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Abstract

Background: Assessing carbon storage and sequestration is key for defining effective
conservation actions to mitigate climate change. Forest species changes have direct impacts
on carbon stocks and may lead to undesirable climate trade-offs. In this paper, we measure
aboveground biomass (AGB) and the impact of forest changes on climate regulation
through three land policy scenarios by 2030 in continental Portugal.

Results: We found that a High intervention scenario, supported by an important increase in
“Other coniferous trees” class, will provide 29.5% more of carbon sequestration, whereas a
Low intervention scenario, in which there is a moderate increase in all forest classes, will
result in an increase of 5.7%. A business as usual (BAU) scenario, supported by an increase
in eucalyptus forests and a decrease in autochthonous species, will decrease carbon

sequestration (-2.7%), particularly Lisboa, Algarve and Norte regions. Economic valuation
1
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shows that the High intervention scenario will generate the highest economic outcome for
climate regulation by 2030.

Conclusion: This study provides a spatial-based methodology for monitoring carbon
sequestration and new insights about the impact of policies for Green House Gas (GHG)

mitigation, supporting the 2030 Sustainable Development Goals achievement.

Keywords: Global change, Ecosystems Services; Land Use Land Cover; INVEST model,

Climate regulation; Aboveground biomass

Background

The increase of carbon dioxide (COy) in the atmosphere is one of the main causes of global
warming (IPCC 2014). Under the United Nations Framework Convention on Climate Change
(UNFCCC 2015), some national governments revised their environmental policies to reduce
the emission of GHG by controlling the consumption of fossil fuels and by encouraging
consumers to use renewable energies instead. Following the Paris Agreement and the United
Nations 2030 Agenda for Sustainable Development, the GHG mitigation strategy aims to
maintain the global average rise of the temperature bellow 2° C (UNFCCC 2015).
Aboveground biomass (AGB) of forests is an indicator of productivity, carbon stock and
sequestration caused by land use and land cover (LULC) and climate change in forest
ecosystems (Baccini et al. 2017; Zhang et al. 2019). Thus, its measurement is important for

assessing the carbon budget of terrestrial biomes (Houghton et al. 2012; Keith et al. 2009).
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AGB can be measured through ground measurements which are costly and difficult to
implement, especially, in wide areas (Chave et al. 2014). Remote sensing methods are an
alternative to estimate AGB (Zhang et al. 2019). These can use free open imagery data and
combined with several methods, such as machine learning and others, to provide accurate
AGB estimates (Li et al. 2020). AGB can also be estimated from existing LULC data using
simpler models (Cabral et al. 2016; Nelson et al. 2010).

Estimates of LULC changes are responsible for 12.5% of global carbon emitted by
human activities (Houghton et al. 2012). Particularly, the agriculture and forestry sectors play
a major role in the GHG mitigation strategy (European Council 2014). Studies about LULC
changes and its impacts on ecosystem services (ES) contribute with helpful information in
defining effective sustainable policies (Posner et al. 2016). Forest conversions by forestry,
agriculture and anthropogenic LULC changes have a direct impact in climate regulation by
altering atmospheric CO. concentrations (Martin et al. 2020; Sleeter et al. 2018). Thus,
measuring spatiotemporal distributions of terrestrial carbon stocks subject to LULC changes
is key to Greenhouse Gas (GHG) estimates and mitigation (Ma et al. 2020).

The carbon storage and sequestration by forests is a complex regulation ES (MEA
2005). It is strongly influenced by internal conditions, such as plant species, phenology,
density of the settlement and the landscape structure (Smith et al. 2008). It is also
influenced by external conditions like human activities set out by LULC management
(Pellikka et al. 2018). The inclusion of these conditions in spatially explicit ES approaches

is relevant for designing effective strategies to mitigate climate change through the
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reduction of CO2 emissions (H. T. Tallis et al. 2018). The incorporation of development
scenarios make ES assessments useful in a science-policy interface perspective (de Andrade
et al. 2017; Nicholson et al. 2019). These scenarios can be expected at regional and national
scales to support the relationship between sustainable development and global
environmental changes (Martinez-Harms et al. 2017).

