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Resumo 

A leishmaniose zoonótica causada por Leishmania infantum é um problema grave de 

saúde pública e veterinária. Contrariamente aos cães, universalmente considerados como 

principais hospedeiros reservatórios de L. infantum, os gatos domésticos (Felis catus) 

foram apontados durante anos como hospedeiros acidentais, cuja relevância para a 

manutenção e transmissão do parasita seria nula. No entanto, o acumular de evidências 

contrárias mudou o paradigma ao ponto de estes felídeos serem, atualmente, considerados 

como possíveis hospedeiros reservatórios de L. infantum. Neste contexto, este projeto 

doutoral teve como objetivo clarificar o papel dos gatos na epidemiologia da leishmaniose 

zoonótica através da (i) avaliação da exposição dos gatos aos vetores de L. infantum; (ii) 

determinação da proporção de gatos infetados em focos endémicos; (iii) caracterização 

da infeção por Leishmania em gatos através de acompanhamento clínico e parasitológico; 

(iv) realização de tipagem molecular dos parasitas isolados de gatos; e (v) avaliação do 

comportamento in vitro e infecciosidade ex vivo de estirpes felinas. 

Anticorpos contra a saliva de Phlebotomus perniciosus foram identificados em 47,7 % 

(167/350) dos gatos testados, sendo significativamente mais frequente em animais mais 

velhos e em amostras obtidas durante a época de transmissão (maio a outubro). A 

presença de anticorpos contra a saliva de P. perniciosus foi associada à infeção por 

Leishmania em gatos. O ácido desoxirribonucleico (DNA) de Leishmania e/ou anticorpos 

contra o parasita foram identificados em 7,4 % dos gatos que vivem em focos endémicos. 

Não foram identificados quaisquer fatores de risco associados à infeção felina. 

Diagnosticou-se leishmaniose clínica num gato com infeção retroviral (vírus da leucemia 

felina) concomitante, apresentando sinais clínicos incomuns. A infeção seguiu um padrão 

crónico e insidioso, sendo refratária à monoterapia com alopurinol. A remissão dos sinais 

clínicos apenas foi conseguida após tratamento combinado com antimoniato de 

meglumina. A análise de sequências parciais de citocromo b, glucose-6-fosfato 

desidrogenase, proteína de choque térmico 70 e espaços intergénicos do DNA ribossomal, 

revelou que as estirpes isoladas de gatos são geneticamente idênticas a estirpes de L. 

infantum isoladas de cães, humanos e vetores. Além disso, o DNA de L. major e de 

parasitas híbridos L. major/L. donovani sensu lato foi detetado em dois gatos de diferentes 

regiões de Portugal Continental. As estirpes felinas apresentaram um perfil de 

crescimento in vitro, reposta adaptativa a condições de stress e suscetibilidade a 

compostos leishmanicidas e leishmaniostáticos, semelhante à de estirpes de L. infantum 

isoladas de cães e humanos. Os macrófagos de origem felina foram permissivos à infeção 

ex vivo com parasitas isolados de gatos, cães e humanos, que por sua vez apresentaram 

semelhante capacidade de infeção de macrófagos felinos, caninos e humanos. 

Em adição, um algoritmo de diagnóstico para suporte de decisão clínica e um conjunto 

de orientações para evitar a infeção por Leishmania em gatos, são propostos. 

Pela interceção dos dados epidemiológicos, moleculares, clínicos e experimentais obtidos 

no decorrer do presente projeto doutoral, pode-se concluir que Felis catus cumpre todos 

os critérios estabelecidos pela Organização Mundial de Saúde para ser reconhecida como 

uma espécie hospedeira reservatória de L. infantum. 

Palavras-chave: gato, Felis catus, hospedeiro reservatório, Leishmania infantum, 

leishmaniose zoonótica. 
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Abstract 

Zoonotic leishmaniosis caused by Leishmania infantum is a serious veterinary and public 

health problem. Contrarily to dogs, universally considered the main reservoir hosts of L. 

infantum, domestic cats (Felis catus) were regarded for years as accidental hosts whose 

relevance for parasite maintenance and transmission was nil. However, the accumulation 

of contrary evidence has shifted the paradigm to the point that these felids are now 

considered as probable additional reservoir hosts of L. infantum. In this context, this 

doctoral project aimed to clarify the role played by cats in the epidemiology of zoonotic 

leishmaniosis by: (i) assessing the exposure of cats to L. infantum vectors; (ii) determining 

the proportion of infected cats in endemic foci; (iii) characterising the Leishmania 

infection in cats through clinical and parasitological follow-up; (iv) performing molecular 

typing of the parasites isolated from cats; and (v) evaluating the in vitro fitness and ex 

vivo infectiousness of feline Leishmania strains. 

Antibodies to Phlebotomus perniciosus saliva were found in 47.7 % of the cats tested 

(167/350) and were significantly more frequent in older animals and samples collected 

during the transmission season (May to October). The presence of antibodies to P. 

perniciosus saliva was associated with Leishmania infection in cats. Leishmania 

deoxyribonucleic acid (DNA) and/or antibodies to the parasite were identified in 7.4 % 

of cats living in endemic foci. No risk factors associated with feline infection were found. 

Clinical leishmaniosis was diagnosed in a cat with concomitant regressive retroviral 

infection (feline leukaemia virus) showing unusual clinical signs. The infection followed 

a chronic, and insidious, pattern and was refractory to allopurinol monotherapy. 

Remission of clinical signs was only achieved after combined treatment with meglumine 

antimoniate. Analysis of cytochrome b, glucose-6-phosphate dehydrogenase, heat-shock 

protein 70, and internal transcribed spacers of ribosomal DNA partial sequences revealed 

that strains isolated from cats are genetically identical to those of well-characterised L. 

infantum strains isolated from dogs, humans, and vectors. Also, the DNA of L. major and 

L. major/L. donovani sensu lato hybrid parasites was detected in two cats from different 

regions of mainland Portugal. Feline strains presented a similar in vitro growth profile, 

adaptative response to stress conditions, and susceptibility to antileishmanial drugs to that 

of L. infantum strains isolated from dogs and humans. Macrophages of feline origin were 

similarly permissive to ex vivo infection with parasites isolated from cats, dogs, and 

humans, which also showed an identical ability to infect feline, canine, and human 

macrophages. 

In addition, a diagnostic algorithm for clinical decision support and a set of prevention 

guidelines to avoid Leishmania infection in cats is herein proposed. 

By interception of the epidemiological, molecular, clinical, and experimental data 

obtained during this doctoral project, it can be concluded that Felis catus fulfilled all 

criteria established by the World Health Organization to be recognised as a reservoir host 

species.  

Keywords: cat, Felis catus, reservoir host, Leishmania infantum, zoonotic leishmaniosis. 
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CHAPTER 1 

General introduction 

Part of this chapter (section 5) is based on the review article: 

Pereira, A. & Maia, C. (2021) Leishmania infection in cats and feline leishmaniosis: an 

updated review with a proposal of a diagnosis algorithm and prevention guidelines. 

Current Research in Parasitology & Vector-Borne Diseases. 1, 100035. 
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1. The pathogen: Leishmania 

1.1. Morphology 

Leishmania are eukaryotic single-celled protozoan parasites, which are found in 

two primary morphological forms: the promastigote in the invertebrate host and the 

amastigote in the vertebrate host (Sunter & Gull, 2017) (Figure 1). 

The promastigote form is characterised by an elongated body of 15 to 20 µm in 

length and 1.5 to 3.5 µm in width and an anterior prominent free flagellum of variable 

size. The nucleus is oval and situated centrally. Amastigotes are round or ovoid bodies 

about 2–6 μm in diameter, with a rudimentary flagellum and a large, typically eccentric, 

nucleus (Gramiccia & Di Muccio, 2018).  

Figure 1. Schematic representation of a promastigote and an amastigote of Leishmania (author's 

original). 
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In both forms, a modified mitochondrion, called the kinetoplast, appears anterior 

to the nucleus as a dense disk-shaped structure that is directly associated with the basal 

body from which the flagellum emerges through the flagellar pocket. This invagination 

of the cell membrane is the only site capable of exocytosis and endocytosis (Wheeler, 

Sunter & Gull, 2016; Sunter & Gull, 2017). 

1.2. Current taxonomy 

According to Akhoundi et al. (2016) the genus Leishmania Ross, 1903 belongs to 

the Kingdom Protista Heackel, 1996; Phylum Euglenozoa Cavalier-Smith, 1993; Class 

Kinetoplastea Honigberg, 1963; Subclass Metakinetoplastina Vickerman, 2004; Order 

Trypanosomatida Kent, 1880; Family Trypanosomatidae Döflein, 1901; and Subfamily 

Leishmaniinae Makloves and Lukeš, 2012. 

The genus Leishmania is divided into the Euleishmania and Paraleishmania 

sections (Cupolillo et al., 2000). The Euleishmania section includes all species (spp.) 

classified within the subgenera Leishmania, Mundinia, Sauroleishmania and Viannia 

(Schönian et al., 2018), while the Paraleishmania section comprises the former 

Endotrypanum genus and some Leishmania spp. (Akhoundi et al., 2016). Currently, more 

than 50 species of Leishmania are described in the literature (Table 1) (Akhoundi et al., 

2017). Nevertheless, some cases of synonymy have been revealed, and taxonomy 

simplification have been argued for (Schönian, Mauricio & Cupolillo, 2010; Maurício, 

2018).
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Table 1. Revised taxonomy of the genus Leishmania (adapted from Akhoundi et al., 2017; Jariyapan et al., 2018; Maurício, 2018). 

Genus Section Subgenus Species complex Species Simplified species nomenclature* 

Leishmania Euleishmania Leishmania L. donovani complex L. archibaldia L. donovani 

    L. chagasib  

    L. donovania  

    L. infantumb  

   L. major complex L. arabica L. major 

    L. gerbilli  

    L. major  

    L. turanica  

   L. mexicana complex L. amazonensisc L. mexicana 

    L. aristidesi  

    L. forattinii  

    L. garnhamic  

    L. mexicanad  

    L. pifanoid  

    L. venezuelensis  

    L. waltoni  

   L. tropica complex L. aethiopica L. tropica 

    L. killickie  

    L. tropicae  

  Mundinia  L. enrietti  

    L. macropodum  

    L. martiniquensis  

    L. orientalis  

    L. sp. (Ghana)  

  Sauroleishmania  L. adleri  

    L. agamae  

    L. ceramodactyli  

    L. chameleonis  

    L. davidi  

    L. gulikae  

    L. gymnodactyli  

    L. helioscopi  

    L. hemidactyli  
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    L. henrici  

    L. hoogstraali  

    L. nicollei  

    L. phrynocephali  

    L. platycephala  

    L. senegalensis  

    L. sofieffi  

    L. tarentolae  

    L. zmeevi  

    L. zuckermani  

    L. sp. I  

    L. sp. II  

  Viannia L. braziliensis complex L. braziliensis L. braziliensis 

    L. peruviana  

   L. guyanensis complex L. guyanensis L. guyanensis 

    L. panamensis  

    L. shawi  

    L. lainsoni  

    L. lindenbergi  

    L. naiffi  

    L. utigensis  

 Paraleishmania   Endotrypanum** monterogeii  

    E. schaudinni  

    L. colombiensis  

    L. deanei  

    L. equatorensis  

    L. herreri  

    L. hertigi  
a-e Considered synonymous species; * purposed by Maurício (2018); ** suggested as subgenus by Maurício (2018). 
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1.3. Genome 

Trypanosomatids have peculiar genomic features compared to other eukaryotes, 

such as a kinetoplast, genes without introns, a nucleus with polycistronic transcripts and 

small chromosomes with high gene density (Akhoundi et al., 2017). 

Leishmania parasites are mostly diploid organisms presenting two genomic pools, 

the nucleus and the kinetoplast (Díaz & Ponte-Sucre, 2018).  

The nuclear genome is organised in 36 chromosomes for the members of the 

subgenera Leishmania except for L. mexicana complex, which has 34. The species within 

the subgenus Vianna has 35 chromosomes whereas those within the subgenus 

Sauroleishmania has 38 (Romano et al., 2014; Cantacessi et al., 2015; Akhoundi et al., 

2017). 

The kinetoplast genome comprises a vast network of catenated circular 

deoxyribonucleic acid (DNA) molecules, known as kinetoplast DNA (kDNA). The 

circular DNA present within the kinetoplast is of two types: minicircles and maxicircles. 

Minicircles usually range from 0.8 to 1.0 kilobase pairs (kb), are heterogeneous in 

sequence, and are present in several thousand copies, making up to 95 % of kDNA. They 

encode guide RNA molecules involved in RNA editing. In contrast, maxicircles are 

present in a few dozen copies of approximately 23 kb and present an analogous structure 

to mitochondrial DNA of other eukaryotes (Lukeš et al., 2002; Akhoundi et al., 2017). 

Leishmania reproduction is primarily asexual via clonal propagation (Rogers et 

al., 2014). Nonetheless, several studies have provided strong evidence for the occurrence 

of genetic exchanges, sometimes referred to as a meiotic-like sexual cycle, within and 

between different Leishmania spp., during cyclical development in the phlebotomine sand 

fly vector (Akopyants et al., 2009; Rogers et al., 2014; Romano et al., 2014; Inbar et al., 

2019). Experimental hybrid progeny present full genomic complement from both parents, 

with loss of heterozygosity at some loci and uniparental retention of maxicircle kDNA 

(Akopyants et al., 2009; Romano et al., 2014). 
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2. The hosts 

2.1. Invertebrate hosts 

Leishmania parasites are typically transmitted through the bite of phlebotomine 

sand flies (Diptera; Psychodidae; Phlebotominae) belonging to the genus Phlebotomus in 

the Old World and Lutzomyia in the New World (Dvorak, Shaw & Volf, 2018) (see 

section 4.). 

Formal incrimination of a phlebotomine sand fly species as a vector is based on 

five widely accepted criteria (WHO, 2010):  

i. The vector must be anthropophilic.  

ii. The vector feeding preferences must include reservoir hosts in zoonotic 

transmission cycles. 

iii.  The vector must be infected in nature with the same Leishmania spp. as 

occurs in humans. 

iv.  The vector must support the complete development of the parasite it 

transmits after the infecting blood meal has been digested.  

v. The vector must be able to transmit the protozoan by bite to a susceptible 

host. 

2.1.1. Biology 

Briefly, phlebotomine sand flies are small, hairy insects with a body length rarely 

exceeding 3 mm. They can be found in different parts of the world and types of habitats, 

from below sea level to over 3,000 m in altitude. Their life cycle is exclusively terrestrial 

and comprises complete metamorphosis (holometabolous development) through four 

developmental stages: egg, larva (four instars), pupa and adult (Killick-Kendrick, 1999; 

Maroli et al., 2013). 

The activity of adult phlebotomine sand flies is crepuscular and is affected mainly 

by temperature and rainfall. Both sexes feed on natural sources of sugars (such as plant 

sap and nectar) and aphid honeydew. However, females are also hematophagous to 

successfully produce progeny (Killick-Kendrick, 1999; Maroli et al., 2013). 
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2.1.2. Salivary compounds as biomarkers of vector exposure and Leishmania 

infection 

During a blood meal (occurring by telmophagy or pool feeding), the skin of the 

vertebrate host is damaged by the phlebotomine sand fly’s proboscis, and a cocktail of 

bioactive molecules is inoculated via saliva. Some of these salivary compounds called 

sialogenins have anti-hemostatic, anti-inflammatory and immunomodulatory properties 

that successfully assist the phlebotomine sand fly female in finishing the blood meal 

(Lestinova et al., 2017). Moreover, most sialogenins are immunogenic, eliciting cellular 

and humoral immune responses in mammals, as shown in Figure 2. 

Figure 2. Hypothetical model illustrating the immune response in a vertebrate host recurrently 

exposed to phlebotomine sand fly bites. Eight-pointed stars represent examples of the main 

cytokines expressed in this model, namely interleukin 4 (yellow), interleukin 12 (red) and 

interferon-gamma (blue). Abbreviations: Th, T helper cell. (adapted from Lestinova et al., 

2017). 
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The role of phlebotomine sand fly saliva in Leishmania transmission was 

demonstrated for the first time by Titus & Ribeiro (1988). To date, several studies have 

corroborated that the saliva of phlebotomine sand flies can exacerbate Leishmania 

infection in naïve hosts (reviewed by Lestinova et al., 2017). This phenomenon, called 

the “enhancing effect”, results in severe disease manifestations and an increase in parasite 

burden (Gomes & Oliveira, 2012). 

The use of anti-saliva antibodies as biomarkers of exposure to hematophagous 

invertebrates and risk of infection appears to be an additional epidemiolocal tool, which 

may support the design and implementation of new strategies to reduce the incidence of 

vector-borne diseases in endemic areas (Doucoure et al., 2015).  

Exposure to phlebotomine sand flies’ bites induce the production of species-

specific antibodies [mainly from the immunoglobulin class or isotype G (IgG)] in humans 

and other animals (reviewed by Andrade & Teixeira, 2012). Also, the levels of anti-saliva 

IgG have been positively correlated with exposure intensity in rodents/lagomorphs 

(Martín-Martín, Molina & Jiménez, 2015), dogs (Hostomska et al., 2008) and humans 

(Clements et al., 2010), and decreases significantly after the last contact with 

phlebotomine sand flies.  

In endemic areas, high levels of anti-saliva IgG specific to Lu. intermedia, P. 

papatasi and P. sergenti were detected in human patients presenting active cutaneous 

leishmaniosis (CL), suggesting their use as a risk biomarker of CL (Rohousova et al., 

2005; de Moura et al., 2007; Marzouki et al., 2011). In humans living in Latin American 

countries endemic for visceral leishmaniosis (VL), a positive correlation has been 

suggested between the presence of anti-Lutzomyia longipalpis saliva IgG antibodies and 

the development of delayed-type hypersensitivity to Leishmania antigens (Gomes et al., 

2002; Aquino et al., 2010). The use of P. perniciosus saliva IgG as a biomarker of L. 

infantum infection in dogs remains controversial. Indeed, positive (Maia et al., 2020), 

negative (Vlkova et al., 2011) or no correlations (Kostalova et al., 2017) between the 

levels of anti-P. perniciosus saliva IgG and anti‐L. infantum IgG have been reported in 

dogs in endemic areas. 
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2.2. Vertebrate hosts 

Parasites of the genus Leishmania can infect a wide range of vertebrate species, 

most of which are mammals. Epidemiologically, vertebrates can be divided into primary 

reservoir hosts, secondary reservoir hosts, or accidental hosts (Maia, Dantas-Torres & 

Campino, 2018).  

A primary reservoir host is responsible for maintaining the parasite indefinitely in 

nature, in the absence of any other host species, and usually does not show obvious signs 

of infection. In contrast, a secondary reservoir host may also serve as an infection source 

for vectors and increases parasite transmissibility but cannot maintain parasite 

transmission in the absence of the primary reservoir host. Lastly, an accidental host is a 

host that, despite being susceptible to infection, does not usually transmit the parasite to 

vectors and therefore plays no essential role in the ecological system in which the parasite 

is maintained indefinitely in nature (Quinnell & Courtenay, 2009; Maia, Dantas-Torres 

& Campino, 2018). 

2.2.1. Incrimination of reservoir hosts 

The mere presence of Leishmania parasites in a vertebrate host, even in large 

numbers, is not enough to recognise the latter as a reservoir. In this context, and according 

to the World Health Organization (WHO) (2010), six criteria should be fulfilled to 

incriminate a mammal species as a reservoir host of Leishmania spp.: 

i. A reservoir host is likely to be sufficiently abundant and long-lived to 

provide a significant food source for phlebotomine sand flies. 

ii. Intense host–phlebotomine sand fly contact is necessary. 

iii. The proportion of individuals that become infected during their lifetime is 

usually considerable. 

iv. The course of infection in a reservoir host should be long enough, and the 

infection should be sufficiently non-pathogenic to allow the parasites to 

survive any non-transmission season. 

v. Parasites should be available in the skin or the blood in sufficient numbers 

to be taken up by a phlebotomine sand fly. 

vi. Parasites in reservoir hosts must be the same as those in humans. 
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3. Life cycle 

In nature, Leishmania parasites have a digenetic life cycle, alternating between a 

vertebrate host and an insect vector (Figure 3). 

The following descriptions are focused on the parasites belonging to the subgenus 

Leishmania, for which the most consistent and detailed information is available. During 

a blood meal on an infected host, a female phlebotomine sand fly acquires Leishmania 

amastigotes located in phagocytes. The change in conditions moving from the 

mammalian host to the phlebotomine sand fly midgut, such as the decrease in temperature 

and increase in pH, triggers the development of the parasites in the vector (Dostálová & 

Volf, 2012). The amastigotes differentiate into weakly motile forms called procyclic 

promastigotes, which multiply intensively by binary fission in the blood meal surrounded 

by the peritrophic matrix (i.e., an acellular mesh of proteins and chitin secreted by the 

Figure 3. Schematic life cycle of Leishmania species. Circular arrows represent multiplicative 

stages. Red drop depicts successive blood meals. (adapted from Serafim, Iniguez & Oliveira, 

2020). 
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midgut epithelium which protects the blood meal from digestive proteases and prevents 

parasites migration anteriorly) (Secundino et al., 2005; Dvorak, Shaw & Volf, 2018). 

Around 2-3 days later, procyclic promastigotes begin to slow their replication and 

differentiate into elongated, strongly motile nectomonad promastigotes (Bates, 2007). 

After the disintegration of the peritrophic matrix by the action of chitinases, nectomonad 

promastigotes attach by flagella to the microvilli of the midgut epithelium to avoid being 

expelled during defecation (Ramalho-Ortigão et al., 2005; Sádlová & Volf, 2009; 

Dostálová & Volf, 2012). Following detachment, nectomonad promastigotes migrate 

towards the thoracic portion of the midgut and later differentiate into leptomonad 

promastigotes (shorter forms that resume replication) (Bates, 2007; Dostálová & Volf, 

2012), which are responsible for the production and secretion of promastigote secretory 

gel (PSG) (i.e., a proteophosphoglycan-rich, mucin-like gel that acts as a plug obstructing 

the midgut and pharynx) (Rogers, Chance & Bates, 2002; Rogers, 2012). Some of the 

nectomonad/leptomonad promastigotes differentiate into haptomonad promastigotes. The 

latter attach via hemidesmosomes to the cuticular lining of the stomodeal valve (i.e., the 

junction between the thoracic midgut and foregut), forming an extensive spherical 

structure that occludes the valve (Wakid & Bates, 2004; Dvorak, Shaw & Volf, 2018). 

Haptomonad promastigotes and PSG are responsible for the so-called “blocked fly” 

effect, forcing infected phlebotomine sand flies to regurgitate parasites (Bates, 2018). 

Finally, some of the leptomonad promastigotes differentiate into metacyclic 

promastigotes, which are small, highly motile flagellated infective forms, pre-adapted for 

survival in the vertebrate host (Bates, 2007). In matured infections, metacyclic 

promastigotes are typically concentrated in the anterior part of the midgut, on the edge of 

PSG plug (Dvorak, Shaw & Volf, 2018). 

For several years metacyclic promastigotes were considered as the terminal 

development stage inside the vector. However, Serafim et al. (2018) recently 

demonstrated that a second uninfected blood meal by a Leishmania-infected 

phlebotomine sand fly triggers de-differentiation of metacyclic promastigotes (i.e., those 

that were not transmitted to the vertebrate host) into retroleptomonad promastigotes. 

These leptomonad-like forms rapidly multiply and differentiate into metacyclic 

promastigotes following successive blood meals (reverse metacyclogenesis), enhancing 

vector infectiousness (Bates, 2018; Serafim et al., 2018). 
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When the infected phlebotomine sand fly takes another blood meal, the metacyclic 

promastigotes are directly deposited into the bite wound together with insect saliva and 

midgut content, including PSG, microbiota, and exosomes (Dvorak, Shaw & Volf, 2018). 

In the skin, the metacyclics are phagocytised by polymorphonuclear and mononuclear 

phagocytes, and inside them differentiate (i.e., within the parasitophorous vacuoles) into 

amastigotes (Serafim, Iniguez & Oliveira, 2020). Once within macrophages (main host 

cells), the amastigotes multiply actively by binary fission. Following the multiplication 

phase, the macrophage membrane ruptures, and the parasites are released; free 

amastigotes in circulation can then infect other phagocytes present in the skin and/or 

spread through the circulatory system to several internal organs, such as the bone marrow, 

liver, and spleen (Serafim, Iniguez & Oliveira, 2020). The cycle is completed when 

amastigotes are taken up by a competent vector. 

4. Epidemiology of human leishmaniosis 

From an epidemiological point of view, leishmaniosis (or “leishmaniasis”) can be 

classified according to the reservoir source of human infection as either an anthroponotic 

(i.e., when the source is an infected human) or zoonotic disease (i.e., when the source is 

a non-human vertebrate) (Hubálek, 2003).  

All continents, except Antarctica, have endemic areas for human leishmaniosis, 

in a total of 98 countries and three territories (Alvar et al., 2012). Human leishmaniosis 

is still one of the world’s most neglected diseases, affecting mainly the poorest people in 

low-income countries, and is associated with malnutrition, poor housing, population 

displacement, weak immune system, and lack of financial resources (WHO, 2010). 

Globally, over 1 billion people are potentially at risk of developing leishmaniosis (WHO, 

2017b). 

At least 20 species of Leishmania are known to be pathogenic to humans, and 

several species of phlebotomine sand flies are implicated in their transmission (i.e., about 

100 species are proven or suspected vectors) (Gradoni, 2018) (Table 2 and 3). Human 

leishmaniosis is primarily zoonotic except for L. donovani and L. tropica, although non-

human reservoir hosts may hypothetically exist for both species across Africa and Asia 

(reviewed by Maia, Dantas-Torres & Campino, 2018). Leishmaniosis in humans consists 
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of two primary clinical forms (or syndromes): self-healing or chronic CL and life-

threatening VL, also known as kala-azar. Other clinical forms occur more rarely and 

include localised leishmanial lymphadenopathy, localised mucosal leishmaniosis, 

mucocutaneous leishmaniosis (MCL), diffuse and disseminated CL, and post-kala-azar 

dermal leishmaniosis (PKDL) (Gradoni, 2018). Clinical outcomes are determined by the 

interplay of the infecting species, host genetic factors and immune status (Colmenares et 

al., 2002). 
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Table 2. Leishmaniosis in the Old World: aetiology, geographical distribution, vectors, reservoir hosts, transmission type and clinical forms (WHO, 2010; 

Maroli et al., 2013; Ready, 2013; Kwakye-Nuako et al., 2015; Maia, Leelayoova et al., 2017; Burza, Croft & Boelaert, 2018; Jariyapan et al., 2018; Maia, 

Dantas-Torres & Campino, 2018; Bongiorno et al., 2019; Chanmol et al., 2019). 

Leishmania species Geographical distribution Proven or suspected vector Proven or suspected reservoir Transmission – Clinical form 

L. donovani 

 

Bangladesh; Bhutan; Chad; China; Cyprus; Djibouti; Ethiopia; 

India; Iraq; Israel; Kenya; Nepal; Saudi Arabia; Somalia; Sri 
Lanka; Sudan; Uganda; Ukraine; Yemen 

P. alexandri; P. argentipes; P. celiae; P. 

chinensis s.l.; P. longiductus; P. martini; 
P. orientalis; P. vansomerenae 

Dogs; Humans; Mongooses; 

Rodents 

Anthroponotic – CL*; VL  

     

L. infantum 
 

Afghanistan; Albania; Algeria; Armenia; Azerbaijan; Bosnia 
and Herzegovina; Bulgaria; Central African Republic; China; 

Croatia; Cyprus; Egypt; France; Gambia; Georgia; Greece; 

Iran; Iraq; Israel; Italy; Jordan; Kazakhstan; Kosovo; 
Kyrgyzstan; Lebanon; Libya; Macedonia; Malta; Mauritania; 

Monaco; Montenegro; Morocco; Oman; Pakistan; Palestine; 

Portugal; Romania; Saudi Arabia; Senegal; Slovenia; Spain; 
Sudan; Syria; Tunisia; Turkey; Turkmenistan; Ukraine; 

Uzbekistan; Yemen 

P. alexandri; P. ariasi; P. balcanicus; P. 
chinensis; P. duboscqi; P. galileus; P. 

halepensis; P. kandelakii; P. kandelakii; 

P. langeroni; P. longicuspis; P. 
longiductus; P. major s.l.; P. neglectus; 

P. perfiliewi s.l.; P. perniciosus; P. 

sichuanensis; P. smirnovi; P. syriacus; 
P. tobbi; P. transcaucasicus; P. 

turanicus; P. wui 

Canids, Cats, Lagomorphs, Rodents  Zoonotic – CL*; VL 

     
L. major Afghanistan; Algeria; Azerbaijan; Burkina Faso; Cameroon; 

Chad; Egypt; Ethiopia; Georgia; Gambia; Ghana; Guinea; 

Guinea-Bissau; India; Iran; Iraq; Israel; Jordan; Kazakhstan; 

Kenya; Kuwait; Libya; Mali; Mauritania; Mongolia; Morocco; 

Niger; Nigeria; Oman; Pakistan; Palestine; Saudi Arabia; 

Senegal; Sudan; Syria; Tunisia; Turkmenistan; Uzbekistan; 
Yemen 

P. ansarii; P. bergeroti; P. caucasicus; 

P. duboscqi; P. mongolensis; P. 

papatasi; P. perniciosus; P. salehi; S. 
darlingi; S. garnhami 

Rodents Zoonotic – CL 

     
L. aethiopica Ethiopia; Kenya P. aculeatus; P. longipes; P. pedifer; P. 

sergenti 

Hyraxes; Rodents Zoonotic – CL 

     
L. tropica Afghanistan; Algeria; Azerbaijan; Egypt; Ethiopia; Greece; 

India; Iran; Iraq; Israel; Jordan; Kenya; Libya; Morocco; 

Namibia; Pakistan; Palestine; Saudi Arabia; Syria; Tunisia; 
Turkey; Turkmenistan; Uzbekistan 

Yemen 

P. aculeatus; P. arabicus; P. chabaudi; 

P. grovei; P. guggisbergi; P. 

perniciosus; P. rossi; P. saevus; P. 
sergenti; P. similis 

Dogs; Humans; Hyraxes; Rodents Anthroponotic – CL 

     

L. martiniquensis Myanmar; Thailand S. barraudi; S. gemmea Rodents Zoonotic – CL; VL 

     

L. orientalis Thailand Biting midges Unknown Zoonotic** – CL; VL 
     

L. sp. (Ghana) Ghana Unknown Unknown Zoonotic** – CL 
*Rarely; **Suspected. 

Abbreviations: L., Leishmania; P., Phlebotomus; S., Sergentomyia; s.l., sensu lato; sp., species; syn., synonymous; CL, cutaneous leishmaniosis; VL, visceral leishmaniosis.  
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Table 3. Leishmaniosis in the New World: aetiology, geographical distribution, vectors, reservoir hosts, transmission type and clinical forms (WHO, 

2010; Maroli et al., 2013; Ready, 2013; Shaw et al., 2015; Burza, Croft & Boelaert, 2018; Leelayoova et al., 2017; Maia, Dantas-Torres & Campino, 

2018). 

Leishmania species Geographical distribution Proven or suspected vector Proven or suspected reservoir Transmission – Clinical form 

L. infantum 

 

Argentina; Bolivia; Brazil; Colombia; Costa Rica; El 

Salvador; Guatemala; Honduras; Mexico; Nicaragua; 
Paraguay; United States of America; Venezuela 

Lu. almerioi; Lu. cruzi; Lu. evansi; Lu. forattinii; Lu. 

longipalpis s.l.; Lu. migonei; Lu. pseudolongipalpis; 
Lu. sallesi 

Canids; Cats; Marsupials Zoonotic – CL*; VL 

     

L. amazonensis 
 

Argentina; Bolivia; Brazil; Colombia; Costa Rica; 
Ecuador; French Guiana; Peru; Suriname; Venezuela 

Lu. flaviscutellata; Lu. longipalpis; Lu. nuneztovari 
anglesi; Lu. olmeca nociva; Lu. olmeca reducta; Lu. 

youngi 

Marsupials; Rodents Zoonotic – CL 

     
L. mexicana 

 

Belize; Colombia; Costa Rica; Ecuador; Guatemala; 

Mexico; United States of America; Venezuela 

Lu. anthophora; Lu. ayacuchensis; Lu. columbiana; 

Lu. cruciata; Lu. diabolica; Lu. flaviscutellata; Lu. 

migonei; Lu. olmeca bicolor; Lu. olmeca olmeca; Lu. 
ovallesi; Lu. panamensis; Lu. shannoni; Lu. 

ylephiletor 

Dogs; Marsupials; Rodents Zoonotic – CL 

     
L. venezuelensis Venezuela Lu. olmeca bicolor Cats Zoonotic – CL 

     

L. waltoni Dominican Republic Lu. christophei Unknoun Zoonotic** – CL 

     

L. martiniquensis French West Indies Unknown Rodents Zoonotic – CL; VL 

     
L. braziliensis Argentina; Belize; Bolivia; Brazil; Colombia; Costa 

Rica; Ecuador; French Guiana; Guatemala; 
Honduras; Mexico; Nicaragua; Panama; Paraguay; 

Peru; Venezuela 

Lu. ayrozai; Lu. carrerai; Lu. columbiana; Lu. 

complexa; Lu. cruciata; Lu. edwardsi; Lu. fischeri; 
Lu. gomezi; Lu. intermedia; Lu. llanosmartinsi; Lu. 

migonei s.l.; Lu. neivai; Lu. nuneztovari anglesi; Lu. 

ovallesi; Lu. panamensis; Lu. paraensis; Lu. pescei; 
Lu. pessoai; Lu. pia; Lu. shawi; Lu. spinicrassa; Lu. 

tejadai; Lu. townsendi; Lu. trinidadensis; Lu. 

wellcomei; Lu. whitmani; Lu. ylephiletor; Lu. youngi; 
Lu. yucumensis 

Dogs; Equids; Marsupials; 

Rodents 

Zoonotic – CL 

     

L. peruviana Peru Lu. Ayacuchensis; Lu. peruensis s.l.; Lu. verrucarum 

s.l. 

Dogs; Marsupials; Rodents Zoonotic – CL 

     

L. guyanensis Argentina; Bolivia; Brazil; Colombia; Ecuador; 
French Guiana; Guyana; Peru; Suriname; Venezuela 

Lu. anduzei; Lu. ayacuchensis; Lu. longiflocosa; Lu. 
migonei; Lu. shawi; Lu. umbratilis; Lu. whitmani 

Edentats; Marsupials; Rodents Zoonotic – CL 

     

L. panamensis Colombia; Costa Rica; Ecuador; Guatemala; 
Honduras; Nicaragua; Panama 

Lu. cruciata; Lu. edentula; Lu. gomezi; Lu. 
hartmanni; Lu. panamensis; Lu. sanguinaria; Lu. 

trapidoi; Lu. ylephiletor; Lu. yuilli 

Dogs; Edentates; Marsupials; 
Procyonids; Rodents 

Zoonotic – CL 
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L. shawi Brazil Lu. whitmani Edentates; Primates; 
Procyonids 

Zoonotic – CL 

     

L. lainsoni Bolivia; Brazil; French Guiana; Peru; Suriname Lu. nuneztovari anglesi; 
Lu. ubiquitalis 

Rodents Zoonotic – CL 

     

L. naiffi Brazil; French Guiana; Panama Lu. amazonensis; Lu. ayrozai; Lu. paraensis; Lu. 
squamiventris; Lu. trapidoi 

Armadillos; Edentates Zoonotic – CL 

     

L. lindenbergi Brazi Lu. antunesi Unknown Zoonotic** – CL 
     

     

L. colombiensis Colombia; Panama; Venezuela Lu. hartmanni; Lu. gomezi; Lu. panamensis Edentates Zoonotic – CL 
*Rarely; **Suspected. 

Abbreviations: L., Leishmania; Lu., Lutzomyia; s.l., sensu lato; syn., synonymous; CL, cutaneous leishmaniosis; VL, visceral leishmaniosis.
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Cutaneous leishmaniosis is the most common form of leishmaniosis and is 

characterised by the formation of skin lesions that are typically either self-healing or easy 

to treat, despite being disfiguring (Boelaert & Sundar, 2013). Some 85 % of the estimated 

600,000-1,000,000 annual cases occur in Afghanistan, Algeria, Bolivia, Brazil, 

Colombia, Iran, Iraq, Pakistan, Syria, and Tunisia (Figure 4) (WHO, 2020). Forced 

migration has a dramatic impact on the incidence of CL, with imported cases being 

relatively common in non-endemic countries (Gradoni, 2018). Several species have been 

implicated as aetiologic agents of CL, although those mainly responsible are L. 

aethiopica, L. major and L. tropica in the Old World and L. amazonensis, L. braziliensis, 

L. guyanensis and L. mexicana in the New World. Nonetheless, up to 10 % of CL cases 

progress to more severe clinical forms, such as MCL (mainly caused by L. braziliensis 

and L. panamensis) which is characterised by destructive lesions of the nasal septum, lips, 

and palate (Burza, Croft & Boelaert, 2018). Over 90 % of MCL cases occur in Bolivia, 

Brazil, Ethiopia, and Peru (WHO, 2020). 

 

Visceral leishmaniosis is a systemic form that is usually fatal if left untreated and 

is caused by parasites taxonomically classified within the L. donovani complex (Boelaert 

& Sundar, 2013). The World Health Organization estimates VL incidence to be in the 

Figure 4. Status of endemicity of human cutaneous leishmaniosis (CL) worldwide in 2018 

(retrieved from https://www.who.int/leishmaniasis/burden/en/). 

https://www.who.int/leishmaniasis/burden/en/
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range of 50,000-90,000 cases per year (WHO, 2017b). In 2018, 10 countries (i.e., Brazil, 

China, Ethiopia, India, Iraq, Kenya, Nepal, Somalia, South Sudan, and Sudan) reported 

more than 95 % of the worldwide cases of VL (Figure 5). Nevertheless, VL remains 

endemic in more than 50 countries, including Portugal (WHO, 2017a; 2020). 

Immunosuppression represents a significant risk factor for VL development. The 

epidemiological impact of immunosuppression on VL has been well demonstrated by the 

effect of the human immunodeficiency virus (HIV) epidemic in the re-emergence of VL 

in southern Europe in the late 1990s (van Griensven et al., 2014). Thanks to the wide-

scale introduction of highly active antiretroviral therapy (HAART), the incidence of VL-

HIV cases has been declining in Europe in the past few years (WHO, 2017a). 

 

  

Figure 5. Status of endemicity of human visceral leishmaniosis (VL) worldwide in 2018 

(retrieved from https://www.who.int/leishmaniasis/burden/en/). 

https://www.who.int/leishmaniasis/burden/en/
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5. Leishmania infection in cats and feline leishmaniosis 

This section is based on the review article: 

Pereira, A. & Maia, C. (2021) Leishmania infection in cats and feline leishmaniosis: an 

updated review with a proposal of a diagnosis algorithm and prevention guidelines. 

Current Research in Parasitology & Vector-Borne Diseases. 1, 100035. 

https://doi.org/10.1016/j.crpvbd.2021.100035. 

5.1. Abstract 

Leishmaniosis is a vector-borne disease caused by protozoans of the genus 

Leishmania, which are transmitted to vertebrates, including cats, through the bites of 

female phlebotomine sand flies. An increasing number of epidemiological and 

experimental studies concerning Leishmania infection in cats, as well as case reports of 

clinical leishmaniosis in these felids, have been published in recent years. In the present 

study, a comprehensive review was made by sourcing the National Library of Medicine 

resources to provide updated data on epidemiology, immunopathogenesis, diagnosis, 

treatment, and prevention of feline leishmaniosis. Cats were found infected with 

Leishmania parasites worldwide, and feline leishmaniosis appears as an emergent disease 

mostly reported in countries surrounding the Mediterranean Sea and in Brazil. Cats with 

impaired immunocompetence seem to have a higher risk of developing clinical disease. 

The main clinical and clinicopathological findings are dermatological lesions and 

hypergammaglobulinemia, respectively. Diagnosis of feline leishmaniosis remains a 

challenge for veterinarians, in part, due to the lack of diagnosis support systems. For this 

reason, a diagnostic algorithm for clinical decision support is proposed. No evidence-

based treatment protocols are currently available, and these remain empirically based. 

Control measures are limited and scarce. Thus, a set of prevention guidelines are herein 

suggested. 

Keywords: cats, diagnosis algorithm, feline leishmaniosis, Leishmania, prevention 

guidelines, treatment. 

  

https://doi.org/10.1016/j.crpvbd.2021.100035
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5.2. Introduction 

Leishmaniosis is a disease that affects humans and both domestic and wild animals 

worldwide and is caused by protozoa of the genus Leishmania. The infection typically 

occurs through the bite of female phlebotomine sand flies of the genera Phlebotomus in 

the Old World and Lutzomyia in the New World (WHO, 2010). 

In contrast to dogs, cats had been considered for several years as accidental hosts 

resistant to leishmaniosis. Nevertheless, this felid now appears as a relevant piece within 

the ecological system in which Leishmania parasites are maintained indefinitely 

(Asfaram, Fakhar & Teshnizi, 2019). Feline Leishmania infection has frequently been 

reported in endemic areas of South America, Southern Europe and Western Asia, and the 

number of reported cases of feline leishmaniosis has been increasing in recent years 

(Pereira et al., 2019b; Baneth et al., 2020; da Costa-Val et al., 2020; Fernandez-Gallego 

et al., 2020). 

The present review aimed to provide updated information concerning the 

epidemiology of Leishmania infection in cats and clinical management of feline 

leishmaniosis (FeL) with emphasis on immunopathogenesis, diagnosis, treatment, 

prognosis, and prevention, as well as the development of an algorithm to assist diagnosis 

and delineate strategic guidelines to prevent feline infection. 

5.3. Search strategy, eligibility, and review 

A comprehensive literature search was performed on 10 March 2021 by sourcing 

National Library of Medicine resources through PubMed 

(https://pubmed.ncbi.nlm.nih.gov/) using the following Boolean string: 

("leishmania"[MeSH Terms] OR "leishmania"[All Fields] OR "leishmanias"[All Fields] 

OR "leishmaniae"[All Fields] OR ("leishmaniasis"[MeSH Terms] OR 

"leishmaniasis"[All Fields] OR "leishmaniosis"[All Fields] OR "leishmaniases"[All 

Fields])) AND ("cat"[All Fields] OR ("felis"[MeSH Terms] OR "felis"[All Fields]) OR 

("felidae"[MeSH Terms] OR "felidae"[All Fields] OR "felid"[All Fields] OR "felids"[All 

Fields]) OR ("cats"[MeSH Terms] OR "cats"[All Fields] OR "felines"[All Fields] OR 

"felidae"[MeSH Terms] OR "felidae"[All Fields] OR "feline"[All Fields])). Search 

results were saved as a comma-separated value (CSV) file, subsequently imported into 

Microsoft® Excel®. Study eligibility was manually assessed by two independent 

https://pubmed.ncbi.nlm.nih.gov/
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investigators in a blinded manner. Only available original research articles concerning 

Leishmania infection in cats were retained, including those published in languages other 

than English (Figure 6). Except for the epidemiological section (which included data from 

all Leishmania spp. in felids belong to the Felis genus), the present review refers 

exclusively to infection of domestic cats (Felis catus) by L. donovani (sensu lato). 

Although this complex is formally comprised of L. donovani (sensu stricto), L. chagasi, 

and L. infantum, for the remainder of this review, L. infantum will be used to refer strictly 

to feline infection by L. donovani (s.l.). 

