
 

 

  

Abstract—The aim of this work was to test a methodology able 

to generate spatial-temporal maps that can synthesize simultaneously 

the trends of distinct hydrochemical indicators in an old radium-

uranium tailings dam deposit. Multidimensionality reduction derived 

from principal component analysis and subsequent data aggregation 

derived from clustering analysis allow to identify distinct 

hydrochemical behavioral profiles and generate synthetic 

evolutionary hydrochemical maps. 

 

Keywords—Contamination plume migration, K-means of PCA 

scores, groundwater and mine water monitoring, spatial-temporal 

hydrochemical trends.  

I. INTRODUCTION 

HE case study relates to an old radium-uranium tailings 

dam located in the Central Region of Portugal. The 

deposition of tailings started in early 1910s and finished in 

1988. In the initial years mining activity at the site was related 

to the production of radium concentrate. After the Second 

World War, the production changed to uranium concentrate. 

The tailings deposited at this mining site have therefore high 

heterogeneity regarding its mineralogical and geochemical 

composition. Its granulometric composition varies spatially 

ranging from clays, silts, silty-clay, clay loam and fine to 

medium sands [1], [2]. The tailings dam is located at the 

Hesperian (Iberian) Massif and was constructed over a 

monzonitic, two-mica and predominantly biotitic Hercynian 

Granite of late carbonic age. According to local geological and 

geophysical studies promoted by the operator [3], the 

underlying granite has two major areas in depth of distinct 

weathering and joint degrees [4]. Major faults in the granite 

are possibly the main conduits for water circulation beneath 

the tailings dam and are linked to a local riverside. Old mine 

shafts installed within the tailings have acted as conduits for 

air and water circulation in the deposit. For several years, 

before the remediation works, these shafts promoted the 

connectivity with atmosphere and oxidation phenomena 
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within the tailings deposit. 

According with previous characterization studies [3], the 

area of the tailings deposit comprises two main aquifer 

systems. The first, and most superficial, is of hypodermic 

nature and three to six meters thin. It is composed of residual 

soil that results from the granite weathering. The groundwater 

flow is performed by a “porous” type media and develops 

accordingly with local porosity and permeability. The second 

aquifer is semi-confined and underlies the first. It has a very 

distinct anisotropic hydraulic behavior once it is formed by the 

granite rock matrix. In this case, groundwater flows are 

primarily directly dependent on fracture and on its spatial 

density, interconnectivity, filing and aperture characteristics. 

Interconnectivity between the two aquifers is expected to be 

difficult because of the clayed nature of the residual topsoil of 

the first layer which may act in some places as a geological 

barrier. Infiltration and leakage are mainly present in areas 

where fractures or faults facilitate hydraulic connectivity 

between the two aquifers.  

Fig. 1 presents a groundwater flow conceptual model for the 

study area that includes the water potential surface of the 

complex system composed by the tailings and the hypodermic 

aquifer that underlays the tailings dam. It includes the main 

water inflow and outflow in the dam and the preferential water 

flows inside and beneath de tailings deposit. It is to be referred 

that a local inflow stream that surrounds the west side of the 

tailings dam has a significant importance in local groundwater 

flow percolation. Also, riverside embankments on the east side 

work as main receptors of the seepage that is generated in the 

tailings dam and percolate through the preferential flow 

streamlines.  

The priority objectives of the environmental remediation 

work fields at the tailings dam deposit were to confine the 

waste, circumscribing the dispersion of sources of 

contamination and the levels of radiation, as well as 

establishing the safety conditions associated with the 

mechanical stability of slopes. Landfill was modelled and re-

profiled with the purpose of slope stabilization and a drainage 

system and a multi-layer covering system were installed. 

