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Abstract—The aim of this work was to test a methodology able
to generate spatial-temporal maps that can synthesize simultaneously
the trends of distinct hydrochemical indicators in an old radium-
uranium tailings dam deposit. Multidimensionality reduction derived
from principal component analysis and subsequent data aggregation
derived from clustering analysis allow to identify distinct
hydrochemical behavioral profiles and generate synthetic
evolutionary hydrochemical maps.
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I. INTRODUCTION

HE case study relates to an old radium-uranium tailings

dam located in the Central Region of Portugal. The
deposition of tailings started in early 1910s and finished in
1988. In the initial years mining activity at the site was related
to the production of radium concentrate. After the Second
World War, the production changed to uranium concentrate.
The tailings deposited at this mining site have therefore high
heterogeneity regarding its mineralogical and geochemical
composition. Its granulometric composition varies spatially
ranging from clays, silts, silty-clay, clay loam and fine to
medium sands [1], [2]. The tailings dam is located at the
Hesperian (lberian) Massif and was constructed over a
monzonitic, two-mica and predominantly biotitic Hercynian
Granite of late carbonic age. According to local geological and
geophysical studies promoted by the operator [3], the
underlying granite has two major areas in depth of distinct
weathering and joint degrees [4]. Major faults in the granite
are possibly the main conduits for water circulation beneath
the tailings dam and are linked to a local riverside. Old mine
shafts installed within the tailings have acted as conduits for
air and water circulation in the deposit. For several years,
before the remediation works, these shafts promoted the
connectivity with atmosphere and oxidation phenomena
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within the tailings deposit.

According with previous characterization studies [3], the
area of the tailings deposit comprises two main aquifer
systems. The first, and most superficial, is of hypodermic
nature and three to six meters thin. It is composed of residual
soil that results from the granite weathering. The groundwater
flow is performed by a “porous” type media and develops
accordingly with local porosity and permeability. The second
aquifer is semi-confined and underlies the first. It has a very
distinct anisotropic hydraulic behavior once it is formed by the
granite rock matrix. In this case, groundwater flows are
primarily directly dependent on fracture and on its spatial
density, interconnectivity, filing and aperture characteristics.
Interconnectivity between the two aquifers is expected to be
difficult because of the clayed nature of the residual topsoil of
the first layer which may act in some places as a geological
barrier. Infiltration and leakage are mainly present in areas
where fractures or faults facilitate hydraulic connectivity
between the two aquifers.

Fig. 1 presents a groundwater flow conceptual model for the
study area that includes the water potential surface of the
complex system composed by the tailings and the hypodermic
aquifer that underlays the tailings dam. It includes the main
water inflow and outflow in the dam and the preferential water
flows inside and beneath de tailings deposit. It is to be referred
that a local inflow stream that surrounds the west side of the
tailings dam has a significant importance in local groundwater
flow percolation. Also, riverside embankments on the east side
work as main receptors of the seepage that is generated in the
tailings dam and percolate through the preferential flow
streamlines.

The priority objectives of the environmental remediation
work fields at the tailings dam deposit were to confine the
waste, circumscribing the dispersion of sources of
contamination and the levels of radiation, as well as
establishing the safety conditions associated with the
mechanical stability of slopes. Landfill was modelled and re-
profiled with the purpose of slope stabilization and a drainage
system and a multi-layer covering system were installed.

Fig. 2 presents the best groundwater flow modelling results
achieved for pre- and post-remediation scenarios. These
groundwater models were performed with the freeware
version of the Processing Modflow for Windows, PMWIN
5.3.1 [6].
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Fig. 1 (a) Conceptual model of water potential surface and flow path in the tailing dam and in the surrounding area. Main seepage in dark red
color is related with the location of old streamlines (in light blue color) circulating beneath the tailings dam and in the surrounding granite. The
old streams and the actual location of the main river are indicated (adapted from [5]); (b) Grid of the numerical flow model and boundary
conditions (2D planar view, XY plan). Location of old mining shafts and piezometers are also indicated

Hydraulic head and main flow path underneath the tailings dam (2" layer of the model)
a) Before environmental remediation works b) After environmental remediation works