5.4. Aetiology, distribution, and risk factors 

To date, six species belonging to the subgenus Leishmania and one to the 

subgenus Viannia have been identified in domestic cats (F. catus) through DNA or 

isoenzyme-based typing methods (Figure 7): 

i. L. (L.) amazonensis in Brazil (de Souza et al., 2005; Carneiro et al., 2020). 

ii. L. (L.) infantum in Brazil (Schubach et al., 2004; de Souza et al., 2005; da 

Silva et al., 2008; Vides et al., 2011; Sobrinho et al., 2012; de Morais et 

Figure 6. Flow diagram of study searching and selection process. 
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al., 2013; Benassi et al., 2017; Metzdorf et al., 2017; Marcondes et al., 

2018; Rocha et al., 2019; Berenguer et al., 2020; da Costa-Val et al., 

2020), southern Europe (Ayllón et al., 2008; Maia, Nunes & Campino, 

2008; Tabar et al., 2008; Maia et al., 2010; Millán et al., 2011; Ayllón et 

al., 2012; Chatzis et al., 2014a; Maia et al., 2014; Maia et al., 2015b; 

Persichetti et al., 2016; Attipa et al., 2017a; Diakou et al., 2017; Otranto 

et al., 2017; Persichetti et al., 2018; Colella et al., 2019; Ebani et al., 2020; 

Pereira et al., 2019c, Pereira et al., 2020), western Europe (Ozon et al., 

1998; Pratlong et al., 2004; Pocholle et al., 2012; Richter, Schaarschmidt-

Kiener & Krudewig, 2014) and western Asia (Hatam et al., 2010; Dincer 

et al., 2015; Akhtardanesh et al., 2017; Attipa et al., 2017b; Mohebali et 

al., 2017; Karakuş et al., 2019; Asgari et al., 2020; Baneth et al., 2020). 

iii. L. (L.) major in Portugal (Pereira et al., 2020) and Turkey (Paşa et al., 

2015). 

iv. L. (L.) mexicana in the USA (Craig et al., 1986; Trainor et al., 2010; 

Minard et al., 2017) and Venezuela (Rivas et al., 2018). 

v. L. (L.) tropica in western Asia (Paşa et al., 2015; Can et al., 2016; 

Akhtardanesh et al., 2017). 

vi. L. (L.) venezuelensis in Venezuela (Bonfante-Garrido et al., 1991). 

vii. L. (V.) braziliensis in Brazil (Schubach et al., 2004; da Costa-Val et al., 

2020) and French Guiana (Rougeron et al., 2011). 

Besides, the DNA of L. infantum and putative L. major/L. donovani s.l. hybrid 

parasites were detected in wild cats (Felis silvestris) in Spain (Del Río et al., 2014) and 

in a domestic cat in mainland Portugal (Pereira et al., 2020), respectively. 
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The proportion of cats infected with or exposed to Leishmania has been assessed 

in several epidemiological studies through parasitological, serological, or molecular 

methods (Tables 4 and 5). However, reported values vary greatly (from 0 to >70 %) and 

appear to be influenced by local endemicity, sampling bias and 

heterogeneity/performance of diagnostic methodologies (mainly cut-off, target gene and 

sample used for testing). 

Figure 7. Worldwide distribution of Leishmania infection in cats (Felis sp.) (Author's original). 
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Table 4. Epidemiological studies on the frequency of Leishmania infection in cats (Felis spp.) in the Old World. 

Country Study Sampling 

year 

Species (origin) No. 

tested 

Method (test, cut-off/target 

gene) 

Sample % Positive (species)a 

Albania (Silaghi et al., 2014) 2008-2010 F. catus (stray) 146 Serological (IFAT, 1:64) Serum 0.7 (L. infantum) 

     Molecular (qPCR, kDNA) Whole blood 0  

Angola (Lopes et al., 2017) 2014-2016 F. catus (domestic) 102 Serological (DAT, 1:100) Serum 0 

Bosnia and 

Herzegovina 

(Colella et al., 2019) 2017 F. catus (domestic) 5 Serological (IFAT) Serum 0 

     Molecular (qPCR, kDNA) Whole blood 20 (Leishmania spp.) 
    1b Molecular (PCR, kDNA) Whole blood 100 (L. infantum) 

     Molecular (qPCR, ITS2) Whole blood 100 (L. infantum) 

Cyprus (Attipa et al., 2017b) 2014 F. catus (domestic/shelter) 164 Serological (ELISA, 32 EU) Serum 4.4 (L. infantum) 
    174 Molecular (qPCR, kDNA) Whole blood 2.3 (L. infantum) 

Egypt (Michael et al., 1982) na F. catus (stray) 80 Serological (IHA) Serum 3.8 (Leishmania spp.) 

 (Morsy et al., 1988) na F. catus (stray) 28 Serological (IHA) Serum 3.6 (Leishmania spp.) 
 (Morsy & Abou el Seoud, 

1994) 

na F. catus (domestic/stray) 60 Serological (IHA, 1:32) Serum 10 (Leishmania spp.) 

Germany (Schäfer et al., 2021) 2012-2020 F. catus (domestic) 624 Serological (IFAT, 1:64) Serum 4.0 (Leishmania spp.) 

Greece (Chatzis et al., 2014a, 2014b) 2009-2011 F. catus (domestic) 100 Parasitological (cytology) Bone marrow 0 

      Lymph node 0 

      Skin 0 
     Serological (ELISA, 0.145) Serum 1.0 (Leishmania spp.) 

     Serological (IFAT, 1:10) Serum 10 (Leishmania spp.) 

     Molecular (PCR, kDNA) Bone marrow 16.0 (L. infantum) 
      Whole blood 13.0 (L. infantum) 

    99 Molecular (PCR, kDNA) Skin 13.1 (L. infantum) 

    96  Conjunctival swab 3.1 (L. infantum) 
 (Diakou et al., 2017) 2015 F. catus (stray) 148 Serological (IFAT, 1:80) Serum 6.1 (L. infantum) 

     Molecular (nPCR, SSU) Whole blood 6.1 (L. infantum) 

 (Diakou, Papadopoulos & 
Lazarides, 2009) 

na F. catus (stray) 284 Serological (ELISA)  Serum 3.9 (Leishmania spp.) 

 (Morelli et al., 2020) na F. catus 153 Serological (IFAT, 1:80) Serum 2.0 (L. infantum) 

Iran (Mohebali et al., 2017) 2013-2015 F. catus (stray) 103 Serological (DAT, 1:320) Serum 3.9 (L. infantum) 
    4b Parasitological (cytology) Liver 25.0 (L. infantum) 

      Spleen 25.0 (L. infantum) 
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    4b Parasitological (culture) Liver 0 
      Spleen 0 

    1b Molecular (nPCR, ITS2) Liver 100 (L. infantum) 

      Spleen 100 (L. infantum) 
 (Akhtardanesh et al., 2020) 2016 F. catus (stray) 180 Molecular (nPCR, kDNA) Whole blood 13.9 (L. infantum) 

 (Asgari et al., 2020) 2016-2018 F. catus (stray) 174 Serological (DAT, 1:100) Serum 17.2 (L. infantum) 

     Serological (ELISA) Serum 27.6 (L. infantum) 
     Molecular (nPCR, kDNA) Buffy coat 20.7 (L. infantum) 

 (Sarkari et al., 2009) na F. catus (stray) 40 Serological (DAT, 1:20) Serum 20 (L. infantum) 

     Serological (IFAT, 1:10) Serum 25.0 (L. infantum) 
 (Hatam et al., 2010) na F. catus (stray) 40 Parasitological (cytology) Liver 2.5 (Leishmania spp.) 

      Spleen 2.5 (Leishmania spp.) 

     Parasitological (culture) Liver 7.5 (Leishmania spp.) 
      Spleen 2.5 (Leishmania spp.) 

     Molecular (PCR, kDNA Liver 7.5 (L. infantum) 

      Spleen 5.0 (L. infantum) 
 (Fatollahzadeh et al., 2016) na F. catus (stray) 65 Parasitological (cytology) Liver 0 

      Spleen 0 

     Parasitological (culture) Liver 0 
      Spleen 0 

     Serological (DAT, 1:320) Serum 23.1 (L. infantum) 

     Molecular (PCR, kDNA) Spleen 0 
 (Akhtardanesh et al., 2017) na F. catus (stray) 60 Serological (ELISA) Serum 6.7 (L. infantum) 

     Molecular (nPCR, 7SL RNA) Whole blood 16.7 (L. infantum) 

       1.7 (L. tropica) 

Iraq (Otranto et al., 2019) 2008 F. catus (stray) 207 Molecular (qPCR, kDNA) Whole blood 0 

Israel (Nasereddin, Salant & 

Abdeen, 2008) 

1999-2000 F. catus (domestic/stray) 104 Serological (ELISA) Serum 6.7 (L. infantum) 

 (Baneth et al., 2020) 2018 F. catus (shelter) 67 Serological (ELISA, 0.4) Serum 75.0 (L. infantum) 

     Molecular (qPCR, kDNA) Whole blood 16.0 (L. infantum) 

     Molecular (HRMPCR, ITS1) Whole blood 0 

Italy (Vita et al., 2005) 2002-2004 F. catus (domestic/stray) 203 Serological (IFAT, 1:40) Serum 16.3 (L. infantum) 

    11b Molecular (PCR) Lymph node 100 (L. infantum) 

      Whole blood 45.5 (L. infantum) 
 (Spada et al., 2013) 2008-2010 F. catus (stray) 233 Serological (IFAT, 1:40) Serum 25.3 (L. infantum) 

     Molecular (qPCR, kDNA) Whole blood 0 

 (Morganti et al., 2019) 2010-2016 F. catus (shelter/stray) 286 Serological (IFAT, 1:40) Serum 9.1 (L. infantum) 
     Molecular (nPCR, SSU) Buffy coat 0  

      Conjunctival swab 15.7 (L. infantum) 
 (Dedola et al., 2018) 2011-2013 F. catus (domestic) 90 Serological (IFAT, 1:40)  Serum 10 (L. infantum) 

     Molecular (nPCR, ITS) Whole blood 5.5 (L. infantum) 

 (Veronesi et al., 2016) 2011-2014 F. silvestris (wild) 21 Molecular (qPCR, COII) Spleen 0 
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 (Persichetti et al., 2016) 2012-2013 F. catus (domestic) 42 Serological (IFAT, 1:80) Serum 2.4 (L. infantum) 
     Molecular (qPCR, kDNA) Whole blood 7.1 (L. infantum) 

 (Persichetti et al., 2018) 2012-2013 F. catus (domestic) 197 Parasitological (cytology) Whole blood 0 

     Serological (IFAT, 1:80) Serum 9.6 (L. infantum) 
     Molecular (qPCR, kDNA) Conjunctival swab 1.5 (L. infantum) 

    181 Molecular (qPCR, kDNA) Lymph node 1.7 (L. infantum) 

    143 Molecular (qPCR, kDNA) Urine 2.1 (L. infantum) 
    197 Molecular (qPCR, kDNA) Oral Swab 1.5 (L. infantum) 

      Whole blood 2.0 (L. infantum) 

 (Spada et al., 2016) 2014 F. catus (stray) 90 Serological (IFAT, 1:40) Serum 30 (L. infantum) 
     Molecular (qPCR, kDNA) Conjunctival swab 0 

      Lymph node 1.1 (L. infantum) 

      Whole blood 1.1 (L. infantum) 
 (Brianti et al., 2017) 2015 F. catus (domestic) 159 Serological (IFAT, 1:80) Serum 9.4 (L. infantum) 

     Molecular (qPCR, kDNA) Conjunctival swab 3.8 (L. infantum) 

      Whole blood 7.5 (L. infantum) 
 (Otranto et al., 2017) 2015-2016 F. catus (domestic) 330 Serological (IFAT, 1:40) Serum 25.7 (L. infantum) 

     Molecular (qPCR, kDNA) Conjunctival swab 1.8 (L. infantum) 

      Whole blood 2.1 (L. infantum) 
 (Abbate et al., 2019) 2015-2017 F. silvestris (wild) 11 Molecular (qPCR, kDNA) Lymph 

node/skin/spleen 

0 

 (Priolo et al., 2019) 2016-2017 F. catus (domestic/stray) 66 Serological (ELISA) Serum 17.0 (L. infantum) 
     Serological (IFAT, 1:80) Serum 14.0 (L. infantum) 

     Molecular (qPCR, kDNA) Whole blood 4.0 (L. infantum) 

 (Spada et al., 2020) 2016-2018 F. catus (stray) 102 Serology (IFAT, 1:80) Serum 4.9 (L. infantum) 
    117 Molecular (qPCR, kDNA) Conjunctival swab 0 

    115 Molecular (qPCR, kDNA) Lymph node 4.3 (L. infantum) 

    109 Molecular (qPCR, kDNA) Whole blood 0 
 (Urbani et al., 2020) 2017 F. catus (domestic) 152 Serological (IFAT, 1:80) Serum 11.8 (L. infantum) 

    150 Molecular (qPCR, kDNA) Conjunctival swab 0 

      Hair 0.7 (L. infantum) 
    146 Molecular (qPCR, kDNA) Whole blood 0 

 (Iatta et al., 2019) 2017-2018 F. catus (domestic) 2659 Serological (IFAT, 1:80) Serum 3.3 (L. infantum) 

     Molecular (qPCR, kDNA) Whole blood 0.8 (L. infantum) 
 (Ebani et al., 2020) 2018-2019 F. catus (stray) 85 Serological (IFAT) Serum 2.4 (Leishmania spp.) 

     Molecular (PCR, SSU)  Bloodc 5.9 (Leishmania spp.) 

 (Persichetti et al., 2017) 2013 na 76 Serological (ELISA, 40 EU) Serum 2.6 (L. infantum) 

     Serological (IFAT, 1:80) Serum 17.1 (L. infantum) 

     Serological (WB) Serum 18.4 (L. infantum) 
    21b Serological (ELISA, 40 EU) Serum 100 (L. infantum) 

     Serological (IFAT, 1:80) Serum 95.2 (L. infantum) 

     Serological (WB) Serum 100 (L. infantum) 
 (Poli et al., 2002) na F. catus (domestic) 110 Serological (IFAT, 1:80) Serum 0.9 (Leishmania spp.) 

 (Morelli et al., 2019) na F. catus (domestic) 167 Serological (IFAT, 1:80) Serum 3.0 (L. infantum) 

 (Morelli et al., 2020) na F. catus 116 Serological (IFAT, 1:80) Serum 4.3 (L. infantum) 
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Portugal (Duarte et al., 2010) 2003-2005 F. catus (stray) 180 Serology (IFAT, 1:40) Serum 0.6 (L. infantum) 
 (Maia, Nunes & Campino, 

2008) 

2004 F. catus (stray) 20 Serological (IFAT, 1:64) Serum 0 

    23 Molecular (PCR, ITS1) Blood on filter paper 30.4 (Leishmania spp.) 
     Molecular (PCR, kDNA) Blood on filter paper 30.4 (Leishmania spp.) 

    4b Molecular (PCR-RFLP, ITS1) Blood on filter paper 100 (L. infantum) 

 (Cardoso et al., 2010) 2004-2008 F. catus (domestic) 316 Serological (DAT, 1:100) Serum 1.9 (L. infantum) 
     Serological (ELISA)  Serum 2.8 (L. infantum) 

 (Maia et al., 2010) 2007-2008 F. catus (domestic/stray) 76 Serological (IFAT, 1:64) Serum 1.3 (Leishmania spp.) 

    138 Molecular (PCR, kDNA) Whole blood 20.3 (L. infantum) 
 (Maia et al., 2015a) 2011-2014 F. catus (domestic/stray) 271 Serological (DAT, 1:100) Serum 3.7 (L. infantum) 

 (Maia et al., 2014) 2012-2013 F. catus (domestic/stray) 649 Molecular (nPCR, SSU) Whole blood 9.9 (Leishmania spp.) 

 (Pereira et al., 2019a, 2019b, 
2020) 

2017-2018 F. catus (domestic/ 
shelter/stray) 

373 Serological (IFAT, 1:64) Serum 1.6 (Leishmania spp.) 

    465 Molecular (nPCR, SSU) Buffy coat 5.4 (Leishmania spp.) 

    25b Molecular (nPCR, cytB) Buffy coat 12.0 (L. donovani s.l.) 
       4.0 (L. major) 

       4.0 (L. major/L. donovani 

s.l.)f 
     Molecular (PCR, g6pdh) Buffy coat 4.0 (L. donovani s.l.) 

     Molecular (nPCR, hsp70) Buffy coat 12.0 (L. donovani s.l.) 

       4.0 (L. major/L. donovani 
s.l.)f 

     Molecular (nPCR, ITS) Buffy coat 12.0 (L. donovani s.l.) 

       4.0 (L. major) 
 (Neves et al., 2020) 2018-2019 F. catus (domestic) 141 Serological (DAT, 1:100) Serum 0 

 (Vilhena et al., 2013) na F. catus (domestic) 320 Molecular (qPCR, kDNA) Whole blood 0.3 (L. infantum) 

Portugal/Spain (Mesa-Sanchez et al., 2020) 2015-2020 F. catus (domestic)g 173 Molecular (nPCR, SSU) Whole blood 0 

Qatar (Lima et al., 2019) 2016-2018 F. catus (domestic/stray) 79 Molecular (qPCR, kDNA) Whole blood/on dried 

spot 

1.3 (Leishmania spp.) 

Saudi Arabia (Morsy, Aldakhil & el-
Bahrawy, 1999) 

na F. margarita (wild) 10 Parasitological (cytology) Liver 20 (Leishmania spp.) 

      Spleen 40 (Leishmania spp.) 

     Serological (IHA, 1:64) Serum 40 (Leishmania spp.) 

Spain (Del Río et al., 2014) 2001-2006 Felis silvestris (wild)  4 Molecular (qPCR, kDNA) Liver and/or spleen 25.0 (L. infantum) 

    1b Molecular (PCR, ITS2) Liver and/or spleen 100 (L. infantum) 

 (Martín-Sánchez et al., 2007) 2003-2004 F. catus (domestic) 183 Serological (IFAT, 1:40) Serum 28.3 (Leishmania spp.) 
     Molecular (PCR-ELISA, 

kDNA) 

Whole blood 25.7 (L. infantum) 
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    7b Parasitological (culture) Leucoconcentrate 0 
     Parasitological (cytology) Leucoconcentrate 42.9 (Leishmania spp.) 

 (Ayllón et al., 2008) 2005-2006 F. catus (domestic) 233 Serological (IFAT, 1:100) Serum 1.3 (L. infantum) 

     Molecular (PCR, kDNA) Whole blood 0.4 (L. infantum) 
 (Ayllón et al., 2012) 2005-2008 F. catus (domestic/stray) 680 Serological (IFAT, 1:50) Serum 3.7 (L. infantum) 

     Molecular (PCR, kDNA) Whole blood 0.6 (L. infantum) 

 (Tabar et al., 2008) 2006 F. catus (domestic) 100 Molecular (qPCR, kDNA) Whole blood 3.0 (L. infantum) 
 (Sherry et al., 2011) 2008 F. catus (shelter) 105 Serological (ELISA) Serum 13.2 (L. infantum) 

    104 Molecular (qPCR, kDNA) Whole blood 8.7 (L. infantum) 

 (Millán et al., 2011) 2008-2009 F. catus (stray) 83 Serological (WB) Serum 15.7 (L. infantum) 
    73 Molecular (PCR, kDNA) Blood and/or spleen 25.6 (L. infantum) 

    14b Molecular (PCR-RFLP, 

kDNA) 

Blood and/or spleen 100 (L. infantum) 

 (Miró et al., 2014) 2012-2013 F. catus (stray) 346 Serological (IFAT, 1:100) Serum 3.2 (L. infantum) 

    57d Molecular (nested-PCR, ITS1) Whole blood 0 

     Molecular (nested-PCR, SSU) Whole blood 0 
 (Risueño et al., 2018) 2013-2015 F. silvestris (wild) 2 Molecular (qPCR, kDNA) Skin 50 (L. infantum) 

      Other organse 0 

 (Marenzoni et al., 2018) 2014-2015 F. catus (domestic) 31g Molecular (PCR, kDNA) Whole blood 0 
 (Montoya et al., 2018a) 2014-2017 F. catus (stray) 249 Serological (IFAT, 1:100) Serum 4.8 (L. infantum) 

     Molecular (PCR, ITS) Skin/whole blood 0 

 (Priolo et al., 2019) 2016-2017 F. catus (domestic/stray) 113 Serological (ELISA) Serum 7.0 (L. infantum) 
     Serological (IFAT, 1:80) Serum 19.0 (L. infantum) 

     Molecular (qPCR, kDNA) Whole blood 5.0 (L. infantum) 

 (Villanueva‐Saz et al., 2021) 2020 F. catus (stray) 114 Serological (ELISA, 13 EU) Serum 16.7 (L. infantum) 
 (Solano-Gallego et al., 2007) na F. catus (domestic/stray) 445 Serological (ELISA-IgG, 53 

EU) 

Serum 5.3 (L. infantum) 

     Serological (ELISA-Prot A, 
44 EU) 

Serum 6.3 (L. infantum) 

 (Alcover et al., 2020) na F. catus (wild) 1 Molecular (qPCR, kDNA) Liver 100 (Leishmania spp.) 

      Skin 100 (Leishmania spp.) 
      Spleen 100 (Leishmania spp.) 

 (Miró et al., 2011) na F. catus (breeding) 20 Serological (IFAT, 1:100) Serum 15.0 (L. infantum) 

 (Moreno et al., 2014) na F. catus (stray) 43 Serological (IFAT, 1:50) Serum 4.3 (L. infantum) 
 (Montoya et al., 2018b) na F. catus (stray)  Serological (IFAT, 1:100) Serum 0 

Thailand (Sukmee et al., 2008) 2006 F. catus 15 Serological (DAT; 1:100) Serum 60 (Leishmania spp.) 

    9b Molecular (PCR, ITS1) Whole blood 0 
     Molecular (PCR, kDNA) Whole blood 0 

 (Junsiri et al., 2017) 2013 F. catus (domestic) 250 Serological (ELISA, 0.2) Serum 5.6 (L. infantum) 
     Molecular (PCR, kDNA) Whole blood 0 

 (Kongkaew et al., 2007) na na 5 Serological (DAT, 1:100) Serum 20 (Leishmania spp.) 

    1b Molecular (PCR) Whole blood 0 

Turkey (Dincer et al., 2015) 2013 F. catus (domestic/shelter) 22 Molecular (nPCR, kDNA) Whole blood 4.5 (L. infantum) 
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 (Karakuş et al., 2019) 2014 F. catus (stray) 5 Molecular (nPCR, SSU) Conjunctival swab 0 
  2015  8 Molecular (qPCR, ITS1) Conjunctival swab 12.5 (L. infantum) 

  2016  6 Molecular (qPCR, ITS1) Conjunctival swab 0 

 (Dincer et al., 2016) 2015 F. catus (domestic/shelter) 50 Molecular (nPCR, kDNA) na 0 
 (Dinçer et al., 20121) na F. catus (domestic) 1 Serological (IFAT) Serum 0 

 (Paşa et al., 2015) na F. catus (domestic) 147 Molecular (qPCR, ITS1) Whole blood 2.7 (L. major) 

       8.8 (L. tropica) 
     Molecular (qPCR, hsp70) Whole blood 2.0 (L. major) 

       2.7 (L. tropica) 

       2.7 (Leishmania spp.) 
 (Can et al., 2016) na F. catus (shelter) 1101 Serological (ELISA) Serum 10.8 

     Serological (IFAT, 1:40) Serum 15.2 

     Molecular (qPCR, ITS1) Whole blood 0.1 (L. tropica) 
     Molecular (nPCR, kDNA) Whole blood 0.1 (L. infantum) 

       0.5 (L. tropica) 

UK (Persichetti et al., 2017) 2013 F. catus 64 Serological (ELISA, 40 EU) Serum 1.6 (L. infantum) 
     Serological (IFAT, 1:80) Serum 0 

     Serological (WB) Serum 3.1 (L. infantum) 

Uzbekistan (Kovalenko et al., 2011) na F. catus 1 Serological (ELISA) Serum 0 
a Species defined according to the original study; b previously identified as positive by another test; c DNA extracted from the sediment obtained after centrifugation of the blood samples; 
d Seropositive for L. infantum and/or for feline retrovirus (feline leukemia virus and/or feline immunodeficiency virus); e not specified; f putative hybrid; g cats eligible for blood donation. 

Abbreviations: COII, cytochrome oxidase II; cytB, cytochrome b; DAT, direct agglutination test; ELISA, enzyme-linked immunosorbent assay; EU, ELISA units; F., Felis; g6pdh, glucose-

6-phosphate dehydrogenase; HRMPCR, high resolution melt PCR; hsp70, heat-shock protein 70; IFAT, immunofluorescence antibody test; IgG, Immunoglobulin G; IHA, indirect 

hemagglutination; ITS, internal transcriber spacers; ITS1, internal transcriber spacer 1; ITS2, internal transcriber spacer 2; kDNA, kinetoplast minicircle DNA; L., Leishmania; na, not 

available; nPCR, nested-PCR; PCR, one-step PCR (polymerase chain reaction); Prot A, Protein A; qPCR, real-time PCR; RFLP, restriction fragment length polymorphism; s.l., sensu lato; 

SSU, small subunit ribosomal DNA; WB, western blot. 
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Table 5. Epidemiological studies on the frequency of Leishmania infection in cats (Felis spp.) in the New World. 

Country Study Sampling 

year 

Species (origin) No. 

tested 

Method (test, cut-off/target 

gene) 

Sample % Positive (species)a 

Brazil (de Matos et al., 2018) 2004-2014 F. catus 679 Serological (ELISA) Serum 43.4 (Leishmania spp.) 

     Serological (IFAT, 1:40) Serum 15.8 (Leishmania spp.) 

 (Figueiredo et al., 2009) 2005 F. catus (domestic) 43 Serological (ELISA) Serum 2.4 (Leishmania spp.) 
     Serological (IFAT, 1:40) Serum 0.0 

 (Coelho et al., 2011a) 2007-2009 F. catus 70 Serological (ELISA) Serum 4.2 (Leishmania spp.) 

     Serological (IFAT, 1:40) Serum 0.0 (Leishmania spp.) 
 (Vides et al., 2011) 2008-2009 F. catus 55 Parasitological (cytology) Bone marrow  12.7 (Leishmania spp.) 

      Liver  3.6 (Leishmania spp.) 

      Lymph node 5.5 (Leishmania spp.) 
      Spleen 7.3 (Leishmania spp.) 

     Parasitological (IHC) Skin 16.4 (Leishmania spp.) 

     Serological (ELISA, 0.277) Serum 25.4 (Leishmania spp.) 
     Serological (IFAT, 1:40) Serum 10.9 (Leishmania spp. 

    3 Molecular (qPCR, gp63) Whole blood 100.0 (L. chagasi) 

 (Cardia et al., 2013) 2010 F. catus (shelter/stray) 386 Serological (IFAT, 1:40) Serum 0.5 (Leishmania spp.) 
 (Silva et al., 2014) 2010 F. catus (domestic/shelter) 153 Serological (ELISA) Serum 3.9 (L. infantum) 

 (de Sousa Oliveira et al., 

2015) 

2012 F. catus 52 Molecular (PCR, kDNA) Conjunctival swab 13.5 (Leishmania spp.) 

 (de Sousa et al., 2014) 2013 F. catus (domestic/stray) 151 Serological (IFAT, 1:40) Serum 6.6 (L. infantum) 

 (Metzdorf et al., 2017) 2013-2014 F. catus (domestic/shelter) 100 Parasitological (cytology) Bone marrow  4.0 (Leishmania spp.) 

      Lymph node  4.0 (Leishmania spp.) 
      Whole blood 4.0 (Leishmania spp.) 

     Molecular (PCR-RFLP, 

kDNA) 

Bone marrow  6.0 (L. infantum) 

      Lymph node  3.0 (L. infantum) 

      Whole blood 4.0 (L. infantum) 

 (Leonel et al., 2020) 2014 F. catus (shelter) 94 Serological (ELISA) Serum 31.9 (Leishmania spp.) 
     Serological (IFAT, 1:40) Serum 29.8 (Leishmania spp.) 

     Molecular (PCR, kDNA) Conjunctival swab 0.0 

      Whole blood 0.0 
 (Marcondes et al., 2018) 2014-2015 F. catus (domestic/shelter) 50b Parasitological (cytology) Bone marrow 14.0 (Leishmania spp.) 

     Molecular (qPCR, kDNA) Bone marrow 86.0 (L. infantum) 

      Whole blood 72.0 (L. infantum) 
 (Rocha et al., 2019) 2016-2017 F. catus (domestic) 105 Serological (IFAT, 1:40) Serum 30.5 (L. infantum) 

     Molecular (PCR, CH1)  Whole blood 2.9 (L. infantum) 

     Molecular (PCR, ITS1)  Whole blood 5.7 (L. infantum) 
 (Pedrassani et al., 2019) 2017 F. catus (domestic) 30 Serological (IFAT, 1:80) Serum 6.6 (L. infantum) 

     Molecular (PCR, kDNA) Whole blood 0.0 

 (Berenguer et al., 2020) 2017 F. catus (domestic) 128 Molecular (PCR, kDNA) Conjunctival swab 0.0 
      Whole blood 0.8 (L. infantum) 

    3c Parasitological (cytology) Lymph node 33.3 (Leishmania ssp.) 
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     Molecular (PCR, kDNA) Lymph node 33.3 (L. infantum) 
 (Bezerra et al., 2019) 2017-2018 F. catus (domestic) 91 Serological (IFAT, 1:40) Serum 15.4 (Leishmania spp.) 

     Molecular (PCR, kDNA) Whole blood 0.0 

 (da Silva et al., 2008) na F. catus (domestic) 8 Serological (IFAT, 1:40) Serum 25.0 (Leishmania spp.) 
    3 Molecular (multiplex PCR, 

kDNA) 

Whole blood 66.7 (Leishmania spp.) 

    2b Molecular (DB) Whole blood 100 (L. chagasi) 
 (Bresciani et al., 2010) na F. catus (domestic) 283 Parasitological (cytology) Lymph node 0.7 (Leishmania spp.) 

     Serological (IFAT, 1:40) Serum 0.0 

 (da Silveira Neto et al., 2011) na F. catus (shelter) 130 Serological (CAG-ELISA, 
0.449) 

Serum 23.0 (Leishmania spp.) 

     Serological (FML-ELISA, 

0.215) 

Serum 13.3 (Leishmania spp.) 

     Serological (rK39-ELISA, 

0.347) 

Serum 15.9 (Leishmania spp.) 

 (Coelho et al., 2011b) na F. catus (domestic) 52 Parasitological (cytology) Bone marrow 0.0 
      Lymph node 3.8 (Leishmania spp.) 

      Spleen 0.0 

     Molecular (PCR, kDNA) Bone marrow 0.0 
      Lymph node 3.8 (L. chagasi) 

      Spleen 1.9 (L. chagasi) 

 (Sobrinho et al., 2012) na F. catus (shelter/stray) 302 Parasitological (Cytology) Bone marrow 7.0 (Leishmania spp.) 
      Lymph node 7.9 (Leishmania spp.) 

     Serological (ELISA, 0.301) Serum 13.0 (Leishmania spp.) 

     Serological (IFAT, 1:40) Serum 4.6 (Leishmania spp.) 
    5b Molecular (qPCR, gp63) Whole blood 100 (L. infantum) 

 (de Morais et al., 2013) na F. catus (domestic) 5 Molecular (qPCR, kDNA) Whole blood 80.0 (L. infantum) 

     Molecular (PCR, kDNA) Whole blood 80.0 (L. infantum) 
 (Braga et al., 2014) na F. catus (domestic) 50 Serological (IFAT, 1:40) Serum 4.0 (Leishmania spp.) 

 (Braga, Langoni & Lucheis, 

2014) 

na F. catus  100 Parasitological (culture) Whole blood 2.0 (Leishmania spp.) 

     Serological (IFAT, 1:40) Serum 15.0 (Leishmania spp.) 

     Molecular, PCR, kDNA) Whole blood 0.0 

 (Oliveira et al., 2015) na F. catus (domestic) 443 Serological (DAT, 1:40) Serum 5.6 (Leishmania spp.) 
     Serological (IFAT, 1:40) Serum 4.1 (Leishmania spp.) 

 (Benassi et al., 2017) na F. catus (domestic/stray) 108 Molecular (PCR, kDNA) Conjunctival swab 1.9 (Leishmania spp.) 

      Whole blood 0.0 

     Molecular (qPCR, kDNA) Conjunctival swab 1.9 (Leishmania spp.) 

      Whole blood 0.0 
    2b Molecular (PCR, ITS1) Conjunctival swab 50.0 (L. infantum) 

 (Coura et al., 2018) na F. catus (shelter) 100 Parasitological (cytology) Bone marrow 0.0 

     Parasitological (culture) Bone marrow 0.0 
     Serological (IFAT, 1:40) Serum 54.0 (Leishmania spp.) 

    54b Molecular (PCR, kDNA) Bone marrow/skin 0.0 

 (da Costa-Val et al., 2020) na F. catus (domestic) 64 Serological (ELISA, 0.955) Serum 29.8 (Leishmania spp.)  
    64 Molecular (PCR, kDNA) Conjunctival swab 6.3 (Leishmania spp.) 
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    64 Molecular (PCR, kDNA) Oral swab 4.7 (Leishmania spp.) 
    8b Molecular (PCR-RFLP, ITS1) Conjunctival swab 12.5 (L. infantum) 

      Oral swab 37.5 (L. infantum) 

       12.5 (L. braziliensis) 

Honduras (Mccown & Grzeszak, 2010) na F. catus (stray) 12 Serological (IFAT, 1:32) Serum 25.0 (L. donovani) 

Mexico (Longoni et al., 2012) 2008-2009 F. catus (stray) 95 Serological (ELISA-H) Serum 5.3 (L. baziliensis) 

       13.7 (L. infantum) 

       1.1 (L. mexicana) 

     Serological (ELISA-SODe) Serum 11.6 (L. baziliensis) 

       22.1 (L. infantum) 
       10.5 (L. mexicana) 

     Serological (WB) Serum 10.5 (L. baziliensis) 

       20.0 (L. infantum) 
       10.5 (L. mexicana) 

Venezuela (Viettri et al., 2018) na na 5 Molecular (nested-PCR, ITS1) Blood on filter paper 20.0 (Leishmania spp.) 

     Molecular (nPCR, SSU-
rDNA) 

Blood on filter paper 20.0 (Leishmania spp.) 

 (Rivas et al., 2018)  F. catus (domestic/stray) 6 Parasitological (cytology) Skin lesions 66.7 (Leishmania spp.) 

    5 Parastiological (histology) Skin lesions 80.0 (Leishmania spp.) 

    5 Parasitological (IHC) Skin lesions 100 (Leishmania spp.) 

    30 Serological (ELISA, 15.3 EU) Serum 6.7 (L. braziliensis) 

     Serological (ELISA, 15.3 EU) Serum 6.7 (L. infantum) 
     Serological (WB) Serum 33.3 (L. braziliensis) 

     Serological (WB) Serum 33.3 (L. infantum) 

    31 Molecular (qPCR, kDNA) Whole blood 9.7 (Leishmania spp.) 
    5 Molecular (qPCR, kDNA) Skin lesions 100 (Leishmania spp.) 

     Molecular (qPCR, ITS1) Skin lesions 40.0 (L. mexicana) 

    2b Molecular (PCR-RFLP, ITS1) Skin lesions 50.0 (L. mexicana) 
 (Paniz Mondolfi et al., 2019) na na 12 Molecular (nPCR, cytB) Skin lesions 83.3 (L. mexicana) 

       16.7 (Leishmania spp.) 
a Species defined according to the original study; b previously identified as positive by another test, c cats with lymphadenomegaly. 

Abbreviations: CAG, crude antigen; CH1, chitinase; cytB, cytochrome b; DAT, direct agglutination test; DB, dot blot; ELISA, enzyme-linked immunosorbent assay; EU, ELISA units; F., 

Felis; FML, fucose–mannose ligand; gp63, metalloprotease gp63; H, total parasite extract; IFAT, immunofluorescence antibody test; IHC, immunohistochemistry; ITS1, internal transcriber 

spacer 1; kDNA, kinetoplast minicircle DNA; L., Leishmania; na, not available; nPCR, nested-PCR; PCR, one-step PCR (polymerase chain reaction); qPCR, real time-PCR; RFLP, 

restriction fragment length polymorphism; rK39, recombinant K39; SODe - superoxide dismutase excreted; SSU, small subunit ribosomal DNA; WB, western blot. 
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Specific antibodies or Leishmania DNA have been mostly detected in domestic 

cats living in endemic areas of South America, the Mediterranean Region and western 

Asia. Some studies also suggest that wild cats from Spain (Del Río et al., 2014; Risueño 

et al., 2018) and sand cats (Felis margarita) from Saudi Arabia (Morsy, Aldakhil & el-

Bahrawy, 1999) are frequently exposed to Leishmania infection.  

In non-endemic countries, as seen in dogs, feline Leishmania infection has been 

particularly associated with cats travelling to or rehomed from southern Europe and Brazil 

(Rüfenacht et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Maia & 

Cardoso, 2015; Schäfer et al., 2021). Also, antibodies to Leishmania were detected in 

three domestic cats living in the United Kingdom, but in all cases, the travel and clinical 

history were unknown (Persichetti et al., 2017). 

Although blood transfusion is regarded as a probable non-vector-borne 

transmission pathway of Leishmania in cats, no feline infection cases by this parasite 

(screened by PCR) were identified among eligible blood donors (Marenzoni et al., 2018; 

Mesa-Sanchez et al., 2020). 

Several factors have been highlighted as possibly associated with Leishmania 

infection in cats based on univariate analysis, including old age (Akhtardanesh et al., 

2017; Junsiri et al., 2017; Morganti et al., 2019; Asgari et al., 2020), male sex (Cardoso 

et al., 2010; Sobrinho et al., 2012; Montoya et al., 2018a; Asgari et al., 2020; Latrofa et 

al., 2020), non-neutered status (Otranto et al., 2017; Latrofa et al., 2020), presence of 

clinical or clinicopathological abnormalities (such as crusting skin lesions, leukopaenia, 

increase in alanine aminotransferase [ALT] levels, lymphadenomegaly, lymphocytosis 

and neutrophilia) (Ayllón et al., 2008; Sherry et al., 2011; Sobrinho et al., 2012; Spada 

et al., 2013; Akhtardanesh et al., 2017; Otranto et al., 2017; Latrofa et al., 2020), 

concomitant infections (such as feline coronavirus [FCoV], feline immunodeficiency 

virus [FIV], feline leukaemia virus [FeLV] and Toxoplasma gondii) (Sherry et al., 2011; 

Sobrinho et al., 2012; Spada et al., 2013, 2016; Montoya et al., 2018a), geographical 

area/local environment (such as altitude and rural areas) (Nasereddin, Salant & Abdeen, 

2008; Cardoso et al., 2010; Asgari et al., 2020), lifestyle (such as access to the outdoors) 

(Rocha et al., 2019) and cohabitation with dogs (Rocha et al., 2019; Morelli et al., 2020). 

Epidemiological studies using logistic regression models (a powerful analytic research 
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tool that avoids confounding effects) have evidenced that being adult (Iatta et al., 2019; 

Akhtardanesh et al., 2020), males (Iatta et al., 2019; Akhtardanesh et al., 2020), non-

neutered (Iatta et al., 2019), or with concomitant infections by FeLV (Martín-Sánchez et 

al., 2007; Sherry et al., 2011; Spada et al., 2013; Akhtardanesh et al., 2020), FIV (Iatta 

et al., 2019; Akhtardanesh et al., 2020), “Candidatus Mycoplasma turicensis” or 

Hepatozoon spp. (Attipa et al., 2017b) have an increased risk for Leishmania infection. 

5.5. Immunopathogenesis 

In dogs, several studies have provided evidence demonstrating that the course of 

L. infantum infection is directly linked to the immune response. Development of 

progressive disease in susceptible dogs is typically characterised by high antibody levels 

and an impaired ability to mount a strong and effective cell-mediated response 

characterised by the expression of interferon-gamma (IFN-γ), tumour necrosis factor-

alpha (TNF-α), and interleukin (IL)-2 (reviewed by Maia and Campino, 2018). However, 

very limited data are available on the pathogenesis of leishmaniosis in cats. Experimental 

studies involving intravenous/intraperitoneal inoculation of axenic promastigotes suggest 

that cats are hypothetically less susceptible to developing disease by L. infantum when 

compared to dogs, despite also presenting a long-lasting parasitaemia (Kirkpatrick, 

Farrell & Goldschmidt, 1984; Akhtardanesh et al., 2018). Recently, Priolo et al. (2019) 

demonstrated that cats naturally exposed to L. infantum infection produce IFN-γ 

following ex vivo blood stimulation with parasite antigens, as reported in dogs (Solano-

Gallego et al., 2016). This finding suggests that Leishmania parasites can elicit a 

protective cell-mediated immune response in cats. The only study assessing the role of 

the complement system in feline L. infantum infection showed that, contrary to humans 

and dogs, cat’s proteins are consumed by parasites in the lectin pathway, which 

hypothetically may justify their low predisposition to develop clinical disease (Tirado et 

al., 2021). 
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5.6. Clinical presentation and clinicopathological findings 

Feline leishmaniosis caused by L. infantum is mostly reported in adult (median 

age: 7 years; range: 2-21 years) domestic-short hair cats living in or travelling to endemic 

countries of southern Europe and Brazil. The disease has a chronic course and may be 

manifested by a plethora of clinical signs and/or clinicopathological abnormalities, which 

are summarised in Tables 6 and 7, respectively. About one-third of cats with 

leishmaniosis showed concomitant infections/diseases including FIV (Hervás et al., 

2001; Poli et al., 2002; Pennisi et al., 2004; Grevot et al., 2005; Pocholle et al., 2012; 

Pimenta et al., 2015; Fernandez-Gallego et al., 2020), FeLV (Poli et al., 2002; Grevot et 

al., 2005; Pereira et al., 2019c), FCoV (Pennisi et al., 2004; Savani et al., 2004), 

Toxoplasma gondii (Pennisi et al., 2004), Bartonella henselae (Pennisi et al., 2004), 

diabetes mellitus (Leiva et al., 2005), pemphigus foliaceus (Rüfenacht et al., 2005), 

neoplasia (Grevot et al., 2005; Pocholle et al., 2012; Maia et al., 2015b) and/or were 

under immunosuppressive therapies at the time of diagnosis (Fernandez-Gallego et al., 

2020). 

Dermatological disorders were found in about 75 % of reported clinical cases. 

Although uncommon, they may occur in the apparent absence of other obvious signs of 

disease (Fernandez-Gallego et al., 2020). Nodular dermatitis seems to be the main 

cutaneous lesion associated with FeL and is typically found on the eyelids (Hervás et al., 

2001; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et al., 2015; Leal et 

al., 2018; Pereira et al., 2019c; Fernandez-Gallego et al., 2020; Silva et al., 2020). 

Erosive/ulcerative dermatitis is another clinical finding suggestive of FeL and has been 

identified on the head (Hervás et al., 2001; Grevot et al., 2005; Coelho et al., 2010; 

Pocholle et al., 2012; Maia et al., 2015b; Basso et al., 2016; Brianti et al., 2019; Headley 

et al., 2019; Fernandez-Gallego et al., 2020), extremities (Rüfenacht et al., 2005; Coelho 

et al., 2010; Basso et al., 2016; Fernandez-Gallego et al., 2020; Silva et al., 2020), trunk 

(Pocholle et al., 2012; Fernandez-Gallego et al., 2020), and over bony prominences 

(Hervás et al., 1999). Although less frequent, some cats with clinical leishmaniosis 

showed onychogryphosis (da Silva et al., 2010; Headley et al., 2019), a rather specific 

sign of canine leishmaniosis (CanL) (Maia & Campino, 2018). Generalised or focal 

lymphadenopathy appears as a common finding in FeL (Hervás et al., 1999, 2001; Poli 

et al., 2002; Savani et al., 2004; Pennisi et al., 2004; Maroli et al., 2007; da Silva et al., 
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2010; Brianti et al., 2019; Fernandez-Gallego et al., 2020; Silva et al., 2020) as well as 

non-specific signs including lethargy/depression (Poli et al., 2002; Pennisi et al., 2004; 

Leiva et al., 2005; Rüfenacht et al., 2005; Marcos et al., 2009; Pocholle et al., 2012; 

Richter, Schaarschmidt-Kiener & Krudewig, 2014; Fernandez-Gallego et al., 2020), 

anorexia/inappetence (Pennisi et al., 2004; Rüfenacht et al., 2005; Marcos et al., 2009; 

Fernandez-Gallego et al., 2020), and weigh loss (Ozon et al., 1998; Hervás et al., 1999; 

Pennisi et al., 2004; Savani et al., 2004; da Silva et al., 2010; Fernandez-Gallego et al., 

2020; Silva et al., 2020). 