Fig. 2 presents the best groundwater flow modelling results 

achieved for pre- and post-remediation scenarios. These 

groundwater models were performed with the freeware 

version of the Processing Modflow for Windows, PMWIN 

5.3.1 [6].  
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Fig. 1 (a) Conceptual model of water potential surface and flow path in the tailing dam and in the surrounding area. Main seepage in dark red 

color is related with the location of old streamlines (in light blue color) circulating beneath the tailings dam and in the surrounding granite. The 

old streams and the actual location of the main river are indicated (adapted from [5]); (b) Grid of the numerical flow model and boundary 

conditions (2D planar view, XY plan). Location of old mining shafts and piezometers are also indicated 

 

 

Fig. 2 Results of the simulated numerical groundwater models for the cases of (a) before and (b) after the environmental remediation works. 2D 

planar XY and YZ (or W-E) sections show the flow for the case of the second layer, that is, for the underlying granite (adapted from [5]) 

 



 

 

It is relevant to emphasize that the main hydraulic gradient 

and flow paths are consistent with the local old preferential 

streamlines that are located beneath the tailings dam (Figs. 1 

and 2). It is also possible to verify that seepage locations were 

respected in the numerical simulated model. The tailings 

started to be deposited directly on the ground without any 

previous preparation or drainage work. It is therefore 

expectable that these old streams exist and act as preferential 

conducts for groundwater circulation beneath the dam, being 

possibly responsible for the main hydrochemical exchanges 

due to hydrodynamic effects. The location of outflow derived 

from these old stream lines coincides with the main seepage 

areas (Figs. 1 and 2). The numerical simulation results 

demonstrate the existence of a main flow with direction from 

SW to NE and another smaller flow with NW to SE direction. 

These flows remained even after the dam was requalified. 

Their existence and remaining presence are related with the 

fact that they are established in the underling granite, beneath 

the old tailings deposit. In the granites, the water fluxes will 

receive contributions through local faults and high-density 

fracture areas which coincide with main seepage areas that 

appears on the riverbanks. 

Before the mentioned environmental remediation works, the 

superficial water and groundwater at the tailings site offered a 

very poor quality. Besides the radiological effects, significant 

local impacts in hydrological and groundwater systems were 

also present in the consequence of this old mining structure. 

In contamination problems, detection and estimation of 

statistical tendencies and patterns may be a complex process 

especially in situations where environmental conditions 

change significantly in time, as in this case. Seasonality 

factors, data asymmetry, moderate and severe outliers, missing 

data, are examples of situations that often occur and that may 

impede interpretations, statistic processing and data trend 

detection [7]-[17]. In some cases, uncertainty generated by 

noise in the observed data complicates the detection of 

possible trends and behaviors in average terms which are 

necessary for accurate statistical methods [13]. These 

difficulties constituted the reason of inspiration to test the 

statistical and mapping methodology presented in this study. 

II. MATERIALS AND METHODS 

A. Hydrochemical Data 

Since 2002, a Water Quality Monitoring Plan (WQMP) has 

been in place at this site by EDM, a Portuguese state-owned 

company [3]. From 2005 to 2007, EDM carried out 

environmental remediation works at this old tailing dam. The 

site in question was subject to a relevant environmental 

rehabilitation project to mitigate the radiological impacts, 

leachate generation control and chemical contamination 

dispersion, as well as to create the necessary security 

conditions for the mechanical stability of slopes. This study 

considers the time-series results of the WQMP for the period 

between 2002 and 2016, which comprises data from pre to 

post environmental remediation works. It is important to 

mention that for this period of time, the developed WQMP 

allowed the identification by the operator and subsequent 

acceptance by the responsible authorities of the main 

hydrochemical indicators to be considered for the control of 

water contamination derived from the tailings dam. These 

indicators are: pH, Conductivity (μS/cm), eH, total uranium 

(p.p.b.), radium-226 (mBq/l), sulfate (mg/l), chloride (mg/l), 

manganese (mg/l) and calcium (mg/l). The developed 

statistical tests consider therefore these hydrochemical 

indicators. Statistical interpretations of hydrochemical data of 

the piezometers and water shafts installed in the dam and in its 

surroundings were performed. Monitoring of these 

piezometers is included in the WQMP that was initiated in 

2002 by the operator and has continued to the present days [3], 

[18], [19]. 