Fig. 2 Results of the simulated numerical groundwater models for the cases of (a) before and (b) after the environmental remediation works. 2D
planar XY and YZ (or W-E) sections show the flow for the case of the second layer, that is, for the underlying granite (adapted from [5])



It is relevant to emphasize that the main hydraulic gradient
and flow paths are consistent with the local old preferential
streamlines that are located beneath the tailings dam (Figs. 1
and 2). It is also possible to verify that seepage locations were
respected in the numerical simulated model. The tailings
started to be deposited directly on the ground without any
previous preparation or drainage work. It is therefore
expectable that these old streams exist and act as preferential
conducts for groundwater circulation beneath the dam, being
possibly responsible for the main hydrochemical exchanges
due to hydrodynamic effects. The location of outflow derived
from these old stream lines coincides with the main seepage
areas (Figs. 1 and 2). The numerical simulation results
demonstrate the existence of a main flow with direction from
SW to NE and another smaller flow with NW to SE direction.
These flows remained even after the dam was requalified.
Their existence and remaining presence are related with the
fact that they are established in the underling granite, beneath
the old tailings deposit. In the granites, the water fluxes will
receive contributions through local faults and high-density
fracture areas which coincide with main seepage areas that
appears on the riverbanks.

Before the mentioned environmental remediation works, the
superficial water and groundwater at the tailings site offered a
very poor quality. Besides the radiological effects, significant
local impacts in hydrological and groundwater systems were
also present in the consequence of this old mining structure.

In contamination problems, detection and estimation of
statistical tendencies and patterns may be a complex process
especially in situations where environmental conditions
change significantly in time, as in this case. Seasonality
factors, data asymmetry, moderate and severe outliers, missing
data, are examples of situations that often occur and that may
impede interpretations, statistic processing and data trend
detection [7]-[17]. In some cases, uncertainty generated by
noise in the observed data complicates the detection of
possible trends and behaviors in average terms which are
necessary for accurate statistical methods [13]. These
difficulties constituted the reason of inspiration to test the
statistical and mapping methodology presented in this study.

Il. MATERIALS AND METHODS

A. Hydrochemical Data

Since 2002, a Water Quality Monitoring Plan (WQMP) has
been in place at this site by EDM, a Portuguese state-owned
company [3]. From 2005 to 2007, EDM carried out
environmental remediation works at this old tailing dam. The
site in question was subject to a relevant environmental
rehabilitation project to mitigate the radiological impacts,
leachate generation control and chemical contamination
dispersion, as well as to create the necessary security
conditions for the mechanical stability of slopes. This study
considers the time-series results of the WQMP for the period
between 2002 and 2016, which comprises data from pre to
post environmental remediation works. It is important to
mention that for this period of time, the developed WQMP

allowed the identification by the operator and subsequent
acceptance by the responsible authorities of the main
hydrochemical indicators to be considered for the control of
water contamination derived from the tailings dam. These
indicators are: pH, Conductivity (uS/cm), eH, total uranium
(p.p.b.), radium-226 (mBq/l), sulfate (mg/l), chloride (mg/l),
manganese (mg/l) and calcium (mg/l). The developed
statistical tests consider therefore these hydrochemical
indicators. Statistical interpretations of hydrochemical data of
the piezometers and water shafts installed in the dam and in its
surroundings were performed. Monitoring of these
piezometers is included in the WQMP that was initiated in
2002 by the operator and has continued to the present days [3],
[18], [19].

In our work, distinct subsets of quarterly frequency
hydrochemical data were considered for each monitoring
piezometer (that is, piezometer numbers 1, 2, 3, 5, 6, 7, 9, 10
and 11) in three distinct periods of time T1, T2 and T3. T1
aggregates hydrochemical data for piezometers before
environmental remediation works (from 2002 to 2005), T2
aggregates the data immediately after environmental
remediation works (from 2008 until 2010), and T3 aggregates
data after the remediation works from 2015 to 2016. Principal
Component Analysis (PCA) and K-means clustering method
(KMC) were selected to develop statistical analysis of the
space-time data, [17], [20]-[33]. An interpretation of the
hydrochemical quality evolution for each piezometer (1, 2, 3,
5,6,7,9, 10 and 11) along time (T1, T2 and T3) was possible
to be developed with the adopted statistical methodology.
According to the available data for each piezometer at each
time-period, 24 subsets were established and considered for
statistical interpretations: 1T1, 1T2, 2T1, 2T2, 2T3, 3T1, 3T2,
3T3,5T1,5T2,5T3,6T1, 6T2,6T3,7T2,7T3,9T1, 9T2, 9T3,
10T1, 10T3, 11T1, 11T2 and 11T3. For each of these subsets,
the hydrochemical indicators pH, uranium total mass
concentration (referred as Utotal or total uranium) [18], [34],
[35], radium-226 (Ra226), sulfate (SO4), chloride (CI),
manganese (Mn) and calcium (Ca) were considered for PCA
and KMC statistical analysis.