Approximately one-fourth of cats with clinical leishmaniosis showed uveitis 

(Hervás et al., 2001; Pennisi et al., 2004; Verneuil, 2013; Richter, Schaarschmidt-Kiener 

& Krudewig, 2014; Pimenta et al., 2015; Leal et al., 2018; Pereira et al., 2019c; 

Fernandez-Gallego et al., 2020), stomatitis (Hervás et al., 2001; Leiva et al., 2005; Maroli 

et al., 2007; Verneuil, 2013; Maia et al., 2015b; Migliazzo et al., 2015; Fernandez-

Gallego et al., 2020) and/or cardiorespiratory signs such as dyspnoea/tachypnoea, pallor, 

abnormal respiratory sounds, nasal discharge and sneezing (Hervás et al., 2001; Pennisi 

et al., 2004; Marcos et al., 2009; da Silva et al., 2010; Richter et al., 2014; Maia et al., 

2015b; Migliazzo et al., 2015; Basso et al., 2016; Leal et al., 2018; Headley et al., 2019; 

Altuzarra et al., 2020; Silva et al., 2020). Musculoskeletal (i.e., muscle atrophy; da Silva 

et al., 2010), neurological (i.e., ataxia; Fernandez-Gallego et al., 2020), and urogenital 

(i.e., vaginal bleeding; Maia et al., 2015) signs were also occasionally described, but in 

some cases, they appear to be secondary to concomitant diseases (Maia et al., 2015b; 

Fernandez-Gallego et al., 2020). Other clinical manifestations rarely found and which 

may represent a further diagnostic challenge to veterinarians include: depigmentation 

(Rüfenacht et al., 2005; Pocholle et al., 2012), cutaneous bloody cyst (Pennisi et al., 

2004), pruritus (Rüfenacht et al., 2005; Pocholle et al., 2012), footpad hyperkeratosis 

(Fernandez-Gallego et al., 2020), hepatomegaly (Pennisi et al., 2004; Leiva et al., 2005), 

splenomegaly (Poli et al., 2002; Leal et al., 2018) , bruising (Maia et al., 2015), mastitis 

(Pereira et al., 2019c), chorioretinitis (Pennisi et al., 2004; Fernandez-Gallego et al., 

2020), corneal opacification (Hervás et al., 2001; Pimenta et al., 2015), glaucoma (Leiva 

et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014), blepharitis (Brianti et 

al., 2019), chemosis (Fernandez-Gallego et al., 2020), ocular masses (Hervás et al., 

2001), glossitis (Fernandez-Gallego et al., 2020), jaundice (Hervás et al., 1999; 
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Fernandez-Gallego et al., 2020), abdominal distension (Leiva et al., 2005), and 

vomiting/diarrhoea (Hervás et al., 1999; Fernandez-Gallego et al., 2020). 
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Table 6. Frequency of clinical signs in domestic cats (Felis catus) with clinical leishmaniosis caused by Leishmania infantum. 

Historical or physical signs  Frequency (%)a Reference 

Dermatological   
Nodules 38 (Poli et al., 2002; Savani et al., 2004; Rüfenacht et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et al., 2015; 

Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Brianti et al., 2019; Headley et al., 2019; Pereira et al., 2019c; Fernandez-

Gallego et al., 2020; Silva et al., 2020) 
Erosive/ulcerative skin disease 37 (Ozon et al., 1998; Hervás et al., 1999; Hervás et al., 2001; Pennisi et al., 2004; Grevot et al., 2005; Rüfenacht et al., 2005; Coelho et 

al., 2010; Pocholle et al., 2012; Maia et al., 2015b; Basso et al., 2016; Brianti et al., 2019; Headley et al., 2019; Fernandez-Gallego et 

al., 2020; Silva et al., 2020) 
Scaling/crusting 21 (Ozon et al., 1998; Hervás et al., 1999; Pennisi et al., 2004; Rüfenacht et al., 2005; Coelho et al., 2010; da Silva et al., 2010; Headley 

et al., 2019; Fernandez-Gallego et al., 2020) 

Alopecia 12 (Hervás et al., 1999; Pennisi et al., 2004; Rüfenacht et al., 2005; Fernandez-Gallego et al., 2020) 
Onychogryphosis 6 (da Silva et al., 2010; Headley et al., 2019) 

Bloody cyst 4 (Pennisi et al., 2004) 

Depigmentation 4 (Rüfenacht et al., 2005; Pocholle et al., 2012) 
Pruritus 4 (Rüfenacht et al., 2005; Pocholle et al., 2012) 

Pustule/papule 4 (Rüfenacht et al., 2005; Pocholle et al., 2012) 

Footpad hyperkeratosis 2 (Fernandez-Gallego et al., 2020) 

General/miscellaneous   
Lymphadenomegaly 27 (Hervás et al., 1999, 2001; Poli et al., 2002; Pennisi et al., 2004; Savani et al., 2004; Maroli et al., 2007; da Silva et al., 2010; Brianti 

et al., 2019; Fernandez-Gallego et al., 2020; Silva et al., 2020) 

Lethargy/depression 25 (Poli et al., 2002; Pennisi et al., 2004; Leiva et al., 2005; Rüfenacht et al., 2005; Marcos et al., 2009; Pocholle et al., 2012; Richter, 

Schaarschmidt-Kiener & Krudewig, 2014; Fernandez-Gallego et al., 2020) 

Anorexia/inappetence 21 (Pennisi et al., 2004; Rüfenacht et al., 2005; Marcos et al., 2009; da Silva et al., 2010; Fernandez-Gallego et al., 2020) 

Weight loss 21 (Ozon et al., 1998; Hervás et al., 1999; Pennisi et al., 2004; Savani et al., 2004; da Silva et al., 2010; Fernandez-Gallego et al., 2020; 
Silva et al., 2020) 

Hyperthermia 12 (Leiva et al., 2005; Basso et al., 2016; Headley et al., 2019; Fernandez-Gallego et al., 2020) 
Hepatomegaly 4 (Pennisi et al., 2004; Leiva et al., 2005) 

Splenomegaly 4 (Poli et al., 2002; Leal et al., 2018) 

Bruising 2 (Maia et al., 2015b) 
Mastitis 2 (Pereira et al., 2019c) 

Ocular   

Uveitis 27 (Hervás et al., 2001; Pennisi et al., 2004; Verneuil, 2013; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et al., 2015; 

Leal et al., 2018; Pereira et al., 2019c; Fernandez-Gallego et al., 2020) 
Corneal oedema 10 (Hervás et al., 2001; Pimenta et al., 2015; Fernandez-Gallego et al., 2020) 

Conjunctivitis 8 (Migliazzo et al., 2015; Brianti et al., 2019; Fernandez-Gallego et al., 2020) 

Chorioretinitis 4 (Pennisi et al., 2004; Fernandez-Gallego et al., 2020) 
Corneal opacification 4 (Hervás et al., 2001; Pimenta et al., 2015) 

Glaucoma 4 (Leiva et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014) 

Keratitis 4 (Richter, Schaarschmidt-Kiener & Krudewig, 2014; Fernandez-Gallego et al., 2020) 
Blepharitis 2 (Brianti et al., 2019) 

Chemosis 2 (Fernandez-Gallego et al., 2020) 

Masse 2 (Hervás et al., 2001) 

Gastrointestinal/abdominal   
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Stomatitis 21 (Hervás et al., 2001; Leiva et al., 2005; Maroli et al., 2007; Verneuil, 2013; Migliazzo et al., 2015; Maia et al., 2015b; Fernandez-
Gallego et al., 2020) 

Glossitis 4 (Fernandez-Gallego et al., 2020) 

Jaundice 4 (Hervás et al., 1999; Fernandez-Gallego et al., 2020) 
Vomiting 4 (Hervás et al., 1999; Fernandez-Gallego et al., 2020) 

Abdominal distension 2 (Leiva et al., 2005) 

Diarrhoea 2 (Fernandez-Gallego et al., 2020) 

Cardiorespiratory   
Dispnoea/tachypnoea 12 (da Silva et al., 2010; Basso et al., 2016; Leal et al., 2018; Headley et al., 2019; Silva et al., 2020) 

Pallor 10 (Hervás et al., 2001; Pennisi et al., 2004; Marcos et al., 2009; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Maia et al., 2015b) 

Abnormal respiratory sounds 4 (Leal et al., 2018; Altuzarra et al., 2020) 
Nasal discharge 4 (Migliazzo et al., 2015; Altuzarra et al., 2020) 

Sneezing 2 (Leal et al., 2018) 

Musculoskeletal   
Muscle atrophy 2 (da Silva et al., 2010) 

Neurological   

Ataxia 2 (Fernandez-Gallego et al., 2020) 

Urogenital   
Vaginal bleeding 2 (Maia et al., 2015b) 

a n = 52. 
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Most consistent laboratory abnormalities found in FeL cases include anaemia 

(generally of the normochromic, normocytic type) (Hervás et al., 1999; Pennisi et al., 

2004; Marcos et al., 2009; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et 

al., 2015; Pereira et al., 2019c; Fernandez-Gallego et al., 2020) and hyperproteinaemia 

with hypergammaglobulinaemia (Ozon et al., 1998; Herv et al., 1999; Pennisi et al., 

2004; Poli et al., 2002; Leiva et al., 2005; Marcos et al., 2009; Richter et al., 2014; Basso 

et al., 2016; Leal et al., 2018; Brianti et al., 2019; Pereira et al., 2019c; Altuzarra et al., 

2020; Fernandez-Gallego et al., 2020). The latter was detected in more than 80 % of sick 

cats and should be investigated as a possible biomarker of FeL. Leukocytosis (Ozon et 

al., 1998; da Silva et al., 2010; Fernandez-Gallego et al., 2020) and leukopaenia (Pennisi 

et al., 2004; Rüfenacht et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014) 

are inconsistent findings, whereas thrombocytopenia (Pennisi et al., 2004; Marcos et al., 

2009; Richter et al., 2014; Pimenta et al., 2015; Basso et al., 2016; Pereira et al., 2019c) 

and azotaemia (Pennisi et al., 2004; Leiva et al., 2005; Marcos et al., 2009; Leal et al., 

2018; da Silva et al., 2010; Fernandez-Gallego et al., 2020) have been frequently 

reported. About a quarter of the sick cats presented proteinuria (Marcos et al., 2009; Leal 

et al., 2018; Fernandez-Gallego et al., 2020), suggesting a possible association between 

FeL and kidney disease as described in dogs. Recently, Chatzis et al. (2020) observed that 

cats infected with Leishmania parasites had higher concentrations of inorganic 

phosphorus than non-infected cats, reinforcing this assumption. Mild increases of liver 

enzyme activities are also described (Fernandez-Gallego et al., 2020), but less frequently 

than in cases of CanL (Maia & Campino, 2018). 
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Table 7. Frequency of clinicopathological abnormalities in domestic cats (Felis catus) with leishmaniosis caused by Leishmania infantum. 

Parameter Frequency (%)a Reference 

Hemogram   
Anaemia 31 (Hervás et al., 1999; Pennisi et al., 2004; Marcos et al., 2009; Richter, Schaarschmidt-Kiener & Krudewig, 

2014; Pimenta et al., 2015; Pereira et al., 2019c; Fernandez-Gallego et al., 2020) 

Neutrophilia 19 (Poli et al., 2002; Leiva et al., 2005; da Silva et al., 2010; Verneuil, 2013; Fernandez-Gallego et al., 2020; Silva 
et al., 2020) 

Thrombocytopenia 17 (Pennisi et al., 2004; Marcos et al., 2009; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et al., 

2015; Basso et al., 2016; Pereira et al., 2019c) 
Leukocytosis 10 (Ozon et al., 1998; da Silva et al., 2010; Fernandez-Gallego et al., 2020) 

Leukopaenia 10 (Pennisi et al., 2004; Rüfenacht et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014) 

Eosinophilia 7 (Ozon et al., 1998; Hervás et al., 1999; Altuzarra et al., 2020) 
Neutropaenia 5 (Marcos et al., 2009; Fernandez-Gallego et al., 2020) 

Lymphopaenia 2 (Rüfenacht et al., 2005) 

Monocytosis 2 (Leiva et al., 2005) 
Blood chemistry   

Hyperproteinaemia 36 (Ozon et al., 1998; Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Pimenta et al., 2015; Attipa et al., 

2017a; Leal et al., 2018; Pereira et al., 2019c; Brianti et al., 2019; Fernandez-Gallego et al., 2020) 
Hyperglobulinaemia 31 (Pennisi et al., 2004; Leiva et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et al., 2015; 

Brianti et al., 2019; Altuzarra et al., 2020) 

Azotaemia 21 (Pennisi et al., 2004; Leiva et al., 2005; Marcos et al., 2009; da Silva et al., 2010; Leal et al., 2018; Fernandez-
Gallego et al., 2020) 

Hypoalbuminaemia 10 (Hervás et al., 1999; Rüfenacht et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Fernandez-

Gallego et al., 2020) 
Hyperglycaemia 8 (Leiva et al., 2005; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Fernandez-Gallego et al., 2020) 

Bilirubinaemia 5 (Fernandez-Gallego et al., 2020) 

Hyperphosphataemia 3 (Fernandez-Gallego et al., 2020) 
Hypophosphataemia 3 (Fernandez-Gallego et al., 2020) 

Increased alanine aminotransferase 3 (Fernandez-Gallego et al., 2020) 

Increased aspartate transaminase 3  
Increased creatinine kinase 3 (Fernandez-Gallego et al., 2020) 

Protein electrophoresis   

Hypergammaglobulinaemia 84 (Ozon et al., 1998; Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Leiva et al., 2005; Marcos et al., 
2009; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Basso et al., 2016; Leal et al., 2018; Brianti et al., 

2019; Pereira et al., 2019c; Altuzarra et al., 2020; Fernandez-Gallego et al., 2020) 

Increased α2 globulins 13 (Basso et al., 2016; Fernandez-Gallego et al., 2020) 
Hyperbetaglobulinaemia 3 (Hervás et al., 1999) 

Urinalysis   

Proteinuria 25 (Marcos et al., 2009; Leal et al., 2018; Fernandez-Gallego et al., 2020) 
Bilirubinuria 4 (Marcos et al., 2009) 

Glycosuria 4 (Leiva et al., 2005) 
a Hemogram, n = 42; Blood chemistry, n = 39; Serum protein electrophoresis, n = 32; Urianalysis, n = 24. 
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5.7. Diagnosis 

Clinical presentation combined with epidemiological context may lead to 

suspicion of FeL, but for a definitive diagnosis, Leishmania-specific laboratory tests are 

required (Table 8). These include direct tests (cytology, histology, 

immunohistochemistry, culture, and PCR), demonstrating the presence of the parasite or 

its components, and indirect tests (serology) assessing the host’s response to infection. 

Cytology is strongly advised in cats presenting erosive/ulcerative skin disease, 

nodular lesions and/or lymphadenomegaly (Herv et al., 1999; Poli et al., 2002; Savani et 

al., 2004; Coelho et al., 2010; Richter et al., 2014; Maia et al., 2015b; Pimenta et al., 

2015; Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Brianti et al., 2019; 

Headley et al., 2019; Pereira et al., 2019c; Silva et al., 2020). Material for diagnosis can 

be obtained by fine-needle biopsy (with or without aspiration), scraping or imprinting. 

The presence of Leishmania parasites has been demonstrated in cytological examinations 

of feline nodular lesions (Poli et al., 2002; Savani et al., 2004; Richter et al., 2014; Basso 

et al., 2016; Pimenta et al., 2015; Attipa et al., 2017a; Leal et al., 2018; Brianti et al., 

2019; Pereira et al., 2019c; Fernandez-Gallego et al., 2020; Silva et al., 2020), 

erosive/ulcerative lesions (Maia et al., 2015b; Headley et al., 2019; Fernandez-Gallego 

et al., 2020; Silva et al., 2020), whole-blood (Marcos et al., 2009; Metzdorf et al., 2017), 

buffy coat/leucoconcentrate (Martín-Sánchez et al., 2007; Marcos et al., 2009), lymph 

nodes (Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Bresciani et al., 2010; 

Coelho et al., 2010, 2011b; Vides et al., 2011; Sobrinho et al., 2012; Metzdorf et al., 

2017; Berenguer et al., 2020; Fernandez-Gallego et al., 2020; Silva et al., 2020), bone 

marrow (Pennisi et al., 2004; Marcos et al., 2009; Vides et al., 2011; Sobrinho et al., 

2012; Metzdorf et al., 2017; Marcondes et al., 2018; Fernandez-Gallego et al., 2020), 

liver (Vides et al., 2011; Mohebali et al., 2017; Fernandez-Gallego et al., 2020), spleen 

(Vides et al., 2011; Mohebali et al., 2017; Fernandez-Gallego et al., 2020), nasal exudate 

(Migliazzo et al., 2015), corneal impression (Pimenta et al., 2015), and inflammatory 

breast fluid (Pereira et al., 2019c). Cytologic preparations consistent with FeL typically 

have a cell composition characteristic of pyogranulomatous, granulomatous or 

lymphoplasmacytic inflammation (Poli et al., 2002; Headley et al., 2019; Pereira et al., 

2019c). Similar patterns are reported in histological studies on feline paraffin-embedded 

specimens (Poli et al., 2002; Navarro et al., 2010; Migliazzo et al., 2015; Di Mattia et al., 
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2018; Leal et al., 2018; Altuzarra et al., 2020). Nevertheless, compared with cytology, 

histology has the main advantage of providing more detailed diagnostic information on 

the tissue architecture, which allow to determine if parasites are indeed associated with 

lesions (Paltrinieri et al., 2016). Immunohistochemistry may be further performed to 

confirm the presence of Leishmania organisms in biological samples obtained from cats 

(Poli et al., 2002; Navarro et al., 2010; Migliazzo et al., 2015). Based on histological and 

immunohistochemical examinations, it has been observed that this parasite may invade 

several feline organs/tissues such as skin (Ozon et al., 1998; Poli et al., 2002; Grevot et 

al., 2005; Rüfenacht et al., 2005; Attipa et al., 2017a; Rivas et al., 2018; Fernandez-

Gallego et al., 2020; Silva et al., 2020), nasal and oral mucosa (Pennisi et al., 2004; 

Migliazzo et al., 2015; Leal et al., 2018), eyes (Hervás et al., 2001; Fernandez-Gallego 

et al., 2020), nasopharynx (Leal et al., 2018), stomach (Hervás et al., 1999), liver (Hervás 

et al., 1999; Silva et al., 2020), kidneys (Ozon et al., 1998), spleen (Hervás et al., 1999; 

Grevot et al., 2005; Marcos et al., 2009; Maia et al., 2015b; Fernandez-Gallego et al., 

2020; Silva et al., 2020), bone marrow (Ozon et al., 1998; Pimenta et al., 2015; Silva et 

al., 2020), and lymph nodes (Hervás et al., 1999), and may also be associated with 

neoplasia (Grevot et al., 2005; Rüfenacht et al., 2005; Pocholle et al., 2012; Maia et al., 

2015b; Altuzarra et al., 2020). 

Parasite culture is an accurate test allowing conclusive diagnosis of active 

infection. However, this test is not suitable for rapid diagnosis and is restricted to 

specialised laboratories. Parasite culture is a starting point for parasite identification and 

characterisation by isoenzyme electrophoresis (Pratlong et al., 2004). Viable parasites 

have been isolated from whole blood (Pocholle et al., 2012), nodular lesions (Poli et al., 

2002; Basso et al., 2016), liver (Maia et al., 2015b; Silva et al., 2020), spleen (Maia et 

al., 2015b; Silva et al., 2020), lymph nodes (Pennisi et al., 2004; Maroli et al., 2007; Maia 

et al., 2015b; Basso et al., 2016; Silva et al., 2020), and bone marrow (Silva et al., 2020) 

of cats with leishmaniosis. 

Polymerase chain reaction (PCR)-based tests has been allowed the identification 

of Leishmania DNA in several feline samples, including whole blood (Marcos et al., 

2009; Pocholle et al., 2012; Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; 

Brianti et al., 2019; Fernandez-Gallego et al., 2020; Silva et al., 2020), buffy coat (Pereira 

et al., 2019c), conjunctival and oral swabs (Migliazzo et al., 2015; Brianti et al., 2019; da 
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Costa-Val et al., 2020), hair (Urbani et al., 2020), skin (Rüfenacht et al., 2005; da Silva 

et al., 2010; Richter et al., 2014; Maia et al., 2015b; Basso et al., 2016; Fernandez-Gallego 

et al., 2020; Silva et al., 2020), nasal tissue (Leal et al., 2018), liver (Maia et al., 2015b; 

Silva et al., 2020), spleen (Savani et al., 2004; Coelho et al., 2010; da Silva et al., 2010; 

Maia et al., 2015b; Pimenta et al., 2015; Silva et al., 2020; Fernandez-Gallego et al., 

2020), kidneys (da Silva et al., 2010), lymph nodes (Poli et al., 2002; Pennisi et al., 2004; 

Coelho et al., 2010; ; da Silva et al., 2010; Maia et al., 2015b; Migliazzo et al., 2015; 

Pimenta et al., 2015; Silva et al., 2020), bone marrow (da Silva et al., 2010; Richter, 

Schaarschmidt-Kiener & Krudewig, 2014; Pimenta et al., 2015; Silva et al., 2020; 

Fernandez-Gallego et al., 2020), and inflammatory breast fluid (Pereira et al., 2019c). 

Conventional PCR, nested PCR, and real-time PCR (qPCR) targeting kinetoplast 

minicircle DNA (kDNA) or the small subunit ribosomal DNA (SSU-rDNA) multicopy 

genes have been widely used in routine veterinary practise for FeL diagnosis (Pimenta et 

al., 2015; Pereira et al., 2019c; Brianti et al., 2019) as well as in epidemiological studies 

concerning Leishmania infection in cats (Vilhena et al., 2013; Maia et al., 2014; Pereira 

et al., 2020). Nevertheless, two-step PCR when used to amplify stretches of multicopy 

genes has increased the sensitivity of detection and should be preferred for sample testing 

under suboptimal conditions (i.e., where the parasite load tends to be low) such as when 

whole blood is used (Pereira et al., 2020). On the other hand, quantitative qPCR may 

further provide information about the amount of parasite DNA present in the sample 

(Galluzzi et al., 2018). This aspect is particularly relevant for monitoring the efficacy of 

anti-Leishmania treatments (Pocholle et al., 2012; Basso et al., 2016). However, it is 

important to highlight that a PCR positive result may only reflect a transient infection 

and, for this reason, should be carefully interpreted in a clinical context. PCR products 

may be followed subsequently analysed by restriction enzyme digestion (i.e., restriction 

fragment length polymorphism) and/or DNA sequencing for parasite species 

identification (Metzdorf et al., 2017; Pereira et al., 2020).  

The most common serological tests used to detect anti-Leishmania antibodies in 

cats are based on enzyme-linked immunosorbent assay (ELISA) and immunofluorescent 

antibody test (IFAT). The latter is considered as the reference test for the serodiagnosis 

of canine and human leishmaniosis (WHO, 2010; OIE, 2018). Persichetti et al. (2017) 

established 1:80 serum dilution as IFAT cut-off for FeL serodiagnosis, and demonstrated 
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that this test helps to detect subclinical or early Leishmania infections in cats. More 

recently, Iatta et al. (2020) validated IFAT as an accurate test to assess the exposure of 

cats to L. infantum, reporting positive and negative predictive values of 80.7 % and 89.9 

%, respectively. Compared to IFAT, ELISA (cut-off 40 ELISA units) presents a better 

performance for the serodiagnosis of clinical FeL (Persichetti et al., 2017). Western blot 

analysis is mainly intended for research and is rarely available in routine practice. 

However, this test seems to offer the best diagnostic performance (considering an 18 kDa 

band as a marker for positivity) to detect antibodies against L. infantum in cats (Persichetti 

et al., 2017). Direct agglutination test has also occasionally been used in both clinical and 

epidemiological contexts for serological diagnosis of FeL (Pimenta et al., 2015; Asgari 

et al., 2020). Some authors have considered a cut-off value of 1:100 to distinguish 

infected from uninfected cats (Kongkaew et al., 2007; Cardoso et al., 2010; Maia et al., 

2015a; Lopes et al., 2017; Asgari et al., 2020; Neves et al., 2020). Indirect 

hemagglutination was exclusively performed in epidemiological studies in domestic cats 

in Egypt (Michael et al., 1982; Morsy et al., 1988; Morsy & Abou el Seoud, 1994).  

Cats with clinical leishmaniosis tend to present high antibody levels (Richter et 

al., 2014; Maia et al., 2015b; Pimenta et al., 2015; Basso et al., 2016), and specific 

treatment frequently leads to the reduction of anti-Leishmania antibodies (Pennisi et al., 

2004; Richter et al., 2014; Basso et al., 2016; Pereira et al., 2019c). In some cases, an 

increase of antibody titres was associated with clinical relapse. Nevertheless, it is essential 

to emphasise that a positive serological result formally only reflects exposure to 

pathogens and should be interpreted in a clinical context (Paltrinieri et al., 2016).  

In conclusion, the diagnosis of FeL can be a real challenge for veterinarians and 

is seldom considered during the differential diagnosis. Therefore, the algorithm illustrated 

in Figure 8 is proposed for clinically healthy cats used as blood donors or for breeding 

purposes, and for cats with suspected leishmaniosis. 
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Table 8. Common laboratory tests performed for diagnostic of Leishmania infection in domestic cats (Felis catus). 

Type/test Aim Confirmation 

of clinical 

disease 

Confirmation 

of subclinical 

disease 

Preferential sample Advantages Disadvantages Observations 

Parasitological         

Cytology Detection of parasites 
 

+++ + - Bone-marrow (FNB) 
- Lymph node (FNB) 

- Nodular lesions 

(FNB) 
- Erosive/ulcerative 

skin lesions 

(Scraping) 

- Does not require specific laboratory equipment 
- Low cost 

- Rapid 

- High specificity 

-Requires 
experienced 

observers 

- Strictly qualitative 
- Not suitable for 

identification at 

species level 

- Amastigotes can 
be found in both 

intracellular and 

extracellular areas 

        

Histopathology Detection of parasites 

 

+++ + - Skin/ocular lesions 

- Bone marrow 
- Lymph-nodes 

- Spleen 

- Preserves structure and maintains tissue 

pathology 
- High specificity 

- Good sensitivity using IHC  

- Invasive 

- Requires 
experienced 

observers 

- Requires specific 
laboratory 

equipment 

- More laborious 
and time-

consuming 

- IHC is not widely 
available 

- Only qualitative 

- Not suitable for 
identification at the 

species level 

 

        
Parasite 

culture 

Isolation of viable 

parasites 

 

++ + - Biopsy lesions 

- Bone marrow 

- Lymph node 

- Provide parasites for further analysis 

- Confirms active infection 

- High specificity 

- Labour-intensive 

- Restricted to 

specialised 
reference 

laboratories 

- Up to more than 
30 days to provide 

a result 

- Only qualitative 
- Not suitable for 

identification at 

species level 

- Aseptic sampling 

should be ensured 

- Biopsy sample 
must be 

homogenised in 

saline or culture 
medium under 

sterile 

conditions 
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Molecular        
PCR Detection of parasite 

DNA 

+++ +++ - Biopsy lesions 

- Bone marrow 

- Lymph node 

- Allows identification at species level 

- High sensitivity and specificity 

- Transient 

infection cannot be 

excluded 
- Requires specific 

laboratory 

equipment 
- Requires vigilance 

against false-

positive results 
- Only qualitative 

- Expensive 

- Protocols targeting 

multicopy genes are 

preferable for 
diagnosis 

- Nested-PCR has 

more sensitivity 
than conventional 

PCR 

        
qPCR Detection of parasite 

DNA 

+++ +++ - Biopsy lesions 

- Bone marrow 

- Lymph node 

- Allows identification at species level 

- High sensitivity and specificity  

- Quantification of parasite load 
- Reduced cross-contamination probability 

- Valuable for treatment follow-up 

- Qualitative/quantitative 

- Transient 

infection cannot be 

excluded 
- Standardised 

methods 

to parasite load 
quantification may 

not be offered by 

some laboratories. 
- Expensive 

- Protocols targeting 

multicopy genes are 

preferable for 
diagnosis 

        

        
Serological        

ELISA 
Detection of specific 

antibodies 

+++ ++ - Serum 

- Plasma 

- Valuable for treatment follow-up 

- Relatively low cost 
- Qualitative/quantitative 

- Possible cross-

reactivity 
- Difficult to assess 

results at threshold 

of positivity 
- Not suitable for 

unambiguous 

identification at 
species level 

- Established cut-off 

(40 EU) 
 

 
       

IFAT Detection of specific 
antibodies 

++ +++ - Serum 
- Plasma 

- Valuable for treatment follow-up 
- Relatively low cost 

- Qualitative/quantitative 
 

-Requires 
experienced 

observer  
- Subjective 

interpretation 

- Possible cross-
reactivity 

- Not suitable for 

unambiguous 

- Reference method 
for the serodiagnosis 

of human and canine 
leishmanioses 

- Established cut-off 

(1:80) 



CHAPTER 1 

General introduction 
 

49 

identification at 
species level 

        

Western Blot Detection of specific 
antibodies 

+++ +++ - Serum 
- Plasma 

- High sensitivity and specificity - Labour-intensive 
- Expensive 

- Not available in 

routine practice 

- Marker for 
positivity: 18 kDA 
band 

Abbreviations: ELISA, enzyme-linked immunosorbent assay; EU, ELISA units; FNB, fine-needle biopsy; IFAT, immunofluorescence antibody test; IHC, immunohistochemistry, KDa, 

kilodaltons; PCR, conventional/nested polymerase chain reaction; qPCR, real time polymerase chain reaction; WB, western blot. +++, recommended test; ++ suitable test; +, limited test. 
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Figure 8. Proposed diagnostic algorithm for clinically healthy cats used as blood donors or for breeding, and cats with suspected 

leishmaniosis. 
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5.8. Treatment and prognosis 

Treatment should be considered only after confirmation of disease (see section 

6.). Although several treatment regimens have been empirically used for FeL (Table 9), 

no controlled studies about their efficacy and safety have yet been performed. Long-term 

administration of allopurinol as monotherapy is the most common regimen prescribed for 

FeL (Pennisi et al., 2004; Leiva et al., 2005; Rüfenacht et al., 2005; Marcos et al., 2009; 

Pocholle et al., 2012; Richter et al., 2014; Maia et al., 2015b; Migliazzo et al., 2015; 

Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Brianti et 

al., 2019; Pereira et al., 2019c; Altuzarra et al., 2020; Fernandez-Gallego et al., 2020). 

This drug is generally well-tolerated, but possible cases of cutaneous adverse reactions 

(Leal et al., 2018; Brianti et al., 2019), coprostasis (Maia et al., 2015b), and elevated liver 

enzymes (Rüfenacht et al., 2005) have been sporadically reported. Favourable results 

(i.e., clinical cure or improvement of clinical status) with allopurinol as monotherapy 

have been commonly obtained (Pennisi et al., 2004; Leiva et al., 2005; Rüfenacht et al., 

2005; Pocholle et al., 2012; Richter, Schaarschmidt-Kiener & Krudewig, 2014; Migliazzo 

et al., 2015; Pimenta et al., 2015; Attipa et al., 2017a; Altuzarra et al., 2020; Fernandez-

Gallego et al., 2020). Nevertheless, relapse after discontinuation or low-dose 

administration (Pennisi et al., 2004; Leiva et al., 2005; Brianti et al., 2019; Pereira et al., 

2019c) and no or poor response to allopurinol therapy have been occasionally reported, 

even in cats with no apparent history of concomitant infections or immunosuppressive 

therapies (Rüfenacht et al., 2005; Marcos et al., 2009; Basso et al., 2016; Fernandez-

Gallego et al., 2020). Therefore, the combination of meglumine antimoniate and 

allopurinol has been proposed for FeL treatment, appearing to be more effective (Basso 

et al., 2016; Pereira et al., 2019c), but acute kidney injury has already been reported (Leal 

et al., 2018). Although controversial, this drug is suspected of inducing nephrotoxicity in 

dogs (reviewed by Roura et al., 2021). Thus, its use in cats with altered renal function 

should be carefully considered. Meglumine antimoniate plus ketoconazole was used in a 

cat with cutaneous and systemic signs of FeL, resulting in apparent clinical cure (Hervás 

et al., 1999). Miltefosine was recently used as an alternative to meglumine antimoniate 

in an azotemic cat, resulting in rapid clinical improvement (Leal et al., 2018). In this case, 

transient vomiting episodes were reported in the first week of treatment but were managed 

using antiemetics (i.e., maropitant). Nevertheless, Fernandez-Gallego et al. (2020) 
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recently reported a case of FeL with concomitant FIV infection not responsive to 

miltefosine plus allopurinol (combination therapy). Pennisi et al. (2004) reported 

treatment failure in a seropositive cat for FIV, T. gondii and B. henselae suffering from 

leishmaniosis. In this case, three distinct regimens were used (i.e., metronidazole plus 

spiramycin, fluconazole and itraconazole) (Pennisi et al., 2004). In another cat with 

leishmaniosis associated with an invasive squamous cell carcinoma, domperidone was 

used after unsuccessful allopurinol monotherapy, but clinical signs remained after one 

month of treatment (Maia et al., 2015b). The dietary supplement active hexose correlated 

compounds (AHCC) was recently suggested as a possible alternative maintenance 

therapy to allopurinol (Leal et al., 2018). Surgical removal of lesions was also reported 

as an additional therapeutic approach (Hervás et al., 2001; Rüfenacht et al., 2005; Basso 

et al., 2016).  

Like in dogs, Leishmania parasites may persist in treated cats (Pocholle et al., 

2012; Pimenta et al., 2015; Attipa et al., 2017a), suggesting that treatment may lead to 

clinical cure but may not eliminate the infection. 

Overall, FeL has a good prognosis even in cases with underlying viral infections 

(i.e., FIV or FeLV) (Hervás et al., 1999; Pennisi et al., 2004; Rüfenacht et al., 2005; 

Richter et al., 2014; Migliazzo et al., 2015; Pimenta et al., 2015; Basso et al., 2016; Attipa 

et al., 2017a; Leal et al., 2018; Pereira et al., 2019c; Altuzarra et al., 2020; Fernandez-

Gallego et al., 2020). On the other hand, panleukopaenia, acute kidney injury and lack of 

treatment seem to be critical factors associated with poor prognosis (Ozon et al., 1998; 

Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Pimenta et al., 2015; Fernandez-

Gallego et al., 2020).
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Table 9. Treatment regimens used for feline leishmaniosis. 

Type Drug (regimen and dose) Outcome Adverse reactionsa Issues to consider Reference 

Monotherapy      
 Allopurinol (10-30 mg/kg or 

100 mg/cat PO q12-24h; for 

long-term) 

Variable (no 

response to clinical 

cure) 

Increased liver 

enzymes; 

coprostasisb; 
toxidermia 

Secondary xanthine urolithiasis has been 

reported in dogs 

(Pennisi et al., 2004; Rüfenacht et al., 2005; Marcos 

et al., 2009; Pocholle et al., 2012; Richter, 

Schaarschmidt-Kiener & Krudewig, 2014; Maia et 
al., 2015b; Migliazzo et al., 2015; Pimenta et al., 

2015; Basso et al., 2016; Attipa et al., 2017a; Leal 

et al., 2018; Pereira et al., 2019c; Brianti et al., 
2019; Altuzarra et al., 2020; Fernandez-Gallego et 

al., 2020) 

      
 Domperidone (0.5 mg/kg PO 

q24h for 1 month) 

No improvement Not reported Immunomodulatory drug used on 

prevention and treatment of CanL  

(Maia et al., 2015b) 

      
 Fluconazole (5 mg/kg PO 

q24h for 2 months) 

No response Not reported May be hepatotoxic (Pennisi et al., 2004) 

 Itraconazole (50 mg/cat PO 
q24h for 2 months) 

No response Not reported Hepatotoxic drug; may lead to suppression 
of adrenal function 

(Pennisi et al., 2004) 

      

 Meglumine antimoniate (50 
mg/kg SC q24h for 25 days) 

Not applicable AKI - suspected Treatment stopped due to AKI 
development; painful to administer; may 

be nephrotoxic (controversial) 

 

(Leal et al., 2018) 

      

 Meglumine antimoniate (300 

mg/cat SC q24h for 4 
months) 

Resolution of 

clinical signs 

See previous line See previous line (Fernandez-Gallego et al., 2020) 

Combination therapy      

 Meglumine antimoniate (50 
mg/kg SC q24h for 30 days) 

plus allopurinol (10 mg/kg 

PO q12-24h for long-term) 

Variable (partial 
resolution of 

clinical signs to 

clinical cure) 

See meglumine 
antimoniate and 

allopurinol 

monotherapy 

Proposed for FeL refractory cases (Pimenta et al., 2015; Basso et al., 2016; Pereira et 
al., 2019c; Fernandez-Gallego et al., 2020) 

      

 Meglumine antimoniate (5 

mg/kg SC q24h) plus 
ketoconazole (10 mg/kg 

q24h); 3 cycles of 4 weeks, 

10 days apart 

Resolution of 

lesions 

Not reported; see 
meglumine 
antimoniate 

monotherapy 

According to BSAVA (2020) ketoconazole 

is not recommended for cats 

(Hervás et al., 1999) 

      

 Metronidazole (25 mg/kg PO 

q24h for 35 days) plus 
spiramycin (150,000 IU/kg 

PO q24h for 35 days) 

No response Not reported  (Pennisi et al., 2004) 
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 Miltefosine (2 mg/kg PO 

q24h for 28 days) plus AHCC 

(½ tablet once daily for long-
term) 

Resolution of 

clinical signs 

Transient vomiting 

associated with 

miltefosine 
administration 

Miltefosine licenced formulations for 

CanL contain propylene glycol which can 

hypothetically induce Heinz body 
haemolytic anaemia in cats (Pennisi & 

Persichetti, 2018) 

(Leal et al., 2018) 

      
 Miltefosine (2 mg/kg PO 

q24h for 28 days) plus 

allopurinol (10 mg/kg PO 
q12 for long-term) 

No response See previous line See previous line (Fernandez-Gallego et al., 2020) 

a Reported during treatment of cats with clinical leishmaniosis; b associated with high doses (50 mg/kg q24h). 

Abbreviations: AHCC, active hexose correlated compounds; AKI, acute kidney injury; CanL, canine leishmanosis; FeL, feline leishmaniosis; IU, internacional unit; PO, per os; SC, 

subcutaneous. 
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5.9. Prophylaxis and control 

No vaccines or drugs preventing leishmaniosis are currently available for use in 

cats, and most repellents avoiding infection in dogs are toxic to these felids. In endemic 

areas, cats are frequently exposed to phlebotomine sand fly bites, and this is associated 

with an increased risk of Leishmania infection (Pereira et al., 2019b). Chemoprophylaxis 

may be achieved by using a matrix collar containing 10 % imidacloprid and 4.5 % 

flumethrin. This formulation showed to be safe and effective in reducing infection risk 

by L. infantum in cats (Brianti et al., 2017). Nevertheless, keeping cats indoors from dusk 

to dawn during the period of vector activity (April to November in Mediterranean areas; 

see Alten et al., 2016), as well as using physical barriers such as nets (i.e., mesh size – 

1,240 holes/in2) on windows and doors (Faiman, Cuño & Warburg, 2009) may eschew 

exposure to phlebotomine sand fly bites, thereby minimising the risk of Leishmania 

infection. Spraying with residual insecticides on walls and roofs of human houses and 

animal shelters has been proposed as an additional measure for preventing CanL (Maroli 

et al., 2010). However, their use in environments with cats should be carefully considered 

since most of these products contain compounds (i.e., pyrethrins or pyrethroids) that can 

induce feline toxicosis. Isoxazolines, namely afoxolaner and fluralaner, have been 

regarded as a new promising class of drugs for controlling CanL and human leishmaniosis 

in endemic areas (Miglianico et al., 2018; Bongiorno et al., 2020; Queiroga et al., 2020). 

A spot-on formulation of fluralaner (112.5-500 mg) is licensed for ectoparasite (i.e., ticks, 

fleas, and mites) control in cats. This systemic insecticide induced long-term mortality of 

Lutzomyia longipalpis and Phlebotomus perniciosus (vectors of L. infantum in the New 

and Old Worlds, respectively) after feeding on treated dogs (Bongiorno et al., 2020; 

Queiroga et al., 2020). Similar results are expected to be observed in cats. Although 

studies are undoubtedly needed, this drug may also hypothetically represent an affordable 

indirect method for reducing Leishmania infection in cats in endemic areas. The detection 

and treatment of cats with leishmaniosis is also likely a beneficial control measure, as 

they may serve as a source of infection to phlebotomine sand fly vectors (Maroli et al., 

2007; da Silva et al., 2010; Mendonça et al., 2020). In the absence of evidence indicating 

otherwise, Leishmania-infected cats should not be used for breeding or as blood donors 

due to the potential risk of transmission through blood transfusion and 
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venereal/congenital infection, as reported in dogs (Owens et al., 2001; Naucke & Lorentz, 

2012).  

In summary, and according to the current knowledge, the following prophylactic 

measures are proposed to prevent and control feline infection:  

i. In endemic areas, keeping cats indoors from dusk to dawn during the 

phlebotomine sand fly season should be encouraged.  

ii. Use of physical barriers on houses and animal shelters located in endemic 

areas with high vector density. 

iii. Use of a matrix collar containing 10 % imidacloprid and 4.5 % flumethrin 

as well topical solutions containing 112.5-500 mg of fluralaner in cats 

living in or travelling to (cover the time of travel) endemic areas during 

the known transmission season. 

iv. After the return from endemic areas, cats should be clinically evaluated 

and tested. 

v. Cats eligible for breeding and blood transfusion should be periodically 

tested.  

vi. Infected cats should not be used for breeding or as blood donors. 

vii. Cats with leishmaniosis should be treated and periodically monitored. 

  



CHAPTER 1 

General introduction 
 

57 

5.10. Public health considerations 

Zoonotic visceral leishmaniosis (ZVL) caused by L. infantum is a life-threatening 

human disease endemic in the Mediterranean Basin, the Middle East, western Asia, and 

Brazil (WHO, 2010). Domestic dogs are considered the primary source of human 

infection, which typically occurs via the bites of female phlebotomine sand flies (WHO, 

2010). Nevertheless, during the last years, cats have been deserved attention due to their 

potential enrolment in ZVL epidemiology, appearing now as possible primary or 

secondary reservoir hosts (Asfaram, Fakhar & Teshnizi, 2019). This hypothesis arises by 

the following reasons (Maroli et al., 2007; da Silva et al., 2010; GfK, 2016; Pereira et al., 

2019b, 2019c; Carneiro et al., 2020; Fernandez-Gallego et al., 2020; Mendonça et al., 

2020; Pereira et al., 2020): 

i. Cats are frequently exposed to the bites of competent vectors. 

ii. Cats are naturally susceptible to L. infantum infection. 

iii. Feline infection often runs a subclinical course. 

iv. Parasites are frequently found in the skin and blood of infected cats. 

v. Naturally infected cats are infectious to competent vectors. 

vi. Naturally infected cats may be the source of infection to other mammals 

through competent vectors.  

vii. Strains of feline origin seem to be indistinguishable from those isolated 

from dogs, humans, and competent vectors. 

viii. Cats are among the most popular animals owned as a pet. 

ix. Cats are often present in domestic/peridomestic areas where transmission 

cycles occur. 
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10. Conclusion 

In the last few years, several studies concerning Leishmania infection in cats have 

been conducted. Feline leishmaniosis has also gained importance appearing nowadays as 

an emergent disease. Nevertheless, its immunopathogenesis is poorly known. This 

protozoonosis is manifested by a broad spectrum of clinical signs and clinicopathological 

abnormalities, which, associated with the lack of standardised protocols, makes its 

diagnosis even more challenging for veterinarians. In this review, a diagnostic algorithm 

for FeL is proposed for clinical decision support. Treatment options currently available 

are empirical and suboptimal. The main form to prevent disease is to avoid infection. 

However, in contrast to dogs, very limited options are currently available to keep infective 

sand flies away from cats. Thus, a set of prevention guidelines were herein suggested. 

6. Objectives and experimental design 

The general objective of this PhD research project was to evaluate the putative 

role played by domestic cats (Felis catus) in the epidemiology of zoonotic leishmaniosis 

caused by L. infantum. For this purpose, the following specific objectives were set: 

i. Assess the exposure of cats to proven phlebotomine sand fly vectors of L. 

infantum. 

ii. Determine the proportion of Leishmania infection in cats in endemic foci. 

iii. Follow-up naturally infected cats (through clinical and parasitological 

examination). 

iv. Genetic characterisation of Leishmania strains isolated from cats. 

v. Assess the phenotypic behaviour of L. infantum strains isolated from cats 

under optimal, stress, and drug conditions. 

vi. Evaluate the infectivity of feline strains of L. infantum for feline, canine, 

and human host cells (macrophages). 