Valuation processes are crucial for the decision makers” perspective in management
actions (Daily et al. 2013). The valuation methods consist, in a broad sense, to “assigning
importance” to what should represent the diversity of the dimensions of nature values
aiming long-term sustainable strategies that evaluate the trade-offs between nature and
human well-being (Jacobs et al. 2016). Economic valuation techniques bring a monetary
perspective to ES studies and provide information that may help organizations to define
policies for effective management of resources, particularly, over the LULC sector (Daily
et al. 2013).

Carbon stocks’ assessments based on LULC changes have been carried out at local and
national levels (Duveiller et al. 2020). Fernandes et al. (2020) assessed and valued carbon
sequestration for a semiarid region in Brazil using scenarios. Leh et al. (2013) modelled
several ES including carbon sequestration based on land cover changes for two countries in
West Africa. In a comprehensive review on forest models of sustainable land use
management, Makela et al. (2012) show a spatial relation between forest resources and their
contribution to the carbon dynamic cycles. Under a European perspective, some studies

highlight the vulnerability of forest ecosystems to land use and climate changes (EGGERS
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et al. 2008; Lindner et al. 2010). In this context, Sil et al. (2017) have analysed carbon
sequestration and storage dynamics in a mountain landscape based on land cover changes in
Portugal. Additional studies were carried out in other parts of the country (Alegria et al.
2019; P. M. Fernandes and Loureiro 2013; Fonseca et al. 2019; Nunes 2019).

In Portugal, the GHG strategies are defined by the National Low-Carbon Roadmap
(APA and CECAC 2012), which aims to implement a low carbon economy by increasing
the consumption of the renewables sources rather than fossil fuel. Another important
instrument is the National Forest Strategy (Presidéncia do Conselho de Ministros 2015),
which stands for the development of the forest sector at social-economic and environmental
levels. Alongside with this strategy, it is also important to mention the Common
Agricultural Policy (CAP) that supports the economic viability of rural communities
through rural development measures. Landscape planning from CAP assumes that the
support for sustainable and climate-friendly land use must include the development of
forest areas and sustainable forest management. Moreover, agricultural areas fall within
existing policy instruments with impact on the forest sector generating relevant benefits for
climate change mitigation, such as increasing soil carbon and improving soil health
(Rosenstock et al. 2019). Therefore, the forestry measures to be implemented in Portugal
through the European Agricultural Fund for Rural Development (EAFRD) should
contribute to the implementation of the forestry strategy for the EU (Presidéncia do
Conselho de Ministros 2015). However, a national assessment of the carbon storage and

sequestration based on LULC using a scenario approach is still missing for Portugal. This
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paper proposes a combined approach of Geographic Information Systems (GIS) and ES
modelling tools to measure the AGB and study the impact of future scenarios on carbon
storage and sequestration and trade-offs. In our analysis, different forest classes are
included to estimate expected trends of carbon variation according to three different land
use scenarios by 2030. Results provide new insights for national authorities acting on GHG

mitigation strategies within the existing Sustainable Development Goals (SDGs).

Materials and Methods

Study Area

The study was focused in continental Portugal, which is divided in five regions (NUTS II)
(Fig. 1). According to the national land cover map (COS), continental Portugal has an area
of 8,910,220 hectares (Caetano et al. 2017; Direccdo-Geral do Territorio 2018), mostly
occupied by forests (39%) and agricultural areas (26.3%) (Direc¢do-Geral do Territério

2018). The artificial surfaces represent 5.1% and are mainly located near the coast (Fig. 1a).
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Fig. 1. Land Use and Land Cover (1a) and Forest species distribution (1b) in continental

Portugal in 2015. Data Source: DGT, 2018.