B. PCA and KMC Analyses

The multivariate statistical analyses were performed using
R software “R Project for Statistical Computing”, [36]-[39].
PCA and KMC were applied to the referred 24 hydrochemical
data subsets. Quantitative variables of the statistical analysis
were the hydrochemical indicators of contamination an
considered in the monitoring plan (WQMP) of the tailings
dam; pH, Utotal, Ra226, SO4, Cl, Mn and Ca.

PCA can be done by eigenvalue decomposition of a data
covariance or correlation matrix or singular value
decomposition of a data matrix. The number of the newly
generated variables, the principal components, is equal to the
smaller of the number of original variables minus one. With
this procedure, the dimensionality of the data is reduced, and
(multivariable) interpretations are facilitated. PCA is mostly
used as a tool in multivariate statistical analysis and also to
visualize genetic distance and relatedness between data



observations and quantitative or qualitative variables [27],
[40]-[43]. The results of a PCA are usually discussed in terms
of component scores, sometimes called factor scores, that is,
the transformed variable values corresponding to a particular
data point and loadings which are the weight by which each
standardized original variable should be multiplied to get the
component score. PCA aims to construct a low-dimensional
subspace based on a set of principal components (PCs) to
approximate all the observed samples in the least-square sense
[44], [45]. Due to the quadratic loss used, PCA is notoriously
sensitive to corrupted observations (outliers) and the quality of
its outputs can suffer severely in the face of even a few
outliers [45]. For this, and to ensure a better statistical
significance of the selected data series, it was decided during
the pre-processing data stage to eliminate the strongest
outliers. In our study, PCA was then used to the 24 data sets
for unsupervised dimension reduction of data. Package
FactoMineR was used [46]. PCA for the hydrochemical
variables pH, Utotal, Ra226, SO4, Cl, Mn and Ca was
performed. The data were reduced into three main components
which describe differences in the concentrations of Utotal,
Ra226, SO4, Cl, Mn and Ca according with pH conditions at
the different piezometers (1, 2, 3, 5, 6, 7, 9, 10 and 11) and at
distinct time intervals T1, T2 and T3. The three PCs describe
differences in groundwater compositions, in accordance with
different pH conditions that result from modifications in
tailings composition and/or from changes in drawdown and/or
hydrodynamics conditions in groundwater flow.

The PCs scores were then considered for a subsequent
KMC analysis. KMC is a method that is popular for cluster
analysis. KMC aims to partition n observations into k clusters,
in which, each observation belongs to the cluster with the
nearest mean, serving as a prototype of the cluster. It is an
unsupervised clustering techniqgue commonly used. This
procedure results in partitioning of the data space into VVoronoi
cells. Dissimilar and contrasting expert opinions may be found
in related literature [20], [22], [27] regarding the order of
analysis that was chosen between PCA and KMC, and the
effectiveness of using PCA scores to subsequent KMC (“PCA
before KMC” or “KMC before PCA”). In [22] the authors
consider PCA variables as the continuous solutions to the
discrete cluster membership indicators for KMC. For the case
of “PCA before KMC”, PCA is applied before clustering
analysis to reduce dimensionality and to facilitate the
visualization of the main relevant clusters. PCA variables are
the continuous solutions to the discrete cluster membership
indicators for KMC. Oppositely, for instance, in [27] the
authors showed that clustering with the PCA scores instead of
the original variables may not necessarily improve cluster
quality. These authors concluded inclusively that the first PCA
variables (which contain most of the variation in the data) may
not necessarily capture most of the cluster structure.
Therefore, the application of PCA and KMC, and the
effectiveness of using PCA scores to subsequent KMC must
be carefully verified, being its effectiveness directly depend on
the intrinsic characteristics of the data. In our work, we
compute KMC after PCA. The achieved results were verified

