sónia Cabral, José Ramos Maria

15/07  INFLATION (MIS)PERCEPTIONS IN THE EURO AREA  
       — Francisco Dias, Cláudia Duarte, António Rua

16/07  LABOR ADJUSTMENT COSTS IN A PANEL OF ESTABLISHMENTS: A STRUCTURAL APPROACH  
       — João Miguel Ejarque, Pedro Portugal

17/07  A MULTIVARIATE BAND-PASS FILTER  
       — João Valle e Azevedo
18/07 AN OPEN ECONOMY MODEL OF THE EURO AREA AND THE US
— Nuno Alves, Sandra Gomes, João Sousa

19/07 IS TIME RIPE FOR PRICE LEVEL PATH STABILITY?
— Vitor Gaspar, Frank Smets, David Vestin

20/07 IS THE EURO AREA M3 ABANDONING US?
— Nuno Alves, Carlos Robalo Marques, João Sousa

21/07 DO LABOR MARKET POLICIES AFFECT EMPLOYMENT COMPOSITION? LESSONS FROM EUROPEAN COUNTRIES
— António Antunes, Mário Centeno

2008

1/08 THE DETERMINANTS OF PORTUGUESE BANKS' CAPITAL BUFFERS
— Miguel Boucinha

2/08 DO RESERVATION WAGES REALLY DECLINE? SOME INTERNATIONAL EVIDENCE ON THE DETERMINANTS OF RESERVATION WAGES
— John T. Addison, Mário Centeno, Pedro Portugal

3/08 UNEMPLOYMENT BENEFITS AND RESERVATION WAGES: KEY ELASTICITIES FROM A STRIPPED-DOWN JOB SEARCH APPROACH
— John T. Addison, Mário Centeno, Pedro Portugal

4/08 THE EFFECTS OF LOW-COST COUNTRIES ON PORTUGUESE MANUFACTURING IMPORT PRICES
— Fátima Cardoso, Paulo Soares Esteves

5/08 WHAT IS BEHIND THE RECENT EVOLUTION OF PORTUGUESE TERMS OF TRADE?
— Fátima Cardoso, Paulo Soares Esteves

6/08 EVALUATING JOB SEARCH PROGRAMS FOR OLD AND YOUNG INDIVIDUALS: HETEROGENEOUS IMPACT ON UNEMPLOYMENT DURATION
— Luís Centeno, Mário Centeno, Álvaro A. Novo

7/06 FORECASTING USING TARGETED DIFFUSION INDEXES
— Francisco Dias, Maximiano Pinheiro, António Rua

8/06 STATISTICAL ARBITRAGE WITH DEFAULT AND COLLATERAL
— José Fajardo, Ana Lacerda

9/06 DETERMINING THE NUMBER OF FACTORS IN APPROXIMATE FACTOR MODELS WITH GLOBAL AND GROUP-SPECIFIC FACTORS
— Francisco Dias, Maximiano Pinheiro, António Rua
<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/08</td>
<td>VERTICAL SPECIALIZATION ACROSS THE WORLD: A RELATIVE MEASURE</td>
<td>João Amador, Sónia Cabral</td>
</tr>
<tr>
<td>11/08</td>
<td>INTERNATIONAL FRAGMENTATION OF PRODUCTION IN THE PORTUGUESE ECONOMY: WHAT DO DIFFERENT MEASURES TELL US?</td>
<td>João Amador, Sónia Cabral</td>
</tr>
<tr>
<td>12/08</td>
<td>IMPACT OF THE RECENT REFORM OF THE PORTUGUESE PUBLIC EMPLOYEES’ PENSION SYSTEM</td>
<td>Maria Manuel Campos, Manuel Coutinho Pereira</td>
</tr>
<tr>
<td>13/08</td>
<td>EMPIRICAL EVIDENCE ON THE BEHAVIOR AND STABILIZING ROLE OF FISCAL AND MONETARY POLICIES IN THE US</td>
<td>Manuel Coutinho Pereira</td>
</tr>
<tr>
<td>14/08</td>
<td>IMPACT ON WELFARE OF COUNTRY HETEROGENEITY IN A CURRENCY UNION</td>
<td>Carla Soares</td>
</tr>
<tr>
<td>15/08</td>
<td>WAGE AND PRICE DYNAMICS IN PORTUGAL</td>
<td>Carlos Robalo Marques</td>
</tr>
<tr>
<td>16/08</td>
<td>IMPROVING COMPETITION IN THE NON-TRADABLE GOODS AND LABOUR MARKETS: THE PORTUGUESE CASE</td>
<td>Vanda Almeida, Gabriela Castro, Ricardo Mourinho Félix</td>
</tr>
<tr>
<td>17/08</td>
<td>PRODUCT AND DESTINATION MIX IN EXPORT MARKETS</td>
<td>João Amador, Luca David Opromolla</td>
</tr>
<tr>
<td>18/08</td>
<td>FORECASTING INVESTMENT: A FISHING CONTEST USING SURVEY DATA</td>
<td>José Ramos Maria, Sara Serra</td>
</tr>
<tr>
<td>19/08</td>
<td>APPROXIMATING AND FORECASTING MACROECONOMIC SIGNALS IN REAL-TIME</td>
<td>João Valle e Azevedo</td>
</tr>
<tr>
<td>20/08</td>
<td>A THEORY OF ENTRY AND EXIT INTO EXPORTS MARKETS</td>
<td>Alfonso A. Irarrazabal, Luca David Opromolla</td>
</tr>
<tr>
<td>21/08</td>
<td>ON THE UNCERTAINTY AND RISKS OF MACROECONOMIC FORECASTS: COMBINING JUDGEMENTS WITH SAMPLE AND MODEL INFORMATION</td>
<td>Maximiano Pinheiro, Paulo Soares Esteves</td>
</tr>
<tr>
<td>22/08</td>
<td>ANALYSIS OF THE PREDICTORS OF DEFAULT FOR PORTUGUESE FIRMS</td>
<td>Ana I. Lacerda, Russ A. Moro</td>
</tr>
<tr>
<td>23/08</td>
<td>INFLATION EXPECTATIONS IN THE EURO AREA: ARE CONSUMERS RATIONAL?</td>
<td>Francisco Dias, Cláudia Duarte, António Rua</td>
</tr>
</tbody>
</table>

2009
| 1/09  | AN ASSESSMENT OF COMPETITION IN THE PORTUGUESE BANKING SYSTEM IN THE 1991-2004 PERIOD  
|       | — Miguel Boucinha, Nuno Ribeiro |
| 2/09  | FINITE SAMPLE PERFORMANCE OF FREQUENCY AND TIME DOMAIN TESTS FOR SEASONAL FRACTIONAL INTEGRATION  
|       | — Paulo M. M. Rodrigues, Antonio Rubia, João Valle e Azevedo |
| 3/09  | THE MONETARY TRANSMISSION MECHANISM FOR A SMALL OPEN ECONOMY IN A MONETARY UNION  
|       | — Bernardino Adão |
| 4/09  | INTERNATIONAL COMOVEMENT OF STOCK MARKET RETURNS: A WAVELET ANALYSIS  
|       | — António Rua, Luis C. Nunes |