In the Centro and Norte regions, a rugged landscape where the relief reaches altitudes
of 1993 meters, creates natural conditions for the forest expansion. The Alentejo region, in

the southern part of the country, has favourable conditions for anthropic activities, such as
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agroforestry systems over large plane areas. It is also important to mention the existence of
other LULC classes, although there is no evident spatial pattern in their distribution, i.e.
complex cultivation patterns (18%), scrubs and open spaces (12%) and the pastures (7%).
Fig. 1b describes the spatial distribution of the main forest classes in continental
Portugal according to COS 2015 (Direccdo-Geral do Territorio 2018). The “Forests of other
coniferous species” (31.2%, 1,087,367ha) represent the major part of the forest being
mostly located in Centro region. Alongside this class, the “Eucalyptus forests” class has a
large distribution in the country (25.4%, 882,087ha), and its spatial distribution follows
approximately the same pattern of the “Forests of other coniferous species” class. The
Portuguese forest complex is also characterized by large forest stands of cork oak (17.6%,
611,111ha) associated to agroforest exploitations, mostly in Alentejo region. Other forest
classes have less expression in the territory, such as the stone pine (5.8%, 202,308ha), the
holm oak (5.8%, 201,739ha), other oaks (6.1%, 213,942ha) and some other species that are

grouped in broad-leaved forests (8%, 280,169na) (Caetano et al. 2018).

Methods

The overall methodology used in this study is presented on Fig. 2 and described

afterwards.
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Fig. 2. Workflow of this study

Modelling Carbon Storage and Sequestration

The INVEST Carbon Storage and Sequestration model (H. T. Tallis et al. 2018) was used to
assess the influence of forests on climate regulation scenarios in continental Portugal. This
modelling approach estimates the amount of carbon stored in a landscape and values the
amount of sequestered carbon over time (H. T. Tallis et al. 2018). The model requires LULC
maps and an input lookup table providing the amount of carbon that may be stored by each
LULC class, according to four pools: i) the above-ground biomass (AGB), which includes
the living vegetation, woody and herbaceous, above the soil; ii) below-ground biomass,

characterized by the live roots; iii) dead wood, where the all non-living wood is concentrated;

9
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and iv) dead wood and litter and the soil organic matter, that includes organic carbon in
mineral soils.

The Portuguese National Forestry Inventory report (ICNF - Instituto da Conservagéo
da Natureza e das Florestas 2010) has published the official values of carbon stored by each
of the seven forest classes that exist in Portugal according to COS (Table 1). Since these

values are only related to the AGB, the modelling process was limited to this pool.

Table 1 - Carbon density in aboveground biomass for LULC classes in continental Portugal

(ICNF - Instituto da Conservacdo da Natureza e das Florestas 2010).

Carbon density (ton/ha) LULC Class

35.2 Holm oak forests

55.7 Cork oak forests

79.8 Eucalyptus forests

83.1 Stone pine forests

60.5 Forests of other oaks

69 Forests of other broad-leaved species
92.2 Forests of other coniferous species

The Portuguese LULC were obtained for the years 1995, 2007 and 2015 (Direcc¢éo-
Geral do Territdrio 1995, 2007, 2018). These maps have a positional accuracy of less than
5.5m and a global thematic accuracy of 85.13% with an error of 2% for a 95% confidence
level. GIS tools (ArcGIS 10.6.1) were used to convert these 1:25,000 scale data from the

original ESRI’s shapefile format into raster in ESRI’s GRID format with a cell size of 50m.

10
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All data had an ETRS89 projection system. Since the datasets had a different number of
classes (89, 225 and 48, respectively for the years 1995, 2007 and 2015) it was necessary to
reclassify the classes to make the maps compatible between each other. The most detailed
LULC (i.e. COS 2007) describes the forest classes using a range of areas (e.g. pure forest
stands, mixed forest stands with a dominant one, cuts and new plantations, and burnt areas).
The less detailed LULC (i.e. COS 2015) groups all these classes, defining them as pure
forest stands. Annex 1 provides the reclassification table used to make the classes of the
LULC maps compatible. A total of 12 LULC classes were used in the modelling process:
seven forest classes (Table 1) and five non-forest classes (Cultivated areas, Moors,

heathland and bare soil, Pastures, Complex cultivation patterns, and Other areas).

Scenario Modelling Analysis and Valuation

Two types of scenarios were used in this study (Mckenzie et al. 2012): (i) Intervention
scenarios, also called policy scenarios, which are used to identify effective and equitable
interventions to meet policy goals; and (ii) Business-as-Usual (BAU) approach, for
assessing current policies” future consequences.