variable by variable, time step by time step, location by
location step in order to ensure the efficiency of the results of
data series that were subsequently mapped and presented in a
synthetic way. KMC was performed to group the data
observations into distinct major clusters. Tests were performed
for clusters 4, 5, 6 and 7. Distinct cluster groups represent
different hydrochemical profiles. Subsequently, the space-time
data subsets (1T1, 1T2, 2T1, 2T2, 2T3, 3T1, 3T2, 3T3, 5T1,
5T2, 5T3, 6T1, 6T2, 6T3, 7T2, 7T3, 9T1, 9T2, 9T3, 10T1,
10T3, 11T1, 11T2 and 11T3), considered as qualitative
variables, were classified according with these hydrochemical
profiles. Also, with this procedure, it was also possible to
make an interpretation of the hydrochemical quality evolution
for each piezometer (1, 2, 3, 5, 6, 7, 9, 10 and 11) along time
(T1, T2 and T3). For better visualization and spatial
interpretation, PCA scores were mapped using the
geostatistical procedure of kriging. Environmental quality
evolution of the groundwater that percolates within the tailings
dam was mapped considering a multivariate interpretational
approach where all the hydrochemical variables are considered
simultaneously. This is quite unique and interesting because in
monitoring groundwater plans it is always necessary to take
into consideration the time and space evolutions of distinct
(and sometimes several) hydrochemical indicators. With this
methodology, it is possible to make multivariate data
interpretations in simplified synthetic way without losing
information.

I1l. RESULTS AND DISCUSSION

The developed PCA analysis has reduced the data set from
seven quantitative variables to three new variables, the
principal components PC1, PC2 and PC3. These three PCs
explain 72.16% of the total variance (Table 1) which is a
reasonable result considering the high variability of to
hydrochemical data set.

According to the results in Table 1, it is obvious the closer
relation between the parameters SO4, Cl and Mn, and, at a
second correlation level, with Utotal and Ca. pH has an
inverse correlation for all these mentioned parameters. This is
because, in acidic environments, as the pH increases to a value
of 6-7, the environmental conditions turn less acidic, and the
concentration of contaminants drops. The hydrochemical
profile of the contaminated waters generated in the tailings
deposit is of acidic nature (low pH) and has a high level of
contamination in some characteristic anions, cations, base-
metals, and semi-metals, including, in this case, Utotal and
Ra226 because of the nature of the exploited ore in the past.
One aspect of relevance is that, according to the PCA1 scores,
Ra226 does not have the same behavior profile of the
indicators Utotal, SO4, Mn, Cl and Ca. Its behavior is better
explained by the variables PCA2 and PCA3 from which it is
possible to conclude that Ra226 will have some direct
correlation with pH, that is, as pH increases, Ra226 will have
some tendency to increase as well. Ra226 has therefore an
opposite behavior comparatively to the other hydrochemical
indicators. A subsequent KMC analysis was developed for all
the qualitative samples 1T1, 1T2, 2T1, 2T2, 2T3, 3T1, 3T2,



3T3,5T1,5T2,5T3,6T1, 6T2, 6T3, 7T2, 7T3, 9T1, 9T2, 9T3,
10T1, 1073, 11T1, 11T2 and 11T3 according with its scores in
PCA1, PCA2 and PCA3. Tests with clusters 4, 5 and 6 were
performed allowing the conclusion that better results were
achieved when 6 clusters are considered. For computing
cluster analysis, the “maximum interaction number” was 100,
the “n start number” was 25 and “Hartigan-Wong” was the
algorithm considered. Representativeness of the results
(between SS/total SS) was 90.1%. Clustering vectors for all
the samples were selected for interpretation, allowing the
association of each one of the six clusters to its respective
group of qualitative samples. That is, all qualitative samples
were classified in one of the six clusters. The results of KMC
are presented in Table 1. As expected, KMC results confirm
the distinct hydrochemical profiles that results from the
previous PCA analysis (Fig. 3).