In our work, distinct subsets of quarterly frequency 

hydrochemical data were considered for each monitoring 

piezometer (that is, piezometer numbers 1, 2, 3, 5, 6, 7, 9, 10 

and 11) in three distinct periods of time T1, T2 and T3. T1 

aggregates hydrochemical data for piezometers before 

environmental remediation works (from 2002 to 2005), T2 

aggregates the data immediately after environmental 

remediation works (from 2008 until 2010), and T3 aggregates 

data after the remediation works from 2015 to 2016. Principal 

Component Analysis (PCA) and K-means clustering method 

(KMC) were selected to develop statistical analysis of the 

space-time data, [17], [20]-[33]. An interpretation of the 

hydrochemical quality evolution for each piezometer (1, 2, 3, 

5, 6, 7, 9, 10 and 11) along time (T1, T2 and T3) was possible 

to be developed with the adopted statistical methodology. 

According to the available data for each piezometer at each 

time-period, 24 subsets were established and considered for 

statistical interpretations: 1T1, 1T2, 2T1, 2T2, 2T3, 3T1, 3T2, 

3T3, 5T1, 5T2, 5T3, 6T1, 6T2, 6T3, 7T2, 7T3, 9T1, 9T2, 9T3, 

10T1, 10T3, 11T1, 11T2 and 11T3. For each of these subsets, 

the hydrochemical indicators pH, uranium total mass 

concentration (referred as Utotal or total uranium) [18], [34], 

[35], radium-226 (Ra226), sulfate (SO4), chloride (Cl), 

manganese (Mn) and calcium (Ca) were considered for PCA 

and KMC statistical analysis. 

B. PCA and KMC Analyses 

The multivariate statistical analyses were performed using 

R software “R Project for Statistical Computing”, [36]-[39]. 

PCA and KMC were applied to the referred 24 hydrochemical 

data subsets. Quantitative variables of the statistical analysis 

were the hydrochemical indicators of contamination an 

considered in the monitoring plan (WQMP) of the tailings 

dam; pH, Utotal, Ra226, SO4, Cl, Mn and Ca. 

PCA can be done by eigenvalue decomposition of a data 

covariance or correlation matrix or singular value 

decomposition of a data matrix. The number of the newly 

generated variables, the principal components, is equal to the 

smaller of the number of original variables minus one. With 

this procedure, the dimensionality of the data is reduced, and 

(multivariable) interpretations are facilitated. PCA is mostly 

used as a tool in multivariate statistical analysis and also to 

visualize genetic distance and relatedness between data 



 

 

observations and quantitative or qualitative variables [27], 

[40]-[43]. The results of a PCA are usually discussed in terms 

of component scores, sometimes called factor scores, that is, 

the transformed variable values corresponding to a particular 

data point and loadings which are the weight by which each 

standardized original variable should be multiplied to get the 

component score. PCA aims to construct a low-dimensional 

subspace based on a set of principal components (PCs) to 

approximate all the observed samples in the least-square sense 

[44], [45]. Due to the quadratic loss used, PCA is notoriously 

sensitive to corrupted observations (outliers) and the quality of 

its outputs can suffer severely in the face of even a few 

outliers [45]. For this, and to ensure a better statistical 

significance of the selected data series, it was decided during 

the pre-processing data stage to eliminate the strongest 

outliers. In our study, PCA was then used to the 24 data sets 

for unsupervised dimension reduction of data. Package 

FactoMineR was used [46]. PCA for the hydrochemical 

variables pH, Utotal, Ra226, SO4, Cl, Mn and Ca was 

performed. The data were reduced into three main components 

which describe differences in the concentrations of Utotal, 

Ra226, SO4, Cl, Mn and Ca according with pH conditions at 

the different piezometers (1, 2, 3, 5, 6, 7, 9, 10 and 11) and at 

distinct time intervals T1, T2 and T3. The three PCs describe 

differences in groundwater compositions, in accordance with 

different pH conditions that result from modifications in 

tailings composition and/or from changes in drawdown and/or 

hydrodynamics conditions in groundwater flow.  