The experimental design underlying the objectives outlined above is illustrated in 

Figure 9. 
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Figure 9. Flowchart of the experimental design. 



CHAPTER 1 

General introduction 

60 

7. References 

Abbate, J.M., Arfuso, F., Napoli, E., Gaglio, G., et al. (2019) Leishmania infantum in 

wild animals in endemic areas of southern Italy. Comparative Immunology, 

Microbiology and Infectious Diseases. 67, 101374. 

Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., et al. (2016) A historical overview of 

the classification, evolution, and dispersion of Leishmania parasites and sandflies. 

PLOS Neglected Tropical Diseases. e0004349. 

Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., et al. (2017) Leishmania infections: 

Molecular targets and diagnosis. Molecular Aspects of Medicine. 57, 1–29.  

Akhtardanesh, B., Sharifi, I., Mohammadi, A., Mostafavi, M., et al. (2017) Feline visceral 

leishmaniasis in Kerman, southeast of Iran: Serological and molecular study. J Vector 

Borne Dis. 54 (1), 96–102. 

Akhtardanesh, B., Kheirandish, R., Sharifi, I., Mohammadi, A., et al. (2018) Low 

susceptibility of domestic cats to experimental Leishmania infantum infection. Journal 

of vector borne diseases. 55 (3), 230–234. 

Akhtardanesh, B., Moeini, E., Sharifi, I., Saberi, M., et al. (2020) Leishmania infection 

in cats positive for immunodeficiency virus and feline leukemia virus in an endemic 

region of Iran. Veterinary Parasitology: Regional Studies and Reports. 20, 100387. 

Akopyants, N.S., Kimblin, N., Secundino, N., Patrick, R., et al. (2009) Demonstration of 

genetic exchange during cyclical development of Leishmania in the sand fly vector. 

Science. 324 (5924), 265–268.  

Alcover, M.M., Ribas, A., Guillén, M.C., Berenguer, D., et al. (2020) Wild mammals as 

potential silent reservoirs of Leishmania infantum in a Mediterranean area. Preventive 

Veterinary Medicine. 175, 104874. 

Alten, B., Maia, C., Afonso, M.O., Campino, L., et al. (2016) Seasonal dynamics of 

phlebotomine sand fly species proven vectors of mediterranean leishmaniasis caused 

by Leishmania infantum. PLoS neglected tropical diseases. 10 (2), e0004458. 

Altuzarra, R., Movilla, R., Roura, X., Espada, Y., et al. (2020) Computed tomographic 

features of destructive granulomatous rhinitis with intracranial extension secondary to 

leishmaniasis in a cat. Veterinary Radiology & Ultrasound. 61 (6), E64–E68. 

Alvar, J., Vélez, I.D., Bern, C., Herrero, M., et al. (2012) Leishmaniasis worldwide and 

global estimates of its incidence. PLoS ONE. 7 (5) e35671. 

Andrade, B.B. & Teixeira, C.R. (2012) Biomarkers for exposure to sand flies bites as 

tools to aid control of leishmaniasis. Frontiers in Immunology. 3, 121. 

Aquino, D.M.C., Caldas, A.J.M., Miranda, J.C., Silva, A.A.M., et al. (2010) Short report: 

Epidemiological study of the association between anti-Lutzomyia longipalpis saliva 

antibodies and development of delayed-type hypersensitivity to Leishmania antigen. 

American Journal of Tropical Medicine and Hygiene. 83 (4), 825–827. 



CHAPTER 1 

General introduction 
 

61 

Asfaram, S., Fakhar, M. & Teshnizi, S.H. (2019) Is the cat an important reservoir host for 

visceral leishmaniasis? A systematic review with meta-analysis. Journal of Venomous 

Animals and Toxins Including Tropical Diseases. 25, e20190012. 

Asgari, Q., Mohammadpour, I., Bozorg-Ghalati, F., Motazedian, M.H., et al. (2020) 

Alarming: high prevalence of Leishmania infantum infection in cats from southern 

Iran based on molecular and serological methods. Annals of parasitology. 66 (2), 143–

156. 

Attipa, C., Neofytou, K., Yiapanis, C., Martínez-Orellana, P., et al. (2017a) Follow-up 

monitoring in a cat with leishmaniosis and coinfections with Hepatozoon felis and ‘ 

Candidatus Mycoplasma haemominutum’. Journal of Feline Medicine and Surgery 

Open Reports. 3 (2), 205511691774045. 

Attipa, C., Papasouliotis, K., Solano-Gallego, L., Baneth, G., et al. (2017b) Prevalence 

study and risk factor analysis of selected bacterial, protozoal and viral, including 

vector-borne, pathogens in cats from Cyprus. Parasites and Vectors. 10 (1). 

Van der Auwera, G., Maes, I., De Doncker, S., Ravel, C., et al. (2013) Heat-shock protein 

70 gene sequencing for Leishmania species typing in European tropical infectious 

disease clinics. Eurosurveillance. 18 (30), 20543. 

Ayllón, T., Tesouro, M.A., Amusategui, I., Villaescusa, A., et al. (2008) Serologic and 

molecular evaluation of Leishmania infantum in cats from central Spain. Annals of the 

New York Academy of Sciences. 1149, 361-364. 

Ayllón, T., Diniz, P.P.V.P., Breitschwerdt, E.B., Villaescusa, A., et al. (2012) Vector-

borne diseases in client-owned and stray cats from Madrid, Spain. Vector-Borne and 

Zoonotic Diseases. 12 (2), 143–150. 

Baneth, G., Nachum-Biala, Y., Zuberi, A., Zipori-Barki, N., et al. (2020) Leishmania 

infection in cats and dogs housed together in an animal shelter reveals a higher parasite 

load in infected dogs despite a greater seroprevalence among cats. Parasites and 

Vectors. 13 (1), 115. 

Basso, M.A., Marques, C., Santos, M., Duarte, A., et al. (2016) Successful treatment of 

feline leishmaniosis using a combination of allopurinol and N-methyl- glucamine 

antimoniate. Journal of Feline Medicine and Surgery Open Reports. 2 (1), 

205511691663000. 

Bates, P.A. (2007) Transmission of Leishmania metacyclic promastigotes by 

phlebotomine sand flies. International journal for parasitology. 37 (10), 1097–1106. 

Bates, P.A. (2018) Revising Leishmania’s life cycle. Nature microbiology. 3 (5), 529–

530. 

Benassi, J.C., Benvenga, G.U., Ferreira, H.L., Pereira, V.F., et al. (2017) Detection of 

Leishmania infantum DNA in conjunctival swabs of cats by quantitative real-time 

PCR. Experimental Parasitology. 177, 93–97. 

Berenguer, L.K.A.R., Gomes, C.F.C. de A., Nascimento, J. de O., Bernardi, J.C.M., et al. 

(2020) Leishmania infantum infection in a domestic cat: a real threat or an occasional 

finding? Acta Parasitologica. 10.1007/s11686-020-00294-z. 



CHAPTER 1 

General introduction 

62 

Bezerra, J.A.B., De Medeiros Oliveira, I.V.P., Yamakawa, A.C., Nilsson, M.G., et al. 

(2019) Serological and molecular investigation of Leishmania spp. infection in cats 

from an area endemic for canine and human leishmaniasis in northeast Brazil. Revista 

Brasileira de Parasitologia Veterinaria. 28 (4), 790–796. 

Boelaert, M. & Sundar, S. (2013) Leishmaniasis. In: Jeremy Farrar, Peter Hotez, Thomas 

Junghanss, Gagandeep Kang, et al. (eds.). Manson’s Tropical Diseases. 23rd edition. 

Missouri, Elsevier Saunders. pp. 631–651. 

Bonfante-Garrido, R., Urdaneta, I., Urdaneta, R. & Alvarado, J. (1991) Natural infection 

of cats with Leishmania in Barquisimeto, Venezuela. Transactions of the Royal Society 

of Tropical Medicine and Hygiene. 85 (1), 53. 

Bongiorno, G., Di Muccio, T., Bianchi, R., Gramiccia, M., et al. (2019) Laboratory 

transmission of an Asian strain of Leishmania tropica by the bite of the southern 

European sand fly Phlebotomus perniciosus. International Journal for Parasitology. 

49 (6), 417–421. 

Bongiorno, G., Meyer, L., Evans, A., Lekouch, N., et al. (2020) A single oral dose of 

fluralaner (Bravecto®) in dogs rapidly kills 100% of blood‐fed Phlebotomus 

perniciosus , a main visceral leishmaniasis vector, for at least 1 month after treatment. 

Medical and Veterinary Entomology. 34 (2), 240–243. 

Braga, A.R.C., Corrêa, A.P.F.L., Camossi, L.G., Da Silva, R.C., et al. (2014) Coinfection 

by Toxoplasma gondii and Leishmania spp. in domestic cats (felis catus) in state of 

mato grosso do sul. Revista da Sociedade Brasileira de Medicina Tropical. 47 (6), 

796–797. 

Braga, A.R.C., Langoni, H. & Lucheis, S.B. (2014) Evaluation of canine and feline 

leishmaniasis by the association of blood culture, immunofluorescent antibody test and 

polymerase chain reaction. 20 (1), 5. 

Bresciani, K.D.S., Serrano, A.C.M., Matos, L.V.S. de, Savani, E.S.M.M., et al. (2010) 

Ocorrência de Leishmania spp. em felinos do município de Araçatuba, SP. Revista 

Brasileira de Parasitologia Veterinária. 19 (02), 127–129. 

Brianti, E., Falsone, L., Napoli, E., Gaglio, G., et al. (2017) Prevention of feline 

leishmaniosis with an imidacloprid 10%/flumethrin 4.5% polymer matrix collar. 

Parasites and Vectors. 10 (1), 334. 

Brianti, E., Celi, N., Napoli, E., Abbate, J.M., et al. (2019) Treatment and long-term 

follow-up of a cat with leishmaniosis. Parasites & Vectors. 12 (1), 121. 

BSAVA (2020) Small Animal Formulary. 10th edition. Fergus Allerton (ed.). Gloucester, 

British Small Animal Veterinary Association. Part A. 

Burza, S., Croft, S.L. & Boelaert, M. (2018) Leishmaniasis. The Lancet. 392 (10151), 

951-970. 

Can, H., Döşkaya, M., Özdemir, H.G., Şahar, E.A., et al. (2016) Seroprevalence of 

Leishmania infection and molecular detection of Leishmania tropica and Leishmania 

infantum in stray cats of İzmir, Turkey. Experimental Parasitology. 167, 109–114. 



CHAPTER 1 

General introduction 
 

63 

Cantacessi, C., Dantas-Torres, F., Nolan, M.J. & Otranto, D. (2015) The past, present, 

and future of Leishmania genomics and transcriptomics. Trends in parasitology. 31 

(3), 100–108. 

Cardia, D.F.F., Camossi, L.G., Neto, L. da S., Langoni, H., et al. (2013) Prevalence of 

Toxoplasma gondii and Leishmania spp. infection in cats from Brazil. Veterinary 

Parasitology. 197 (3–4), 634–637. 

Cardoso, L., Lopes, A.P., Sherry, K., Schallig, H., et al. (2010) Low seroprevalence of 

Leishmania infantum infection in cats from northern Portugal based on DAT and 

ELISA. Veterinary Parasitology. 174 (1–2), 37–42. 

Carneiro, L.A., Vasconcelos dos Santos, T., do Rêgo Lima, L.V. do R., Ramos, P.K.S., 

et al. (2020) First report on feline leishmaniasis caused by Leishmania (Leishmania) 

amazonensis in Amazonian Brazil. Veterinary Parasitology: Regional Studies and 

Reports. 19, 100360. 

Chanmol, W., Jariyapan, N., Somboon, P., Bates, M.D., et al. (2019) Development of 

Leishmania orientalis in the sand fly Lutzomyia longipalpis (Diptera: Psychodidae) 

and the biting midge Culicoides soronensis (Diptera: Ceratopogonidae). Acta Tropica. 

199, 105157. 

Chatzis, M.K., Andreadou, M., Leontides, L., Kasabalis, D., et al. (2014a) Cytological 

and molecular detection of Leishmania infantum in different tissues of clinically 

normal and sick cats. Veterinary Parasitology. 202 (3–4), 217–225. 

Chatzis, M.K., Leontides, L., Athanasiou, L. V., Papadopoulos, E., et al. (2014b) 

Evaluation of indirect immunofluorescence antibody test and enzyme-linked 

immunosorbent assay for the diagnosis of infection by Leishmania infantum in 

clinically normal and sick cats. Experimental parasitology. 147, 54–59. 

Chatzis, M.K., Xenoulis, P.G., Leontides, L., Kasabalis, D., et al. (2020) Evaluation of 

clinicopathological abnormalities in sick cats naturally infected by Leishmania 

infantum. Heliyon. 6 (10), e05177. 

Clements, M.F., Gidwani, K., Kumar, R., Hostomska, J., et al. (2010) Measurement of 

recent exposure to Phlebotomus argentipes, the vector of indian visceral leishmaniasis, 

by using human antibody responses to sand fly saliva. American Journal of Tropical 

Medicine and Hygiene. 82 (5), 801–807. 

Coelho, W.M.D., de Lima, V.M.F., do Amarante, A.F.T., Langoni, H., et al. (2010) 

Occurrence of Leishmania (Leishmania) chagasi in a domestic cat (Felis catus) in 

Andradina, São Paulo, Brazil: Case report. Revista Brasileira de Parasitologia 

Veterinaria. 19 (4), 256–258. 

Coelho, W.M.D., Do Amarante, A.F.T., De Carvalho Apolinário, J., Coelho, N.M.D., et 

al. (2011a) Seroepidemiology of Toxoplasma gondii, Neospora caninum, and 

Leishmania spp. infections and risk factors for cats from Brazil. Parasitology 

Research. 109 (4), 1009–1013. 

Coelho, W.M.D., Richini-Pereira, V.B., Langoni, H. & Bresciani, K.D.S. (2011b) 

Molecular detection of Leishmania sp. in cats (Felis catus) from Andradina 

Municipality, São Paulo State, Brazil. Veterinary Parasitology. 176 (2–3), 281–282.  



CHAPTER 1 

General introduction 

64 

Colella, V., Hodžić, A., Iatta, R., Baneth, G., et al. (2019) Zoonotic leishmaniasis, Bosnia 

and Herzegovina. Emerging Infectious Diseases. 25 (2), 385-386. 

Colmenares, M., Kar, S., Goldsmith-Pestana, K. & McMahon-Pratt, D. (2002) 

Mechanisms of pathogenesis: Differences amongst Leishmania species. Transactions 

of the Royal Society of Tropical Medicine and Hygiene. 96 (Suppl. 1), S3-7. 

da Costa-Val, A.P., Coura, F.M., Barbieri, J. de M., Diniz, L., et al. (2020) Serological 

study of feline leishmaniasis and molecular detection of Leishmania infantum and 

Leishmania braziliensis in cats (Felis catus). Revista Brasileira de Parasitologia 

Veterinaria. 29 (2), 1–12. 

Coura, F.M., Passos, S.K.P., Pelegrino, M. de O.F., Leme, F. de O.P., et al. (2018) 

Serological, molecular, and microscopic detection of Leishmania in cats (Felis catus) 

in Belo Horizonte, Minas Gerais State, Brazil. Revista Brasileira de Parasitologia 

Veterinaria. 27 (4), 570–574. 

Craig, M.T., Barton, C.L., Mercer, S.H., Droleskey, B.E., et al. (1986) Dermal 

leishmaniasis in a texas cat. American Journal of Tropical Medicine and Hygiene. 35 

(6), 1100–1102. 

Cruz, I., Cañavate, C., Rubio, J.M., Morales, M.A., et al. (2002) A nested polymerase 

chain reaction (Ln-PCR) for diagnosing and monitoring Leishmania infantum 

infection in patients co-infected with human immunodeficiency virus. Transactions of 

the Royal Society of Tropical Medicine and Hygiene. 96 (Suppl. 1), S185-189. 

Cupolillo, E., Medina-Acosta, E., Noyes, H., Momen, H., et al. (2000) A revised 

classification for Leishmania and Endotrypanum. Parasitology Today. 16 (4), 142–

144.  

Dedola, C., Zobba, R., Varcasia, A., Visco, S., et al. (2018) Serological and molecular 

detection of Leishmania infantum in cats of Northern Sardinia, Italy. Veterinary 

Parasitology: Regional Studies and Reports. 13, 120–123. 

Del Río, L., Chitimia, L., Cubas, A., Victoriano, I., et al. (2014) Evidence for widespread 

Leishmania infantum infection among wild carnivores in L. infantum periendemic 

northern Spain. Preventive Veterinary Medicine. 113 (4), 430–435. 

Di Mattia, D., Fondevila, D., Abramo, F. & Fondati, A. (2018) A retrospective 

histopathological, immunohistochemical and molecular study of the presence of 

Leishmania spp. in the skin of cats with head and neck ulcerative dermatitis. 

Veterinary Dermatology. 29 (3), 212-e76. 

Diakou, A., Papadopoulos, E. & Lazarides, K. (2009) Specific anti-Leishmania spp. 

antibodies in stray cats in Greece. Journal of Feline Medicine and Surgery. 11 (8), 

728–730. 

Diakou, A., Di Cesare, A., Accettura, P.M., Barros, L., et al. (2017) Intestinal parasites 

and vector-borne pathogens in stray and free-roaming cats living in continental and 

insular Greece Christian Johnson (ed.). PLoS neglected tropical diseases. 11 (1), 

e0005335. 



CHAPTER 1 

General introduction 
 

65 

Díaz E. & Ponte-Sucre, A. (2018) Leishmaniasis: The biology of a parasite. In: Alicia 

Ponte-Sucre & Maritza Padrón-Nieves (eds.). Drug resistance in Leishmania parasites 

– consequences, molecular mechanism and possible treatments. 2nd edition. 

Switzerland, Springer International Publishing. pp. 1–16. 

Dincer, E., Ozkul, A., Gargari, S. & Ergunay, K. (2015) Potential Animal Reservoirs of 

Toscana Virus and Coinfections with Leishmania infantum in Turkey. The American 

Journal of Tropical Medicine and Hygiene. 92 (4), 690–697. 

Dincer, E., Karapinar, Z., Oktem, M., Ozbaba, M., et al. (2016) Canine infections and 

partial S segment sequence analysis of toscana virus in Turkey. Vector-Borne and 

Zoonotic Diseases. 16 (9), 611–618. 

Dostálová, A. & Volf, P. (2012) Leishmania development in sand flies: parasite-vector 

interactions overview. Parasites and Vectors. 5 (1), 1–12. 

Doucoure, S., Cornelie, S., Drame, P.M., Marie, A., et al. (2015) Biomarkers of vector 

bites: Arthropod immunogenic salivary proteins in vector-borne diseases control. In: 

Victor Preedy & Vinood Patel (eds.). General methods in biomarker research and 

their applications. London, Springer International Publishing. pp. 1177–1205.  

Duarte, A., Castro, I., Pereira da Fonseca, I.M., Almeida, V., et al. (2010) Survey of 

infectious and parasitic diseases in stray cats at the Lisbon Metropolitan Area, 

Portugal. Journal of Feline Medicine and Surgery. 12 (6), 441–446. 

Dvorak, V., Shaw, J. & Volf, P. (2018) Parasite biology: the vectors. In: F Bruschi & L 

Gradoni (eds.). The leishmaniases: old neglected tropical diseases. Austria, Springer 

Verlag. pp. 31–77. 

Ebani, V.V., Guardone, L., Marra, F., Altomonte, I., et al. (2020) Arthropod-borne 

pathogens in stray cats from northern italy: A serological and molecular survey. 

Animals. 10 (12), 1–16. 

Faiman, R., Cuño, R. & Warburg, A. (2009) Control of phlebotomine sand flies with 

vertical fine-mesh nets. Journal of Medical Entomology. 46 (4), 820–831. 

Fatollahzadeh, M., Khanmohammadi, M., Bazmani, A., Mirsamadi, N., et al. (2016) 

Survey of feline visceral leishmaniasis in Azarshahr area, north west of Iran, 2013. 

Journal of Parasitic Diseases. 40 (3), 683–687. 

Fernandez-Gallego, A., Feo Bernabe, L., Dalmau, A., Esteban-Saltiveri, D., et al. (2020) 

Feline leishmaniosis: diagnosis, treatment and outcome in 16 cats. Journal of Feline 

Medicine and Surgery. 22 (10), 993–1007. 

Figueiredo, F.B., Bonna, I.C.F., Nascimento, L.D., Da Costa, T., et al. (2009) Avaliação 

sorológica para detecção de anticorpos anti-Leishmania em cães e gatos no bairro de 

Santa Rita de Cássia, Município de Barra Mansa, Estado do Rio de Janeiro. Revista da 

Sociedade Brasileira de Medicina Tropical. 42 (2), 141–145. 

Galluzzi, L., Ceccarelli, M., Diotallevi, A., Menotta, M., et al. (2018) Real-time PCR 

applications for diagnosis of leishmaniasis. Parasites and Vectors. 11 (1), 1–13. 

GfK (2016) Pet ownership. Available from: 

https://cdn2.hubspot.net/hubfs/2405078/cms-



CHAPTER 1 

General introduction 

66 

pdfs/fileadmin/user_upload/country_one_pager/nl/documents/global-gfk-survey_pet-

ownership_2016.pdf [Accessed: 12 April 2021]. 

Gomes, R. & Oliveira, F. (2012) The immune response to sand fly salivary proteins and 

its influence on Leishmania immunity. Frontiers in Immunology. 3, 110.  

Gomes, R.B., Brodskyn, C., de Oliveira, C.I., Costa, J., et al. (2002) Seroconversion 

against Lutzomyia longipalpis saliva concurrent with the development of anti– 

Leishmania chagasi delayed‐type hypersensitivity. The Journal of Infectious Diseases. 

186 (10), 1530–1534. 

Gradoni, L. (2018) A brief introduction to leishmaniasis epidemiology. In: F Bruschi & 

L Gradoni (eds.). The leishmaniases: old neglected tropical diseases. Austria, Springer 

Verlag. pp. 1–13. 

Grevot, A., Jaussaud Hugues, P., Marty, P., Pratlong, F., et al. (2005) Leishmaniosis due 

to Leishmania infantum in a FIV and FeLV positive cat with a squamous cell 

carcinoma diagnosed with histological, serological and isoenzymatic methods. 

Parasite. 12 (3), 271–275. 

Hatam, G.R., Adnani, S.J., Asgari, Q., Fallah, E., et al. (2010) First Report of Natural 

Infection in Cats with Leishmania infantum in Iran. Vector-Borne and Zoonotic 

Diseases. 10 (3), 313–316. 

Headley, S.A., Pimentel, L.A., de Amorim, I.F.G., Amude, A.M., et al. (2019) 

Immunohistochemical characterization of cutaneous leishmaniasis in cats from 

Central-west Brazil. Veterinary Parasitology: Regional Studies and Reports. 17, 

100290.  

Herrera, G., Hernández, C., Ayala, M.S., Flórez, C., et al. (2017) Evaluation of a 

multilocus sequence typing (MLST) scheme for Leishmania (Viannia) braziliensis and 

Leishmania (Viannia) panamensis in Colombia. Parasites & Vectors. 10 (1), 236. 

Hervás, J., Chacón-M De Lara, F., Sdnchez-lsarria, M.A., Pellicer, S., et al. (1999) Two 

cases of feline visceral and cutaneous leishmaniosis in Spain. Journal of Feline 

Medicine and Surgery.1 (2), 101-105. 

Hervás, J., Chacón-Manrique De Lara, F., López, J., Gómez-Villamandos, J.C., et al. 

(2001) Granulomatous (pseudotumoral) iridociclitis associated with leishmaniasis in a 

cat. Veterinary Record. 149 (20), 624–625. 

Hostomska, J., Rohousova, I., Volfova, V., Stanneck, D., et al. (2008) Kinetics of canine 

antibody response to saliva of the sand fly Lutzomyia longipalpis. Vector borne and 

zoonotic diseases. 8 (4), 443–450. 

Hubálek, Z. (2003) Emerging human infectious diseases: Anthroponoses, zoonoses,and 

sapronoses. Emerging Infectious Diseases. 9 (3) 403–404. 

Iatta, R., Furlanello, T., Colella, V., Tarallo, V.D., et al. (2019) A nationwide survey of 

Leishmania infantum infection in cats and associated risk factors in Italy. PLoS 

Neglected Tropical Diseases. 13 (7), e0007594. 



CHAPTER 1 

General introduction 
 

67 

Iatta, R., Trerotoli, P., Lucchese, L., Natale, A., et al. (2020) Validation of a new 

immunofluorescence antibody test for the detection of Leishmania infantum infection 

in cats. Parasitology Research. 119 (4), 1381–1386.  

Inbar, E., Shaik, J., Iantorno, S.A., Romano, A., et al. (2019) Whole genome sequencing 

of experimental hybrids supports meiosis-like sexual recombination in Leishmania. 

PLOS Genetics. 15 (5), e1008042. 

Jariyapan, N., Daroontum, T., Jaiwong, K., Chanmol, W., et al. (2018) Leishmania 

(Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible 

for localised cutaneous leishmaniasis. Parasites and Vectors. 11 (1), 351. 

Junsiri, W., Wongnarkpet, S., Chimnoi, W., Kengradomkij, C., et al. (2017) 

Seroprevalence of Leishmania infection in domestic animals in Songkhla and Satun 

provinces, southern Thailand. Tropical Biomedicine. 34 (2), 352–362. 

Karakuş, M., Arserim, S.K., Erişöz Kasap, Ö., Pekağırbaş, M., et al. (2019) Vector and 

reservoir surveillance study in a canine and human leishmaniasis endemic area in most 

western part of Turkey, Karaburun. Acta Tropica. 190, 177–182. 

Kato, H., Cáceres, A.G. & Hashiguchi, Y. (2016) First evidence of a hybrid of Leishmania 

(Viannia) braziliensis/L. (V.) peruviana DNA detected from the phlebotomine sand fly 

Lutzomyia tejadai in Peru. PLoS neglected tropical diseases. 10 (1), e0004336. 

Killick-Kendrick, R. (1999) The biology and control of phlebotomine sand flies. Clinics 

in Dermatology. 17 (3) 279–289. 

Kirkpatrick, C.E., Farrell, J.P. & Goldschmidt, M.H. (1984) Leishmania chagasi and L. 

donovani: experimental infections in domestic cats. Experimental Parasitology. 58 

(2), 125–131. 

Kongkaew, W., Siriarayaporn, P., Leelayoova, S., Supparatpinyo, K., et al. (2007) 

Autochthonous visceral leishmaniasis: a report of a second case in Thailand. Southeast 

Asian Journal of Tropical Medicine and Public Health. 38 (1), 8–12. 

Kostalova, T., Lestinova, T., Maia, C., Sumova, P., et al. (2017) The recombinant protein 

rSP03B is a valid antigen for screening dog exposure to Phlebotomus perniciosus 

across foci of canine leishmaniasis. Medical and veterinary entomology. 31 (1), 88–

93. 

Kovalenki, D.A., Nayrova, R.M., Ponomareva, V.I., Fatullaeva, A.A., et al., (2011) 

Human and canine visceral leishmaniasis in the Papsky District, Namangan Region, 

Uzbekistan: seroepidemiological and seroepizootological surveys. Meditsinskaya 

Parazitologiya i Parazitarnye Bolezni. 3, 32-37. 

Kwakye-Nuako, G., Mosore, M.-T., Duplessis, C., Bates, M.D., et al. (2015) First 

isolation of a new species of Leishmania responsible for human cutaneous 

leishmaniasis in Ghana and classification in the Leishmania enriettii complex. 

International Journal for Parasitology. 45 (11), 679-684. 

Latrofa, M.S., Iatta, R., Toniolo, F., Furlanello, T., et al. (2020) A molecular survey of 

vector-borne pathogens and haemoplasmas in owned cats across Italy. Parasites and 

Vectors. 13 (1), 116. 



CHAPTER 1 

General introduction 

68 

Leal, R.O., Pereira, H., Cartaxeiro, C., Delgado, E., et al. (2018) Granulomatous rhinitis 

secondary to feline leishmaniosis: report of an unusual presentation and therapeutic 

complications. JFMS open reports. 4 (2), 2055116918811374. 

Leelayoova, S., Siripattanapipong, S., Manomat, J., Piyaraj, P., et al. (2017) 

Leishmaniasis in Thailand: A review of causative agents and situations. American 

Journal of Tropical Medicine and Hygiene. 96 (3), 534–542. 

Leiva, M., Lloret, A., Peña, T. & Roura, X. (2005) Therapy of ocular and visceral 

leishmaniasis in a cat. Veterinary Ophthalmology. 8 (1), 71–75. 

Leonel, J.A.F., Vioti, G., Alves, M.L., Benassi, J.C., et al. (2020) Leishmaniasis in cat 

shelters: a serological, molecular and entomological study. Transboundary and 

Emerging Diseases. 67 (5), 2013–2019. 

Lestinova, T., Rohousova, I., Sima, M., de Oliveira, C.I., et al. (2017) Insights into the 

sand fly saliva: blood-feeding and immune interactions between sand flies, hosts, and 

Leishmania. PLoS neglected tropical diseases. 11 (7), e0005600. 

Lima, C., Colella, V., Latrofa, M.S., Cardoso, L., et al. (2019) Molecular detection of 

Leishmania spp. in dogs and a cat from Doha, Qatar. Parasites and Vectors. 12 (1), 

125. 

Longoni, S.S., López-Cespedes, A., Sánchez-Moreno, M., Bolio-Gonzalez, M.E., et al. 

(2012) Detection of different Leishmania spp. and Trypanosoma cruzi antibodies in 

cats from the Yucatan Peninsula (Mexico) using an iron superoxide dismutase excreted 

as antigen. Comparative Immunology, Microbiology and Infectious Diseases. 35 (5), 

469–476. 

Lopes, A.P., Oliveira, A.C., Granada, S., Rodrigues, F.T., et al. (2017) Antibodies to 

Toxoplasma gondii and Leishmania spp. in domestic cats from Luanda, Angola. 

Veterinary Parasitology. 239, 15–18. 

Lukeš, J., Guilbride, D.L., Votýpka, J., Zíková, A., et al. (2002) Kinetoplast DNA 

network: evolution of an improbable structure. Eukaryotic Cell. 1 (4), 495–502. 

Maia, C. & Campino, L. (2018) Biomarkers associated with Leishmania infantum 

exposure, infection, and disease in dogs. Frontiers in Cellular and Infection 

Microbiology. 8, 302. 

Maia, C. & Cardoso, L. (2015) Spread of Leishmania infantum in Europe with dog 

travelling. Veterinary Parasitology. 213 (1–2), 2–11. 

Maia, C., Nunes, M. & Campino, L. (2008) Importance of cats in zoonotic leishmaniasis 

in Portugal. Vector-Borne and Zoonotic Diseases. 8 (4), 555–560. 

Maia, C., Gomes, J., Cristóvão, J., Nunes, M., et al. (2010) Feline Leishmania infection 

in a canine leishmaniasis endemic region, Portugal. Veterinary parasitology. 174 (3–

4), 336–340. 

Maia, C., Ramos, C., Coimbra, M., Bastos, F., et al. (2014) Bacterial and protozoal agents 

of feline vector-borne diseases in domestic and stray cats from southern Portugal. 

Parasites and Vectors. 7 (1), 115. 



CHAPTER 1 

General introduction 
 

69 

Maia, C., Ramos, C., Coimbra, M., Cardoso, L., et al. (2015a) Prevalence of Dirofilaria 

immitis antigen and antibodies to Leishmania infantum in cats from southern Portugal. 

Parasitology international. 64 (2), 154–156. 

Maia, C., Sousa, C., Ramos, C., Cristóvão, J.M., et al. (2015b) First case of feline 

leishmaniosis caused by Leishmania infantum genotype E in a cat with a concurrent 

nasal squamous cell carcinoma. JFMS open reports. 1 (2), 2055116915593969. 

Maia, C., Dantas-Torres, F. & Campino, L. (2018) Parasite biology: the reservoir hosts. 

In: F Bruschi & L Gradoni (eds.). The leishmaniases: old neglected tropical diseases. 

Austria, Springer Verlag. pp. 79–106. 

Maia, C., Cristóvão, J., Pereira, A., Kostalova, T., et al. (2020) Monitoring Leishmania 

infection and exposure to Phlebotomus perniciosus using minimal and non-invasive 

canine samples. Parasites & Vectors. 13 (1), 119. 

Marcondes, M., Hirata, K.Y., Vides, J.P., Sobrinho, L.S.V., et al. (2018) Infection by 

Mycoplasma spp., feline immunodeficiency virus and feline leukemia virus in cats 

from an area endemic for visceral leishmaniasis. Parasites and Vectors. 11 (1), 131.  

Marcos, R., Santos, M., Malhaõ, F., Pereira, R., et al. (2009) Pancytopenia in a cat with 

visceral leishmaniasis. Veterinary Clinical Pathology. 38 (2), 201–205. 

Marenzoni, M.L., Lauzi, S., Miglio, A., Coletti, M., et al. (2018) Comparison of three 

blood transfusion guidelines applied to 31 feline donors to minimise the risk of 

transfusion-transmissible infections. Journal of Feline Medicine and Surgery. 20 (8), 

663–673. 

Maroli, M., Pennisi, M.G., Di Muccio, T., Khoury, C., et al. (2007) Infection of sandflies 

by a cat naturally infected with Leishmania infantum. Veterinary Parasitology. 145 

(3–4), 357–360. 

Maroli, M., Gradoni, L., Oliva, G., Castagnaro, M., et al. (2010) Guidelines for 

prevention of leishmaniasis in dogs. Journal of the American Veterinary Medical 

Association. 236 (11), 1200–1206. 

Maroli, M., Feliciangeli, M.D., Bichaud, L., Charrel, R.N., et al. (2013) Phlebotomine 

sandflies and the spreading of leishmaniases and other diseases of public health 

concern. Medical and Veterinary Entomology. 27 (2), 123–147. 

Martín-Martín, I., Molina, R. & Jiménez, M. (2015) Kinetics of anti-Phlebotomus 

perniciosus saliva antibodies in experimentally bitten mice and rabbits. PLoS ONE. 10 

(11), e0140722. 

Martín-Sánchez, J., Acedo, C., Muñoz-Pérez, M., Pesson, B., et al. (2007) Infection by 

Leishmania infantum in cats: epidemiological study in Spain. Veterinary Parasitology. 

145 (3–4), 267–273. 

Marzouki, S., Ben Ahmed, M., Boussoffara, T., Abdeladhim, M., et al. (2011) 

Characterization of the antibody response to the saliva of Phlebotomus papatasi in 

people living in endemic areas of cutaneous leishmaniasis. American Journal of 

Tropical Medicine and Hygiene. 84 (5), 653–661. 



CHAPTER 1 

General introduction 

70 

de Matos, A.M.R.N., Caldart, E.T., Ferreira, F.P., Monteiro, K.C., et al. (2018) 

Antibodies anti-trypanosomatides in domestic cats in Paraná: who is at highest risk of 

infection? Revista Brasileira de Parasitologia Veterinaria. 27 (2), 232–236. 

Maurício, I. (2018) Leishmania taxonomy. In: F Bruschi & L Gradoni (eds.). The 

leishmaniases: old neglected tropical diseases. Austria, Springer Verlag. pp. 15–30. 

Mccown, M. & Grzeszak, B. (2010) Zoonotic and infectious disease surveillance in 

Central America: Honduran feral cats positive for Toxoplasma, Trypanosoma, 

Leishmania, Rickettsia, and Lyme disease. J Spec Oper Med. 10 (3), 41–43. 

Mendonça, I.L. de, Batista, J.F., Lopes, K.S.P. do P., Magalhães Neto, F. das C.R., et al. 

(2020) Infection of Lutzomyia longipalpis in cats infected with Leishmania infantum. 

Veterinary Parasitology. 280, 109058. 

Mesa-Sanchez, I., Ferreira, R.R.F., Cardoso, I., Morais, M., et al. (2020) Transfusion 

transmissible pathogens are prevalent in healthy cats eligible to become blood donors. 

Journal of Small Animal Practice. Available from: doi:10.1111/jsap.13257. 

Metzdorf, I.P., da Costa Lima, M.S., de Fatima Cepa Matos, M., de Souza Filho, A.F., et 

al. (2017) Molecular characterization of Leishmania infantum in domestic cats in a 

region of Brazil endemic for human and canine visceral leishmaniasis. Acta Tropica. 

166, 121–125. 

Michael, S.A., Morsy, T.A., El-Seoud, A.F. & Saleh, M.S. (1982) Leishmaniasis 

antibodies in stray cats in Ismailiya Governorate, Egypt. Journal of the Egyptian 

Society of Parasitology. 12 (1), 283–286. 

Migliazzo, A., Vitale, F., Calderone, S., Puleio, R., et al. (2015) Feline leishmaniosis: a 

case with a high parasitic burden. Veterinary Dermatology. 26 (1), 69–70. 

Miglianico, M., Eldering, M., Slater, H., Ferguson, N., et al. (2018) Repurposing 

isoxazoline veterinary drugs for control of vector-borne human diseases. Proceedings 

of the National Academy of Sciences of the United States of America. 115 (29), E6920–

6926. 

Millán, J., Zanet, S., Gomis, M., Trisciuoglio, A., et al. (2011) An investigation into 

alternative reservoirs of canine leishmaniasis on the endemic island of Mallorca 

(Spain). Transboundary and Emerging Diseases. 58 (4), 352–357. 

Minard, H.M., Daniel, A.K., Pool, R.R., Snowden, K.F., et al. (2017) Pathology in 

practice. Journal of the American Veterinary Medical Association. 251 (1), 57–59. 

Miró, G., Hernández, L., Montoya, A., Arranz-Solís, D., et al. (2011) First description of 

naturally acquired Tritrichomonas foetus infection in a Persian cattery in Spain. 

Parasitology Research. 109 (4), 1151–1154. 

Miró, G., Rupérez, C., Checa, R., Gálvez, R., et al. (2014) Current status of L. infantum 

infection in stray cats in the Madrid region (Spain): Implications for the recent 

outbreak of human leishmaniosis? Parasites and Vectors. 7 (1), 112.  

Mohebali, M., Malmasi, A., Khodabakhsh, M., Zarei, Z., et al. (2017) Feline 

leishmaniosis due to Leishmania infantum in Northwest Iran: the role of cats in 



CHAPTER 1 

General introduction 
 

71 

endemic areas of visceral leishmaniosis. Veterinary Parasitology: Regional Studies 

and Reports. 9, 13–16. 

Montoya, A., García, M., Gálvez, R., Checa, R., et al. (2018a) Implications of zoonotic 

and vector-borne parasites to free-roaming cats in central Spain. Veterinary 

Parasitology. 251, 125–130. 

Montoya, A., Miró, G., Saugar, J.M., Fernández, B., et al. (2018b) Detection and 

molecular characterization of Acanthamoeba spp. in stray cats from Madrid, Spain. 

Experimental Parasitology. 188, 8–12. 

de Morais, R.C.S., Gonçalves, S. da C., Costa, P.L., da Silva, K.G., et al. (2013) Detection 

of Leishmania infantum in animals and their ectoparasites by conventional PCR and 

real time PCR. Experimental & applied acarology. 59 (4), 473–481. 

Morelli, S., Crisi, P.E., Di Cesare, A., De Santis, F., et al. (2019) Exposure of client-

owned cats to zoonotic vector-borne pathogens: clinic-pathological alterations and 

infection risk analysis. Comparative Immunology, Microbiology and Infectious 

Diseases. 66, 101344. 

Morelli, S., Colombo, M., Dimzas, D., Barlaam, A., et al. (2020) Leishmania infantum 

seroprevalence in cats from touristic areas of Italy and Greece. Frontiers in Veterinary 

Science. 7, 616566. 

Moreno, I., Álvarez, J., García, N., de la Fuente, S., et al. (2014) Detection of anti-

Leishmania infantum antibodies in sylvatic lagomorphs from an epidemic area of 

Madrid using the indirect immunofluorescence antibody test. Veterinary Parasitology. 

199 (3–4), 264–267. 

Morganti, G., Veronesi, F., Stefanetti, V., Di Muccio, T., et al. (2019) Emerging feline 

vector-borne pathogens in Italy. Parasites and Vectors. 12 (1), 193. 

Morsy, T.A. & Abou el Seoud, S.M. (1994) Natural infection in two pet cats in a house 

of a zoonotic cutaneous leishmaniasis patient in Imbaba area, Giza Governorate, 

Egypt. Journal of the Egyptian Society of Parasitology. 24 (1), 199–204. 

Morsy, T., Aldakhil, M.A. & el-Bahrawy, A. (1999) Natural Leishmania infection in sand 

cats captured in Riyadh district, Saudi Arabia. Journal of the Egyptian Society of 

Parasitology. 29 (1), 69-74. 

Morsy, T.A., Michael, S.A., Makhlouf, M. & Sibai, M. (1988) Leishmania infection 

sought in non human hosts in Suez Governorate, Egypt. J Egypt Soc Parasitol. 18 (2), 

539–545. 

de Moura, T.R., Oliveira, F., Novais, F.O., Miranda, J.C., et al. (2007) Enhanced 

Leishmania braziliensis infection following pre-exposure to sandfly saliva. PLoS 

Neglected Tropical Diseases. 1 (2), e84. 

Nasereddin, A., Salant, H. & Abdeen, Z. (2008) Feline leishmaniasis in Jerusalem: 

Serological investigation. Veterinary Parasitology. 158 (4), 364–369. 

Naucke, T.J. & Lorentz, S. (2012) First report of venereal and vertical transmission of 

canine leishmaniosis from naturally infected dogs in Germany. Parasites and Vectors. 

5 (1), 67. 



CHAPTER 1 

General introduction 

72 

Navarro, J.A., Sánchez, J., Peñafiel-Verdú, C., Buendía, A.J., et al. (2010) 

Histopathological lesions in 15 cats with leishmaniosis. Journal of Comparative 

Pathology. 143 (4), 297–302. 

Neves, M., Lopes, A.P., Martins, C., Fino, R., et al. (2020) Survey of Dirofilaria immitis 

antigen and antibodies to Leishmania infantum and Toxoplasma gondii in cats from 

Madeira Island, Portugal. Parasites and Vectors. 13 (1), 117. 

OIE (2018) Leishmaniosis. In: Manual of diagnostic tests and vaccines for terrestrial 

animals. pp. 491–502. 

Oliveira, G.C., Paiz, L.M., Menozzi, B.D., Lima, M. de S., et al. (2015) Antibodies to 

Leishmania spp. in domestic felines. Revista Brasileira de Parasitologia Veterinaria. 

24 (4), 464–470. 

Otranto, D., Napoli, E., Latrofa, M.S., Annoscia, G., et al. (2017) Feline and canine 

leishmaniosis and other vector-borne diseases in the Aeolian Islands: pathogen and 

vector circulation in a confined environment. Veterinary Parasitology. 236, 144–151. 

Otranto, D., Iatta, R., Baneth, G., Cavalera, M.A., et al. (2019) High prevalence of vector-

borne pathogens in domestic and wild carnivores in Iraq. Acta Tropica. 197, 105058. 

Owens, S.D., Oakley, D.A., Marryott, K., Hatchett, W., et al. (2001) Transmission of 

visceral leishmaniasis through blood transfusions from infected English Foxhounds to 

anemic dogs. Journal of the American Veterinary Medical Association. 219 (8), 1076–

1083. 

Ozon, C., Marty, P., Pratlong, F., Breton, C., et al. (1998) Disseminated feline 

leishmaniosis due to Leishmania infantum in Southern France. Veterinary 

Parasitology. 75 (2–3), 273–277. 

Paltrinieri, S., Gradoni, L., Roura, X., Zatelli, A., et al. (2016) Laboratory tests for 

diagnosing and monitoring canine leishmaniasis. Veterinary Clinical Pathology. 45 

(4), 552–578. 

Paniz Mondolfi, A.E., Colmenares Garmendia, A., Mendoza Pérez, Y., Hernández-

Pereira, C.E., et al. (2019) Autochthonous cutaneous leishmaniasis in urban domestic 

animals (Felis catus/Canis lupus familiaris) from central-western Venezuela. Acta 

Tropica. 191, 252–260. 