TABLE |
SCORES, EIGENVALUES, AND CUMULATIVE VARIANCES FOR VARIABLES PC1,
PC2, AND PC3.
Variables PC1 (Dim.1) PC2(Dim.2) PC3(Dim.3)

Quantitative
SO4 0.81 0.14 0.08
Cl 0.78 0.03 0.35
Mn 0.78 -0.07 0.35
Utotal 0.68 0.36 0.05
Ca 0.55 -0.56 -0.35
Ra226 0.34 0.66 -0.58
pH -0.59 0.41 0.42

Qualitative
5T1 3.64 213 -0.51
773 3.02 -0.99 1.01
772 2.62 0.43 0.76
5T2 2.38 -0.76 0.37
6T1 1.75 0.41 -0.51
5T3 0.98 -0.72 0.73
272 0.89 -0.79 0.37
2T1 0.49 -0.42 -0.29
3T1 0.36 -0.65 -0.35
6T2 0.34 2.19 -3.39
171 0.17 -0.60 0.12
3T2 -0.11 0.46 -1.30
7T1 -0.12 -1.11 -0.52
6T3 -0.14 -0.73 0.50
9T2 -0.15 0.04 -0.78
273 -0.23 -1.14 -0.23
11T1 -0.29 -0.58 0.50
9T3 -1.00 -0.54 -0.47
172 -1.12 0.55 -0.75
1173 -1.48 0.29 -0.40
10T1 -1.48 -0.16 -0.06
9T1 -1.49 -0.11 -0.01
3T3 -1.56 -0.12 0.09
1172 -1.60 0.19 0.03
10T3 -1.80 0.56 0.05
10T2 -2.47 1.26 1.40
Eigenvalue 3.09 1.07 0.89

Variance (%) 44.15% 15.25% 12.76%
Variance (Cumul. %) 44.15% 59.40% 72.16%

Each cluster represents a certain hydrochemical profile
which, in turn, corresponds to the considered qualitative
variables (of location and time stage). Also, each established
hydrochemical profile corresponds to a certain specific
contamination condition. From the results and interpretations
(see Table 1), it is possible to verify the existence of a trend
from the most contaminated locations, in cluster 1 (C1), to the
less ones, represented by locations and time steps of cluster 5
and cluster 6 (C5 and C6). Following this sequence, it is
possible to identify the locations within the tailings dam with
positive evolutions in the consequence of environmental
remediation works — piezometers 1, 3, 5, 6 and 11 —, and those
who have a low but also positive evolution or which have
stabilized in time - piezometers 2, 9, 10 and 11 (Table Il and
Fig. 4). Afterwards, the first three PC scores (PC1, PC2 and
PC3) for all sample locations and time intervals, 1T1, 1T2,
2T1, 2T2, 2T3, 3T1, 3T2, 3T3,5T1,5T2,5T3, 6T1, 6T2, 6T3,
7T2, 773, 9T1, 9T2, 9T3, 10T1, 10T3, 11T1, 11T2 and 11T3
were mapped at 2D, in the tailings dam, through its spatial
interpolation with kriging. The interpretative maps of PCA
and KMC results for the case of PCAL variable at each time
interval T1, T2 and T3 are presented in Fig. 4.

From Fig. 4 and considering previous results presented in

Tables | and II, it is possible to consider the following
conclusions:

« PCAL-TIL:

a) Cluster 1 represents the most contaminated

hydrochemical profile and is associated to variable 5T1
(that is, to the location of piezometer 5 at the pre-
remediation stage). The profile with the highest
contamination detected in the monitoring plan is only
present at time-period T1 (that is, before the
environmental remediation). It represents an acid
environment with all parameters having high to very high
concentrations. Utotal, Ra226 and SO4 have extremely
high to very high concentrations. Cl, Mn, and Ca have
high concentrations.

b) At this same time-period (T1), piezometer 6 is the other
one that also has a much-demarcated contamination
pattern, and it is represented by cluster 2. This cluster also
represents a profile of an acidic environment, like the
environment of cluster 1 but with lower Ra266
concentrations.