The PCs scores were then considered for a subsequent 

KMC analysis. KMC is a method that is popular for cluster 

analysis. KMC aims to partition n observations into k clusters, 

in which, each observation belongs to the cluster with the 

nearest mean, serving as a prototype of the cluster. It is an 

unsupervised clustering technique commonly used. This 

procedure results in partitioning of the data space into Voronoi 

cells. Dissimilar and contrasting expert opinions may be found 

in related literature [20], [22], [27] regarding the order of 

analysis that was chosen between PCA and KMC, and the 

effectiveness of using PCA scores to subsequent KMC (“PCA 

before KMC” or “KMC before PCA”). In [22] the authors 

consider PCA variables as the continuous solutions to the 

discrete cluster membership indicators for KMC. For the case 

of “PCA before KMC”, PCA is applied before clustering 

analysis to reduce dimensionality and to facilitate the 

visualization of the main relevant clusters. PCA variables are 

the continuous solutions to the discrete cluster membership 

indicators for KMC. Oppositely, for instance, in [27] the 

authors showed that clustering with the PCA scores instead of 

the original variables may not necessarily improve cluster 

quality. These authors concluded inclusively that the first PCA 

variables (which contain most of the variation in the data) may 

not necessarily capture most of the cluster structure. 

Therefore, the application of PCA and KMC, and the 

effectiveness of using PCA scores to subsequent KMC must 

be carefully verified, being its effectiveness directly depend on 

the intrinsic characteristics of the data. In our work, we 

compute KMC after PCA. The achieved results were verified 

variable by variable, time step by time step, location by 

location step in order to ensure the efficiency of the results of 

data series that were subsequently mapped and presented in a 

synthetic way. KMC was performed to group the data 

observations into distinct major clusters. Tests were performed 

for clusters 4, 5, 6 and 7. Distinct cluster groups represent 

different hydrochemical profiles. Subsequently, the space-time 

data subsets (1T1, 1T2, 2T1, 2T2, 2T3, 3T1, 3T2, 3T3, 5T1, 

5T2, 5T3, 6T1, 6T2, 6T3, 7T2, 7T3, 9T1, 9T2, 9T3, 10T1, 

10T3, 11T1, 11T2 and 11T3), considered as qualitative 

variables, were classified according with these hydrochemical 

profiles. Also, with this procedure, it was also possible to 

make an interpretation of the hydrochemical quality evolution 

for each piezometer (1, 2, 3, 5, 6, 7, 9, 10 and 11) along time 

(T1, T2 and T3). For better visualization and spatial 

interpretation, PCA scores were mapped using the 

geostatistical procedure of kriging. Environmental quality 

evolution of the groundwater that percolates within the tailings 

dam was mapped considering a multivariate interpretational 

approach where all the hydrochemical variables are considered 

simultaneously. This is quite unique and interesting because in 

monitoring groundwater plans it is always necessary to take 

into consideration the time and space evolutions of distinct 

(and sometimes several) hydrochemical indicators. With this 

methodology, it is possible to make multivariate data 

interpretations in simplified synthetic way without losing 

information. 

III. RESULTS AND DISCUSSION 

The developed PCA analysis has reduced the data set from 

seven quantitative variables to three new variables, the 

principal components PC1, PC2 and PC3. These three PCs 

explain 72.16% of the total variance (Table I) which is a 

reasonable result considering the high variability of to 

hydrochemical data set.  