The intervention scenarios are the best way to achieve a future that is idealized by
stakeholders (Schaefer et al. 2015). In other words, this approach is useful to represent how
politics or other interventions are projected in the future and to foresee its consequences
(Mckenzie et al. 2012). In this analysis, two possible intervention scenarios were

considered for continental Portugal: Low intervention scenario and the High intervention

11



198  scenario. These scenarios represent stakeholders’ vision, particularly, the 2030 National
199  Strategy for the Forests goals (Presidéncia do Conselho de Ministros 2015). This strategy
200 includes the environmental function of the forest, where the carbon sequestration is present,
201  as well as the social-economic aspect. The main goal for the forest sector in the Low
202 intervention scenario is to improve by 3% the forest areas. The High intervention scenario
203  produces an increase of 12%. Both scenarios are designed to consider trade-offs between
204  foreign species (e.g., eucalyptus) and autochthonous species (e.g., oak, stone pine and
205  maritime pine). Most of all, the key for a regulated forest, according to the National Forest
206  Strategy (Presidéncia do Conselho de Ministros 2015), is the expansion of forest stands
207  instead of the deforested areas. In Table 2, are presented the High and Low scenarios
208  developed by the Portuguese government for 2030. This information was then included in
209  the matrix used as input of the scenario generator tool of the Invest software.
210
211  Table 2 - 2030 National Strategy for Forests goals (in 10° ha) (Presidéncia do Conselho de
212 Ministros 2015).
% _— % _
Species 2010 % (f_%:f,s) 2030 Va[(';‘t)'on (ﬁf?g) 2030 Va(r(';c‘)t)'o”
(Low) ° ) (High)
H]?'m 0ak 331 11 31 10 0% 346 10 5%
orests
Cork oak forests 737 23 748 23 1% 835 24 13%
Bucalyptus 515 25 g12 25 0% 812 23 0%
forests
Stonepine 476 5 202 6 15% 233 7 329%
forests

12



Forests of other

108 3 122 4 13% 152 4 41%
oaks
Forests of other
broad-leaved 195 6 217 7 11% 238 7 22%
species
Forests of other
coniferous 787 25 807 25 3% 903 26 15%
species
Total 3146 100 3239 100 3519 100
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Aiming at measuring the future effect of the current policies for the forest sector, the BAU
is used when the objective is to establish a baseline that depicts the current situation
(Mckenzie et al. 2012). This scenario points to a situation without any kind of intervention
or changes unlike in the other scenarios; it can be based on historical trends or stakeholder
expectations.

Carbon storage and sequestration are highly dependent of the LULC changes (Deng et
al. 2016). Thus, modelling representative future scenarios for this ES involves the analysis
of the trade-offs among the LULC classes (Bryan et al. 2016). To model the intervention
and BAU scenarios, we used the INVEST — Scenario Generator: Ruler Based model (H. T.
Tallis et al. 2018). This tool works as a multi-criteria process, for which it is necessary to
assign weights for the trade-offs between classes. The weights are given in the scenario
generator model by a transition likelihood matrix. The matrix must submit the trade-offs
between classes, given by a weight varying from 1 to 9. Additionally, it should be

complemented with the percentage of growth for each class. Each scenario approach is

13
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based on a table selected for the evaluation. Annex 2 provides the transition matrixes used
for each scenario in INVEST — Scenario Generator.
To quantify LULC changes, we calculated the variations in a period of 20 years (Eq.

1),

(LULC3015 — LULC1995)
LULCq99s

VAR1995-2015 = [ ] x 100 (Ea. 1)
where VAR;995_2015 IS the total variation (%) between the LULC for 2015 (LULC,y45),
and LULC for 1995 LULC;q95.

We considered that the LULC changes trend observed in the period between 1995 and
2015 is going to be the same until 2030. Using this information, LULC was projected for

the next 15 years until 2030 (Eq. 2).