¢) In the remaining area of the tailings dam the profiles are
of type C4 and C5. Environmental conditions are better
with less effects of contamination, groundwater is less
contaminated (cluster 4) or only slightly contaminated or
not contaminated (cluster 5).
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Fig. 3 Interrelation between results of PCA and KMC: (a) Projection of quantitative variables in PCA1 and PCA2; (b) KMC considering 6
clusters; (c) Adequation of the clustering results to PCA results for the case of the qualitative variables

PCA1-T2 and PCAL1-T3: at T2 the profile of piezometer 5
is represented by cluster 2. During the remediation works,
piezometer 5 evolved to a less extremely high
contaminated profile although it remains with high
contamination. It is also possible to conclude that this
contamination profile spreads upward from piezometer 5
to piezometer 7. These evolutions during period T2 are
spatially close to the location of the main old stream water
underneath the tailings with main direction from SW to
NE which is highlighted from numerical groundwater
modelling. It seems that, somehow, and probably in the
dependence of local hydrodynamic flow, the main
contamination plume has migrated northwards from site 5

to site 7. Another interesting hydrochemical behavior is
detected in piezometer 6 which has, in the period T2, a
hydrochemical profile represented by cluster 3. In this
case, local environmental conditions are less acidic to
closer to neutral. All the concentrations decrease except
for Ra226, SO4 and Ca. This behavior is reported by
PCA2 scores and is well reflected in map PCA2-T2 (Fig.
5); however, it is not well represented statistically (Table
Il, cluster 3, n = 1) despite conditioning the analysis.
Also, locally, at piezometer 10, during the period T2, an
alkaline profile is detected. This fact is probably related
with some earth movements in the northern part of the
tailings dam, during remediation works for the re-



profiling of slopes, where old tailings materials were
either moved or rotated, inducing influence on the
materials which have a more carbonated composition.
Here, the alkaline or close to neutral waters and the
presence of some ions in freshwaters that inflow through
the northwest part of the dam, like chloride (and sulfate),
may have also helped facilitate the temporary
remobilization and transportation of Ra226. This possible
phenomenon may be observed in Fig. 5. In T2 and T3
periods, all the other sites at the tailings dam present
profiles of very less contamination (cluster 4) or of
environmental conditions without or with very low
contamination (cluster 5). In periods T2 and T3, slightly

contaminated profiles maybe present in some locations
that are represented by cluster 4. This behavior may be
related with mixing groundwater effects from fresh waters
that inflow laterally at western and north-western and
from SW to NE direction, which result in pH increments
and general reduction in hydrochemical concentrations.
After the remediation works, that is, in T3 period,
contamination is much more circumscribed and only
remains in the location of piezometer 7 (PCA1-T3 map).
In T3 the only location with remaining strong
contamination is given by piezometer 7. All the other
studied sites present a significant improvement regarding
groundwater quality.