Parvizi, P., Mauricio, I., Aransay, A.M., Miles, M.A., et al. (2005) First detection of 

Leishmania major in peridomestic Phlebotomus papatasi from Isfahan province, Iran: 

comparison of nested PCR of nuclear ITS ribosomal DNA and semi-nested PCR of 

minicircle kinetoplast DNA. Acta Tropica. 93 (1), 75–83. 

Paşa, S., Tetik Vardarlı, A., Erol, N., Karakuş, M., et al. (2015) Detection of Leishmania 

major and Leishmania tropica in domestic cats in the Ege Region of Turkey. 

Veterinary Parasitology. 212 (3–4), 389–392. 

Pedrassani, D., Biolchi, J., Gonçalves, L.R., Mendes, N.S., et al. (2019) Molecular 

detection of vector-borne agents in cats in Southern Brazil. Revista Brasileira de 

Parasitologia Veterinaria. 28 (4), 632–643. 



CHAPTER 1 

General introduction 
 

73 

Pennisi, M.G. & Persichetti, M.F. (2018) Feline leishmaniosis: is the cat a small dog? 

Veterinary Parasitology. 251, 131–137. 

Pennisi, M.G., Venza, M., Reale, S., Vitale, F., et al. (2004) Case Report of leishmaniasis 

in four cats. Veterinary Research Communications. 28 (Suppl. 1), 363-366. 

Pereira, A., Ayhan, N., Cristóvão, J.M.J.M., Vilhena, H., et al. (2019a) Antibody response 

to Toscana virus and sandfly fever sicilian virus in cats naturally exposed to 

phlebotomine sand fly bites in Portugal. Microorganisms. 7 (9), 339. 

Pereira, A., Cristóvão, J.M., Vilhena, H., Martins, Â., et al. (2019b) Antibody response 

to Phlebotomus perniciosus saliva in cats naturally exposed to phlebotomine sand flies 

is positively associated with Leishmania infection. Parasites & Vectors. 12 (1), 128. 

Pereira, A., Valente, J., Parreira, R., Cristovão, J.M.J.M., et al. (2019c) An Unusual Case 

of Feline Leishmaniosis With Involvement of the Mammary Glands. Topics in 

Companion Animal Medicine. 37, 100356. 

Pereira, A., Parreira, R., Cristóvão, J.M., Castelli, G., et al. (2020) Phylogenetic insights 

on Leishmania detected in cats as revealed by nucleotide sequence analysis of multiple 

genetic markers. Infection, Genetics and Evolution. 77, 104069. 

Persichetti, M.-F., Solano-Gallego, L., Serrano, L., Altet, L., et al. (2016) Detection of 

vector-borne pathogens in cats and their ectoparasites in southern Italy. Parasites & 

vectors. 9 (1), 247. 

Persichetti, M.F., Solano-Gallego, L., Vullo, A., Masucci, M., et al. (2017) Diagnostic 

performance of ELISA, IFAT and Western blot for the detection of anti-Leishmania 

infantum antibodies in cats using a Bayesian analysis without a gold standard. 

Parasites and Vectors. 10 (1), 119. 

Persichetti, M.F., Pennisi, M.G., Vullo, A., Masucci, M., et al. (2018) Clinical evaluation 

of outdoor cats exposed to ectoparasites and associated risk for vector-borne infections 

in southern Italy. Parasites & vectors. 11 (1), 136. 

Pimenta, P., Alves-Pimenta, S., Barros, J., Barbosa, P., et al. (2015) Feline leishmaniosis 

in Portugal: 3 cases (year 2014). Veterinary Parasitology: Regional Studies and 

Reports. 1–2, 65–69. 

Pocholle, E., Reyes-Gomez, E., Giacomo, A., Delaunay, P., et al. (2012) A case of feline 

leishmaniasis in the south of France. Parasite. 19 (1), 77–80. 

Poli, A., Abramo, F., Barsotti, P., Leva, S., et al. (2002) Feline leishmaniosis due to 

Leishmania infantum in Italy. Veterinary Parasitology. 106 (3), 181–191. 

Pratlong, F., Rioux, J.A., Marry, P., Faraut-Gambarelli, F., et al. (2004) Isoenzymatic 

analysis of 712 strains of Leishmania infantum in the south of France and relationship 

of enzymatic polymorphism to clinical and epidemiological features. Journal of 

Clinical Microbiology. 42 (9), 4077–4082. 

Priolo, V., Martínez-Orellana, P., Pennisi, M.G., Masucci, M., et al. (2019) Leishmania 

infantum-specific IFN-γ production in stimulated blood from cats living in areas where 

canine leishmaniosis is endemic. Parasites & Vectors. 12 (1), 133. 



CHAPTER 1 

General introduction 

74 

Queiroga, T.B.D., Ferreira, H.R.P., dos Santos, W.V., de Assis, A.B.L., et al. (2020) 

Fluralaner (Bravecto®) induces long-term mortality of Lutzomyia longipalpis after a 

blood meal in treated dogs. Parasites and Vectors. 13 (1), 609. 

Quinnell, R.J. & Courtenay, O. (2009) Transmission, reservoir hosts and control of 

zoonotic visceral leishmaniasis. Parasitology. 136 (14), 1915–1934. 

Ramalho-Ortigão, J.M., Kamhawi, S., Joshi, M.B., Reynoso, D., et al. (2005) 

Characterization of a blood activated chitinolytic system in the midgut of the sand fly 

vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Molecular Biology. 

14 (6), 703–712.  

Ready, P.D. (2013) Biology of phlebotomine sand flies as vectors of disease agents. 

Annual Review of Entomology. 58 (1), 227–250. 

Richter, M., Schaarschmidt-Kiener, D. & Krudewig, C. (2014) Ocular signs, diagnosis 

and long-term treatment with allopurinol in a cat with leishmaniasis. Schweizer Archiv 

fur Tierheilkunde. 156 (6), 289–294. 

Risueño, J., Ortuño, M., Pérez-Cutillas, P., Goyena, E., et al. (2018) Epidemiological and 

genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, 

dogs and humans associated to vector abundance in Southeast Spain. Veterinary 

Parasitology. 259, 61–67. 

Rivas, A.K., Alcover, M., Martínez-Orellana, P., Montserrat-Sangrà, S., et al. (2018) 

Clinical and diagnostic aspects of feline cutaneous leishmaniosis in Venezuela. 

Parasites and Vectors. 11 (1), 141. 

Rocha, A.V.V.O., Moreno, B.F.S., Cabral, A.D., Louzeiro, N.M., et al. (2019) Diagnosis 

and epidemiology of Leishmania infantum in domestic cats in an endemic area of the 

Amazon region, Brazil. Veterinary Parasitology. 273, 80–85. 

Rogers, M.E. (2012) The role of Leishmania proteophosphoglycans in sand fly 

transmission and infection of the mammalian host. Frontiers in Microbiology. 3, 223. 

Rogers, M.E., Chance, M.L. & Bates, P.A. (2002) The role of promastigote secretory gel 

in the origin and transmission of the infective stage of Leishmania mexicana by the 

sandfly Lutzomyia longipalpis. Parasitology. 124 (5), 495–507. 

Rogers, M.B., Downing, T., Smith, B.A., Imamura, H., et al. (2014) Genomic 

confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania 

population. PLoS Genetics. 10 (1), e1004092. 

Rohousova, I., Ozensoy, S., Ozbel, Y. & Volf, P. (2005) Detection of species-specific 

antibody response of humans and mice bitten by sand flies. Parasitology. 130 (5), 493–

499. 

Romano, A., Inbar, E., Debrabant, A., Charmoy, M., et al. (2014) Cross-species genetic 

exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. 

Proceedings of the National Academy of Sciences. 111 (47), 16808–16813. 

Rougeron, V., Catzeflis, F., Hide, M., De Meeus, T., et al. (2011) First clinical case of 

cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis in a domestic cat 

from French Guiana. Veterinary Parasitology. 181 (2–4), 325–328. 



CHAPTER 1 

General introduction 
 

75 

Roura, X., Cortadellas, O., Day, M.J., Benali, S.L., et al. (2021) Canine leishmaniosis 

and kidney disease: Q&A for an overall management in clinical practice. Journal of 

Small Animal Practice. 62 (1), E1–19. 

Rüfenacht, S., Sager, H., Müller, N., Schaerer, V., et al. (2005) Two cases of feline 

leishmaniosis in Switzerland. Veterinary Record. 156 (17), 542–545. 

Sádlová, J. & Volf, P. (2009) Peritrophic matrix of Phlebotomus duboscqi and its kinetics 

during Leishmania major development. Cell and Tissue Research. 337 (2), 313–325. 

Sarkari, B., Hatam, G.R., Adnani, S.J. & Asgari, Q. (2009) Seroprevalence of feline 

leishmaniasis in areas of Iran where Leishmania infantum is endemic. Annals of 

Tropical Medicine and Parasitology. 103 (3), 275–277. 

Savani, E.S.M.M., De Oliveira Camargo, M.C.G., De Carvalho, M.R., Zampieri, R.A., et 

al. (2004) The first record in the Americas of an autochthonous case of Leishmania 

(Leishmania) infantum chagasi in a domestic cat (Felis catus) from Cotia County, São 

Paulo State, Brazil. Veterinary Parasitology. 120 (3), 229–233. 

Schäfer, I., Kohn, B., Volkmann, M. & Müller, E. (2021) Retrospective evaluation of 

vector-borne pathogens in cats living in Germany (2012–2020). Parasites and Vectors. 

14 (1), 123. 

Schönian, G., Mauricio, I. & Cupolillo, E. (2010) Is it time to revise the nomenclature of 

Leishmania? Trends in Parasitology. 26 (10), 466–469. 

Schönian, G., Lukeš, J., Stark, O. & Cotton, J.A. (2018) Molecular evolution and 

phylogeny of Leishmania. In: Alicia Ponte-Sucre & Maritza Padrón-Nieves (eds.). 

Drug Resistance in Leishmania Parasites – Consequences, Molecular Mechanism and 

Possible Treatments. Second edi. Switzerland, Springer International Publishing. pp. 

19–57. 

Schubach, T.M.P., Figueiredo, F.B., Pereira, S.A., Madeira, M.F., et al. (2004) American 

cutaneous leishmaniasis in two cats from Rio de Janeiro, Brazil: first report of natural 

infection with Leishmania (Viannia) braziliensis. Transactions of the Royal Society of 

Tropical Medicine and Hygiene. 98 (3), 165–167. 

Secundino, N.F.C., Eger-Mangrich, I., Braga, E.M., Santoro, M.M., et al. (2005) 

Lutzomyia longipalpis peritrophic matrix: Formation, structure, and chemical 

composition. Journal of Medical Entomology. 42 (6), 928–938. 

Serafim, T.D., Iniguez, E. & Oliveira, F. (2020) Leishmania infantum. Trends in 

Parasitology. 36 (1), 80–81. 

Serafim, T.D., Coutinho-Abreu, I. V., Oliveira, F., Meneses, C., et al. (2018) Sequential 

blood meals promote Leishmania replication and reverse metacyclogenesis 

augmenting vector infectivity. Nature Microbiology. 3 (5), 548–555. 

Shaw, J., Pratlong, F., Floeter-Winter, L., Ishikawa, E., et al. (2015) Characterization of 

Leishmania (Leishmania) waltoni n. sp. (Kinetoplastida: Trypanosomatidae), the 

parasite responsible for diffuse cutaneous leishmaniasis in the Dominican Republic. 

American Journal of Tropical Medicine and Hygiene. 93 (3), 552–558. 



CHAPTER 1 

General introduction 

76 

Sherry, K., Miró, G., Trotta, M., Miranda, C., et al. (2011) A serological and molecular 

study of Leishmania infantum infection in cats from the island of Ibiza (Spain). Vector-

Borne and Zoonotic Diseases. 11 (3), 239–245. 

Silaghi, C., Knaus, M., Rapti, D., Kusi, I., et al. (2014) Survey of Toxoplasma gondii and 

Neospora caninum, haemotropic mycoplasmas and other arthropod-borne pathogens 

in cats from Albania. Parasites and Vectors. 7 (1), 62. 

da Silva, A.V.M., de Souza Cândido, C.D., de Pita Pereira, D., Brazil, R.P., et al. (2008) 

The first record of American visceral leishmaniasis in domestic cats from Rio de 

Janeiro, Brazil. Acta Tropica. 105 (1), 92–94. 

Silva, R. de C.N., Ramos, R.A.N., Pimentel, D. de S., Oliveira, G.M. de A., et al. (2014) 

Detection of antibodies against Leishmania infantum in cats (Felis catus) from the 

state of Pernambuco, Brazil. Revista da Sociedade Brasileira de Medicina Tropical. 

47 (1), 108–109. 

Silva, R.B.S., Portela, R. de A., Arruda, L.F.B., Ferreira, J. da S., et al. (2020) Natural 

infection by Leishmania infantum in domestic cats (Felis catus) in a municipality of 

moderate transmission in the Brazilian semi-arid region. Revista Brasileira de 

Parasitologia Veterinaria. 29 (4), 1–10. 

da Silva, S.M., Rabelo, P.F.B., Gontijo, N. de F., Ribeiro, R.R., et al. (2010) First report 

of infection of Lutzomyia longipalpis by Leishmania (Leishmania) infantum from a 

naturally infected cat of Brazil. Veterinary Parasitology. 174 (1–2), 150–154. 

da Silveira Neto, L., Sobrinho, L.S.V., Martins, C.O., Machado, R.Z., et al. (2011) Use 

of crude, FML and rK39 antigens in ELISA to detect anti-Leishmania spp. antibodies 

in Felis catus. Veterinary Parasitology. 177 (3–4), 374–377. 

Sobrinho, L.S.V., Rossi, C.N., Vides, J.P., Braga, E.T., et al. (2012) Coinfection of 

Leishmania chagasi with Toxoplasma gondii, Feline Immunodeficiency Virus (FIV) 

and Feline Leukemia Virus (FeLV) in cats from an endemic area of zoonotic visceral 

leishmaniasis. Veterinary Parasitology. 187 (1–2), 302–306. 

Solano-Gallego, L., Rodríguez-Cortés, A., Iniesta, L., Quintana, J., et al. (2007) Cross-

sectional serosurvey of feline leishmaniasis in ecoregions around the Northwestern 

Mediterranean. American Journal of Tropical Medicine and Hygiene. 76 (4), 676-680. 

Solano-Gallego, L., Montserrrat-Sangrà, S., Ordeix, L. & Martínez-Orellana, P. (2016) 

Leishmania infantum-specific production of IFN-γ and IL-10 in stimulated blood from 

dogs with clinical leishmaniosis. Parasites and Vectors. 9 (1), 317.  

de Sousa, K.C.M., Herrera, H.M., Domingos, I.H., Campos, J.B.V., et al. (2014) 

Detecção sorológica de Toxoplasma gondii, Leishmania infantum e Neospora caninum 

em gatos de uma área endêmica para leishmaniose no Brasil. Revista Brasileira de 

Parasitologia Veterinaria. 23 (4), 449–455. 

de Sousa Oliveira, T.M.F., Pereira, V.F., Benvenga, G.U., Martin, M.F.A., et al. (2015) 

Conjunctival swab PCR to detect Leishmania spp. in cats. Revista Brasileira de 

Parasitologia Veterinaria. 24 (2), 220–222. 



CHAPTER 1 

General introduction 
 

77 

de Souza, A.I., Barros, E.M.S., Ishikawa, E., Novaes Ilha, I.M., et al. (2005) Feline 

leishmaniasis due to Leishmania (Leishmania) amazonensis in Mato Grosso do Sul 

State, Brazil. Veterinary Parasitology. 128 (1–2), 41–45. 

Spada, E., Proverbio, D., Migliazzo, A., Della Pepa, A., et al. (2013) Serological and 

molecular evaluation of Leishmania infantum infection in stray cats in a nonendemic 

area in Northern Italy . ISRN Parasitology. 2013, 1–6. Available from: 

doi:10.5402/2013/916376. 

Spada, E., Canzi, I., Baggiani, L., Perego, R., et al. (2016) Prevalence of Leishmania 

infantum and co-infections in stray cats in northern Italy. Comparative Immunology, 

Microbiology and Infectious Diseases. 45, 53–58. 

Spada, E., Perego, R., Vitale, F., Bruno, F., et al. (2020) Feline leishmania spp. Infection 

in a non-endemic area of Northern Italy. Animals. 10 (5), 817. 

Sukmee, T., Siripattanapipong, S., Mungthin, M., Worapong, J., et al. (2008) A suspected 

new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai 

patient. International Journal for Parasitology. 38 (6), 617–622. Available from: 

doi:10.1016/j.ijpara.2007.12.003. 

Sunter, J. & Gull, K. (2017) Shape, form, function and Leishmania pathogenicity: from 

textbook descriptions to biological understanding. Open biology. 7 (9), 170165.  

Tabar, M.D., Altet, L., Francino, O., Sánchez, A., et al. (2008) Vector-borne infections 

in cats: Molecular study in Barcelona area (Spain). Veterinary Parasitology. 151 (2–

4), 332–336. 

Tirado, T.C., Bavia, L., Ambrosio, A.R., Campos, M.P., et al. (2021) A comparative 

approach on the activation of the three complement system pathways in different hosts 

of visceral leishmaniasis after stimulation with Leishmania infantum. Developmental 

and Comparative Immunology. 120, 104061. 

Titus, R. & Ribeiro, J. (1988) Salivary gland lysates from the sand fly Lutzomyia 

longipalpis enhance Leishmania infectivity. Science. 239 (4845), 1306–1308. 

Trainor, K.E., Porter, B.F., Logan, K.S., Hoffman, R.J., et al. (2010) Eight cases of feline 

cutaneous leishmaniasis in Texas. Veterinary Pathology. 47 (6), 1076–1081. 

Urbani, L., Tirolo, A., Salvatore, D., Tumbarello, M., et al. (2020) Serological, molecular 

and clinicopathological findings associated with Leishmania infantum infection in cats 

in Northern Italy. Journal of Feline Medicine and Surgery. 22 (10), 935–943. 

Van Griensven, J., Carrillo, E., López-Vélez, R., Lynen, L., et al. (2014) Leishmaniasis 

in immunosuppressed individuals. Clinical Microbiology and Infection. 20 (4), 286–

299. 

Verneuil, M. (2013) Leishmaniose oculaire féline: à propos d’un cas. Journal Francais 

d’Ophtalmologie. 36 (4), E67–72. 

Veronesi, F., Ravagnan, S., Cerquetella, M., Carli, E., et al. (2016) First detection of 

Cytauxzoon spp. infection in European wildcats (Felis silvestris silvestris) of Italy. 

Ticks and Tick-borne Diseases. 7 (5), 853–858. 



CHAPTER 1 

General introduction 

78 

Vides, J.P., Schwardt, T.F., Sobrinho, L.S.V., Marinho, M., et al. (2011) Leishmania 

chagasi infection in cats with dermatologic lesions from an endemic area of visceral 

leishmaniosis in Brazil. Veterinary Parasitology. 178 (1–2), 22–28. 

Viettri, M., Herrera, L., Aguilar, C.M., Morocoima, A., et al. (2018) Molecular diagnosis 

of Trypanosoma cruzi/Leishmania spp. coinfection in domestic, peridomestic and wild 

mammals of Venezuelan co-endemic areas. Veterinary Parasitology: Regional Studies 

and Reports. 14, 123–130. 

Vilhena, H., Martinez-Díaz, V.L., Cardoso, L., Vieira, L., et al. (2013) Feline vector-

borne pathogens in the north and centre of Portugal. Parasites & vectors. 6 (1), 99. 

Villanueva‐Saz, S., Giner, J., Tobajas, A.P., Pérez, M.D., et al. (2021) Serological 

evidence of SARS‐CoV‐2 and co‐infections in stray cats in Spain. Transboundary and 

Emerging Diseases. 10.1111/tbed.14062. 

Vita, S., Santori, D., Aguzzi, I., Petrotta, E., et al. (2005) Feline leishmaniasis and 

ehrlichiosis: Serological investigation in abruzzo region. Veterinary Research 

Communications. 29 (2), 319–321. 

Vlkova, M., Rohousova, I., Drahota, J., Stanneck, D., et al. (2011) Canine antibody 

response to Phlebotomus perniciosus bites negatively correlates with the risk of 

Leishmania infantum transmission. Paul Andrew Bates (ed.). PLoS neglected tropical 

diseases. 5 (10), e1344. 

Wakid, M.H. & Bates, P.A. (2004) Flagellar attachment of Leishmania promastigotes to 

plastic film in vitro. Experimental Parasitology. 106 (3–4), 173–178. 

Wheeler, R.J., Sunter, J.D. & Gull, K. (2016) Flagellar pocket restructuring through the 

Leishmania life cycle involves a discrete flagellum attachment zone. Journal of Cell 

Science. 129 (4), 854–867. 

WHO (2010) Control of the Leishmaniasis: report of the WHO Expert Committee on the 

Control of Leishmaniases. WHO Technical Report Series. 

WHO (2017a) Manual on case management and surveillance of the leishmaniases in the 

WHO European Region. Available from: http://www.euro.who.int/pubrequest 

[Accessed: 29 December 2020]. 

WHO (2017b) Unveiling the neglect of leishmaniasis. [Online]. Available from: 

https://www.who.int/leishmaniasis/Unveiling_the_neglect_of_leishmaniasis_infogra

phic.pdf?ua=1. [Accessed: 29 December 2020]. 

WHO (2020) Leishmaniasis. 2020. Available from: https://www.who.int/en/news-

room/fact-sheets/detail/leishmaniasis [Accessed: 26 December 2020]. 

Zemanová, E., Jirků, M., Mauricio, I.L., Horák, A., et al. (2007) The Leishmania 

donovani complex: genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH, 

and FH), new targets for multilocus sequence typing. International Journal for 

Parasitology. 37 (2), 149–160. 



 

79 

CHAPTER 2 

Estimation of Leishmania infection prevalence in cats and exposure to 

phlebotomine sand flies 

This chapter is based on the research article: 

Pereira, A., Cristóvão, J.M., Vilhena, H., Martins, Â., Cachola, P., Henriques, J., 

Coimbra, M., Catarino, A., Lestinova, T., Spitzova, T., Volf, P., Campino, L. & Maia, C. 

(2019) Antibody response to Phlebotomus perniciosus saliva in cats naturally exposed to 

phlebotomine sand flies is positively associated with Leishmania infection. Parasites and 

Vectors. 12(1), 128. https://doi.org/10.1186/s13071-019-3376-0. 

 

https://doi.org/10.1186/s13071-019-3376-0


CHAPTER 2 

Estimation of Leishmania infection prevalence in cats and exposure to phlebotomine sand flies 

80 

1. Abstract 

1.1. Background 

Zoonotic leishmaniosis, caused by the protozoan Leishmania infantum, is a public 

and animal health problem in Asia, Central and South America, the Middle East and the 

Mediterranean Basin. Several phlebotomine sand fly species from the subgenus 

Larrousius are vectors of L. infantum. Data from dogs living in endemic areas of 

leishmaniosis support the use of antibody responses to phlebotomine sand fly saliva as an 

epidemiological biomarker for monitoring vector exposure. The aim of this study was to 

analyse the exposure of cats to phlebotomine sand flies using detection of IgG antibodies 

to Phlebotomus perniciosus saliva. The association between phlebotomine sand fly 

exposure and the presence of Leishmania infection was also investigated. 

1.2. Results 

IgG antibodies to P. perniciosus saliva were detected in 167 (47.7 %) out of 350 

cats; higher antibody levels were present in sera collected during the period of 

phlebotomine sand fly seasonal activity (OR = 19.44, 95 % CI: 9.84-38.41). Cats of age 

12-35 months had higher antibody levels than younger ones (OR = 3.56, 95 % CI: 1.39-

9.16), this difference was significant also with old cats (for 36-95 months old OR = 9.43, 

95 % CI: 3.62-24.48, for older than 95 months, OR = 9.68, 95 % CI: 3.92-23.91). 

Leishmania spp. DNA was detected in the blood of 24 (6.9 %) cats, while antibodies to 

L. infantum were detected in three (0.9 %). Only one cat was positive to Leishmania by 

both techniques. Cats presenting IgG antibodies to P. perniciosus had a significantly 

higher risk to be positive for Leishmania infection. 

1.3. Conclusions 

To our knowledge, this is the first study demonstrating anti-P. perniciosus 

antibodies in cats. The evaluation of the contact of this animal species with the vector is 

important for the development of prophylactic measures directed to cats, with the aim of 

reducing the prevalence of infection in an endemic area. Therefore, studies evaluating 

whether the use of imidacloprid/flumethrin collars reduces the frequency of P. 

perniciosus bites in cats are needed. It is also important to evaluate if there is a correlation 

between the number of phlebotomine sand fly bites and IgG antibody levels. 
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2. Background 

Zoonotic leishmaniosis, caused by the protozoan Leishmania infantum, is a 

serious public and animal health problem in several countries of Asia, Central and South 

America, the Middle East, and the Mediterranean Basin. Domestic dogs are the major 

hosts of the parasite and the main domestic reservoir hosts for human infection. 

Nevertheless, the number of feline leishmaniosis reports and subclinical L. infantum 

infections in cats living in endemic areas has increased in recent years [1]. In fact, there 

is an increasing trend to consider cats as a potential primary or secondary reservoir host 

of L. infantum, rather than being an accidental host [2]. This assumption is based on 

several premises, namely natural susceptibility to infection, suitability to serve as a blood 

source for phlebotomine sand flies, infectivity to the vector, and close contact with 

humans where the peridomestic and domestic transmission cycles of the parasite occur 

[3]. 

Leishmania parasites are transmitted by phlebotomine sand flies (Diptera: 

Psychodidae). During the blood meal, immunogenic components present in phlebotomine 

sand fly saliva are injected into the vertebrate host leading to the development of anti-

saliva antibodies [4]. Data from dogs living in endemic areas of leishmaniosis caused by 

L. infantum suggest the use of antibody responses to salivary antigens as an 

epidemiological biomarker for monitoring vector exposure [5-11]. The levels of specific 

IgG antibodies against phlebotomine sand fly saliva positively correlate with the number 

of blood-fed sand flies [6-12] and decays after the end of phlebotomine sand fly seasonal 

activity [7, 10].  

In the Old World, L. infantum is transmitted by several phlebotomine sand fly 

species belonging to the subgenus Larrossius, of which Phlebotomus perniciosus is the 

principal vector in the west part of Mediterranean, including Portugal [13]. Portugal is 

endemic for canine leishmaniosis [14] and hypoendemic for human visceral leishmaniosis 

[15]. Feline leishmaniosis [16] and L. infantum infection in cats have been documented 
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in Portugal [17-20]. The phlebotomine sand fly season usually lasts from May until late 

October [13, 21, 22]. 

The aim of this work was to analyse the exposure of cats to phlebotomine sand 

flies through the detection of antibodies to P. perniciosus saliva, and to assess associated 

risk factors. The possible association between phlebotomine sand fly exposure and the 

presence of Leishmania infection was also investigated. 

3. Methods 

3.1. Animals and samples 

From April to December 2017, a total of 350 cats with access to the outdoors from 

veterinary medical centres, animal shelters and from colonies (captured under the scope 

of trap-neuter-return programs) from Portugal, were studied. Cats were from three 

continental Portuguese NUTS II (Nomenclature of Units for Territorial Statistics): Centre 

(Coimbra and Guarda regions; n = 61), Lisbon (Lisbon and Setúbal regions; n = 266) and 

the Algarve region (n = 23).  

Peripheral blood (1–2 ml) was obtained by cephalic or jugular venipuncture from 

each animal and collected into EDTA and serum-separating tubes. Serum and buffy coat 

were obtained by centrifugation and stored at -20 °C until use in serological analyses and 

DNA extraction, respectively. 

Whenever available, data on sex, breed, fur length, age, reproductive status, 

lifestyle, use of insecticides/acaricides, co-habitation with other animals, presence of 

concomitant diseases and of clinical signs compatible with leishmaniosis (i.e., anorexia, 

muscular atrophy, dermatological manifestations, exercise intolerance, fever, dyspnea, 

epistaxis, spleen/hepatomegaly, gingivostomatitis, gastrointestinal alterations, lameness, 

lymphadenopathy, lethargy, ocular manifestations, pale mucous membranes 

polyuria/polydipsia or weight loss) were recorded for each cat. 

3.2. Phlebotomus perniciosus salivary glands and detection of anti-P. perniciosus 

saliva antibodies 

Salivary gland homogenate (SGH) was obtained by dissecting salivary glands 

from 4–6 days-old P. perniciosus females reared under standard conditions [23]. Groups 
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of 20 salivary glands were pooled in 20 mM Tris buffer with 150 mM NaCl and then kept 

lyophilized at 4 °C until used. 

Anti-P. perniciosus IgG was measured in all sera samples by indirect enzyme-

linked immunosorbent assay (ELISA). The ELISA was performed in accordance with 

previous studies [7] with minor modifications. Briefly, flat-bottom microtiter plates 

(Nunc; VWR, Radnor, Pennsylvania, U.S.A.) were coated with P. perniciosus SGH (0.2 

salivary gland per well) in 20 mM carbonate-bicarbonate buffer (pH 9, 100 μl/well) and 

incubated overnight at 4 °C. The plates were washed with PBS + 0.05 % Tween 20 (PBS-

Tw) and blocked with 6 % (w/v) low fat dry milk diluted in PBS-Tw at 37 °C for 60 min. 

Feline sera diluted 1/50 in 2 % (w/v) low fat dry milk/PBS-Tw was added to the wells 

(100 μl/well) after washing twice with PBS-Tw. After 90 min incubation at 37 °C, the 

plates were washed with PBS-Tw and incubated at 37 °C for 45 min with secondary 

antibodies [AAI26P; Bio-Rad (AbD Serotec), Hercules, California, U.S.A.] (100 μl/well) 

diluted 1:5000 in PBS-Tw. Following another washing cycle, the ELISA was developed 

using orthophenylendiamine (P23938; Sigma-Aldrich, St. Louis, Missouri, U.S.A.) (0.5 

mg/ml) in a phosphate citrate buffer (pH 5.5) with 0.001 % hydrogen peroxide (30 %; 

Merck, Darmstadt, Germany). The reaction was stopped after 5 min with 10 % sulphuric 

acid and absorbance (OP value) was measured at 492 nm using a NanoQuant (Infinite 

M200 Pro; Tecan, Zürich, Switzerland). Each serum was tested in duplicate. Wells 

without serum (but coated with SGH) were used as blanks while sera from cats living in 

non-endemic countries, namely Germany and Switzerland, served as negative controls. 

The cut-off value was calculated by the addition of three standard deviations to the mean 

optical density of the control sera. 

3.3. Detection of anti-Leishmania IgG 

 Anti-Leishmania antibodies were determined in sera by the immunofluorescence 

antibody test (IFAT) as previously described [18]. Briefly, a L. infantum MON-1 

(MCAN/PT/05/IMT-373) suspension of 107 promastigotes was used as antigen and the 

anti-cat IgG (whole molecule)-FITC (F4262; Sigma-Aldrich, St. Louis, Missouri, U.S.A.) 

was used in a dilution of l:20. A serum sample from a seropositive cat (IFAT titre 1:1204) 

was used as positive control [16] while the serum sample of a cat from a non-endemic 
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country of leishmaniosis was used as negative control. The IFAT cut-off value was 

established at a serum dilution of 1:64 (the same as used in the laboratory for dogs) [24]. 

3.4. DNA extraction and PCR amplification 

DNA was extracted from buffy coat using the High Pure PCR Template 

Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the 

manufacturer’s instructions. Detection of Leishmania DNA was done using a nested PCR 

protocol with primers targeting the small subunit ribosomal RNA (SSU rRNA) gene [25]. 

A positive control containing L. infantum MON-1 (MHOM/PT/88/IMT318) DNA and a 

negative control without DNA template were included in each amplification. The DNA 

amplicons were resolved by conventional electrophoresis on 1.5 % agarose gels stained 

with Green Safe Premium (Nzytech, Lisbon, Portugal), using a 100 bp DNA ladder as a 

molecular weight marker, then visualized under UV illumination. 

3.5. Statistical analysis 

An exploratory and descriptive data analysis was conducted for the main variables 

of the dataset. Cats were considered infected with Leishmania if they tested positive for 

at least one of the techniques (i.e., PCR or IFAT). For the quantitative variable “age in 

months”, the normality and the homogeneity of variance were evaluated using 

Kolmogorov-Smirnov/Shapiro-Wilk tests and the Levenne test, respectively. When these 

prerequisites were not valid, the non-parametric Mann-Whitney test was used. To explore 

the associations between qualitative variables and to compare proportions a Chi-square 

test, the alternative Fisher’s exact test or the Freeman-Halton test was performed. 

Confidence intervals (95 % CI) for proportions were obtained by the Wilson method. This 

initial approach was followed by multivariate analysis that was developed to evaluate, in 

an integrated way, possible factors associated with the presence of antibodies against P. 

perniciosus saliva and with the presence of Leishmania DNA and/or antibodies to the 

parasite (outcome variables). First, crude odds ratios (OR crude) and 95 % CIs were 

obtained by a simple logistic regression model to screen the effect of each explanatory 

variable on the outcome variables. In a second step, explanatory variables with a P-value 

≤ 0.2 in the univariate analysis were selected and included in the multiple logistic 

regression model. Finally, a backward stepwise elimination procedure was implemented, 

using a P-value ≤ 0.05 as the criterion for variables to remain in the model. The Hosmer 
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& Lemeshow goodness-of-fit test, residual analysis and determination of the area under 

the receiver operating characteristic curve (ROC) were performed. All statistical analyses 

were conducted using IBM® SPSS® Statistics version 25.0 and OpenEpi version 3.01 

software. 

4. Results 

Antibodies to Phlebotomus perniciosus saliva (cut-off ≥ 0.173) were detected in 

167 (47.7 %) sera (Table 1). One hundred and seven (73.8 %) and 72 (35.8 %) blood 

samples of domestic and stray cats, respectively, were collected during phlebotomine 

sand fly activity. There were significant differences between the ELISA result and the 

seven variables studied: (i) age group (χ2 = 38.335, df = 3, P < 0.001); (ii) fur length (χ2 = 

6.229, df = 1, P = 0.043); (iii) lifestyle (χ2 = 31.806, df = 1, P < 0.001); (iv) region (χ2 = 

14.246, df = 2, P < 0.001); (v) reproductive status (χ2 = 47.881, df = 1, P < 0.001); (vi) 

the use of acaricides/insecticides (χ2 = 20.516, df = 1, P < 0.001); and (vii) phlebotomine 

period activity (χ2 = 102.048, df = 1, P < 0.001). According to the multivariate logistic 

regression models, factors with a predicting effect on the presence of antibodies to P. 

perniciosus (Table 2) were age and phlebotomine activity period (Figure 1). First, cats of 

12–35 months had 3.56 higher odds (95 % CI: 1.39–9.16; χ2
Wald = 6.953, df = 1, P = 0.008) 

of presenting antibodies to P. perniciosus saliva than younger ones. This difference 

remained significant with higher magnitude when comparing young cats with those 36–

95 months-old (OR = 9.43, 95 % CI: 3.62–24.48; χ2
Wald = 21.224, df = 1, P < 0.001) and 

those older than 95 months (OR = 9.68, 95 % CI: 3.92–23.91; χ2
Wald = 24.222, df = 1, P 

< 0.001). Secondly, sera collected during the period of phlebotomine sand fly seasonal 

activity exhibited nearly 19 times higher odds of having IgG antibody levels than those 

collected outside phlebotomine sand fly season (95 % CI: 9.84–38.41; χ2
Wald = 72.947, df 

= 1, P < 0.001). 

Leishmania infection was detected in 26 cats (7.7 %): Leishmania spp. DNA was 

detected using a set of general primers that target SSU rRNA in the blood samples of 24 

(6.9 %) cats, while antibodies to L. infantum were detected in three (0.9 %) sera. 
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Only one cat was positive to Leishmania by both techniques. No significant 

differences were detected in positivity to L. infantum among all the variables/categories 

studied (Table 1). 
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Table 1. Prevalence of Leishmania (molecular and/or serological) and antibodies to Phlebotomus perniciosus saliva in cats from three regions of mainland 

Portugal. 

Variable/Categories  Antibodies to P. perniciosus saliva  Antibodies to Leishmania and/or parasite DNA 

Tested cats Positive cats 95 % CI P-value  Positive cats 95 % CI P-value 

Sex, n (%) 349   0.111 (χ2 = 2.535, df = 1)    0.468 (χ2 = 0.526, df = 1) 

Female 191 (54.7) 84 (44.0) 37.1–51.1   16 (8.4) 5.2–13.2  

Male 158 (45.3) 83 (52.5) 44.8–60.2   10 (6.3) 3.5–11.3  

Age, median (IQR) 36 (12–96) 72 (24–121)  <0.001 (Z = -6.379)  28 (8–96)   0.301 (Z = -1.034) 

Age group, n (%) 310   <0.001 (χ2 = 38.335, df = 3)    1.866 (χ2 = 1.866, df = 3) 

2–11 months 70 (22.6) 16 (22.9)a,b 14.6–34.0   7 (10.0) 4.9–19.2  

12–35 months 67 (21.6) 25 (37.3)c 26.7–49.3   6 (9.0) 4.2–18.2  

36–95 months 85 (27.4) 39 (45.9)a,d 35.7–56.4   4 (4.7) 1.8–11.5  

More than 95 months 88 (28.4) 62 (70.5)b,c,d 60.2–79.0   6 (6.8) 3.2–14.1  

Reproductive status, n (%) 334   <0.001 (χ2 = 47.881, df = 1)    0.693 (χ2 = 0.156, df = 1) 

Entire 216 (64.7) 72 (33.3) 27.4–39.9   14 (6.5) 3.9–10.6  

Neutered 118 (35.3) 86 (72.9) 64.2–80.1   9 (7.6) 4.1–13.9  

Breed, n (%) 347   0.811 (χ2 = 0,057 df = 1)    0.635f 

Defined 18 (5.2) 9 (50.0) 29.0–71.0   2 (11.1) 3.1–32.8  

Mongrel 329 (94.8) 155 (47.1) 41.8–52.5   24 (7.3) 5.0–10.6  

Fur lenght, n (%) 349   0.013 (χ2 = 6.229, df = 1)    0.191f 

Short 310 (88.8) 141 (45.5) 40.0–51.0   21 (6.8) 4.5–10.1  

Medium or long 39 (11.2) 26 (66.7) 51.0–79.4   5 (12.8) 5.6–26.7  

Lifestyle, n (%) 346   <0.001 (χ2 = 31.806, df = 1)    0.522 (χ2 = 0.411, df = 1) 

Domestic 145 (41.9) 95 (65.5) 57.5–72.8   12 (8.3) 4.8–13.9  

Shelter/stray 201 (58.1) 70 (34.8) 28.6–41.6   13 (6.5) 3.8–10.8  

Region, n (%) 350   0.001 (χ2 = 14.246, df = 2)    0.467f 

Centre 61 (17.4) 41 (67.2)e 54.7–77.7   5 (8.2) 3.6–17.8  
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Lisbon metropolitan area 266 (76.0) 112 (42.1)e 36.3–48.1   18 (6.8) 5.6–26.7  

Algarve 23 (6.6) 14 (60.9) 40.8–77.8   3 (13.0) 4.5–32.1  

Other animals, n (%) 343   0.149 (χ2 = 2.082, df = 1)    0.197f 

No 39 (11.4) 23 (59.0) 43.4–72.9   5 (12.8) 5.6–26.7  

Yes 304 (88.6) 142 (46.7) 41.2–52.3   21 (6.9) 4.6–10.3  

Ectoparasiticides, n (%) 332   <0.001 (χ2 = 20.516, df = 1)    0.147 (χ2 = 2.101, df = 1) 

No 257 (77.4) 102 (39.7) 33.9–45.8   15 (5.8) 3.6–9.4  

Yes 75 (22.6) 52 (69.3) 58.2–78.6   8 (10.7) 5.5–19.7  

Clinical signs, n (%) 350   0.137 (χ2 = 2.212, df = 1    0.899 (χ2 = 0.899, df = 1) 

No 252 (72.0) 114 (45.2) 39.2–51.4   19 (7.5) 4.9–11.5  

Yes 98 (28.0) 53 (54.1) 44.3–63.6   7 (7.1) 3.5–14.0  

Concomitant diseases, n (%) 181   0.185 (χ2 = 1.760, df = 1)    0.384 (χ2 = 0.759, df = 1) 

No 99 (54.7) 62 (62.6) 52.8–71.5   11 (11.1) 6.3–18.8  

Yes 82 (45.3) 59 (72.0) 61.4–80.5   6 (7.3) 3.4–15.1  

Phlebotomine activity period, n (%) 350   <0.001 (χ2 = 102.048, df = 1)    0.156 (χ2 = 2.016, df = 1) 

No 168 (48.0) 33 (19.6) 14.3–26.3   9 (5.4) 2.8–9.9  

Yes 182 (52.0) 134 (73.6) 66.8–79.5 0.398 (χ2 = 5.148, df = 5)  17 (9.3) 5.9–14.5 0.653 (χ2 = 3.308, df = 5) 

May 25 (7.1) 20 (80.0) 60.9–91.1   3 (12.0) 2.5–31.2  

June 20 (5.7) 14 (70.0) 48.1–85.5   1 (5.0) 0.9–23.6  

July 22 (6.3) 20 (90.9) 72.2–97.5   2 (9.1) 2.5–27.8  

August 18 (5.1) 13 (72.2) 49.1–87.5   0 (0.0) 0.0–17.6  

September 24 (6.9) 17 (70.8) 50.8–85.1   2 (8.3) 2.3–25.9  

October 73 (20.9) 50 (68.5) 57.1–78.0   9 (12.3) 6.6–21.8  

Total, n (%) 350 167 (47.7) 42.5–52.9   26 (7.4) 5.1–10.7  

a P = 0.003 (χ2 = 8.832, df = 1); b P < 0.001 (χ2 = 35.110, df = 1); cP < 0.001 (χ2 = 16.860, df = 1); d P = 0.001 (χ2 = 10.680, df = 1); eP < 0.001 (χ2 = 12.530, df = 1); f Fisher’s exact test or 

Freeman-Halton test. 

Abbreviations: CI, confidence interval; IQR, interquartile interval (quartile 1 - quartile 3). 
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Table 2. Presence of antibodies against Phlebotomus perniciosus saliva: odds-ratios, 95 % confidence intervals and significances, obtained by simple 

(OR crude) and multiple (OR adjusted) logistic regression models. 

Variable/categories OR crude 95 % CI P-value OR adjusted 95 % CI P-value 

Sexb       

Femalea       

Male 1.41 0.92–2.15 0.112 (χ2
Wald = 2.528, df = 1)    

Age group       

2–11 monthsa   <0.001 (χ2
Wald = 35.190, df = 3)   <0.001 (χ2

Wald = 29.553, df = 3) 

12–35 months 2.01 0.95–4.24 0.067 (χ2
Wald = 3.360, df = 1) 3.56 1.39–9.16 0.008 (χ2

Wald = 6.953, df = 1) 

36–95 months 2.86 1.42–5.78 0.003 (χ2
Wald = 8.608, df = 1) 9.43 3.62–24.48 <0.001 (χ2

Wald = 21.224, df = 1) 

More than 95 months 8.05 3.91–16.56 <0.001 (χ2
Wald = 32.070, df = 1) 9.68 3.92–23.91 <0.001 (χ2

Wald = 24.222, df = 1) 

Reproductive statusb       

Entirea       

Neutered 5.38 3.28–8.82 <0.001 (χ2
Wald = 44.393, df = 1)    

Breedb       

Defineda       

Mongrel 0.89 0.35–2.30 0.811 (χ2
Wald = 0.057, df = 1)    

Fur lenghtb       

Shorta       

Medium or long 2.40 1.19–4.84 0.015 (χ2
Wald = 5.953, df = 1)    

Lifestyleb       

Domestica       

Shelter/stray 0.28 0.180–0.44 <0.001 (χ2
Wald = 30.684, df = 1)    

Regionb       

Centrea   0.001 (χ2
Wald = 13.693, df = 2)    

Lisbon metropolitan area 0.36 0.20–0.64 0.001 (χ2
Wald = 11.957, df = 1)    

Algarve 0.76 0.28–2.05 0.586 (χ2
Wald = 0.297, df = 1)    
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Other animalsb       

Noa       

Yes 0.61 0.31–1.20 0.152 (χ2
Wald = 2.053, df = 1)    

Ectoparasiticidesb       

Noa       

Yes 3.44 1.98–5.96 <0.001 (χ2
Wald = 19.290, df = 1)    

Clinical signsb       

Noa       

Yes 1.43 0.89–2.28 0.138 (χ2
Wald = 2.203, df = 1)    

Concomitant diseasesb       

Noa       

Yes 1.53 0.82–2.88 0.186 (χ2
Wald = 1.751, df = 1)    

Phlebotomine activity periodb       

Noa       

Yes 11.42 6.90–18.90 <0.001 (χ2
Wald = 89.858, df = 1) 19.44 9.84–38.41 <0.001 (χ2

Wald = 72.947, df = 1) 

aReference category; bVariable that did not have a statistically significant association in the fitted model. 