LULC2030 =x X (1 + t)z (Eq 2)

where LULC,,y3, corresponds to the year of the goals set by the National Strategy for the
Forest sector (Presidéncia do Conselho de Ministros 2015) and by the EU (European
Council 2014), x is carbon sequestered in ton/ha in each year (t).

The European Union Member states and the European Parliament set a price of
€85/tCO2 for year 2030 to encourage clean investments in line with the Paris climate goals
(Carbon Market Watch 2017). For each scenario, we will multiply the quantity of carbon

14
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stored of the forest species classes by this monetary value to obtain an estimate of the

economic value of the carbon stored.

Results

Land Cover Changes

In Fig. 3 are presented the changes (%) in land cover from 1995 to 2015 and from 2015 to
2030 according to the 3 scenarios. The “Forest of other coniferous species” have decreased
their area importantly (-18.9%) between 1995 and 2015. In this period, the stone pine
(34.3%), eucalyptus (21.1%) and other broad-leaved species (18.7%) forests have expanded
their area. Forest of other oaks have also grown, although less importantly (8.6%). All non-
forest classes, with the exception of “Other areas” (23.6%) have lost area being pastures (-
11.7%) and complex cultivation patterns (-11.2%) the ones which decreased most

importantly.

15
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Fig. 3. LULC changes between 1995 and 2015, and according to each scenario by 2030 in

continental Portugal (2015-2030).

The results of the intervention scenarios suggest a very ambitious goal for the forest
sector in continental Portugal. These strategies will increase the autochthonous species
since the main goal is a suitable development for the forest sector. To accomplish the
stakeholder goals, the main expected changes indicate an increase of “Forest of other
coniferous species” in 35% in the High intervention scenario and, in the Low intervention
scenario, an increase of 6.4%. It is also expected a high growth of the stone pine forests in

16
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the High intervention scenario (24.8%), and in the low intervention scenario (13%).
Eucalyptus will increase 5.2% in the High intervention scenario and 3% in the Low
intervention scenario. The Forest National Strategy supports the development of the forest
sector in deforested areas and, for this reason, it is expected an important decrease of the
“Moors, Heathland and bare soil” class (-40% and -27.7%, respectively, for High and Low
intervention scenarios), since the deforested areas are part of this class.

The BAU model projects by 2030 the tendency in LULC observed in the 1995-2015
period. Results emphasise the decline of “Forest of other coniferous species” (-16.5%), and
a slight decline of “Moors, Heathland and bare soil” (-3.4%). Furthermore, BAU results
highlight the improvement of the stone pine (20.5%), the eucalyptus (13.7%) and the other
broad-leaved (12.3%) forest classes. Agricultural areas (-5.1%), scrub and/or herbaceous (-
2.6%), pasture (-9.7%) and complex cultivation pattern (-9.2%) will decrease in this

scenario. In Annex 3, are provided the values obtained for the class changes.

Forest Classes and Carbon Storage and Sequestration

Fig. 4 shows the quantity of carbon in gigatons (GtC) stored by each forest class between
1995 and 2015 and for each scenario by 2030. It is possible to observe that the “Forests of
other coniferous species” is the only class decreasing the quantity of carbon stored between
1995 and 2015. This class represented 38% of total carbon stored by all forest classes in 2015.
All the other classes increased their values in this period. For 2030, this class will increase in
both intervention scenarios and will keep the value in the BAU scenario. The stone pine

17
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forests will increase in both intervention scenarios. However, this class will decrease
importantly if the BAU is adopted for 2030, i.e. from 16.8 GtC in 2015 to 5.3 GtC,

respectively.

Observed Trends
(1995-2015)

1995
B 2007
B 2015

Holm oak forests

Cork oak forests

Intervention Scenarios

Eucalyptus forests (2015-2030)

LOW
M HIGH

Stone pine forests B BAU

Forests of other
oaks

Forests of other
broad-leaved species

Forests of other
coniferous species

W p » P

(=]
o]
o
=N
o

60 80 100 120 140 160
Gigatons of carbon (GtC)

Fig. 4. Carbon storage of forest classes in carbon gigatons (GtC) in continental Portugal.