According to the results in Table I, it is obvious the closer 

relation between the parameters SO4, Cl and Mn, and, at a 

second correlation level, with Utotal and Ca. pH has an 

inverse correlation for all these mentioned parameters. This is 

because, in acidic environments, as the pH increases to a value 

of 6-7, the environmental conditions turn less acidic, and the 

concentration of contaminants drops. The hydrochemical 

profile of the contaminated waters generated in the tailings 

deposit is of acidic nature (low pH) and has a high level of 

contamination in some characteristic anions, cations, base-

metals, and semi-metals, including, in this case, Utotal and 

Ra226 because of the nature of the exploited ore in the past. 

One aspect of relevance is that, according to the PCA1 scores, 

Ra226 does not have the same behavior profile of the 

indicators Utotal, SO4, Mn, Cl and Ca. Its behavior is better 

explained by the variables PCA2 and PCA3 from which it is 

possible to conclude that Ra226 will have some direct 

correlation with pH, that is, as pH increases, Ra226 will have 

some tendency to increase as well. Ra226 has therefore an 

opposite behavior comparatively to the other hydrochemical 

indicators. A subsequent KMC analysis was developed for all 

the qualitative samples 1T1, 1T2, 2T1, 2T2, 2T3, 3T1, 3T2, 



 

 

3T3, 5T1, 5T2, 5T3, 6T1, 6T2, 6T3, 7T2, 7T3, 9T1, 9T2, 9T3, 

10T1, 10T3, 11T1, 11T2 and 11T3 according with its scores in 

PCA1, PCA2 and PCA3. Tests with clusters 4, 5 and 6 were 

performed allowing the conclusion that better results were 

achieved when 6 clusters are considered. For computing 

cluster analysis, the “maximum interaction number” was 100, 

the “n start number” was 25 and “Hartigan-Wong” was the 

algorithm considered. Representativeness of the results 

(between SS/total SS) was 90.1%. Clustering vectors for all 

the samples were selected for interpretation, allowing the 

association of each one of the six clusters to its respective 

group of qualitative samples. That is, all qualitative samples 

were classified in one of the six clusters. The results of KMC 

are presented in Table II. As expected, KMC results confirm 

the distinct hydrochemical profiles that results from the 

previous PCA analysis (Fig. 3).  
 

TABLE I 
SCORES, EIGENVALUES, AND CUMULATIVE VARIANCES FOR VARIABLES PC1, 

PC2, AND PC3. 

Variables PC1 (Dim.1) PC2 (Dim.2) PC3 (Dim.3) 

Quantitative    

SO4 0.81 0.14 0.08 

Cl 0.78 0.03 0.35 

Mn 0.78 -0.07 0.35 

Utotal 0.68 0.36 0.05 

Ca 0.55 -0.56 -0.35 

Ra226 0.34 0.66 -0.58 

pH -0.59 0.41 0.42 

Qualitative    

5T1 3.64 2.13 -0.51 

7T3 3.02 -0.99 1.01 

7T2 2.62 0.43 0.76 

5T2 2.38 -0.76 0.37 

6T1 1.75 0.41 -0.51 

5T3 0.98 -0.72 0.73 

2T2 0.89 -0.79 0.37 

2T1 0.49 -0.42 -0.29 

3T1 0.36 -0.65 -0.35 

6T2 0.34 2.19 -3.39 

1T1 0.17 -0.60 0.12 

3T2 -0.11 0.46 -1.30 

7T1 -0.12 -1.11 -0.52 

6T3 -0.14 -0.73 0.50 

9T2 -0.15 0.04 -0.78 

2T3 -0.23 -1.14 -0.23 

11T1 -0.29 -0.58 0.50 

9T3 -1.00 -0.54 -0.47 

1T2 -1.12 0.55 -0.75 

11T3 -1.48 0.29 -0.40 

10T1 -1.48 -0.16 -0.06 

9T1 -1.49 -0.11 -0.01 

3T3 -1.56 -0.12 0.09 

11T2 -1.60 0.19 0.03 

10T3 -1.80 0.56 0.05 

10T2 -2.47 1.26 1.40 

Eigenvalue 3.09 1.07 0.89 

Variance (%) 44.15% 15.25% 12.76% 

Variance (Cumul. %) 44.15% 59.40% 72.16% 

 