Abbreviations: OR, odds ratio; CI, confidence interval. 
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Leishmania DNA or specific antibodies to the parasite were detected in 18 cats 

seropositive to phlebotomine sand fly saliva. Of these 18 cats, all but one had a blood 

sample taken during phlebotomine sand fly activity. Cats presenting IgG antibodies to P. 

perniciosus had significantly higher risk (χ2
Wald = 4.893, df = 1, P = 0.027; OR = 2.64, 95 

% CI: 1.12–6.25) of being infected with Leishmania (Table 3).

Figure 1. Predicted probability of the presence of antibodies against 

Phlebotomus perniciosus saliva related with cat age and 

phlebotomine sand fly activity period. 
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Table 3. Association between the presence of antibodies to Phlebotomus perniciosus saliva and a serological and/or molecular positive result for 

Leishmania. 

Variable/categories Antibodies to Leishmania and/or parasite DNA     

   Chi-Square test  Simple logistic regression model 

 Tested cats, n (%) Positive cats, n (%) 95% CI P-value  OR 95 % CI P-value 

Phlebotomus perniciosus saliva 350   0.022 (χ2 = 5.212, df = 1)     

Seronegativea 183 (52.3) 8 (4.4) 2.2–8.4      

Seropositive 167 (47.7) 18 (10.8) 6.9–16.4   2.64 1.12–6.25 0.027 (χ2
Wald = 4.893, df = 1) 

aReference category. 

Abbreviations: CI, confidence interval; OR, odds ratio. 
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5. Discussion 

To our knowledge, this study describes for the first time feline antibody response 

against P. perniciosus saliva in cats naturally exposed to phlebotomine sand flies. The 

detection of antibodies to P. perniciosus in 47.7 % of sera shows that cats are frequently 

bitten by this species of sand fly, which is the most abundant Phlebotomus species in the 

three studied Portuguese regions [13, 26]. The presence of IgGs in 73.6 % of sera tested 

during phlebotomine activity period corroborates the results obtained in dogs from the 

Lisbon Metropolitan Area, where antibodies to P. perniciosus SGH were detected in 181 

(75.1 %) out of 241 animals at the beginning of phlebotomine sand fly activity (i.e., May) 

and in 209 (86.7 %) out of 241 at the end of phlebotomine sand fly season (i.e., October) 

[27].  

Previous studies have demonstrated that canine antibodies to phlebotomine sand 

fly-saliva correlate with biting intensity, fluctuate within phlebotomine sand fly season 

and decline significantly after the end of the biting season [6, 7, 12], emphasizing their 

usefulness as biomarkers for evaluating the exposure to phlebotomine sand flies and 

efficacy of vector control campaigns [4, 28].  

In the present study, two non-casual associations were observed in the univariate 

analysis, namely the presence of a higher percentage of P. perniciosus antibodies in 

domestic and treated cats with ectoparasiticides than in stray and untreated cats, 

respectively. The reasons for these non-casual associations can be explained with the fact 

that most (73.8 %; 107/145) of the blood samples of the domestic cats with access to the 

outdoors were taken during the exposure period to phlebotomine sand fly bites, while 

only 35.8 % (72/201) of stray cats were sampled during phlebotomine sand fly season 

activity. On the other hand, the fact that cats treated with ectoparasiticides did not show 

a lower prevalence of positivity to P. perniciosus saliva than untreated cats was not 

entirely surprising because the only repellents effective against phlebotomine sand flies, 

the pyrethroids, are toxic to cats, with the exception of flumethrin. However, the 

application of imidacloprid/flumethrin collars in cats is still quite low in Portugal [29]. 

Nevertheless, and despite the lack of repellent effect of the most common 

ectoparasiticides applied to cats, they can potentially prevent parasite transmission from 

treated animals to other vertebrate hosts.  
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However, based on multivariate analysis, the presence of P. perniciosus 

antibodies in the peripheral blood of cats was neither associated with lifestyle nor with 

the use of ectoparasiticides, suggesting that these two variables are confounders. These 

results reinforce the importance of multivariate analysis in addressing confounding in 

epidemiological studies [30]. Based on this analysis, an association between IgG 

positivity and phlebotomine sand fly seasonal activity was observed in the present study, 

being significantly higher between May and October, than during winter months, when 

phlebotomine sand flies are inactive, suggesting that feline antibodies to saliva are 

relatively short-living. Unfortunately, no data are available for cats regarding the kinetics 

of specific antibodies to phlebotomine sand fly saliva or their correlation with the number 

of phlebotomine sand fly bites; therefore, it is not possible to precisely correlate feline 

antibodies against sand fly SGH and the seasonal abundance of P. perniciosus.  

In cats, the antibody levels to P. perniciosus saliva were significantly increased 

with age group, suggesting accumulative exposure of older animals to sand fly bites. A 

similar positive correlation has repeatedly been demonstrated in dogs [8] which is 

probably related to the re-exposure of vertebrate hosts to phlebotomine sand flies 

following antigenic priming in the previous seasons. Interestingly, cats presenting 

antibodies to saliva were significantly more at risk of being positive to Leishmania 

infection. Whether saliva antigens could be used as biomarkers for Leishmania infection 

remains controversial, since both positive [7, 10, 11] and negative [6] associations 

between anti-P. perniciosus SGH antibodies and active L. infantum infection have been 

observed in dogs from endemic areas of leishmaniosis [4]. 

Regarding Leishmania infection, antibodies to the parasite or its DNA were 

detected in 26 cats (7.7 %). The positivity of detection of Leishmania DNA (6.9 %) was 

higher than the 0.3 % previously obtained in the north and centre of Portugal [17], but 

lower than the one (9.9 %) obtained in the south of the country [19], reinforcing that the 

rate of Leishmania infection is dynamic over time, depending on the density of proven 

vector population and on the number of infected vertebrate hosts.  

Antibodies to Leishmania were detected by IFAT in 3 cats (0.9 %), which is also 

in agreement with previous studies performed in domestic and stray cats from the Lisbon 

Metropolitan Area [18, 20] but lower than the 3.8 % of seropositivity obtained in cats 
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from the Algarve region [31]. This strengthens the assumption that IFAT might not be 

sensitive enough to detect Leishmania infection in cats, or at least in those subclinically 

infected [2, 32]. 

6. Conclusions 

To our knowledge, this is the first study demonstrating the development of anti-

P. perniciosus saliva antibodies in cats. Due to the potential role of this animal species in 

sustaining and spreading L. infantum infection, the evaluation of the contact of cats with 

the vector is important in the development of prophylactic measures directed to cats with 

the aim of reducing the prevalence of infection in an endemic area. Further studies are 

needed to evaluate if there is a correlation between the number of phlebotomine sand fly 

bites and the dynamics of antibody production and if the use of imidacloprid/flumethrin 

collars reduces the frequency of P. perniciosus bites and L. infantum positivity in cats. 

Ethics statement 

The procedures were approved by the Ethical Committee of IHMT and for the 

Portuguese veterinary authorities as complying with Portuguese legislation for the 

protection of animals (Decree-Law no. 113/2013). Consent was obtained from the legal 

detainer, i.e., the owner of the cat or the person in charge of the rescue associations for 

stray cats. 
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1. Abstract 

We report an unusual case of leishmaniosis with the involvement of mammary 

glands in an old cat with what seemed to be a concurrent regressive feline leukaemia virus 

infection. Leishmania donovani complex parasites were identified for the first time in 

inflammatory breast fluid during a clinical recurrence manifested about four years after 

the first diagnosis of feline leishmaniosis. Combined treatment with allopurinol and 

meglumine antimoniate resulted in clinical cure of mammary lesion and a concurrent 

uveitis.  

Keywords: cat, leishmaniosis, Leishmania donovani complex, mammary glands, feline 

leukaemia virus. 

2. Introduction 

Feline leishmaniosis (FeL) caused by Leishmania donovani complex parasites is 

a zoonotic vector-borne disease regarded as emergent in Southern European countries.1 

Most of the infected cats are asymptomatic, and the clinical disease has been commonly 

associated with immunological disorders due to concomitant retroviral infections [i.e., 

feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV)], iatrogenic 

immunosuppression, neoplasia or diabetes mellitus.2 Generalized lymphadenomegaly 

and mucocutaneous lesions are the most frequent clinical features found in FeL cases, 

whereas clinicopathological changes typically include hyperproteinaemia with 

hypergammaglobulinemia.1 Nonetheless, unusual forms of FeL have been reported in the 

last years,3,4 making diagnosis and treatment of this disease a further challenge to 

veterinarians. Here, we describe a case of FeL in which Leishmania parasites were 

detected in fine-needle aspiration (FNA) inflammatory breast fluid, during long-term 

administration of allopurinol. 

3. Case presentation 

An 8-year-old female neutered domestic shorthair cat was presented in February 

2014 to a private veterinary hospital in the Lisbon Metropolitan Area, Portugal, due to 

the presence of palpebral nodules in both eyes. The cat had been adopted from a shelter 

1 month before, and the past medical history was unknown. General physical examination 
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was unremarkable apart from the nodules. Body condition score (BCS) was characterized 

as ideal (BCS 4/9; weight 3.7 kg).5 Differential diagnosis included infectious disease (eg. 

histoplasmosis, leishmaniosis, or mycobacteriosis), neoplasia (eg. apocrine cystadenoma, 

mastocytoma, or melanoma), sterile nodular granuloma, and xanthoma. A peripheral 

blood sample was obtained for complete blood cell count, serum biochemistry profile 

(i.e., alkaline phosphatase, alanine aminotransferase, creatinine, glucose, and urea), 

serum protein electrophoresis, FeLV p27 antigen, and anti-FIV antibodies detection 

(Uranotest FeLV/FIV, Urano Vet SL, Spain), and anti-Leishmania antibodies 

[immunofluorescence antibody test (IFAT)] detection. A FNA of the nodular lesions was 

carried out for cytologic assessment.  

Abnormalities found included thrombocytopenia [95 x 103 cell/L, reference range 

(RR) 150-500 x 103 cell/L] and mild hyperproteinemia (8.0 g/dL, RR 5.7-7.9 g/dL) with 

hypergammaglobulinemia (3.9 g/dL, RR 1.3-2.2 g/dL). The rapid 

immunochromatographic test was negative for FIV but positive for FeLV. However, this 

positive result for P27 antigenemia was not supported by an ELISA test performed by an 

external laboratory in the same blood sample. This negative p27 antigen (Enzyme-linked 

immunosorbent assay) ELISA test result, combined with FeLV proviral genome detection 

by real-time PCR (qPCR), confirmed a regressive FeLV infection.6 Serological testing 

for Leishmania was positive (titer 320; cut-off ≥80), and the FNA cytology revealed the 

presence of several basophilic structures compatible with Leishmania amastigotes (L. 

amastigotes), not only in the cytoplasm of macrophages but also free from the cells 

(Figure 1).  
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Further, a bacteriological analysis was suggested but, unfortunately, declined by 

the owners. Treatment with allopurinol was initiated (approximately 10 mg/kg PO q12h; 

Zyloric, Faes Farma, Spain). Two months later, the nodular lesions were resolved, but the 

total protein concentration increased (9.3 g/dL), including the gamma-globulin fraction 

(4.1 g/dL). The above monotherapy regimen was maintained. No follow-ups were done 

due to the absence of the owners’ compliance, but in December 2017 the cat was 

presented for assessment of ocular lesions. According to the owners, the allopurinol 

treatment had been maintained, but only with half of the prescribed dosage (approx. 5 

mg/kg PO q12h). On ophthalmic examination, clinical signs compatible with bilateral 

anterior uveitis were found, including blepharospasm, photophobia, seromucous 

discharge, mild conjunctival hyperemia, protrusion of the nictitating membrane, diffuse 

corneal oedema, diffuse iris thickening, rubeosis iridis and keratic precipitates in the 

anterior chamber of both eyes. Fluorescein dye test was negative. Abnormal blood cell 

count results included mild microcytic normochromic anemia [red blood cell 4.9 x 1012 

cell/L, RR 4.6-10.2 x 1012 cell/L; haematocrit 18.4 %, RR 26.0-47.0 %; haemoglobin 6.2 

g/dL, RR 8.5-15.3 g/dL; mean corpuscular volume 37.7 fL, RR 38.0-54.0 fL; mean 

corpuscular haemoglobin concentration 335 g/L, RR 290.0-360.0 g/L; red blood cell 

Figure 1. Cytology of the fine-needle aspirate from an eyelid nodule. 

Macrophages with numerous intracellular (A) and extracellular (B) organisms 

compatible with Leishmania amastigotes (Giemsa, scale bar = 50 µm). 
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volume distribution width – standard deviation 32.1 fL, RR 26.4-43.1 fL], 

thrombocytopenia (39 x 109 cell/L, RR 100-515 x 109 cell/L), as well as leukopenia (2.7 

x 109 cell/L, RR 5.5-19.5 x 109 cell/L) with neutropenia (.5 x 109 cell/L, RR 3.1-12.5 x 

109 cell/L) and monocytopenia (.05 x 109 cell/L, RR .07-1.3 x 109 cell/L). The protein 

profile analysis revealed that the hyperproteinaemia (10.1 g/dL) worsened with a slight 

increase of gamma-globulins (4.2 g/dL). FeLV infection, monitored by both ELISA and 

qPCR assays, remained as regressive (i.e., positive FeLV proviral DNA detection and 

negative p27 antigen ELISA test6) and the IFAT anti-Leishmania serum antibody titer 

continued to be positive (512, cut-off ≥64). The following treatment was prescribed to 

the cat: prednisolone acetate 1 % (2 drops OU q12h for 30 days; Frisolona Forte, Allergan, 

Ireland), meloxicam (.05 mg/kg PO q24h for 15 days; Meloxidyl, Ceva, France) and 

allopurinol (approx. 10 mg/kg PO q12h). The owners did not attend to the programmed 

clinical re-evaluations, but according to them (by telephone), the cat condition had 

improved. In January 2018, the cat was presented for prostration. The bilateral uveitis 

persisted. On physical examination, clinical signs suggestive of a right inguinal mammary 

gland inflammation were identified. Breast inspection was carried out with the cat in 

lateral recumbency. The skin was oedematous, slightly hot and with colour change (i.e., 

bluish). On palpation, the mammary gland was enlarged and softly consistent. No nipple 

discharge was noted. Approximately 5 ml of a breast yellow-brown coloured fluid was 

collected by FNA (Figure 2A). The cytology analysis of this fluid showed the presence 

of basophilic forms compatible with L. amastigotes in the cytoplasm of macrophages 

(Figure 2B). 
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Genomic DNA was extracted from both buffy coat and inflammatory breast fluid 

samples. Leishmania DNA was detected in both samples using a nested PCR assay with 

genus-specific primers for the small ribosomal DNA (SSU-rDNA).7 For further parasite 

characterization, 3 additional nested-PCR assays were performed, using specific primers 

targeting sections of the Leishmania cytochrome b,8 heat shock protein 709 and internal 

transcribed spacers and 5.8 ribosomal DNA.10 The obtained PCR amplicons were 

sequenced, and their nucleotide sequences (analyzed with the BLASTn tool - 

http://blast.ncbi.nlm.nih.gov/Blast.cgi), revealed 100 % identity (covering 100 % of both 

queries) with homologues belonging to the L. donovani complex. Additionally, 

phylogenetic inferences following a maximum likelihood approach run under the 

GTR+Γ+I evolutionary model were carried out using MEGA v6.11 These analyses 

undeniably placed the obtained sequences in monophyletic clusters composed only by 

sequences of L. donovani complex reference strains, supported by high bootstrap values 

(Figure 3). 

Figure 2. (A) Breast yellow-brown coloured fluid collected by fine-needle aspiration. (B) 

Cytology of the breast fluid. Macrophage with numerous intracellular organisms 

compatible with Leishmania amastigotes (Giemsa, scale bar = 50 µm). 
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Figure 3. Maximum likelihood phylogenetic unrooted trees based on unambiguous cytB, hsp70 and ITS-rDNA sequences alignments. At specific branch 

nodes, bootstrap values (from 1000 random replicates of the original datasets) ≥75 % are shown. The size bar in the number of nucleotide substitutions 

per site. The trees were rooted using Leishmania guyanensis sequences (outgroup). Sequences of reference strains are identified by their accession number 

(underscore). The sequences obtained in this study are indicated with “●” and their accession number underscored. 
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Treatment with meglumine antimoniate (50 mg/kg SC q24h for 30 consecutive 

days; Glucantime, Merial, France) was started and the allopurinol posology (approx. 10 

mg/kg PO q12h) maintained. During the treatment, no adverse reactions or renal function 

abnormalities (evaluated by the measurement of creatinine and urea concentrations, urine 

protein to creatinine ratio, and urine specific gravity) were observed. Six months after the 

end of the meglumine antimoniate treatment the cat was re-evaluated. Both mastitis and 

uveitis were cured, the SSU-rDNA PCR from buffy coat was negative, and the IFAT 

antibody titer decreased (64, cut-off ≥64). Long-term therapy with allopurinol (approx. 

10 mg/kg PO q12h) was adopted for the maintenance of remission of FeL. 

4. Discussion 

To the author’s knowledge, this is the first detection of L. donovani complex 

parasites in inflammatory breast fluid of a cat. The FeL diagnosis was supported by 

cytology, IFAT and PCR. Additionally, the phylogenetic analysis of cytochrome b, heat 

shock protein 70 and internal transcribed spacers and 5.8 ribosomal DNA sequences 

resulted in the unequivocal implication of the L. donovani complex. The parasites within 

this complex, which were recently considered as a single species, L. donovani,12 have 

been responsible for all FeL cases reported in Europe.2  

Coexistence of leishmaniosis and retroviral infections has also been reported in 

cats and humans.1,13 Viremic FeLV-infected cats may develop immunosuppression like 

that observed in human immunodeficiency virus-infected individuals,14 where the 

reported rates of treatment failure and recurrence of leishmaniosis are high.15 Although 

the impact of regressive FeLV infections on the health of cats is largely unknown,6 it has 

been demonstrated that this latent infection can also be responsible for a variety of 

hematopoietic disorders, including myelosuppression, as a direct result of FeLV provirus 

integration into the genome of the host cell.14 However, these disorders were not observed 

in this case. Clinical FeL is sometimes associated with potentially impaired 

immunocompetence, and in approximately half of the cases mucocutaneous lesions, 

lymphadenomegaly, and/or hypergammaglobulinemia are present.2  

Despite the absence of data to allow a reliable comparison between the clinical 

presentation of leishmaniosis in cats with/without related concurrent disorders, the 
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coexistence of infectious/noninfectious diseases seem to contribute to a misrepresentation 

of the underlying disease.1 In this case, Leishmania parasites were implicated in both 

eyelid nodules and mammary gland inflammation, as revealed by cytological and PCR 

evaluations. In cats, lesions associated with the presence of the parasites were previously 

reported in several tissues.1,3 The detection of parasites in mammary glands was only 

described in naturally infected dogs 16 and in humans.17 In this case, a mastitis either 

secondary to neoplasia or to bacterial infection with migration of inflammatory cells 

infected with Leishmania cannot be ruled out. However, and despite no bacterial culture 

was performed, neither structures compatible with bacteria nor the presence of 

polymorphonuclear neutrophils were observed in the FNA sample. Additionally, no cells 

with malignant characteristics were present in the cytology. The ocular and hematological 

abnormalities found in the present case cannot be caused by Leishmania infection due to 

the concurrent FeLV infection.14 As FeLV-infected cats usually do not show 

hypergammaglobulinemia,14 the increased level of gamma-globulins observed in serum 

protein electrophoresis was probably induced by Leishmania infection.2 Nonetheless, the 

presence of other concurrent diseases such as feline bartonellosis or feline infectious 

peritonitis cannot be formally excluded. In fact, these diseases can also result in 

hypergammaglobulinemia and uveitis.18,19 However, ex juvantibus, we confirmed a 

causative role of Leishmania infection in the development not only of eyelid nodules in 

2014 but also of uveitis and mastitis about four years later. 

Empirical treatment of FeL with allopurinol has been effective in most cases.2 The 

initial monotherapy prescribed was well tolerated but, as previously reported,2,20,21 did 

not result in clearance of infection. Although there are no studies regarding the 

susceptibility of parasites of Leishmania donovani complex isolated from cats to 

allopurinol, the resistance to this compound associated with disease relapse has been 

demonstrated in strains isolated from dogs.22 Additionally, FeL clinical recurrence as a 

result of halved allopurinol posology, which was given to the cat during an approximately 

3-year period, cannot be formally ruled out. 

On the other hand, and despite side effects such as dermatological reactions 

caused by allopurinol and renal injury caused by both allopurinol and meglumine 

antimoniate have already been described,1,3,21 the combined use of these two compounds 

resulted in a decrease in antibody titer and in clinical cure of uveitis and mastitis with no 
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overt adverse effects. Indeed, compounds with leishmanicidal activity such as meglumine 

antimoniate have been given in combination with allopurinol for the treatment of FeL 

refractory cases.20 

5. Conclusion 

A four year follow up of a cat with FeL confirms the chronic course of the disease 

and the possibility of clinical recurrence with manifestations other than those seen at 

disease onset. Interestingly the parasite can be found associated with mastitis. 
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1. Abstract 

Cats have been found infected by the same Leishmania species that also infect 

dogs and humans in both the New and Old Worlds, and their role as additional reservoir 

hosts of L. infantum has been previously suggested. Currently, the genetic diversity of 

Leishmania spp. detected in cats is poorly understood. In this cross-sectional study, the 

partial nucleotide sequences of four gene markers (cytB, g6pdh, hsp70 and ITS-rDNA) 

were explored to investigate the genetic diversity and the phylogenetic relationships of 

Leishmania parasites detected in cats. A total of 25 cat buffy coat samples where the 

presence of Leishmania SSU-rDNA was revealed by PCR (from a convenience sample of 

465 cats screened), as well as six Leishmania strains previously isolated from cats, were 

included in this study. Phylogenetic analyses showed that the majority of Leishmania 

parasites detected in cats did not display distinctive genetic features, sharing the same 

genetic types with L. infantum strains isolated from humans, dogs and phlebotomine sand 

flies. Unexpectedly, DNA of L. major and/or of a L. major/L. donovani sensu lato hybrid 

was detected in buffy coat samples of two cats from different regions of Portugal. 

However, a mix infection hypothesis cannot be formally excluded. To our knowledge, 

this study represents the first evidence for the presence of DNA of Leishmania hybrid 

parasites in cats. The results reported here not only reinforce the idea that cats play a role 

in the epidemiology of zoonotic leishmaniosis but also indicate the circulation of L. major 

and/or L. major/L. donovani s.l. hybrid parasites in Portugal. Also, whenever sequencing 

of whole Leishmania genomes regularly cannot be accomplished, and while their 

complete genomes remain under-represented in the nucleotide sequence databases, the 

combined use of multiple genetic markers, including kinetoplast maxicircle DNA, seems 

to be essential for typing of Leishmania parasites. 

Keywords: cat, Leishmania species, genetic diversity, molecular epidemiology, 

phylogeny. 
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2. Introduction 

Leishmaniosis is a widespread neglected disease caused by kinetoplastid protozoa 

of the genus Leishmania, which is typically transmitted to humans and other mammals 

by the bite of infected female phlebotomine sand flies (WHO, 2010). The clinical 

manifestations of the disease are not only largely diverse but also partially correlated with 

the causative species, ranging from a benign cutaneous form to a lethal visceral illness 

(WHO, 2010). At least 21 Leishmania species have been recognised as being pathogenic 

to humans (Akhoundi et al., 2016). Additionally, the occurrence of natural infecting 

hybrids has also been reported (Delgado et al., 1997; Odiwuor et al., 2011; Ravel et al., 

2006).  

In the Old World, parasites belonging to the so-called L. donovani species 

complex [synonym sensu lato (s.l.)] are mainly associated with visceral leishmaniosis 

(VL), while both L. tropica and L. major parasites are associated with cutaneous 

leishmaniosis (CL) (WHO, 2010). Apart from dogs, cats also seem to play a role in the 

maintenance, and dissemination, of human and animal leishmaniosis due to L. infantum 

(Maia and Campino, 2011). The incidence of cases of feline leishmaniosis has increased 

during the last years, to the point where it is now regarded as an emerging feline disease 

in endemic areas of L. infantum (Pennisi and Persichetti, 2018). 

Since the 1980s, the multilocus enzyme electrophoresis (MLEE) typing method 

has been widely used for classification of Leishmania parasites, remaining, up to the 

present day, the gold standard genetic typing approach for these parasites (WHO, 2010). 

However, this method has several limitations, from requiring bulk cultures of parasites to 

providing insufficient information on their evolution and genomic plasticity, namely 

deterring the identification of hybridisation events. As a result, over the last years, several 

molecular-based methods have become increasingly relevant, not only for diagnosis of 

infections caused by Leishmania but also for assessing their genetic diversity, through a 

combination of both high sensitivity and species-specificity (Schönian et al., 2011). More 

recently, the development of molecular typing systems, such as multilocus sequence 

typing (MLST), have provided new insights into the classification of Leishmania and a 

clarification of their phylogenetic relationships.  
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Based on these methods, several cases of species-synonymy have been revealed 

(Akhoundi et al., 2017), including the four species previously recognised as belonging to 

L. donovani complex (i.e.. L. archibaldi, L. chagasi, L. donovani and L. infantum) which 

were recently considered as a single species, L. donovani (Maurício, 2018). 

The bulk of phylogenetic studies have focused on strains of human or canine 

origin (Cortes et al., 2014), while very few of them involve the analysis of Leishmania 

genetic material obtained from cats (Ceccarelli et al., 2018). 

Therefore, the aim of this study was the characterisation and assessment of the 

phylogenetic relationships between strains of Leishmania on the basis of the analysis of 

partial cytochrome b (cytB), glucose-6-phosphate dehydrogenase (g6pdh), heat-shock 

protein 70 (hsp70) and internal transcribed spacers-5.8 ribosomal DNA sequences (ITS-

rDNA) using different analytical approaches. These sequences were either PCR-

amplified directly from cat biological samples, or laboratory strains of feline origin, 

previously isolated in vitro. 

3. Material and methods 

3.1. Cats 

Between February 2017 and August 2018, a total of 465 cats (convenience 

sampling) from veterinary medical centres, animal shelters and colonies (captured under 

the scope of trap-neuter-return programs) from three distinct regions of mainland Portugal 

[i.e., Center, n = 73; the Lisbon Metropolitan Area (LMA), n = 344; and the Algarve, n = 

48], were studied. Peripheral blood samples were obtained from each animal by cephalic 

or jugular venipuncture, and the blood collected (1-2 ml) placed into tubes with EDTA. 

After centrifugation, the buffy coat samples were separated from the liquid fraction, and 

then stored at -20ºC until DNA extraction. This study also included the use of DNA 

extracts prepared in a previous epidemiological study focused on the assessment of 

exposure of cats to the bites of phlebotomine sand flies (Pereira et al., 2019). 

3.2. Laboratory strains 

The DNA of a total of 21 strains previously classified by isoenzymatic and/or 

molecular typing methods as L. infantum (n = 15), L. donovani (n = 2), L. major (n = 2), 

and L. tropica (n = 2) was included in this study (Table 1). 
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Table 1. List of nucleotide sequences included in phylogenetic analyses. 

Taxona Laboratory code International code  Zymodeme Country Host Gene (accession numbers) 

      cytB g6pdh hsp70 ITS-rDNA 

L. (L.) donovani complex G322b,c   Portugal Felis catus LC460182    

 G338b   Portugal Felis catus LC460183  LC459320 LC459345 

 G435b   Portugal Felis catus LC460184  LC459321 LC459346 

 IMT422 MFEL/PT/18/IMT422  Portugal Felis catus LC460175 LC459291 LC459313 LC459338 

L. archibaldi GEBRE1 MHOM/ET/72/GEBRE1 MON-82 Ethiopia Homo sapiens AB434677 DQ449780   

 LEM3429 MHOM/SD/97/LEM3429 MON-35 Sudan Homo sapiens  DQ449793  AJ634358 
 LEM3463 MHOM/SD/97/LEM3463 MON-258 Sudan Homo sapiens  DQ449794 FN395030 AJ634359 

L. chagasi ARL MHOM/BR/07/ARL  Brazil Homo sapiens   FN395037  

 LEM590 MHOM/BR/74/LEM590  Brazil Homo sapiens EF579897    

 M9702 MHOM/BR/85/M9702 MON-1 Brazil Homo sapiens    AJ000306 

 MAIKE MCAN/BR/06/MAIKE IOC/Z1 Brazil Canis familiaris   FN395035  

 PP75 MHOM/BR/74/PP75 MON-1 Brazil Homo sapiens AB095959   AJ000304 

 WC MHOM/BR/07/WC IOC/Z1 Brazil Homo sapiens   FN395036  

L. donovani 1S MHOM/SD/68/1S  Sudan Homo sapiens   FN395027 AJ000293 
 2S-25M-C2 MHOM/SD/62/2S-25M-C2  Sudan Homo sapiens AB095957    

 BPK275 MHOM/NP/03/BPK275  Nepal Homo sapiens LC460189 LC459301 LC459326 LC459351 

 DD8 MHOM/IN/80/DD8d MON-2 India Homo sapiens EF579896 DQ449795 KX061894 AJ000292 

 DEVI MHOM/IN/00/DEVI MON-2 India Homo sapiens  DQ449778 FN395028 AJ634376 

 GILANI MHOM/SD/82/GILANI MON-30 Sudan Homo sapiens  DQ449781 FN395029 AJ634369 

 HU3 MHOM/ET/67/HU3 MON-18 Ethiopia Homo sapiens KT972276  X52314  

 IMT180 MHOM/PT/92/IMT180 MON-18 Portugal Homo sapiens LC460166 LC459282 LC459304 LC459329 

 LEM3946 MCAN/SD/00/LEM3946 MON-274 Sudan Canis familiaris  DQ449786  AJ634356 
 LRC-L51 MHOM/IN/--/LRC-L51 MON-18 India Homo sapiens   LN907834  

 LRC-L53 MHOM/KE/55/LRC-L53 MON-36 Kenya Homo sapiens   LN907835  

 SC23 MHOM/IN/54/SC23 MON-38 India Homo sapiens  DQ449785  AJ634375 

 THAK35 MHOM/IN/96/THAK35  MON-2 India Homo sapiens  DQ449779  AJ634377 

L. infantum 2147 MFEL/IT/10/2147  Italy Felis catus LC460176 LC459292 LC459314 LC459339 

 6827 MFEL/IT/08/6827  Italy Felis catus LC460177 LC459293 LC459315 LC459340 

 10816 MFEL/IT/02/10816 MON-1 Italy Felis catus LC460178 LC459294 LC459316 LC459341 
 12022 MFEL/IT/99/12022  Italy Felis catus LC460179 LC459295 LC459317 LC459342 

 33861 MFEL/IT/05/33861  Italy Felis catus LC460180 LC459296 LC459318 LC459343 

 3S MHOM/SD/62/3S MON-81 Sudan Homo sapiens  DQ449787  AJ634361 

 BUCK MHOM/MT/85/BUCK MON-78 Malta Homo sapiens  DQ449784 FN395031 AJ634350 

 CRE69 MCAN/GR/94/CRE69  Greece Canis familiaris EF579913    

 GS7 MHOM/CN/93/GS7  China Homo sapiens HQ908261    

 IMT163 MHOM/PT/89/IMT163 MON-1 Portugal Homo sapiens LC460164 LC459280 LC459302 LC459327 

 IMT169 IARI/PT/89/IMT169 MON-1 Portugal Phlebotomus ariasi LC460165 LC459281 LC459303 LC459328 
 IMT181 MHOM/PT/92/IMT181 MON-24 Portugal Homo sapiens LC460167 LC459283 LC459305 LC459330 

 IMT189 IPER/PT/93/IMT189 MON-1 Portugal Phlebotomus perniciosus LC460168 LC459284 LC459306 LC459331 

 IMT202 MHOM/PT/94/IMT202 MON-29 Portugal Homo sapiens LC460169 LC459285 LC459307 LC459332 

 IMT205 MCAN/PT/94/IMT205 MON-1 Portugal Canis familiaris LC460170 LC459286 LC459308 LC459333 
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 IMT229 MCAN/PT/97/IMT229 MON-1 Portugal Canis familiaris LC460171 LC459287 LC459309 LC459334 

 IMT241 MHOM/PT/98/IMT241 MON-1 Portugal Homo sapiens LC460172 LC459288 LC459310 LC459335 

 IMT276 MCAN/PT/01/IMT276 MON-1 Portugal Canis familiaris LC460173 LC459289 LC459311 LC459336 

 IMT405 MFEL/PT/13/IMT405 MON-1 Portugal Felis catus LC460174 LC459290 LC459312 LC459337 
 IPT1 MHOM/TN/80/IPT1d MON-1 Tunisia Homo sapiens AB095958   AJ000289 

 ISS800 MHOM/IT/1993/ISS800 MON-188 Italy Homo sapiens  DQ449791  AJ634354 

 ITM-AP263 MHOM/MA/67/ITMAP263 MON-1 Morocco Homo sapiens   FN395033  

 LEM75 MHOM/FR/78/LEM75 MON-1 France Homo sapiens  DQ449770 LN907838 AJ634339 

 LEM189 MHOM/FR/80/LEM189 MON-11 France Homo sapiens  DQ449783  AJ634351 

 LEM935 MCAN/ES/86/LEM935 MON-77 Spain Canis familiaris  DQ449797  AJ634355 

 LEM3472 MHOM/SD/97/LEM3472 MON-267 Sudan Homo sapiens  DQ449792  AJ634370 

 LRC-L720 MCAN/IL/97/LRC-L720  Israel Canis familiaris   HF586393  

L. (L.) major complex          

L. arabica JISH220 MPSA/SA/83/JISH220d MON-99 Saudi Arabia Psammomys obesus AB434685    

L. gerbilli E-11 MRHO/SU/87/E-11 MON-272 EX-USSR Rhombomys opimus   HF586355  

 GERBILLI MRHO/CN/60/GERBILLId MON-22 China Rhombomys opimus KX061914 DQ449800 KX061901  

 KD-87555 MRHO/UZ/87/KD-87555  Uzbekistan Rhombomys opimus    AJ300486 

L. major 5-ASKH MHOM/SU/73/5-ASKHd MON-4 EX-USSR Homo sapiens AB095961   AJ000310 

 CLONE31 MHOM/IR/16/CLONE31  Iran Homo sapiens  MF109351   
 CRE1 MHOM/IQ/86/CRE1 MON-26 Iraq Homo sapiens   LN907840  

 FRIEDLIN MHOM/IL/80/FRIEDLIN MON-103 Israel Homo sapiens KU680830 XM_001686045 XM_001684512 FR796423 

 G240b   Portugal Felis catus LC460181   LC459344 

 G322b,c   Portugal Felis catus   LC459319  

 LCB33 MHOM/SD/03/LCB33 MON-74 Sudan Homo sapiens   HF586346  

 LV561 MHOM/IL/67/LV561 MON-26 Israel Homo sapiens LC460185 LC459297 LC459322 LC459347 

 NEAL-P MRHO/SU/59/NEAL-P MON-4 EX-USSR Rhombomys sp. LC460186 LC459298 LC459323 LC459348 

 PT-115 MHOM/EC/88/PT-115  Ecuador Homo sapiens AB095970    
 VIN MHOM/TM/--/VIN  Turkmenistan Homo sapiens    AJ272383 

L. turanica CLONE3720 MRHO/SU/80/CLONE3720 LON-59 EX-USSR Rhombomys sp. AB434675    

 KXG-2 MRHO/CN/88/KXG-2  China Rhombomys sp. HQ908256    

 KXG-11 MRHO/CN/87/KXG-11  China Rhombomys sp.  JX970982 JX021443  

 MNR-3 MRHO/MN/84/MNR-3  Mongolia Rhombomys sp.    AJ000307 

 MNR-13 MRHO/MN/84/MNR-13  Mongolia Rhombomys sp.    AJ000309 

 QITAI-15 MRHO/CN/92/QITAI-15  China Rhombomys sp.  JX021341 JX021442  

L. (L.) mexicana complex          

L. amazonensis LAV003 MHOM/GF/02/LAV003 MON-41 French Guiana Homo sapiens   LN907831  

 M1841 MPRO/BR/72/M1841  Brazil Proechimys sp. EF579909    

 M1845 MPRO/BR/72/M1845  Brazil Proechimys sp. HM439238    

 M2269 MHOM/BR/73/M2269d MON-132 Brazil Homo sapiens AB095964 AY099298 EU599090 AJ000316 

 WR369 MHOM/PA/80/WR369  Panama Homo sapiens    AJ000315 

L. aristidesi GML MORY/PA/69/GML MON-133 Panama Oryzomys sp. AB434678    
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L. garnhami JAP78 MHOM/VE/76/JAP78d MON-41 Venezuela Homo sapiens AB095965  EU599092  

L. mexicana BEL21 MHOM/BZ/82/BEL21d MON-156 Belize Homo sapiens EF579906  LN907841  

 CRE47 MHOM/MX/93/CRE47  Mexico Homo sapiens EF579915    

 EC103-CL8 MHOM/EC/87/EC103-CL8 MON-110 Ecuador Homo sapiens   LN907842  
 GO22 MHOM/GT/86/GO22  Guatemala Homo sapiens    AJ000312 

 SOLIS MHOM/MX/85/SOLIS MON-152 Mexico Homo sapiens    AJ000313 

 U1103 MHOM/GT/2001/U1103  Guatemala Homo sapiens  FR799586   

L. pifanoi LL1 MHOM/VE/57/LL1d MON-40 Venezuela Homo sapiens AB434679    

L. (L.) tropica complex          

L. aethiopica 1470 MHOM/ET/94/1470  Ethiopia Homo sapiens    AJ000311 

 L100 MHOM/ET/72/L100d MON-14 Ethiopia Homo sapiens AB095962  FN395021  

 NLB107-08 MHOM/KE/--/NLB107-08  Kenya Homo sapiens   FN395019  

L. killicki LEM163 MHOM/TN/86/LEM163 MON-8 Tunisia Homo sapiens AB434676    

L. tropica DD7 MHOM/IN/79/DD7  India Homo sapiens   FN395025  

 K27 MHOM/SU/74/K27d MON-60 EX-USSR Homo sapiens HQ908270 DQ449801 KX061899  

 LRC-L747 ISER/IL/02/LRC-L747  Israel Phlebotomus sergenti LC460188 LC459300 LC459325 LC459350 

 NLB297 MHOM/KE/84/NLB297  Kenya Homo sapiens    AJ000301 

 ROSSI-II IROS/NA/76/ROSSI-II  Namibia Phlebotomus rossi KT972245   AJ000302 

 SINGER MHOM/IL/80/SINGER MON-54 Israel Homo sapiens   LN907846  
 VEDHA MHOM/TR/99/VEDHA MON-53 Turkey Homo sapiens LC460187 LC459299 LC459324 LC459349 

L. (V.) braziliensis complex          

L. braziliensis M2904 MHOM/BR/75/M2904d MON-165 Brazil Homo sapiens AB095966    

L. peruviana LC39 MHOM/PE/84/LC39d MON-128 Peru Homo sapiens AB433282    

L. (V.) guyanensis complex          

L. guyanensis LEM85 MHOM/GF/79/LEM85d MON-45 French Guiana Homo sapiens   HF586362  

 M4147 MHOM/BR/75/M4147  Brazil Homo sapiens  AY099300  AJ000299 

L. panamensis LS94 MHOM/PA/71/LS94d MON-47 Panama Homo sapiens   EU599094  
 NEL3 MHOM/CR/87/NEL3  Costa Rica Homo sapiens    AJ000298 

 PSC-1 MHOM/PA/94/PSC-1  Panama Homo sapiens  CP009389   
a Species as defined by the depositors; b Strain not isolated; c Putative hybrid; d WHO reference strain. 

Abbreviations: cytB, cytochrome b; g6pdh, glucose-6-phosphate dehydrogenase; hsp70, heat-shock protein 70; ITS-rDNA, internal transcribed spacers-5.8 ribosomal DNA; SSU-rRNA, 

small subunit ribosomal DNA; bp, base pars; L., Leishmania; V., Viannia. 
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3.3. DNA extraction, amplification and sequencing 

Genomic DNA was extracted from buffy coat samples using the High Pure 

Template Preparation Kit (Roche Diagnostics GmbH, Germany) according to the 

manufacturer’s instructions. The presence of Leishmania DNA in cat samples was firstly 

screened using a nested-PCR protocol with primers targeting the small ribosomal DNA 

(SSU-rDNA) (Table 2). For further molecular characterisation of both SSU-rDNA 

positive samples and laboratory-isolated feline Leishmania strains, multiple PCR-based 

assays using specific primers targeting sections of cytB, g6pdh, hsp70, and ITS-rDNA, 

were performed (Table 2). In all amplification reactions, positive (L. infantum MON-1; 

MHOM/PT/88/IMT318) and negative (without DNA) controls were included. PCR 

products were visualised under UV illumination after electrophoresis on 1.5 % agarose 

gels stained with GreenSafe Premium (Nzytech, Portugal), and their migration compared 

to that of a 100 bp DNA ladder (Nzytech, Portugal). The obtained amplicons were 

purified and sequenced by Sanger’s method (STABVida, Portugal), using as sequencing 

primers those used for DNA amplification. 
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Table 2. PCR protocols performed for detection and characterisation of Leishmania DNA. 