TABLE I
RESULTS OF KMC HYDROCHEMICAL PROFILES WITH ITS RESPECTIVE CLASSIFICATION AND INTERPRETATION FOR EACH CLUSTER

Cluster

- Univariate Ra Interpretation
Tirlj:gzigg f(/al Statistics PH Vs (226) Mn S04 Cl Ca Specific site environmental conditions
C1 Mean 3,2 23667 1447 438 11163 657 331 Very contaminated acid environment.
5T1 St.Dev. 0,1 1528 90 126 8613 34 123 All parameters have high concentrations. )
. Uyt, Ra-226 and SO4 with extremely high to very high concentrations while Cl, Mn
Minimum 3,1 22000 1390 309 1490 630 190 and Ca have high concentrations.
Maximum 33 25000 1550 560 18000 695 415
C2 Mean 3,2 5603 622 534 8483 893 395 Very contaminated acid environment.
;E St.Dev. 02 4906 762 347 6071 411 219  Similar to Cluster 1 but concentrations of Uy, Ra-226 and SO4 tend to be lower.
572, Minimum 29 10 1 41 1400 391 136
6T1 Maximum 36 13709 2000 994 19647 1527 914
C3 Mean 54 697 3200 150 2200 38 470 Environment with some specific contaminants.
St. Dev. _ _ _ _ _ _ _ pH slightly acidic; Ra-226 with very high concentrations and Ca with high
6T2 Minimum concentrations; concentrations of Uy, and SO4 are slightly high; concentrations of CI
. N - - N - N N and Mn are low.
Maximum  — - - — - _ _
C4 Mean 3,8 1261 308 267 3916 310 321 Contaminated acid environment. Concentrations are lower comparatively to Clusters
1T1, 271,272, st Dev. 0,8 1640 447 158 2828 411 100 o ] Land 2. )
2T3, 3T1, Minimum pH is acidic; concentrations of Uy, and SO4 are high; presence of some
3T2,5T3, 6T3, . 29 10 7 10 33 7 43 contamination in Ra-226; all other remaining parameters are present in more low
972, 11T1 Maximum 58 5000 2000 585 10044 1927 490 concentrations.
C5 Mean 4,7 508 326 18 570 41 134 Environment conditions without or with low contamination, or,
172, 373, St.Dev. 1,2 498 397 26 431 28 104 locations with significant improvement in environmental conditions.
9T1, Minimum pH neutral to slightly acidic; presence in groundwater of some U, and SO4
9T3, 10T1, 10T3, X 33 53 2 1 231 10 37 concentrations.
1172, 1173 Maximum g 1800 1700 87 1910 133 440
C6 Mean 9,7 333 136 43 668 60 12 Environmental conditions with significant variations in one single temporal stage
10T2 St.Dev. 30 719 151 49 766 27 23 (T2);Ingeneral, strong to medium alkaline environment, without contamination or
. with low contamination (mainly Ra-226 and SO4).
Minimum 39 09 67 60 35 34 003
Maximum 121 1800 342 136 2138 100 57
IV. CONCLUSIONS In this case study, clusters of KMC represent distinct

The integration of PCA scores in a KMC analysis facilitates
multivariate interpretations of PCA results, allowing a better
clarification of the sense of PCA grouping relations through
the clusters that are obtained. In our study, mapping of PCA
scores and its interpretation with KMC allowed a better
understanding of spatial-temporal trends of hydrochemical
indicators included in a groundwater monitoring plan within a
mine tailings dam. KMC results of PCA scores facilitated
interpretations and temporal and spatial analysis. Spatial
mapping of KMC and PCA scores allows a more synthetic,
faster, and easier approach when multivariate indicators need
to be considered for an evaluation of contamination profiles.

groundwater quality hydrochemical profiles. Evolution of
environmental conditions at each site location (that is, at each
piezometer) in accordance with the identified groundwater
quality profiles was performed. KMC enabled a better
understanding of the PCA results once observations were
classified according to distinct hydrochemical profiles at each
piezometer location, according to each time-period T1, T2 and
T3. Subsequently, distinct areas within the dam were
demarcated according to different degrees of contamination
and non-contamination profiles.



Fig. 4 Mapping of PCA1 scores for time periods T1, T2 and T3. For a better spatial interpretation, KMC results (clusters C1 to C6) are also
represented

Metors

Fig. 5 Mapping of PCAL and PCA2 scores for the time period T2. For a better spatial interpretation, KMC results (clusters c1 to c6) are also
represented

The concentrations of total uranium, sulfate, chloride,
manganese, and calcium decrease in consequence of pH
increment. In turn, and temporarily, at an intermediate stage,
radium-226 concentrations increased in some circumscribed
locations, probably in consequence of pH increase, of more
oxidizing environment conditions and mixing phenomena with
fresh waters derived from preferential inflow path. In the post-

remediation period, a general improvement in groundwater
quality is verified.

Finally, it is to enhance the possibilities that may be derived
from crossing the spatial-trend maps with groundwater flow
maps. For this specific case-study, the superposition of the
locations of the distinct hydrochemical profiles (clusters) with
groundwater flow modelling results will certainly result in a



better understanding of the inner hydrodynamics of the
tailings dam deposit and its direct implications on
contamination plume changes over time. Relations between
different flow paths located inside and beneath the tailings
dam and its spatial correspondence to hydrochemical profiles
evolution through time (T1, T2 and T3) are possible to be
found. The application potentialities of spatial-trend maps
derived from PCA, and K-Means analysis are, therefore, quite
unique, and interesting in the context of groundwater quality
and monitoring of multi-variable complex systems.
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