Each cluster represents a certain hydrochemical profile 

which, in turn, corresponds to the considered qualitative 

variables (of location and time stage). Also, each established 

hydrochemical profile corresponds to a certain specific 

contamination condition. From the results and interpretations 

(see Table II), it is possible to verify the existence of a trend 

from the most contaminated locations, in cluster 1 (C1), to the 

less ones, represented by locations and time steps of cluster 5 

and cluster 6 (C5 and C6). Following this sequence, it is 

possible to identify the locations within the tailings dam with 

positive evolutions in the consequence of environmental 

remediation works – piezometers 1, 3, 5, 6 and 11 –, and those 

who have a low but also positive evolution or which have 

stabilized in time - piezometers 2, 9, 10 and 11 (Table II and 

Fig. 4). Afterwards, the first three PC scores (PC1, PC2 and 

PC3) for all sample locations and time intervals, 1T1, 1T2, 

2T1, 2T2, 2T3, 3T1, 3T2, 3T3, 5T1, 5T2, 5T3, 6T1, 6T2, 6T3, 

7T2, 7T3, 9T1, 9T2, 9T3, 10T1, 10T3, 11T1, 11T2 and 11T3 

were mapped at 2D, in the tailings dam, through its spatial 

interpolation with kriging. The interpretative maps of PCA 

and KMC results for the case of PCA1 variable at each time 

interval T1, T2 and T3 are presented in Fig. 4.  

From Fig. 4 and considering previous results presented in 

Tables I and II, it is possible to consider the following 

conclusions: 

• PCA1-T1:  

a) Cluster 1 represents the most contaminated 

hydrochemical profile and is associated to variable 5T1 

(that is, to the location of piezometer 5 at the pre-

remediation stage). The profile with the highest 

contamination detected in the monitoring plan is only 

present at time-period T1 (that is, before the 

environmental remediation). It represents an acid 

environment with all parameters having high to very high 

concentrations. Utotal, Ra226 and SO4 have extremely 

high to very high concentrations. Cl, Mn, and Ca have 

high concentrations.  

b) At this same time-period (T1), piezometer 6 is the other 

one that also has a much-demarcated contamination 

pattern, and it is represented by cluster 2. This cluster also 

represents a profile of an acidic environment, like the 

environment of cluster 1 but with lower Ra266 

concentrations.  

c) In the remaining area of the tailings dam the profiles are 

of type C4 and C5. Environmental conditions are better 

with less effects of contamination, groundwater is less 

contaminated (cluster 4) or only slightly contaminated or 

not contaminated (cluster 5). 

 

 
 

 

 
 



 

 

 

Fig. 3 Interrelation between results of PCA and KMC: (a) Projection of quantitative variables in PCA1 and PCA2; (b) KMC considering 6 

clusters; (c) Adequation of the clustering results to PCA results for the case of the qualitative variables 

 

• PCA1-T2 and PCA1-T3: at T2 the profile of piezometer 5 

is represented by cluster 2. During the remediation works, 

piezometer 5 evolved to a less extremely high 

contaminated profile although it remains with high 

contamination. It is also possible to conclude that this 

contamination profile spreads upward from piezometer 5 

to piezometer 7. These evolutions during period T2 are 

spatially close to the location of the main old stream water 

underneath the tailings with main direction from SW to 

NE which is highlighted from numerical groundwater 

modelling. It seems that, somehow, and probably in the 

dependence of local hydrodynamic flow, the main 

contamination plume has migrated northwards from site 5 

to site 7. Another interesting hydrochemical behavior is 

detected in piezometer 6 which has, in the period T2, a 

hydrochemical profile represented by cluster 3. In this 

case, local environmental conditions are less acidic to 

closer to neutral. All the concentrations decrease except 

for Ra226, SO4 and Ca. This behavior is reported by 

PCA2 scores and is well reflected in map PCA2-T2 (Fig. 