Target 

gene 

Primer sequence (5’-3’) Amplicon size Reaction setup  Thermocycling conditions Reference 

cytBa 1st PCR 919 bp 25 µl reaction: 5 µl of DNA; 0.8 µM of each 

primer; 12.5 µl of NZYTaq 2 x Green Master 

Mix 

95 ºC - 3 min; 45 cycles [94 ºC - 1 min; 

48 ºC - 1 min; 72 ºC - 1 min]; 72 ºC - 5 

min  

(Kato, 

Cáceres & 

Hashiguchi, 
2016; 

Herrera et 

al., 2017) 

 Fw: AGCGGAGAGRARAGAAAAGG  

 Rev: CTACAATAAACAAATCATAATATRCAATT  
 2nd PCR 568 bp 25 µl reaction: 5 µl of 1st PCR productb; 0.8 µM 

of each primer; 12.5 µl of NZYTaq 2 x Green 

Master Mix 

95 ºC - 3 min; 45 cycles [94 ºC - 1 min; 

48 ºC - 1 min; 72 ºC - 1 min]; 72 ºC - 5 

min 

 Fw: GGTGTAGGTTTTAGTYTAGG  

 Rev: GYTCRCAATAAAATGCAAATC  
      

g6pdh Fw: ATGTCGGAAGAGCAGTCT 1689 bp 25 µl reaction: 5 µl of DNA; 0.4 µM of each 

primer; 12.5 µl of NZYTaq 2 x Green Master 
Mix 

96 ºC - 5 min; 45 cycles [96 ºC - 1 min; 

50 ºC - 1 min; 72 ºC - 90 s]; 72 ºC - 10 
min 

(Zemanová 

et al., 
2007) 

 Rev: TCACAGCTTATTCGAGGGAA  

       

hsp70 1st PCR 1286 bp 25 µl reaction: 5 µl of DNA; 0.8 µM of each 
primer; 12.5 µl of NZYTaq 2 x Green Master 

Mix 

95 ºC - 5 min; 45 cycles [94 ºC - 40 seg; 
61 ºC - 1 min; 72 ºC – 2 min]; 72 ºC - 10 

min 

(Van der 
Auwera et 

al., 2013) 

 Fw: GGACGCCGGCACGATTKCT  

 Rev: CCTGGTTGTTGTTCAGCCACTC  

 2nd PCR 741 bp 25 µl reaction: 5 µl of 1st PCR productb; 0.4 µM 
of each primer; 12.5 µl of NZYTaq 2 x Green 

Master Mix 

95 ºC - 5 min; 45 cycles [94 ºC - 40 s; 65 
ºC - 1 min; 72 ºC - 1 min]; 72 ºC - 10 min  Fw: GACAACCGCCTCGTCACGTTC  

 Rev: GTCGAACGTCACCTCGATCTGC  

       
ITS-rDNA 1st PCR Variable 25 µl reaction: 5 µl of DNA; 0.2 µM of each 

primer; 12.5 µl of NZYTaq 2 x Green Master 

Mix 

94 ºC - 3 min; 45 cycles [94 ºC - 30 s; 58 

ºC - 30 s; 72 ºC - 90 s]; 72 ºC - 10 min  

(Parvizi et 

al., 2005)  Fw: 

GCTGTAGGTGAACCTGCAGCAGCTGGATCATT 

 

 Rev: GCGGGTAGTCCTGCCAAACACTCAGGTCTG  

 2nd PCR Variable 25 µl reaction: 5 µl of 1st PCR productb; 0.2 µM 

of each primer; 12.5 µl of NZYTaq 2 x Green 
Master Mix 

94 ºC - 3 min; 45 cycles [94 ºC - 30 s; 58 

ºC - 30 s; 72 ºC - 90 s]; 72 ºC - 10 min  Fw: GCAGCTGGATCATTTTCC  
 Rev: AACACTCAGGTCTGTAAAC  

      

SSU-rDNA 1st PCR 603 bp 30 µl reaction: 10 µl of DNA; 0.5 µM of each 
primer; 12.5 µl of NZYTaq 2 x Green Master 

Mix 

94 ºC - 5 min; 35 cycles [94 ºC - 30 s; 60 
ºC – 30 s; 72 ºC – 30 seg]; 72 ºC - 10 min 

(Cruz et al., 
2002)  Fw: GGTTCCTTTCCTGATTTACG  

 Rev: GGCCGGTAAAGGCCGAATAG  

 2nd PCR 358 bp 25 µl reaction: 5 µl of 1st PCR productc; 0.6 µM 
of each primer; 12.5 µl of NZYTaq 2 x Green 

Master Mix 

94 ºC - 5 min; 32 cycles [94 ºC - 30 s; 65 
ºC - 30 min; 72 ºC – 30 seg]; 72 ºC - 10 

min 

 Fw: TCCATCGCAACCTCGGTT  

 Rev: AAAGCGGGCGCGGTGCTG  
a PCR protocol designed in the course of this study; b PCR product was previously diluted 1:50 in nuclease-free water; c PCR product was previously diluted 1:200 in nuclease-free water. 

Abbreviations: cytB, cytochrome b; g6pdh, glucose-6-phosphate dehydrogenase; hsp70, heat-shock protein 70; ITS-rDNA, internal transcribed spacers-5.8 ribosomal DNA; SSU-rRNA, 

small subunit ribosomal DNA; bp, base pars. 
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3.4. Sequence analysis and phylogenetics 

Nucleotide (nt) sequence similarity searches were performed with the BLASTn 

tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple sequence alignments of nt datasets 

were carried out using the iterative G-INS-i refinement method as implemented in 

MAFFT v7 (Katoh and Standley, 2013). The resulting alignments were treated via 

Gblocks (Castresana, 2000) with the most stringent options selected (except for ITS-

rDNA alignment where more permissive edition conditions were used), followed by their 

manual correction taking into account the encoding reading frame (except for ITS-rDNA). 

The alignments of coding genes sequences (i.e., cytB, g6pdh and hsp70) were also 

concatenated using FaBox (Villesen, 2007). The evolutionary information contained in 

each aligned dataset (phylogenetic signal) was assessed by likelihood-mapping (Strimmer 

and von Haeseler, 1997) using TREE-PUZZLE v5.3 (Schmidt et al., 2002). Phylogenetic 

trees were inferred by Maximum Likelihood (ML) and Bayesian methods under fitted 

evolutionary models, selected based on the corrected Akaike information criterion, as 

implemented in jModelTest v2 (Darriba et al., 2012). Maximum likelihood phylogenetic 

trees were constructed using MEGA v6 (Tamura et al., 2013), and the stability of the 

obtained trees topologies assessed by the bootstrap test with 1000 replicates. For Bayesian 

phylogenetic inference, the BEAST v1.10.4 (Suchard et al., 2018) software was used to 

estimate the posterior probability distribution through Markov chain Monte Carlo 

(MCMC) sampling. Two independent MCMC were run until 1 x 108 generations were 

sampled, and the first 10 % sampled trees discarded as burn-in before Maximum Clade 

Credibility trees were constructed. For each case, convergence was assessed with Tracer 

v1.7.1 (available at http://beast/bio/ed.ac.uk/Tracer), ensuring that all effective sample 

size (ESS) values were above 200, after the burn-in removal step. Default priors were 

considered, except for the molecular clock models. The clock hypothesis of each dataset 

was analysed through the molecular clock likelihood-ratio test, as implemented in MEGA 

v6 (Tamura et al., 2013). The generated trees were edited for display using FigTree v1.4.3 

(available at http://tree.bio.ed.ac.uk/software/figtree/). Further, alternative potential 

evolutionary paths were also investigated by the analyses of phylogenetic networks 

inferred from NeighborNet methods. Split-networks were produced from Kimura-2 

parameter distance matrices using SplitsTree v4.14.8 (Kloepper and Huson, 2008). 

Intraspecific phylogenies of L. donovani complex concatenated data was additionally 
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explored through the construction of median-joining networks obtained using Network 

5.0.1.1 (available at http://www.fluxus-engineering.com/sharenet_rn.htm). Finally, 

principal coordinate analyses were carried out using the PCOORD software (available at 

http://www.hiv.lanl.gov/content/sequence/PCOORD/PCOORD.html). Small differences 

between the analysed sequences were emphasised with the use of unedited alignments. 

This tool yields 2D plots in which the main patterns of evolutionary affinities are 

visualised on two orthogonal axes.  

The nt sequences obtained during this study were deposited in the 

DDBJ/ENA/GenBank under the accession numbers LC459280-LC459351 and 

LC460164-LC460189. The additional sequences of reference strains used in phylogenetic 

analyses were downloaded from public sequence databases, and their respective 

accession numbers are listed in Table 1. 

4. Results 

A PCR product of the expected size was amplified from buffy coat samples of 25 

(5.4 %; n = 465) cats using genus-specific primers targeting Leishmania SSU-rDNA. 

However, successful amplification by PCR of the sequences of any of the other genetic 

markers under analysis (cytB, g6pdh, hsp70 and ITS-rDNA) could merely confirm the 

presence of the parasite’s DNA in five of them (20.0 %; n = 25). These included n = 5 

cytB, n = 4 hsp70, n = 4 ITS-rDNA, while only a g6pdh segment-specific amplicon was 

obtained from one of the analysed buffy coats. Sequences derived from three cats from 

LMA were identified as belonging to L. donovani complex, based on g6pdh and/or cytB, 

hsp70 and ITS-rDNA sequence analysis using MegaBlast. Additionally, one single 

sequence amplified from another cat from LMA was identified as L. major based on cytB 

and ITS-rDNA BLASTn sequence searches. Finally, the cytB and hsp70 sequences 

obtained from a cat from the Algarve showed 100 % identity (covering 100 % of both 

query sequences) with homologous sequences of L. donovani/infantum and L. major, 

respectively. For each of 21 reference strains used in this study, cytB, g6pdh, hsp70 and 

ITS-rDNA target regions were successfully amplified and sequenced. The respective 

accession numbers are listed in Table 1.  
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To further extend the characterisation of these sequences, phylogenetic analyses 

were performed using ML, Bayesian and NeighborNet methods. An initial cladistic 

analysis of each gene fragment showed that all the Leishmania sequences obtained from 

cats (indicated with “*”) segregating within the subgenus Leishmania (Supplementary 

Figures 1, 2, 3 and 4). The majority of these sequences segregated together with those of 

Leishmania donovani complex reference-strains in a monophyletic cluster with high 

statistical support, regardless of the target gene or phylogenetic inference method used. 

Within the Leishmania donovani complex, the existence of intra-groups was suggested in 

all trees, but none of them evidenced monophyly for the L. archibaldi/donovani and L. 

chagasi/infantum species. In contrast, both cytB and ITS-rDNA sequences amplified from 

a cat from the LMA segregated in a robust monophyletic cluster, exclusively composed 

by sequences of reference strains of L. major (Supplementary Figures 1 and 4). 

Nonetheless, the paraphyletic structure of the L. major species complex was suggested 

by the analysis of cytB and ITS-rDNA datasets (Supplementary Figures 1 and 4). 

Contradictory topological tree-segregation results were observed for the sequences 

obtained from a cat from the Algarve. The trees based on cytB and hsp70 data supported 

their segregation in two different phylogenetic lineages, where the obtained sequences 

clustered together within the L. donovani complex and the L. major radiation, respectively 

(Supplementary Figures 1 and 3). To better understand the phylogenetic relationships 

shared by L. donovani complex sequences derived from cats, additional analyses were 

inferred from a concatenated alignment (2061 bp-long) of partial sequences of three 

different protein-coding genes (i.e., cytB, g6pdh and hsp70). The concatenated tree based 

on ML and Bayesian methods highly supported the monophyly of L. donovani complex 

(Figure 1A). 
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Figure 1. Phylogenetic analysis based on unambiguous cytB, g6pdh and hsp70 concatenated 

sequences alignment (2061 nt). (A) Phylogenetic unrooted tree generated using the GTR+G+I 

model of evolution, assuming a strict molecular clock. At specific branch nodes, bootstrap values 

(from 1000 random replicates of the original datasets) ≥ 75 % and/or posterior probabilities ≥ 

0.80 are shown. Bootstrap/posterior probability values below these limits are indicated by “–”. 

The size bar indicates the number of nucleotide substitutions per site. The tree was rooted with 

Leishmania amazonensis sequences (outgroup). The sequences of strains detected/isolated from 

cats are identified with “*”. (B) Median-joining network of L. donovani complex. The area of 

circles is proportionally related to the frequency of the gene type. Each gene type is indicated with 

different levels of grey shading. The gene polymorphisms are indicated in the branches by dashes. 

The median vector is indicated by a white circle and represents a hypothetical ancestor. 
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Within this, three distinct groups were formed, two of them exclusively composed 

by sequences of reference strains of L. donovani and L. infantum, respectively. The last 

one included all sequences amplified from cat samples. Further, phylogenetic networks 

were obtained from the same gene-segments/concatenated datasets. The Leishmania 

relationships consistently displayed by cladistics analyses were also recovered from the 

networks (data showed only for the concatenated dataset; Figure 2). 

Moreover, based on the concatenated median-joining network of L. donovani 

complex sequences, four distinct gene types were recognized, all of them connected by a 

median vector (Figure 1B). The most frequent gene type had the majority of sequences 

of L. infantum reference strains used in this study and all sequences obtained from cats. 

This gene type occupied an intermediate position between IMT202 and IMT180/IMT181 

gene types and was separated by seven mutational steps from the BPK275/DD8 gene 

type. 

Figure 2. Split-network based on unambiguous cytB, g6pdh and hsp70 concatenated sequences 

alignment (2061 nt). Distances were calculated using the K2P model of evolution. The sequences 

of strains detected/isolated from cats are identified with “*”. 
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Despite this analysis, it should be stated that all datasets used were somewhat 

limited in the number of sequences they contain, especially in what regards the number 

of operational taxonomic units included in the L. donovani complex (for which a sequence 

for the chosen genetic markers could be obtained or found in the public nucleotide 

sequence databases). Moreover, analysis of the phylogenetic signal for each of these 

datasets was also shown to be sub-optimal. Indeed, likelihood mapping showed that the 

percentage of totally resolved sequence quartets (of the total number of possible quartets 

in 1000 replicates of the sequence data used) concerning the analysis of the cytB, g6pdh, 

hsp70, ITS-rDNA, and cytB-g6pdh-hsp70 concatenated datasets corresponded to 78.9 %, 

64.8 %, 64.6 %, 58.4 %, and 56.7 %, respectively. While these values did not usually 

limit the segregation of the sequences used into the expected main genetic lineages, they 

may explain the paraphyletic structure of the L. major complex cluster in the cytB and 

ITS-rDNA trees and the inability to resolve the L. donovani complex into clear 

subclusters. In fact, the low resolution of this species complex is also evident when, in 

addition to phylogenetic inference, the sequence data were analysed by multivariate 

statistics using principal coordinate analysis (Supplementary Figure 5), which allows the 

identification of meaningful patterns in sequence data without a priori knowledge about 

them, summarizing sequence variation in a limited number of axis (or dimensions). 

Once again, PCOORD revealed limited resolving power to separate the analysed 

sequences into distinct subsets. Moreover, regardless of the dataset used, all the sequences 

amplified from cats clustered with all the other. Therefore, and as far as the analysed 

genetic markers could reveal, feline strains do not evidence any particular genetic feature 

setting them apart from those of vector, human, or canine origin. 

5. Discussion 

The MLEE has been considered the baseline of Leishmania species identification, 

however, due to a few technical limitations, only a small number of strains isolated from 

cats were typed by this method (Maia et al., 2015; Pennisi et al., 2015). Indeed, the 

classification of Leishmania parasites at the species level in both clinical cases of feline 

infection and epidemiological studies, has been commonly based on the detection of 

species-specific antibodies and/or DNA using species-specific primers (Can et al., 2016; 

Leal et al., 2018; Pennisi et al., 2015). In this study, regions of four different genetic 
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markets (cytB, g6pdh, hsp70 and ITS-rDNA) were analyzed to investigate the 

phylogenetic relationships and the genetic diversity of Leishmania strains 

detected/isolated from cats.  

The SSU-rDNA PCR assay performed to screen cat blood samples for the presence 

of Leishmania DNA showed to be more sensitive than the remaining PCR assays used 

for characterisation of these parasites. In fact, PCR assays targeting conserved regions of 

SSU-rDNA and kinetoplast minicircle DNA have been demonstrated to be among the 

most sensitive methods for detection of Leishmania DNA, mainly as a result of their high 

gene copy number per parasite cell (Akhoundi et al., 2017; Albuquerque et al., 2017; 

Lachaud et al., 2002). However, these targets display only a few phylogenetically 

informative sites, allowing the identification of leishmanial parasites only at the genus 

and/or subgenus level (Schönian et al., 2011). On the other hand, cytB, g6pdh, hsp70 

and/or ITS-rDNA genes have been suggested to be used for better discrimination of 

Leishmania species worldwide (Asato et al., 2009; Dávila and Momen, 2000; Fraga et al., 

2010; Zemanová et al., 2007). The hsp70 and ITS-rDNA have been identified as the 

markers with the highest discriminative power at both interspecies and intraspecies levels, 

and the cytB as one of the most specific and sensitive for detection/identification of 

Leishmania spp. (Akhoundi et al., 2017; Kuhls and Mauricio, 2019). Although less 

commonly analysed than the markers referred above, g6pdh has, nonethless, already been 

used in MLST schemes (Herrera et al., 2017; Zemanová et al., 2007; Zhang et al., 2013), 

including those devised for inferring the phylogenetic structure of the Leishmania 

donovani complex (Zemanová et al., 2007). 

Herein, the PCR-assays employed for partial amplification of these genes showed 

to be 100 % sensitive with template DNA obtained directly from several cultured strains 

of L. donovani complex, L. major and L. tropica. On the other hand, the sensitivity of 

these PCR-protocols was considerably lower using cat buffy coat samples considered 

positive to Leishmania based on the amplification of SSU-rDNA by PCR. In this study, 

the results obtained for cytB are most probably due to a combination of a high copy 

number template with a two-step PCR protocol, while a lower copy number template and 

a less sensitive amplification protocol (one-step PCR) explain those obtained for g6pdh. 

These observations reinforce the importance of combining, whenever possible, two-step 

PCR assays with primers targeting multicopy genes especially in samples, such as blood, 
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where the parasite load tends to be low (Sundar and Singh, 2018). The detection of 

Leishmania DNA was tentatively optimised using buffy coat samples since, as far as dogs 

are concerned, the detection of Leishmania nucleic acids has been shown to be more 

efficient from the latter than from whole blood (Maia et al., 2010). 

In general, phylogenetic relationships reconstructed from both singular gene and 

concatenated nucleotide sequences alignments are topologically congruent, and in 

agreement with the main taxonomic groups comprised in the classical classification of 

Leishmania parasites (Akhoundi et al., 2016). As previously demonstrated, the genetic 

targets used in this study showed to be polymorphic enough to allow clear discrimination 

between Leishmania parasites at the complex level (Asato et al., 2009; Dávila and 

Momen, 2000; Fraga et al., 2010; Zemanová et al., 2007). The exception was the L. major 

complex, where a statistically supported monophyletic origin was consistently 

demonstrated only for L. major sensu stricto, regardless of the genetic markers analysed, 

as also observed in other studies (Bravo-Barriga et al., 2016; Dávila and Momen, 2000; 

Van der Auwera et al., 2013). On the contrary, phylogenetic trees based on cytB, hsp70, 

and ITS-rDNA sequences place L. gerbilli, L. turanica and L. arabica (the other members 

of the L. major complex) in either a paraphyletic position to L. major (cytB and ITS-rDNA 

trees; Supplementary Figures 1 and 4), or clustering with it in a monophyletic assemblage 

which is not, however, supported by either bootstrap or posterior probability (hsp70 tree; 

Supplementary Figure 3). 

Phylogenetic analyses of the concatenated sequences showed that the majority of 

parasites found in cats belonged to the L. donovani complex. In addition, and as far as the 

sequence data indicated, none of the analysed sequences evidenced any distinctive feature 

associated with feline Leishmania parasites, segregating among those isolated from dogs, 

humans and phlebotomine sand flies in all kinds of analyses (Figure 1B). This absence of 

segregation of Leishmania genetic markers into feline-specific types was also indirectly 

demonstrated by principal coordinate analysis (Figure 3). 
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In the last few years, cats have been regarded as possible additional reservoirs of 

L. infantum (Akhtardanesh et al., 2018; Maia and Campino, 2011). The feline infection 

with L. infantum has been confirmed using molecular tools in several countries of Eurasia 

(Akhtardanesh et al., 2017; Can et al., 2016; Pennisi et al., 2015). 

Although the feline strains of Leishmania were not formally identified as L. 

infantum, this study contributes with new insights in the epidemiology of zoonotic 

visceral leishmaniosis reinforcing the possible role played by cats.  

Over the years four different species (i.e., L. archibaldi, L. chagasi, L. donovani 

and L. infantum) have been described as belonging to the L. donovani complex, but 

several molecular studies have supported their synonymy (Maurício, 2018). Additionally, 

the occurrence of genetic recombination within this complex has been shown (Mauricio 

Figure 3. Principal coordinate analysis 2D plot of the unedited cytB, 

g6pdh and hsp70 concatenated sequences alignment. The first two axes 

cover 90.4 % of variation. C*, D, H and P letters corresponding to 

sequences of Leishmania donovani complex strains detected in cats, 

dogs, humans and phlebotomine sand flies, respectively. Sequences of 

L. amazonensis (strain M2269) were used as outgroup and are indicated 

by “O”. 
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et al., 2006). The recognition of L. donovani (syn. L. archibaldi) and L. infantum (syn. L. 

chagasi) as the only two valid species is now accepted by most researchers, but once 

again, according to the phylogenetic species concept (Tibayrenc, 2006), their monophyly 

has not been shown to be consistent (Maurício, 2018). In the present study, the formation 

of L. donovani and L. infantum specific-clusters seemed to be influenced by the number 

of representative sequences included in the phylogenetic analyses. The concatenated tree 

suggested the monophyly of the L. donovani and L. infantum clusters, but when the 

sequences obtained from the IMT180 and IMT181 strains [identified by MLEE as L. 

donovani MON-18 (Campino et al., 1994) and L. infantum MON-24 (Cortes et al., 2014), 

respectively] were included in the analyses, an additional monophyletic cluster, 

exclusively composed by them, and supported by both high bootstrap and posterior 

probability values, was formed (Figure 1B). Moreover, the correspondent median-joining 

network indicated that these strains had the same genetic type (Figure 1A). Due to the 

absence of consistent phylogenetic or diagnostic markers for any of the recognised L. 

donovani complex species, some researchers have been suggesting a need to rethink the 

genetic characterisation of Leishmania based on whole-genome sequencing data (Van der 

Auwera et al., 2011). Nonetheless, the recognition of the L. donovani complex as a single 

species (L. donovani) as recently proposed by Maurício (2018), is in agreement with the 

results reported in the present study.  

Unexpectedly, the phylogenetic analyses also suggested the presence of both 

L.major/ L. donovani complex in an adult cat from the Algarve and L. major in a young 

cat from the LMA. These results highlighted the employment of cytB in MLST schemes 

for the identification of Leishmania parasites, not only due to their specificity and 

sensitivity but also to its uniparental inheritance feature (Herrera et al., 2017). As hybrids 

present full genomic complements from both parents, except for the kinetoplast 

maxicircle DNA (Akopyants et al., 2009), the partial amplification of both L. donovani 

complex cytB and L. major hsp70 from a cat, using non-restrictive primers, highly 

supports its infection by L.major/L. donovani s.l. hybrid parasites. Nonetheless, in formal 

terms, the hypothesis of a L.major/L. donovani s.l. mix infection cannot be formally ruled 

out, especially since they have previously been described in humans (Babiker et al., 2014; 

Badirzadeh et al., 2018). On the other hand, the concordant sequence identity results 

obtained from both cytB and nuclear ITS-rDNA targets suggests that the other cat 
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harboured DNA of L. major parasites. Nevertheless, the infection by hybrids should also 

not be formally excluded because their genetic inheritance can occur with loss of 

heterozygosity at some loci (Romano et al., 2014). 

Zoonotic CL caused by L. major is dispersed in several countries from West to 

Northern Africa, the Middle East and Central Asia (WHO, 2010). Although rodents are 

the proven reservoirs of L. major, the parasite DNA has recently been identified in the 

blood of cats in Turkey (Paşa et al., 2015). The detection of DNA of L. major and/or L. 

major/L. donovani s.l. hybrids in cat’s buffy coat samples collected out of sand fly 

seasonal activity (Alten et al., 2016; Branco et al., 2013; Maia et al., 2013) suggests a real 

infection. Also, taking into account the previous isolation of L. major/L. infantum hybrids 

from autochthonous human cases (Ravel et al., 2006), as well as the detection of L. major 

DNA in the phlebotomine sand fly Sergentomyia minuta (Campino et al., 2013), the 

present results reinforce the possible circulation of these parasites in Portugal. Eco-

epidemiological and phylogenetic studies are needed to clarify the possible maintenance 

and transmission of both L. major and Leishmania hybrids parasites, focusing on their 

isolation and typing, ideally relying on whole-genome sequences from Leishmania strains 

isolated from both sand flies and vertebrate hosts.  

Nevertheless, and from a public health point of view, official notification of all 

cutaneous and visceral human clinical cases, together with Leishmania species 

identification, should be encouraged by the European health services. 

Ethics statement 

The procedures were approved by the Ethical Committee of IHMT and for the 

Portuguese veterinary authorities as complying with Portuguese legislation for the 

protection of animals (Decree-Law no. 113/2013). Consent was obtained from the legal 

detainer, i.e., the owner of the cat or the person in charge of the rescue associations for 

stray cats. 
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8. Supplementary data 

  

Supplementary Figure 1. Phylogenetic unrooted tree based on unambiguous cytB sequences 

alignment (470 nt) using the HKY+G model of evolution, assuming a strict molecular clock. At 

specific branch nodes, bootstrap values (from 1000 random replicates of the original datasets) ≥ 

75 % and/or posterior probabilities ≥ 0.80 are shown. Bootstrap/posterior probability values 

below these limits are indicated by “–”. The size bar indicates the number of nucleotide 

substitutions per site. The tree was rooted with Viannia subgenus sequences (outgroup). The 

sequences of strains detected/isolated from cats are identified with “*”. 
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Supplementary Figure 2. Phylogenetic unrooted tree based on unambiguous 

g6pdh sequences alignment (942 nt) using the HKY+G model of evolution, 

assuming a relaxed molecular clock. At specific branch nodes, bootstrap values 

(from 1000 random replicates of the original datasets) ≥75 % and/or posterior 

probabilities ≥ 0.80 are shown. Bootstrap/posterior probability values below these 

limits are indicated by “–”. The size bar indicates the number of nucleotide 

substitutions per site. The tree was rooted with Viannia subgenus sequences 

(outgroup). The sequences of strains detected/isolated from cats identified with 

“*”. 
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Supplementary Figure 3. Phylogenetic unrooted tree inferred based on unambiguous hsp70 

sequences alignment (649 nt) using the TrN+G model of evolution, a strict molecular clock. At 

specific branch nodes, bootstrap values (from 1000 random replicates of the original datasets) ≥ 

75 % and/or posterior probabilities ≥ 0.80 are shown. Bootstrap/posterior probability values 

below these limits are indicated by “–”. The size bar indicates the number of nucleotide 

substitutions per site. The tree was rooted with Viannia subgenus sequences (outgroup). The 

sequences of strains detected/isolated from cats are identified with “*”. 
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Supplementary Figure 4. Phylogenetic unrooted tree inferred based on unambiguous ITS-rDNA 

sequences alignment (918 nt) using the HKY+G model of evolution, assuming a relaxed 

molecular clock. At specific branch nodes, bootstrap values (from 1000 random replicates of the 

original datasets) ≥ 75 % and/or posterior probabilities ≥ 0.80 are shown. Bootstrap/posterior 

probability values below these limits are indicated by “–”. The size bar indicates the number of 

nucleotide substitutions per site. The tree was rooted with Viannia subgenus sequences 

(outgroup). The sequences of strains detected/isolated from cats are identified with “*”. 
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Supplementary Figure 5. Principal coordinate analysis 2D plot of the unedited cytB, g6pdh, 

hsp70 and ITS-rDNA sequences alignments. The first two axes cover, respectively, 74.2, 90.3, 

78.1 and 84.4 % of variation. C*, D, H and P letters corresponding to sequences of Leishmania 

donovani complex strains detected in cats, dogs, humans and phlebotomine sand flies, 

respectively. Sequences of L. amazonensis (strain M2269) were used as outgroup and are 

indicated by “O”. 
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In vitro fitness and ex vivo infectiousness of feline Leishmania strains 
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1. Abstract 

Zoonotic visceral leishmaniosis is a worldwide severe disease caused by 

Leishmania infantum, a protozoan that has phlebotomine sand flies as vectors and dogs 

as primary reservoir hosts. Over the last few decades, cats have been regarded as an 

indisputable piece within the ecological system in which L. infantum is maintained 

indefinitely. However, little is known about feline strains, including their phenotypic 

plasticity and infectivity. In this study, the phenotypic behaviour of seven L. infantum 

feline strains was compared to those of well-characterised counterparts isolated from two 

dogs and two humans in terms of growth profile, adaptive capacity under several stress 

conditions, susceptibility to antileishmanial drugs, and infectivity to host cells. Feline 

strains displayed a similar growth profile, survival capacity, and ability to infect feline, 

canine, and human monocyte-derived primary macrophages. Furthermore, multivariate 

cluster analysis suggested that most strains studied did not display distinctive phenotypic 

features. To our knowledge, this is the first study to analyse the phenotypic behaviour of 

feline L. infantum strains. This study brings new insights into the hypothetical role of cats 

as reservoir hosts of L. infantum since the parasites found in them are phenotypically 

identical to those of dogs and humans. However, further studies on the transmission 

dynamics should be encouraged to fully establish the status of cats in the maintenance of 

L. infantum foci. 

Keywords: cat, disease reservoirs, Leishmania, leishmaniosis, parasitic sensitivity tests, 

phenotype. 
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2. Introduction 

Leishmaniosis is a neglected vector-borne disease that results from infection with 

protozoan parasites of the genus Leishmania, which are typically transmitted to 

mammalian hosts through the bite of phlebotomine sand flies (WHO, 2010). 

The infection outcome depends on the invading species of Leishmania, host 

genetics, and immune status, ranging from asymptomatic to fatal systemic disease 

(Bañuls et al., 2011). In humans, two primary clinical forms are prevalent worldwide: 

cutaneous leishmaniosis and visceral leishmaniosis (VL) (Burza et al., 2018; Gradoni, 

2018). The latter is the most serious form of the disease and is caused by L. donovani and 

L. infantum (both grouped in the L. donovani complex) (WHO, 2010). In addition, L. 

donovani is typically recognised as anthroponotic and L. infantum as zoonotic, with dogs 

(Canis lupus familiaris) acting as the main reservoir hosts (Quinnell and Courtenay, 

2009). Nevertheless, an increasing number of clinical cases of feline leishmaniosis (FeL) 

and subclinical L. infantum infections in cats (Felis catus) have been reported in recent 

years, mostly in Southern Europe where canine leishmaniosis is endemic (Pennisi et al., 

2015; Spada et al., 2020). 

There is growing evidence that these felids may be involved in maintaining L. 

infantum in both domestic and peridomestic habitats (see review Maia et al., 2018). This 

hypothesis has built on the fact that cats (i) are naturally susceptible to L. infantum but 

usually do not present clinical signs or develop clinicopathological abnormalities; (ii) are 

a suitable blood source for phlebotomine sand flies; (iii) maintain parasites with genetic 

and biochemical features similar to those isolated from both humans and dogs; (iv) often 

have viable parasites in the skin and blood; and (v) are popular household pets. 

Nonetheless, crucial issues await clarification in order to formally incriminate cats as 

reservoir hosts of L. infantum. 

As previously shown, the studies focusing on phenotypic plasticity and infectivity 

of Leishmania spp. may bring further data relating to parasite infectivity, pathogenicity, 

evolution, and bioecological dynamics. However, most of them have focused on strains 

isolated from humans, dogs, or phlebotomine sand flies (Vanaerschot et al., 2010; Cortes 

et al., 2018; Araújo et al., 2020; Mas et al., 2020). Therefore, this study aimed to assess 
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the phenotypic behaviour of L. infantum strains of feline origin when compared to that of 

well-characterised strains isolated from dogs and humans, in terms of growth profile, 

adaptive capacity under thermal, nutritional and oxidative stress conditions, and 

susceptibility to antileishmanial drugs as well as infectivity. 

2. Materials and Methods 

2.1. Parasites 

A total of 11 L. infantum strains isolated from cats, dogs, and humans (identified 

with the prefix C, D and H, respectively) were studied (Table 1). Leishmania strains were 

provided by the French National Reference Centre for Leishmanioses (n = 5) (Pr Patrick 

Bastien) and the collection of “Leishmania” of the Biological Resources Centre of the 

Academic Hospital (CHU) of Montpellier (BRC-Leish – 

http://www.parastiologie.univmontp1.fr/cryobanque.htm) (Username BIOBANKS - BB-

0033-00052); by the Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L.) – 

Istituto Zooprofilattico Sperimentale della Sicilia, Italy (n = 5) (Dr Fabrizio Vitale); and 

by the Instituto de Higiene e Medicina Tropical – Universidade NOVA de Lisboa, 

Portugal (n = 1). 

Promastigotes were maintained at 24 ºC in RPMI-1640 medium (Sigma-Aldrich, 

USA) supplemented with 20 % (v/v) heat-inactivated fetal bovine serum (FBS) (Sigma-

Aldrich), 2 mM L-Glutamine (Sigma-Aldrich), 100 U/mL penicillin and 100 µg/mL 

streptomycin (Sigma-Aldrich) (cRPMI20). All strains used in this study were sub-cultured 

for 10-20 passages.



CHAPTER 5 

In vitro fitness and ex vivo infectiousness of feline Leishmania strains 
 

145 

Table 1. Characterisation of the eleven Leishmania strains included in the study. 

a Originally classified as Leishmania donovani sensu lato; b According to the World Health Organization. 

 

Species, zymodeme Laboratory code International codeb Host Geographic origin Reference 

L. infantum 2147 MFEL/IT/10/2147 Cat Italy (Pereira et al., 2020) 

L. infantum 6827 MFEL/IT/08/6827 Cat Italy (Pereira et al., 2020) 

L. infantum, MON-1 10816 MFEL/IT/02/10816 Cat Italy (Pereira et al., 2020) 

L. infantum 12022 MFEL/IT/99/12022 Cat Italy (Pereira et al., 2020) 

L. infantum 33861 MFEL/IT/05/33861 Cat Italy (Pereira et al., 2020) 

L. infantum, MON-1 IMT405 MFEL/PT/13/IMT405 Cat Portugal (Maia et al., 2015)  

L. infantuma IMT422 MFEL/PT/18/IMT422 Cat Portugal (Pereira et al., 2020) 

L. infantum, MON-1 IMT229 MCAN/PT/97/IMT229 Dog Portugal (Cortes et al., 2014) 

L. infantum, MON-1 IMT373 MCAN/PT/05/IMT373 Dog Portugal (Maia et al., 2013) 

L. infantum, MON-1 IMT184 MHOM/PT/93/IMT184 Human Portugal (Maia et al., 2013) 

L. infantum, MON-1 IMT369 MHOM/PT/2004/IMT369 Human Portugal (Maia et al., 2013) 
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2.2. In vitro growth kinetics and metacyclogenesis 

Promastigotes in the logarithmic growth phase (log-phase) were inoculated in 

cRPMI20 at a final density of 1.0 x 105 parasites/mL, plated in quadruplicate in 24-well 

flat-bottom plates (VWR®, USA) and incubated (ICP 600, Memmert, Germany) at 24 ºC 

for 12 consecutive days. Growth curves were obtained by daily quantification of viable 

promastigotes using a Neubauer chamber (Heinz Herenz, Germany). For morphometric 

characterisation, promastigotes were harvested from day 1 to day 12 and washed with 1x 

phosphate-buffered saline solution (PBS). After centrifugation (1000 x g; 10 min; 4 ºC), 

the cell pellets were suspended in FBS and spread onto microscope slides. Air-dried 

smears were fixed with methanol, stained with 5 % (v/v) Giemsa, and examined by bright-

field microscopy at 1000 x magnification (Eclipse 80i, Nikon, Japan). Cell body and 

flagellum lengths of 100 randomly selected promastigotes were measured for each time 

point using NIS-Elements Basic Research v3.20.00 (Nikon). Metacyclic forms were 

identified according to Alexandre et al. (2020) (i.e., body length <14 µm and 

flagellum/cell body length ratio ≥2). 

2.3. In vitro thermal stress assay 

Log-phase promastigotes suspended in cRPMI20 (1.0 x 105 parasites/mL) were 

plated in quadruplicate in 24-well flat-bottom plates and incubated at 20, 28, 33, 37, and 

40 ºC for 2, 24, 48, and 192 h to assess the effect of temperature on the growth rate of 

parasites. After incubation under each thermal stress condition, the cultures were kept at 

24 ºC until completing a total of 12 days. Parasite density was determined every 24 h 

from day 0 to day 12, using a Neubauer chamber. 

2.4. In vitro nutritional stress assay 

Log-phase promastigotes suspended in PBS with 75, 50, and 25 % (v/v) cRPMI20 

at a final density of 1.0 x 105 parasites/mL were plated in quadruplicate in 24-well flat-

bottom plates and incubated at 24 ºC for 12 consecutive days to evaluate the effect of 

nutrient depletion on the growth rate of parasites. Parasite density was determined every 

24 h using a Neubauer chamber. 
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2.5. In vitro oxidative stress assay 

Log-phase promastigotes suspended in cRPMI20 (final density of 5.0 x 106 

parasites/mL) were plated in quadruplicate in 96-well flat-bottom plates (VWR) with 

increasing concentrations (i.e., 0.11, 0.21, 0.43, 0.85, 1.70 and 3.40 mM) of hydrogen 

peroxide (H2O2; Merck®, Germany), and incubated at 24 ºC for 24 h, to explore the effect 

of reactive oxygen species (ROS) on parasite growth. Parasite viability was determined 

using a MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (M2128, 

Sigma-Aldrich) tetrazolium reduction assay as described by Cortes et al. (2018) with 

some modifications. Briefly, the MTT substrate was prepared in PBS and added to each 

well at a final concentration of 5 mg/ml. After incubation (37 ºC; 2-4 h), the plates were 

centrifuged at 1000 x g for 30 mins at 0 ºC. The supernatant was removed, and the 

precipitated formazan crystals were dissolved by adding dimethyl sulfoxide (200 µL; 

DMSO; Merck). The quantity of formazan was measured by recording changes in 

absorbance at 595 nm using a microplate spectrophotometer (TRIAD Multi-Mode 

Microplate Reader; Dynex Technologies, USA). For each strain, three independent 

experiments were performed. 

2.6. In vitro drug susceptibility assay 

Log-phase promastigotes suspended in cRPMI20 (final density of 5.0 x 106 

parasites/mL) were plated in 96-well flat-bottom plates with increasing concentrations of 

antileishmanial reference drugs (Table 2). After 48 h of incubation at 24 ºC, MTT was 

added, and parasite viability was determined as previously described. Three independent 

assays were carried out to determine the half-maximal inhibitory concentration (IC50) of 

each strain.
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Table 2. List of drugs used for in vitro susceptibility assays. 

a Prepared as successive 1:2 serial dilutions of the different drugs in RPMI-1640 complete medium; b Obtained from antimony trichloride; c Obtained from meglumine antimoniate 

(Glucantime). 

Abbreviations: NA, not applicable. 

 

Drug (supplier) Incubation time Stock solution solvent  Final concentration (range)a 

Allopurinol (Atral-Cipan, Portugal) 48 h Sodium hydroxide, 1N  0.37-11.8 mM 

Amphotericin B (Sigma-Aldrich, USA) 48 h RPMI-1640 medium  21.1-865.7 nM 

Miltefosine (Zentaris, Germany) 48 h RPMI-1640 medium  7.7-245.4 µM 

Trivalent antimony (Sigma-Aldrich, USAb) 48 h Hydrochloric acid, 4M  19.3-616.0 µM 

Pentavalent antimony (Boehringer Ingelheim 

Animal Health, Portugal)c 

48 h NA  12.8-409.9 mM 
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2.7. Ex vivo macrophage infection assay 

Peripheral blood mononuclear cells (PBMCs) were isolated from heterogeneous 

groups of feline, canine, and human Leishmania-negative [i.e., for which no Leishmania 

SSU-rDNA was detected by nested-PCR (Pereira et al., 2020)] healthy donors using the 

density gradient separation method described by Dagur and McCoy (2015) with 

modifications. Briefly, anticoagulated blood in EDTA was diluted 1:2 in PBS, layered 

onto Histopaque-1077 (Sigma-Aldrich), and centrifuged at 400 x g for 30 min at 22 ºC. 

The PBMCs were harvested, washed once with PBS, and incubated for 5 min at 4 ºC with 

an ammonium-chloride-potassium lysing buffer to promote erythrocyte lysis. After 

incubation, the cells were washed twice with PBS and resuspended in RPMI-1640 

medium supplemented with 10 % (v/v) heat-inactivated FBS, 2 mM L-Glutamine, 100 

U/mL penicillin, and 100 µg/mL streptomycin (cRPMI10). Viable cells [identified by the 

trypan blue exclusion method (Strober, 2015)] were counted using a Neubauer chamber, 

seeded at a concentration of 1.0 x 106 cells/mL in tissue culture treated flasks (T25; VWR) 

and incubated at 37 ºC in a humidified atmosphere of 5 % CO2-95 % air (Heracell 150i; 

Thermo Scientific, USA). On the 3rd day of incubation, non-adherent cells were removed, 

and the culture medium was replaced. Three days later, the monocyte-derived 

macrophages were washed twice with PBS, and a non-enzymatic dissociation solution 

(i.e., ice-cold PBS with 2.5 mM EDTA) was added. Cells were inspected using an 

inverted microscope and incubated on ice until most of them were detached and 

individualised (30 min on average). The remaining adherent cells were gently detached 

by a cell-scraper (VWR). After harvesting, the cells were washed once with PBS and 

resuspended in cRPMI10. Viable macrophages were counted and seeded at a concentration 

of 2.5 x 104 cells/well in duplicate in a 16 well Nunc Lab-Tek Chamber Slide system 

(Thermo Scientific). The cells were incubated at 37 ºC in a humidified atmosphere of 5 

% CO2–95 % air for 24 h and further infected with stationary phase promastigotes at a 

5:1 parasite/host cell ratio for 24 h (Maia et al., 2007). After incubation, the slides were 

washed twice with PBS to remove non-internalised promastigotes, were fixed with 

methanol, and stained with 5 % (v/v) Giemsa. The cells were mounted in dibutyl phthalate 

polystyrene xylene (DPX, Merck®) and counted by bright-field microscopy (CKX41, 

Olympus, Japan) at 1000 x magnification. The percentage of infected cells and the 

number of amastigotes per infected cell were assessed as previously described (Maia et 
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al., 2007). The infection index was determined by the multiplication of both parameters 

to estimate the overall parasite burden, as described by Cortes et al. (2018). For each 

strain, two independent experiments were performed. 

2.8. Statistical analysis 

Statistical analyses were carried out using IBM SPSS Statistics v26.0 and 

GraphPad Prism v8.0.1. The coefficient of variation (CV) was used to measure the 

dispersion of continuous variables. In high dispersion cases, the results were reported as 

median with interquartile range (Q1-Q3) rather than arithmetic mean with standard 

deviation (Whitley and Ball, 2002). D’Agostino-Pearson and Shapiro-Wilk tests were 

performed to analyse normality, while homoscedasticity was assessed by Bartlett’s and 

Brown-Forsythe tests. If assumptions of parametric tests were not valid, non-parametric 

tests were used. One-way ANOVA, Welch’s/Brown-Forsythe or Kruskal-Wallis tests 

were performed for comparing parasite densities under stress conditions, IC50 values 

between strains, and ex vivo infection data. Whenever significant differences (p <0.05) 

were found, multiple comparisons were conducted using Holme-Sidak, Tamhane T2, or 

Dunn’s tests, respectively. 

A multivariate cluster analysis was performed after these initial approaches to 

identify hidden group structures in the dataset. (i.e., if feline strains display distinct 

phenotypic features from those of human or canine origin). The variables for describing 

strains in clusters were standardised and included parasite density/viability under stress 

conditions (thermal, nutritional, and oxidative), the inhibitory effect of drugs, and 

infection index. Strains were grouped using the nearest-neighbour (single linkage) 

hierarchical clustering method, considering the squared Euclidean distance as a 

dissimilarity measure between strains. The number of distinct clusters to retain in the final 

model was determined based on the R2 criterion described by Maroco (2014). The 

classification of each strain in the retained clusters was further refined using the k-means 

algorithm. 
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3. Results 

3.1. Growth kinetics and metacyclogenesis 

Most strains analysed showed similar growth patterns (Fig. 1), entering the log-

phase after a day in culture and achieving the stationary phase after the 3rd or 4th day. 

Strain C-33861 reached the highest parasite density (above 1.0 x 106 parasites/mL 

between the 3rd and 5th days) among those studied. In contrast, H-IMT369 and D-

IMT373 did not exceed 5.0 x 105 parasites/mL/day. Strains D-IMT373, D-IMT229, and 

C-IMT422, presented a consistent parasitic density during the stationary phase, with the 

latter showing a considerably higher proportion of viable parasites from day 3 onwards. 

Metacyclic forms appeared between days 3-6 and were systematically identified (for all 

strains) until day 12. In the last third of this period, these forms comprised about 20 % of 

the total number of observed promastigotes. In strains C-10816, C-33861, and H-

IMT369, the percentage of metacyclics exceeded 40 % in the last 2-3 days. 
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Figure 1. Growth kinetics and metacyclogenesis of cultured promastigotes under 

optimal laboratory conditions. Results are expressed as median values and interquartile 

range (Q1-Q3) of four replicates. Prefixes C, D and H, refer to strains isolated from cats, 

dogs, and humans, respectively. 
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3.2. Thermal, nutritional, and oxidative stresses 

Based on the results of bivariate statistics, several significant differences were 

observed between the studied strains under thermal, nutritional, and oxidative stress 

conditions (Supplementary Figs. S1-S7). However, none of these differences reflected 

distinctive features associated with the host source (i.e., cat, dog, or human). Overall, a 

short exposure (i.e., ≤24h) to temperatures ranging from 28-33 ºC promoted log-phase 

growth and a more rapid entry into the stationary phase (Supplementary Figs. S1 and S2). 

In contrast, after 192 h at 20 ºC, all strains entered the log-phase later but remained viable 

until the end of each assay (Supplementary Fig. S3). Strain C-10816 showed a 

significantly higher ability to grow at lower temperatures when compared to several 

others (namely C-6827, p = 0.046; C-12022, p <0.001; C-IMT405, p <0.001; D-IMT229, 

p <0.001; D-IMT373, p <0.001; and H-IMT369, p <0.001; Supplementary Fig. S3). Most 

strains were not substantially affected by extreme nutrient depletion (i.e., 25 % of 

cRPMI20; Supplementary Fig. S6), although D-IMT229 and C-IMT405 were significantly 

more susceptible to nutrient depletion than C-2147 (p <0.001), C-10816 (p <0.001), C-

33861 (p = 0.037 and 0.010, respectively), C-IMT422 (p <0.001) and D-IMT373 (p = 

0.003 and 0.008, respectively). Furthermore, the feline strain C-IMT422 systematically 

reached the highest parasitic densities, regardless of the percentage of growth medium 

available (i.e., 25-75 % cRPMI20). Data from the analysis of the impact of oxidative stress 

on cellular growth revealed that all strains had a similar susceptibility to exogenously 

added H2O2 in a concentration-dependent manner (Supplementary Fig. S7). Strain C-

2147 was significantly less susceptible (p = 0.049) than H-IMT369 at 0.85 mM. At the 

highest concentrations (i.e., ≥1.70 mM), no strain presented cellular viability higher than 

15 %. 

3.3. Drug susceptibility 

Leishmania strains C-2147 and C-6827 showed a significant higher susceptibility 

to allopurinol (IC50 = 0.72 and 0.64 mM, respectively) than C-10816 (IC50 = 1.41 mM; p 

= 0.008), C-12022 (IC50 = 1.39 mM; p = 0.010), C-IMT405 (IC50 = 1.59 mM; p <0.001) 

and H-IMT184 (IC50 = 1.46 mM; p = 0.010) (Supplementary Fig. 8A). On the other hand, 

strains C-IMT422 and D-IMT229 presented the highest IC50 amphotericin values (307.50 

and 273.70 nM, respectively) and seemed to be significantly less susceptible (p = 0.009 
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and 0.042, respectively) to this drug than C-10816 (IC50 = 129.6 nM; Supplementary Fig. 

8B). The IC50 values for miltefosine ranged from 8.97 to 47.7 mM. The highest value was 

obtained for C-2147, while C-IMT422 showed the lowest (p <0.003; Supplementary Fig. 

8C). When considering the effect of pentavalent antimony (SbV) on cell growth, C-6827 

disclosed the lowest susceptibility to this compound. This strain presented a significantly 

higher IC50 (73.2 mM) than C-10816 (62.2 mM; p = 0.003), C-12022 (74.3 mM; p = 

0.007), C-33861 (62.6 mM; p = 0.008), C-IMT422 (74.7 mM; p = 0.017) and D-IMT229 

(84.8 mM; p = 0.016) (Supplementary Fig. 8D). No significant differences were identified 

between strains exposed to trivalent antimony (SbIII; Supplementary Fig. 8E). 

3.4. Macrophage infection pattern 

The percentage of macrophages infected with strains isolated from cats, dogs, and 

humans was relatively homogenous (Supplementary Fig. 9A). However, H-IMT369 

showed a significantly higher ability to infect feline macrophages than H-IMT184 (80.0 

% vs 56.5 % of infected macrophages, respectively; p <0.037). Strain H-IMT369 was also 

significantly more infectious to human-derived macrophages (80.0 % of infected cells) 

than several other strains (i.e., C-IMT405, p = 0.006; C-IMT422, p = 0.009; D-IMT229, 

p = 0.009; and D-IMT373, p = 0.001; ≤52.5 % of infected macrophages). Among those 

strains isolated from cats, C-12022 was the most effective regarding the invasion of feline 

macrophages with a mean of 4.7 ± 1.3 amastigotes per infected cell (Supplementary Fig. 

9B). Nevertheless, when the latter was compared with those of canine and human origin, 

no significant differences were observed at a 5 % significance level. A statistically 

significant difference (p <0.001) was, however, observed between the mean value of 

parasite load per infected dog macrophage between strains H-IMT184 (4.4 ± 0.0) and C-

33861 (1.7 ± 0.0). On the other hand, strains C-IMT405 and C-12022 showed the highest 

values of intracellular parasite load (4.0 ± 0.8 and 3.6 ± 0.3 amastigotes per infected cell, 

respectively) while C-33861 and C-IMT422 showed the lowest (1.6 ± 0.2 and 1.1 ± 0.2 

amastigotes per infected cell, respectively). Nevertheless, based on infection index 

values, no differences were evidenced between the Leishmania strains regarding their 

ability to infect canine and feline macrophages (Supplementary Fig. 9C). Strain H-

IMT369 had a significantly higher infection index for human macrophages (270.8 ± 55.3) 

than several other strains, including C-2147 (124.5 ± 12.9; p = 0.021), C-10816 (99.7 ± 
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27.1; p = 0.005), C-33861 (66.3 ± 18.9; p <0.001), C-IMT422 (44.9 ± 9.6; p <0.001) and 

D-IMT229 (120.1 ± 17.0; p = 0.016). 

3.5. Clustering in multivariate data 

According with R2 criteria, 4 clusters were retained that explained 71 % of the 

total variance (R2 = 0.71; k = 3). Cluster 1 was the largest and comprised most studied 

strains, namely 3 isolated from cats, 2 from dogs, and 2 from humans (Figure 2). The 

feline strains C-33861 and C-IMT422 grouped in Cluster 2, while 12022 and 2147 formed 

the Clusters 3 and 4, respectively. 

  

Figure 2. Dendrogram of cluster analysis using the nearest-neighbour hierarchical clustering 

method and considering the squared Euclidean distance as a dissimilarity measure between 

strains. The horizontal axis represents the distance or dissimilarity between clusters 

identified at specific branch nodes by a number. Prefixes C, D and H, refer to strains isolated 

from cats, dogs, and humans, respectively. 
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4. Discussion 

Over the last two decades, cats have raised the interest of many researchers due to 

their potential role in maintaining, and disseminating, human and animal leishmaniosis. 

According to Asfaram et al. (2019), these felids can hypothetically act as primary or 

secondary reservoir hosts for human infection caused by L. infantum. Nevertheless, 

several criteria must be fulfilled to formally incriminate a given species as a reservoir 

host. These include a confirmation that the parasites from an infected animal are 

indistinguishable from those isolated from humans (Maia et al., 2018). 

In the present study, we compared the phenotypic behaviour and infectiousness of 

several parasitic strains of feline, canine and human origin, previously identified as L. 

infantum (Cortes et al., 2014; Maia et al., 2015; Franssen et al., 2020; Pereira et al., 2020). 

Recently, Pereira et al. (2020) demonstrated (i.e., based on the analysis of four distinct 

target genes) that L. infantum strains of feline origin share the same genetic type as those 

isolated from humans, dogs (primary reservoir hosts), and both Phlebotomus ariasi and 

Phlebotomus perniciosus (proven vector species). Whilst a phenotype is a detectable 

expression of a genotype, it may be widely modulated by epigenetic and environmental 

factors (Mideo and Reece, 2012; Afrin et al., 2019). In this context, the phenotypic 

characterisation of promastigotes cultured in vitro can contribute to a better understanding 

of the dynamics of leishmaniosis and its clinical outcomes (Cortes et al., 2012; 

Vanaerschot et al., 2010; Cortes et al., 2018; Mas et al., 2020). In this study, the analysis 

of growth kinetics and metacyclogenesis profiles showed no apparent differences among 

promastigotes of feline, canine, and human origin. These results are in agreement with 

those recently described for L. infantum strains isolated from different hosts (i.e., humans, 

dogs, and P. perniciosus) from endemic areas (Araújo et al., 2020; Mas et al., 2020). 

Moreover, the parasite’s ability to proliferate appeared to be unrelated to differentiation 

to metacyclic forms. Contrary to initial belief, it was previously demonstrated that 

proliferation, and metacyclogenesis, are independently regulated (Serafim et al., 2012). 

Overall, the proportion of metacyclic promastigotes increased gradually from day 3-4 

onwards, reaching the highest density around day 10, following the pattern previously 

reported for in vitro cultured L. infantum promastigotes (Gossage et al., 2003).  
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On the other hand, the ability of Leishmania parasites to withstand the wide range 

of hostile and changeable conditions encountered throughout their life cycle has been 

explored as an indicator of virulence (Zilberstein and Shapira, 1994; Cortes et al., 2012; 

Mas et al., 2020). Several statistically significant differences were found between the 

strains analysed in the course of this study after exposure to different stress conditions 

(i.e., thermal, nutritional and oxidative). However, none of them suggested any specific 

features associated with feline L. infantum parasites. In general, data from the analysis of 

thermal stress suggest that parasites from cats multiply well at higher temperatures, a 

feature that is known to be shared by viscerotropic species, including L. infantum 

(Callahan et al., 1996). 

On the other hand, although well-tolerated, the exposure to lower temperatures 

resulted in slower parasite growth, a finding shared by most strains isolated from cats, 

dogs, and humans. Hlavacova et al. (2013) observed that the canine strain D-IMT373 

developed well in specimens of Lutzomyia longipalpis and P. perniciosus (natural 

vectors) experimentally maintained at 20 ºC [optimal temperature range from 24 to 28 

ºC; (Volf and Volfova, 2011)]. Thus, these results highlight the apparent ability of L. 

infantum strains from cats to potentially develop a heavy late-stage infection in natural 

vectors even at 20 ºC. The decreasing concentration of nutrients did not clearly affect 

growth of most strains analysed, but significant differences were mainly observed among 

feline strains, suggesting distinct metabolic needs that seem to be unrelated to the origin 

of the host from which they were isolated. In contrast, all strains were susceptible to H2O2 

in a concentration-dependent manner, as previously described for L. infantum 

promastigotes of human origin (Cortes et al., 2018), suggesting their vulnerability to host-

derived oxygen radicals. 

Allopurinol, amphotericin B, miltefosine, and pentavalent antimonials are the 

antileishmanial drugs recommended for the treatment of canine leishmaniosis and/or 

human VL caused by L. infantum (WHO, 2010; Solano-Gallego et al., 2011). Although 

off-label, most of these drugs have also been used in FeL cases (Leal et al., 2018; Pereira 

et al., 2019). Drug resistance has been extensively described in human leishmaniosis and 

more scarcely in the canine disease (Ponte-Sucre et al., 2017; Campino and Maia, 2018). 

Nevertheless, no data are available on resistance to antileishmanial drugs in cats. The 

amastigote-macrophage model is currently the gold standard for in vitro drug resistance 
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detection (Baek et al., 2020). However, it presents several technical limitations compared 

to assays using promastigotes, which are easy to perform, fast, and robust (Maia et al., 

2013; Baek et al., 2020). Therefore, in the current study, the susceptibility of Leishmania 

promastigotes of feline, canine and human origin to the drugs mentioned above was 

estimated from a dose-response curve, using and in vitro system. 

Significant differences in allopurinol susceptibility were observed mainly 

between Leishmania strains of feline origin, which may be attributed to intrinsic 

differences in drug sensitivities without any host species-specific association. The 

allopurinol IC50 values obtained for parasites isolated from cats (1.17 ± 0.36 mM) were 

similar to those from treated asymptomatic dogs (1.97 ± 1.3 mM; Yasur-Landau et al., 

2016), indicating a high susceptibility of feline strains to this drug. Although allopurinol 

has been effective in several FeL cases (Pennisi et al., 2015), its use as monotherapy 

should be revised since in vitro experimental selection of allopurinol-resistant L. infantum 

promastigotes was easily achieved (Yasur-Landau et al., 2017). 

Overall, strains isolated from cats, dogs, and humans presented an identical 

susceptibility to amphotericin B. The range of IC50 values obtained (129.6-307.5 nM) 

appeared to be related to that previously reported for L. infantum strains isolated from 

both dogs and humans from Portugal (40,0-250,0 nM; Maia et al., 2013), as well as from 

dogs from an urban area of Alger (Algeria) (108.2-443.7 nM; Aït-Oudhia et al., 2012). In 

contrast, IC50 of studied strains was considerably lower compared to that observed for an 

L. infantum/L. major hybrid (710.0 nM) isolated from an immunocompromised human 

patient following treatment with antileishmanial drugs, including amphotericin B (Maia 

et al., 2013). Although amphotericin B seems to be effective against feline strains of 

Leishmania, its use in the treatment of FeL cases should not be equated so as to avoid 

drug resistance selection to the first option for treatment of human VL due to L. infantum 

in the Old World (WHO, 2010).  

Finally, and as far as the resistance to miltefosine was regarded, strain C-2147 

presented the highest IC50 (i.e., 47.7 ± 5.1). Interestingly, values greater than 40 µM were 

recently reported for a naturally miltefosine-resistant strain (i.e., 

MHOM/FR/2005/LEM5159) (Van Bockstal et al., 2020), and although the existence of a 

resistance profile among feline strains cannot be formally excluded, it should be carefully 
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considered. On the one hand, in the study cited above, promastigotes were exposed to 

miltefosine for an extended period (72 h vs 48 h), and the exact IC50 was not provided. 

Instead, in this study, the IC50 obtained for strain C-2147 was neither significantly 

different from that calculated for most other feline strains, nor from all strains isolated 

from dogs and humans. Thus, further studies using the amastigote-macrophage model are 

needed, as it better reflects the in vivo infection scenario (Hefnawy et al., 2017). 

Nevertheless, miltefosine seems to be a possible option for the medical management of 

FeL, as recently proposed by Leal et al. (2018). 

The feline strain C-6827 was significantly less susceptible to SbV than most 

studied strains, with an IC50 similar to that calculated for the L. infantum H-IMT369, a 

strain isolated from a human patient following treatment with meglumine antimoniate (a 

SbV based drug; Glucantime) (Maia et al., 2013). However, when the parasites were 

exposed to the active trivalent form of this compound (SbIII) no significant differences 

were revealed among the studied strains. For antileishmanial activity, SbV must be 

reduced to SbIII, which is more toxic to the parasites (Ponte-Sucre et al., 2017). This fact 

was also reflected in this study, where the IC50 values calculated for SbIII were 

approximately 100 times lower than SbV, considering identical assay conditions. Thus, 

these results suggest the a priori absence of any resistance for this drug among feline 

strains. Clinical outcomes corroborate this hypothesis since the use of meglumine 

antimoniate in FeL cases has commonly resulted in clinical cure (Pennisi et al., 2015; 

Basso et al., 2016; Pereira et al., 2019).  

Both immortalised cell lines and primary cells have long been used as in vitro 

models for studying the infectivity of L. donovani complex parasites (Maia et al., 2007; 

Vanaerschot et al., 2010; Araújo et al., 2020; Mas et al., 2020). Although cell lines appear 

to be more useful (i.e, easy to use, cost-effective, avoids many ethical objections, 

unlimited supply of material, and reproducibility results), it is known that biological 

changes resulting from serial passages may jeopardise their physiological importance 

(Kaur and Dufour, 2012). For this reason, monocyte-derived primary macrophages were 

used in the present study. Monocytes were isolated from a mix of peripheral blood 

collected from heterogeneous donors (i.e., distinct breeds and/or sex and age) to promote 

a widely genotypic and phenotypic representativity of feline, canine, and human 

populations. Overall, when compared to those isolated from dogs and humans, 
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Leishmania strains isolated from cats showed a similar ability to infect feline, canine, and 

human macrophages. Focusing on feline strains, the percentage of infected cells and the 

number of amastigotes per infected cell were identical to those calculated for 

macrophages derived from human peripheral blood when infected with canine and human 

L. infantum (Maia et al., 2007; Mas et al., 2020). On the other hand, feline macrophages 

appeared to be permissive not only to strains isolated from cats but also from dogs and 

humans. These results were not altogether surprising since a previous study using similar 

assay conditions reported a comparable capacity of canine and human strains to infect 

distinct macrophage types (Maia et al., 2007). Nevertheless, it is important to highlight 

that the studied strains were subjected to successive periods of in vitro cultivation. This 

issue should be addressed in future studies since a high number of in vitro passages has 

been significantly correlated with loss of L. infantum virulence (Moreira et al., 2012). In 

addition, a divergence between in vitro and in vivo infectivity of L. infantum strains has 

been occasionally reported (Araújo et al., 2020; Mas et al., 2020). Therefore, further 

studies will be required to determine whether the reported findings are also validated in 

vivo in animal models of VL. 

Multivariate cluster analysis has frequently been used to provide evidence for or 

against clustering structure in large data sets (Liao et al., 2016). In the present study, the 

formation of clusters seemed to be influenced by the over-representativity of strains 

isolated from cats. However, overall, it appears that feline strains are phenotypically 

identical to those isolated from dogs and humans. 

5. Conclusions 

To our knowledge, this is the first study assessing the phenotypic behaviour of 

feline L. infantum strains. A similar growth pattern, response to stress conditions, 

susceptibility to antileishmanial drugs, and infectivity was shared by strains isolated from 

cats, dogs, and humans. The findings herein reported provide a starting point for studying 

the virulence of Leishmania parasites of feline origin and contribute to the clarification 

of the hypothetical role of cats as reservoir hosts of the aetiological agent of zoonotic 

visceral leishmaniasis. Nevertheless, further epidemiological studies on transmission 

dynamics should be encouraged to fully establish the status of cats in the maintenance of 

L. infantum foci. 
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8. Supplementary data 

  

Supplementary Figure 1. Promastigotes growth behaviour at 28ºC for 2, 24, 48 and 192 h. 

Results are expressed as median values of four replicates. Superscripted letters represent 

significant differences (p < 0.05) from the pairwise comparisons. Prefixes C, D and H, refer to 

strains isolated from cats, dogs, and humans, respectively. 
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Supplementary Figure 2. Promastigotes growth behaviour at 33ºC for 2, 24, 48 and 192 h. 

Results are expressed as median values of four replicates. Superscripted letters represent 

significant differences (p < 0.05) from the pairwise comparisons. Prefixes C, D and H, refer to 

strains isolated from cats, dogs, and humans, respectively. 
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Supplementary Figure 3. Promastigotes growth behaviour at 20ºC for 2, 24, 48 and 192 h. 

Results are expressed as median values of four replicates. Superscripted letters represent 

significant differences (p < 0.05) from the pairwise comparisons. Prefixes C, D and H, refer to 

strains isolated from cats, dogs, and humans, respectively. 
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Supplementary Figure 4. Promastigotes growth behaviour at 37ºC for 2, 24, 48 and 192 h. 

Results are expressed as median values of four replicates. Superscripted letters represent 

significant differences (p < 0.05) from the pairwise comparison. Prefixes C, D and H, refer to 

strains isolated from cats, dogs, and humans, respectively. 
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Supplementary Figure 5. Promastigotes growth behaviour at 40ºC for 2, 24, 48 and 192 h. 

Results are expressed as median values of four replicates. Superscripted letters represent 

significant differences (p < 0.05) from the pairwise comparison. Prefixes C, D and H, refer to 

strains isolated from cats, dogs, and humans, respectively. 



CHAPTER 5 

In vitro fitness and ex vivo infectiousness of feline Leishmania strains 

170 

 

Supplementary Figure 6. Effect of nutrient depletion on promastigotes growth behaviour. The 

percentage of complete RPMI-1640 medium used (v/v) is indicated in each graph’s upper left 

corner. Results are expressed as median values of four replicates. Superscripted letters represent 

significant differences (p < 0.05) from the pairwise comparison. Prefixes C, D and H, refer to 

strains isolated from cats, dogs, and humans, respectively. 

Supplementary Figure 7. Parasite viability (%) of the 

feline, canine, and human L infantum strains exposed to 

hydrogen peroxide (H2O2). Results are expressed as 

median values and interquartile range (Q1-Q3) of four 

replicates and three independent assays. * Statistically 

significant difference (p < 0.05) revealed after pairwise 

comparison. Prefixes C, D and H, refer to strains isolated 

from cats, dogs, and humans, respectively. 



CHAPTER 5 

In vitro fitness and ex vivo infectiousness of feline Leishmania strains 
 

171 

 Supplementary Figure 8. Parasite viability (%) and IC50 values for antileishmanial drugs 

in susceptibility assays with the feline, canine, and human L. infantum strains. Results are 

expressed as mean values and standard deviation of four replicates and three independent 

assays. A, allopurinol; B, amphotericin B; C, miltefosine; D, pentavalent antimony; E, 

trivalent antimony. * p < 0.05; ** p < 0.01; *** p < 0.001. Prefixes C, D and H, refer to strains 

isolated from cats, dogs, and humans, respectively. 
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Supplementary Figure 9. Ex vivo infectivity of the feline, canine, and human L. infantum strains 

assessed using distinct monocyte-derived primary macrophages. The percentage of infected cells 

(A) and the number of parasites per infected cell (B) were shown. The infection index was 

determined by multiplying the individual data from (A) by (B). Results are expressed as mean 

values and standard deviation of two replicates and two independent assays. * p < 0.05; ** p < 

0.01; *** p < 0.001. Prefixes C, D and H, refer to strains isolated from cats, dogs, and humans, 

respectively. 
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1. General discussion and conclusions 

This doctoral project was developed around a focal question: What is the role of 

domestic cats in the epidemiology of zoonotic leishmaniosis? 

Zoonotic leishmaniosis caused by L. infantum is a severe vector-borne disease 

affecting humans and other mammals worldwide. Disease control requires an integrated 

“One Health” approach in which identifying key reservoir hosts is crucial. In this context, 

dogs have attracted most research interests for years due to their status as primary 

domestic reservoir hosts for human infection by L. infantum. Nevertheless, there is 

accumulating evidence that other mammals than dogs may also have a relevant role in 

maintaining this zoonotic species in domestic and peridomestic environments (Cardoso 

et al., 2021). Among domestic mammals, cats are considered the most probable additional 

reservoir hosts of L. infantum (Asfaram, Fakhar & Teshnizi, 2019). Despite the increasing 

trend to regard cats as more than an occasional source of infection, there are several 

criteria that, according to the WHO (2010), must be fulfilled to incriminate a mammal 

species as a reservoir host of Leishmania spp.: 

“A reservoir host is likely to be sufficiently abundant and long-lived to provide 

a significant food source for sand flies.” 

Following dogs, cats are the second most popular animals owned as pets 

worldwide (GfK, 2016) and are often present in areas where the peridomestic and 

domestic transmission cycles of the parasite occur (Maia et al., 2010; Iatta et al., 2019; 

Rocha et al., 2019). Also, these felids are among the blood-feeding preferences of 

phlebotomine sand flies in endemic areas of zoonotic leishmaniosis caused by L. infantum 

(Abbate et al., 2020). 

“Intense host–sand fly contact is necessary.” 

In this thesis (Chapter 2), the cats’ exposure to phlebotomine sand flies was 

assessed for the first time by quantifying specific IgG antibodies against P. perniciosus 

saliva. This approach has been proven to be a reliable way to monitor vector exposure in 

natural dog populations in endemic areas (Velez et al., 2018; Maia et al., 2020). About 

half of sampled cats showed antibodies to P. perniciosus saliva, which strongly suggests 

that cats in endemic foci have intense contact with the principal vector species of L. 
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infantum in the Western Mediterranean region. Moreover, the detection of antibodies to 

P. perniciosus saliva was significantly higher in adult cats suggesting a recurrent and 

accumulative exposure to L. infantum vectors. Nevertheless, feline antibodies to saliva 

seem to be relatively short-living. This conclusion is based on the association between 

IgG positive and sampling period, with cats during phlebotomine sand fly activity 

showing significantly higher levels of antibodies to P. perniciosus saliva than during 

winter months. Similar observations have been reported in dogs from endemic areas 

(Kostalova et al., 2015; Velez et al., 2018; Maia et al., 2020). However, further 

longitudinal studies in cat populations are needed to provide solid evidence about the 

seasonal dynamics of feline antibody response to vectors and correlation type between 

antibody production and the number of phlebotomine sand fly bites. Also, the ability of 

repellents licenced for use in cats to reduces the frequency of P. perniciosus bites and 

subsequently L. infantum infection should be addressed in future works. In the present 

study, it was concluded that infected cats are frequently exposed to phlebotomine sand 

fly bites. Recent research has demonstrated that the treatment of dogs with isoxazolines 

might be a powerful strategy to control zoonotic vector-borne diseases such as 

leishmaniosis (Miglianico et al., 2018; Bongiorno et al., 2020; Queiroga et al., 2020). 

Considering that, cats may be a source of infection to proven vectors of L. infantum 

(Maroli et al., 2007; da Silva et al., 2010; Mendonça et al., 2020), it is relevant to assess 

if the use of isoxazolines in these felids reduces pool-infected vectors in endemic areas 

of zoonotic leishmaniosis.  

“The proportion of individuals that become infected during their lifetime is 

usually considerable.” 

Still, in Chapter 2, the propotion of infected cats in endemic foci was estimated 

using serological and molecular tests. Based on the combined results, approximately 

seven out of every 100 cats sampled were infected by, or had been exposed to, Leishmania 

parasites. This proportion was similar to those obtained in the most extensive 

epidemiological survey performed in cats in Portugal so far (Maia et al., 2014). However, 

the proportion of feline Leishmania infection in endemic countries, including Portugal, is 

widely variable [from 0 to >70 %; (Baneth et al., 2020; Neves et al., 2020)] and appears 

to be influenced by heterogeneity/performance of diagnostic methodologies (mainly cut-

off, target gene and sample used for testing) and sampling bias (Cardoso et al., 2021). 
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Sampling bias was, undoubtfully, a limitation of the current study as feline samples were 

obtained by convenience, which compromised the extrapolation of results to the target 

population (i.e., which means that results cannot extrapolated to cats in endemic foci). 

Therefore, large-scale longitudinal studies using sampling methods based on the 

probability theory and different diagnostic tests (i.e., molecular and serological) should 

be used to determine the true prevalence and incidence of feline Leishmania infection in 

endemic foci.  

“Parasites should be available in the skin or the blood in sufficient numbers to 

be taken up by a sand fly.” 

The results herein reported (Chapter 2) suggest that Leishmania parasites are 

relatively common in the peripheral blood of cats (i.e., an conclusion made by the 

detection of Leishmania DNA using PCR tests), including those without clinical signs 

compatible with leishmaniosis. Indeed, L. infantum DNA has been frequently found in 

the blood and skin of cats in endemic areas (Maia et al., 2010; Chatzis et al., 2014; 

Marcondes et al., 2018). Nevertheless, xenodiagnosis and parasite culture are the most 

reliable mehtods to confirm whether mammals harbour parasites and that the protozoa are 

viable (Paltrinieri et al., 2016). Unfortunately, none of the blood samples incubated on 

Novy-MacNeal-Nicolle medium led to the isolation of viable parasites, here which were 

only identified in cultures of lymph node biopsies from a cat with clinical leishmaniosis. 

However, there seems to be no doubt that domestic cats harbour parasites in the skin and 

blood in sufficient numbers to infect vectors due to the following reasons: (i) Leishmania 

infantum has been isolated from different biological samples of feline origin, including 

blood (Pocholle et al., 2012) and skin (Poli et al., 2002; Basso et al., 2016); and (ii) it has 

been demonstrated that naturally infected cats are infectious to proven vectors of L. 

infantum in both the New and Old Worlds (Maroli et al., 2007; da Silva et al., 2010; 

Mendonça et al., 2020). 

“The course of infection in a reservoir host should be long enough and the 

infection should be sufficiently non-pathogenic to allow the parasites to survive any 

non-transmission season.” 

In this thesis (Chapter 3), the clinical and parasitological follow-up of a naturally 

infected cat was described. Unfortunately, most screened animals were strays, which 
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severely compromised the objective of monitoring the course of Leishmania infection in 

cats. In the remaining cases (i.e., non-stray cats which tested positive for Leishmania 

DNA or antibodies during the screening phase), there was a lack of compliance by owners 

or the animals died and were excluded. The exception was an adult cat with clinical 

leishmaniosis and concurrent regressive FeLV infection, which was continuously 

followed over a year. Only a small percentage of infected cats develop clinical disease, 

which is frequently associated with impaired immunocompetence due to concomitant 

infectious, debilitating diseases or immunosuppressive therapies (Pennisi & Persichetti, 

2018). In the followed case, a chronic and insidious pattern of infection was identified, 

and for the first time, the presence of parasites in cats’ inflammatory breast fluid was 

reported. Allopurinol monotherapy had an unsuccessful outcome, but when combined 

with meglumine antimoniate resulted in clinical remission. Also, the cat remained 

seropositive, but no Leishmania DNA was found in blood samples six months after the 

end of the combined treatment. Nevertheless, it has been demonstrated in previous studies 

that Leishmania parasites might persist in treated cats (Pocholle et al., 2012; Pimenta et 

al., 2015; Attipa et al., 2017), suggesting that treatment may lead to clinical cure but may 

not eliminate the infection, as seen in dogs. Moreover, the development of acute fatal 

systemic disease in cats has been reported in rare cases, which may indicate that even in 

sick cats, the infection is sufficiently non-pathogenic to ensure parasite survival during 

long periods in the host.  

“The parasites in reservoir hosts must be the same as those in humans.” 

In this thesis (Chapter 4), it was demonstrated (using a MLST-based approach) 

that strains isolated from cats were genetically similar to those of L. infantum isolated 

from humans (accidental hosts), dogs (proven primary reservoirs), and P. ariasi and P. 

perniciosus (proven vectors). However, the monophyly of L. donovani and L. infantum 

was not consistently revealed, and thereby feline strains could only be identified as L. 

donovani sensu lato. Indeed, this species complex has been the subject of controversy in 

recent decades due to several taxonomic inconsistencies, that included the description of 

L. archibaldi and L. chagasi as separate species from L. donovani and L. infantum, 

respectively (Maurício, 2018). Moreover, there is evidence confirming the occurrence of 

genetic recombination within the L. donovani complex (Rogozin et al., 2020). 

Consequently, no markers have been found that can provide unambiguous identification 
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of any species within the L. donovani complex. Thus, for diagnosis purposes and 

epidemiological studies, Maurício (2018) suggested that it may be more helpful to 

recognise this complex as a single species, L. donovani. However, Franssen et al. (2020) 

analysed the whole-genome of 151 L. donovani complex strains recently and 

demonstrated that L. infantum and L. donovani are not, in fact, synonymous species. 

However, the same authors confirmed the existence of highly divergent L. donovani 

complex strains whose identity at the species level is debatable (Franssen et al., 2020). 

Therefore, a high-resolution view of the entire genome of Leishmania strains isolated 

from cats needs to be delivered by future works.  

The detection of DNA of L. major and putative L. major/L. donovani complex 

hybrid parasites among screened cats was an unexpected finding which reinforces their 

possible circulation in Southern Europe (Ravel et al., 2006; Campino et al., 2013), 

bringing new challenges for futures epidemiological studies. 

Since ecological interactions shape parasite traits (Mideo & Reece, 2012), the 

phenotypic profile of genetically defined L. donovani s.l. strains isolated from cats was 

also characterised (Chapter 5). Overall, feline strains showed similar behaviour to L. 

infantum strains isolated from humans and dogs under optimal and stressed growth 

conditions as well as exposure to drugs. Moreover, it was also demonstrated that parasite 

strains isolated from cats can infect different types of macrophages (i.e., of canine, feline, 

and human origin) in an identical way to those isolated from dogs and humans. 

Additionally, feline macrophages were found to be permissive not only to strains isolated 

from cats but also to strains isolated from dogs and humans. Some statistically significant 

differences were observed between the studied strains using different assays, but none of 

them suggested any specific features associated with parasites isolated from cats. As a 

result, it can be deduced that L. infantum strains isolated from cats, dogs and humans 

share similar phenotypes.  

The absence of in vivo studies should be regarded as a limitation of the current 

study. This type of studies is useful to provide deeper knowledge about infectivity of 

Leishmania strains (Cortes et al., 2018; Araújo et al., 2020; Mas et al., 2020). 

Furthermore, epigenetic changes are also associated with Leishmania phenotypic 

variation (Kamhawi & Serafim, 2020). Therefore, future studies should be performed to 
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elucidate in vivo behaviour of L. infantum strains isolated from cats as well as to 

uncovered possible epigenetic mechanisms underlying infection by these parasites. 

By integrating knowledge at different levels (i.e., epidemiological, molecular, 

experimental, and clinical data) it can be concluded that cats fulfilled all criteria to be 

recognised as reservoir hosts.  

In addition, new insights into the diagnosis and prevention of feline Leishmania 

infection are provided in this doctoral thesis, through the development of a pioneering 

diagnostic algorithm for clinical decision support and establishment of a set of prevention 

guidelines. 

Although crucial issues concerning the role of cats in the epidemiology of 

zoonotic leishmaniosis were settled in this thesis, there are still some outstanding 

questions that will need to be addressed in the future: 
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• How often are cats in endemic foci bitten by phlebotomine sand flies? 

 

• What is the true proportion of cats infected with L. infantum in endemic foci? 

 

• Can cats ensure parasite transmission in the absence of dogs in endemic areas where both 

hosts occur sympatrically? 

 

• Can the proportion of new human and animal cases of L. infantum in endemic foci owed to 

transmission from cats be determined?  

 

• Can cats coinfected with L. infantum and FIV be more infectious to proven vectors and 

contribute to transmission as “super-spreaders” in endemic foci? 

 

• Do cats treated with anti-leishmanial drugs remain infectious to phlebotomine sand flies? 

 

• In cats, can isoxazolines reduce pool-infected vectors in endemic foci? 

 

• What is the impact of stray populations of cats on the spread of zoonotic leishmaniosis? 

 

• Can Leishmania infection in cats be transmitted by non-vectorial ways? 

 

• Can markers be developed to assess resistance and susceptibility of cats to leishmaniosis? 

 

• Do L. infantum strains isolated from cats display the same genetic composition of those 

isolated from humans, dogs, and phlebotomine sand flies? 

 

• How does the immune system of cats respond to Leishmania infection? 

 

• What is the in vivo infectivity and virulence of L. infantum strains isolated from cats? 

 

• Which factors are associated with feline leishmaniosis susceptibility, resistance, and 

severity? 

 

• Can a vaccine be developed to avoid feline leishmaniosis and block transmission from cats? 



CHAPTER 6 

General discussion and conclusions 

181 

2. References 

Abbate, J.M., Maia, C., Pereira, A., Arfuso, F., et al. (2020) Identification of 

trypanosomatids and blood feeding preferences of phlebotomine sand fly species 

common in Sicily, Southern Italy. PLoS ONE. 15 (3), 1–16. 

Araújo, T.F., Calarga, A.P., Zorgi, N.E., Rangel, O., et al. (2020) Phenotype evaluation 

of human and canine isolates of Leishmania infantum. Comparative Immunology, 

Microbiology and Infectious Diseases. 73, 101551. 

Asfaram, S., Fakhar, M. & Teshnizi, S.H. (2019) Is the cat an important reservoir host for 

visceral leishmaniasis? A systematic review with meta-analysis. Journal of Venomous 

Animals and Toxins Including Tropical Diseases. 25, e20190012. 

Attipa, C., Neofytou, K., Yiapanis, C., Martínez-Orellana, P., et al. (2017) Follow-up 

monitoring in a cat with leishmaniosis and coinfections with Hepatozoon felis and ‘ 

Candidatus Mycoplasma haemominutum’. Journal of Feline Medicine and Surgery 

Open Reports. 3 (2), 205511691774045. 

Baneth, G., Nachum-Biala, Y., Zuberi, A., Zipori-Barki, N., et al. (2020) Leishmania 

infection in cats and dogs housed together in an animal shelter reveals a higher parasite 

load in infected dogs despite a greater seroprevalence among cats. Parasites and 

Vectors. 13 (1), 115.  

Basso, M.A., Marques, C., Santos, M., Duarte, A., et al. (2016) Successful treatment of 

feline leishmaniosis using a combination of allopurinol and N-methyl-glucamine 

antimoniate. Journal of Feline Medicine and Surgery Open Reports. 2 (1), 

205511691663000. 

Bongiorno, G., Meyer, L., Evans, A., Lekouch, N., et al. (2020) A single oral dose of 

fluralaner (Bravecto®) in dogs rapidly kills 100% of blood‐fed Phlebotomus 

perniciosus , a main visceral leishmaniasis vector, for at least 1 month after treatment. 

Medical and Veterinary Entomology. 34 (2), 240–243. 

Campino, L., Cortes, S., Dionísio, L., Neto, L., et al. (2013) The first detection of 

Leishmania major in naturally infected Sergentomyia minuta in Portugal. Memorias 

do Instituto Oswaldo Cruz. 108 (4), 516–518. 

Cardoso, L., Schallig, H., Persichetti, M.F. & Pennisi, M.G. (2021) New epidemiological 

aspects of animal leishmaniosis in europe: the role of vertebrate hosts other than dogs. 

Pathogens. 10 (3), 307. 

Chatzis, M.K., Andreadou, M., Leontides, L., Kasabalis, D., et al. (2014) Cytological and 

molecular detection of Leishmania infantum in different tissues of clinically normal 

and sick cats. Veterinary Parasitology. 202 (3–4), 217–225. 

Cortes, S., Albuquerque-Wendt, A., Maia, C., Carvalho, M., et al. (2018) Elucidating in 

vitro and in vivo phenotypic behaviour of L. infantum/L. major natural hybrids. 

Parasitology. 146 (5), 580–587. 

Franssen, S.U., Durrant, C., Stark, O., Moser, B., et al. (2020) Global genome diversity 

of the Leishmania donovani complex. eLife. 9, e51243. 



CHAPTER 6 

General discussion and conclusions 
 

182 

GfK (2016) Pet ownership. Available from: 

https://cdn2.hubspot.net/hubfs/2405078/cms-

pdfs/fileadmin/user_upload/country_one_pager/nl/documents/global-gfk-survey_pet-

ownership_2016.pdf [Accessed: 12 April 2021]. 

Iatta, R., Furlanello, T., Colella, V., Tarallo, V.D., et al. (2019) A nationwide survey of 

Leishmania infantum infection in cats and associated risk factors in Italy. PLoS 

Neglected Tropical Diseases. 13 (7), e0007594. 

Kamhawi, S. & Serafim, T.D. (2020) Leishmania: a maestro in epigenetic manipulation 

of macrophage inflammasomes. Trends in Parasitology. 36 (6), 498–501. 

Kostalova, T., Lestinova, T., Sumova, P., Vlkova, M., et al. (2015) Canine antibodies 

against salivary recombinant proteins of Phlebotomus perniciosus: a longitudinal 

study in an endemic focus of canine leishmaniasis. PLOS Neglected Tropical Diseases. 

9 (6), e0003855. 

Maia, C., Gomes, J., Cristóvão, J., Nunes, M., et al. (2010) Feline Leishmania infection 

in a canine leishmaniasis endemic region, Portugal. Veterinary parasitology. 174 (3–

4), 336–340. 

Maia, C., Ramos, C., Coimbra, M., Bastos, F., et al. (2014) Bacterial and protozoal agents 

of feline vector-borne diseases in domestic and stray cats from southern Portugal. 

Parasites and Vectors. 7 (1), 115. 

Maia, C., Cristóvão, J., Pereira, A., Kostalova, T., et al. (2020) Monitoring Leishmania 

infection and exposure to Phlebotomus perniciosus using minimal and non-invasive 

canine samples. Parasites & Vectors. 13 (1), 119. 

Marcondes, M., Hirata, K.Y., Vides, J.P., Sobrinho, L.S.V., et al. (2018) Infection by 

Mycoplasma spp., feline immunodeficiency virus and feline leukemia virus in cats 

from an area endemic for visceral leishmaniasis. Parasites and Vectors. 11 (1), 131. 

Maroli, M., Pennisi, M.G., Di Muccio, T., Khoury, C., et al. (2007) Infection of sandflies 

by a cat naturally infected with Leishmania infantum. Veterinary Parasitology. 145 

(3–4), 357–360. 

Mas, A., Martínez-Rodrigo, A., Orden, J.A., Viñals, L.M., et al. (2020) A further 

investigation of the leishmaniosis outbreak in Madrid (Spain): low-infectivity 

phenotype of the Leishmania infantum BOS1FL1 isolate to establish infection in 

canine cells. Veterinary Immunology and Immunopathology. 230, 110148. 

Maurício, I. (2018) Leishmania taxonomy. In: F Bruschi & L Gradoni (eds.). The 

leishmaniases: old neglected tropical diseases. Austria, Springer Verlag. pp. 15–30. 

Mendonça, I.L. de, Batista, J.F., Lopes, K.S.P. do P., Magalhães Neto, F. das C.R., et al. 

(2020) Infection of Lutzomyia longipalpis in cats infected with Leishmania infantum. 

Veterinary Parasitology. 280, 109058. 

Mideo, N. & Reece, S.E. (2012) Plasticity in parasite phenotypes: Evolutionary and 

ecological implications for disease. Future Microbiology. 7 (1), 17–24. 

  



CHAPTER 6 

General discussion and conclusions 

183 

Miglianico, M., Eldering, M., Slater, H., Ferguson, N., et al. (2018) Repurposing 

isoxazoline veterinary drugs for control of vector-borne human diseases. Proceedings 

of the National Academy of Sciences of the United States of America. 115 (29), E6920–

6926. 

Neves, M., Lopes, A.P., Martins, C., Fino, R., et al. (2020) Survey of Dirofilaria immitis 

antigen and antibodies to Leishmania infantum and Toxoplasma gondii in cats from 

Madeira Island, Portugal. Parasites and Vectors. 13 (1), 117. 

Paltrinieri, S., Gradoni, L., Roura, X., Zatelli, A., et al. (2016) Laboratory tests for 

diagnosing and monitoring canine leishmaniasis. Veterinary Clinical Pathology. 45 

(4), 552–578. 

Pennisi, M.G. & Persichetti, M.F. (2018) Feline leishmaniosis: is the cat a small dog? 

Veterinary Parasitology. 251, 131–137. 

Pimenta, P., Alves-Pimenta, S., Barros, J., Barbosa, P., et al. (2015) Feline leishmaniosis 

in Portugal: 3 cases (year 2014). Veterinary Parasitology: Regional Studies and 

Reports. 1–2, 65–69. 

Pocholle, E., Reyes-Gomez, E., Giacomo, A., Delaunay, P., et al. (2012) A case of feline 

leishmaniasis in the south of France. Parasite. 19 (1), 77–80. 

Poli, A., Abramo, F., Barsotti, P., Leva, S., et al. (2002) Feline leishmaniosis due to 

Leishmania infantum in Italy. Veterinary Parasitology. 106 (3), 181–191. 

Queiroga, T.B.D., Ferreira, H.R.P., dos Santos, W.V., de Assis, A.B.L., et al. (2020) 

Fluralaner (Bravecto®) induces long-term mortality of Lutzomyia longipalpis after a 

blood meal in treated dogs. Parasites and Vectors. 13 (1), 609. 

Ravel, C., Cortes, S., Pratlong, F., Morio, F., et al. (2006) First report of genetic hybrids 

between two very divergent Leishmania species: Leishmania infantum and Leishmania 

major. International Journal for Parasitology. 36 (13), 1383–1388. 

Rocha, A.V.V.O., Moreno, B.F.S., Cabral, A.D., Louzeiro, N.M., et al. (2019) Diagnosis 

and epidemiology of Leishmania infantum in domestic cats in an endemic area of the 

Amazon region, Brazil. Veterinary Parasitology. 273, 80–85. 

Rogozin, I.B., Charyyeva, A., Sidorenko, I.A., Babenko, V.N., et al. (2020) Frequent 

recombination events in Leishmania donovani: mining population data. Pathogens. 9 

(7), 1–12. 

da Silva, S.M., Rabelo, P.F.B., Gontijo, N. de F., Ribeiro, R.R., et al. (2010) First report 

of infection of Lutzomyia longipalpis by Leishmania (Leishmania) infantum from a 

naturally infected cat of Brazil. Veterinary Parasitology. 174 (1–2), 150–154. 

Velez, R., Spitzova, T., Domenech, E., Willen, L., et al. (2018) Seasonal dynamics of 

canine antibody response to Phlebotomus perniciosus saliva in an endemic area of 

Leishmania infantum. Parasites & vectors. 11 (1), 545. 

WHO (2010) Control of the Leishmaniasis: Report of the WHO Expert Committee on the 

Control of Leishmaniases.. WHO Technical Report Series. 