5); however, it is not well represented statistically (Table 

II, cluster 3, n = 1) despite conditioning the analysis. 

Also, locally, at piezometer 10, during the period T2, an 

alkaline profile is detected. This fact is probably related 

with some earth movements in the northern part of the 

tailings dam, during remediation works for the re-



 

 

profiling of slopes, where old tailings materials were 

either moved or rotated, inducing influence on the 

materials which have a more carbonated composition. 

Here, the alkaline or close to neutral waters and the 

presence of some ions in freshwaters that inflow through 

the northwest part of the dam, like chloride (and sulfate), 

may have also helped facilitate the temporary 

remobilization and transportation of Ra226. This possible 

phenomenon may be observed in Fig. 5. In T2 and T3 

periods, all the other sites at the tailings dam present 

profiles of very less contamination (cluster 4) or of 

environmental conditions without or with very low 

contamination (cluster 5). In periods T2 and T3, slightly 

contaminated profiles maybe present in some locations 

that are represented by cluster 4. This behavior may be 

related with mixing groundwater effects from fresh waters 

that inflow laterally at western and north-western and 

from SW to NE direction, which result in pH increments 

and general reduction in hydrochemical concentrations. 

After the remediation works, that is, in T3 period, 

contamination is much more circumscribed and only 

remains in the location of piezometer 7 (PCA1-T3 map). 

In T3 the only location with remaining strong 

contamination is given by piezometer 7. All the other 

studied sites present a significant improvement regarding 

groundwater quality. 
 

TABLE II 
RESULTS OF KMC HYDROCHEMICAL PROFILES WITH ITS RESPECTIVE CLASSIFICATION AND INTERPRETATION FOR EACH CLUSTER  

Cluster 

Piezom./ 

Time interval 

Univariate 

Statistics 
pH Utot 

Ra 

(226) 
Mn SO4 Cl Ca 

Interpretation 

Specific site environmental conditions 

C1 

5T1 
Mean 3,2 23667 1447 438 11163 657 331 Very contaminated acid environment. 

All parameters have high concentrations. 

Utot, Ra-226 and SO4 with extremely high to very high concentrations while Cl, Mn 

and Ca have high concentrations. 

St. Dev. 0,1 1528 90 126 8613 34 123 

Minimum  3,1  22000  1390  309  1490  630  190  
Maximum 3,3 25000 1550 560 18000 695 415 

C2 

7T2,  
7T3,  

5T2,  

6T1 

Mean 3,2 5603 622 534 8483 893 395 Very contaminated acid environment. 

Similar to Cluster 1 but concentrations of Utot, Ra-226 and SO4 tend to be lower. St. Dev. 0,2 4906 762 347 6071 411 219 

Minimum  2,9  10  1  41  1400  391  136  

Maximum 3,6 13709 2000 994 19647 1527 914 
C3 

 

6T2 

Mean 5,4 697 3200 150 2200 38 470 Environment with some specific contaminants. 

pH slightly acidic; Ra-226 with very high concentrations and Ca with high 

concentrations; concentrations of Utot and SO4 are slightly high; concentrations of Cl 
and Mn are low. 

St. Dev. – – – – – – – 

Minimum – – – – – – – 

Maximum – – – – – – – 

C4 

1T1, 2T1, 2T2,  

2T3, 3T1,  

3T2, 5T3, 6T3,  
9T2, 11T1 

Mean 3,8 1261 308 267 3916 310 321 Contaminated acid environment. Concentrations are lower comparatively to Clusters 

1 and 2. 

pH is acidic; concentrations of Utot and SO4 are high; presence of some 

contamination in Ra-226; all other remaining parameters are present in more low 
concentrations. 

St. Dev. 0,8 1640 447 158 2828 411 100 

Minimum    2,9     10      7        10      33       7      43      
Maximum 5,8 5000 2000 585 10044 1927 490 

C5 

1T2, 3T3,  
9T1,  

9T3, 10T1, 10T3, 

11T2, 11T3 

Mean 4,7 508 326 18 570 41 134 Environment conditions without or with low contamination, or,  

locations with significant improvement in environmental conditions. 
pH neutral to slightly acidic; presence in groundwater of some Utot and SO4 

concentrations. 

St. Dev. 1,2 498 397 26 431 28 104 

Minimum    3,3     53     2         1      231      10     37      

Maximum 6,8 1800 1700 87 1910 133 440 
C6 

10T2 

Mean 9,7 333 136 43 668 60 12 Environmental conditions with significant variations in one single temporal stage 

(T2); In general, strong to medium alkaline environment, without contamination or 

with low contamination (mainly Ra-226 and SO4). 
St. Dev. 3,0 719 151 49 766 27 23 

Minimum  3,9  0,9  6,7  6,0  35  34  0,03  

Maximum 12,1 1800 342 136 2138 100 57 

 

IV. CONCLUSIONS 

The integration of PCA scores in a KMC analysis facilitates 

multivariate interpretations of PCA results, allowing a better 

clarification of the sense of PCA grouping relations through 

the clusters that are obtained. In our study, mapping of PCA 

scores and its interpretation with KMC allowed a better 

understanding of spatial-temporal trends of hydrochemical 

indicators included in a groundwater monitoring plan within a 

mine tailings dam. KMC results of PCA scores facilitated 

interpretations and temporal and spatial analysis. Spatial 

mapping of KMC and PCA scores allows a more synthetic, 

faster, and easier approach when multivariate indicators need 

to be considered for an evaluation of contamination profiles. 

In this case study, clusters of KMC represent distinct 

groundwater quality hydrochemical profiles. Evolution of 

environmental conditions at each site location (that is, at each 

piezometer) in accordance with the identified groundwater 

quality profiles was performed. KMC enabled a better 

understanding of the PCA results once observations were 

classified according to distinct hydrochemical profiles at each 

piezometer location, according to each time-period T1, T2 and 

T3. Subsequently, distinct areas within the dam were 

demarcated according to different degrees of contamination 

and non-contamination profiles.  
 
 

 



 

 

 
 

Fig. 4 Mapping of PCA1 scores for time periods T1, T2 and T3. For a better spatial interpretation, KMC results (clusters C1 to C6) are also 

represented 

 

 

Fig. 5 Mapping of PCA1 and PCA2 scores for the time period T2. For a better spatial interpretation, KMC results (clusters c1 to c6) are also 

represented 

 

The concentrations of total uranium, sulfate, chloride, 

manganese, and calcium decrease in consequence of pH 

increment. In turn, and temporarily, at an intermediate stage, 

radium-226 concentrations increased in some circumscribed 

locations, probably in consequence of pH increase, of more 

oxidizing environment conditions and mixing phenomena with 

fresh waters derived from preferential inflow path. In the post-

remediation period, a general improvement in groundwater 

quality is verified. 

Finally, it is to enhance the possibilities that may be derived 

from crossing the spatial-trend maps with groundwater flow 

maps. For this specific case-study, the superposition of the 

locations of the distinct hydrochemical profiles (clusters) with 

groundwater flow modelling results will certainly result in a 



 

 

better understanding of the inner hydrodynamics of the 

tailings dam deposit and its direct implications on 

contamination plume changes over time. Relations between 

different flow paths located inside and beneath the tailings 

dam and its spatial correspondence to hydrochemical profiles 

evolution through time (T1, T2 and T3) are possible to be 

found. The application potentialities of spatial-trend maps 

derived from PCA, and K-Means analysis are, therefore, quite 

unique, and interesting in the context of groundwater quality 

and monitoring of multi-variable complex systems. 
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