Regional (NUTS II) Carbon Storage and Sequestration
In 2015, Lisbon had only 24% of its area occupied by forests, being the region with the
lowest percentage of forests. The Centro region had in 2015 the highest percentage of

forests (48.5%), followed by Algarve (37.8%), Norte (35.6%), and Alentejo (31.9%).

18
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Carbon sequestration projections for the development scenarios show that the
intervention scenarios positively impact this ES (Fig. 5). However, the BAU presents some
decrease in all the territory for all the scenarios. In Fig. 6 it is possible to observe the

changes (%) in carbon sequestration for each NUTS Il region over time.

. NORTE

Il. CENTRO

Observed Trends
(1995-2015)

1995
B 2007
B 2015

I LISBOA
Intervention Scenarios

(2015-2030)

IV. ALENTEJO
LOwW

M HIGH
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<
|/ ‘ ||| arene

V. ALGARVE

o
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o

40 60 80 100 120 140 160
Gigatons of carbon (GtC)

Fig. 5. Carbon stored (GtC) in each NUTSII region between 1995 and 2015, and according

to each scenario by 2030.
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Fig. 6. Changes (%) in carbon sequestration by NUTSII region between 2015 and by 2030

(user defined classes).

The Centro region had the highest carbon density value (40.5 ton/ha) (Table 3). The
impact of the scenarios on this value follows the same logic of the one observed in carbon
storage and sequestration, i.e. it will increase in High and Low scenarios, and it will
decrease in the BAU scenario in all regions. In 2015, Alentejo and Lisboa regions, had the
lowest carbon density, respectively 18.4 ton/ha and 19.2 ton/ha. In Alentejo, this may be
explained by the existence of extensive agricultural land and only 31.9% of forests. In

Lisbon, there is a greater extent of urban areas when compared to the other regions.
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Algarve, Lisbon, and Centro regions are positively impacted with a growth higher than
20% in carbon storage between 2015 and 2030 for the High intervention scenario. This fact
is strongly related to the high concentration of deforested areas in these regions which will

be, according to the model, converted into forests.

Table 3 — Carbon density in NUTS Il (ton/ha).

NUTS Il Area (Ha) 1995 2007 2015 2030: 2030: 2030:
High Low BAU
Norte 2128588 28.6 29.8 29.6 33.9 32.7 28.2
Centro 2819934 40.5 40.7 40.5 49.9 42.0 39.9
Lisboa 301524 194 194 19.2 24.2 20.7 18.3
Alentejo 3160491 184 20.4 20.6 22.8 21.2 20.1
Algarve 499679 215 254 25.5 41.1 28.9 24.2
MEAN 25.7 27.1 27.1 34.4 29.1 26.2

3.4. Carbon Sequestration and Economic Valuation

Carbon sequestration has increased 4.5% between 1995 and 2007 (Fig. 7). However,
between 2007 and 2015 there was a small decrease (-0.2%). According to our model, a
High intervention scenario is expected to increase carbon sequestration from 261.3 GtC in
2015 to 337.7 GtC in 2030 (29.5%). The increase will be more modest in the case of the
Low intervention scenario (5.7%). The BAU will result in a loss of carbon sequestration by

forest classes of -2.7% when compared to 2015.
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Fig. 7. Trends on carbon sequestration by forest classes between 1995 and 2015, and

according to three intervention scenarios by 2030 in continental Portugal (GtC).

One important reason for the better performance of the High intervention scenario
when compared to the other scenarios is the higher decrease in the “Moors, Heathland and
bare soil” class (-40%) which will be replaced by classes with higher levels of carbon
density, such as the “Forests of other coniferous species” (92.2 ton/ha) and the “Forests of
other oaks” (60.5 ton/ha) classes.

In the Low intervention scenario, the “Moors, Heathland and bare soil” class will also
decrease (-27.7%) although less importantly. All the forest classes will increase less than

15%, but less than in the High scenario.
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The BAU scenario presents an important decrease of high carbon density forest, such
as “Forests of other coniferous species” (92.2 ton/ha) class. All the other forest classes
increase their occupation, being the stone pine the one with the highest value (20.5%).

Considering the price of carbon for year 2030 set to €85/tC0O2, the High intervention
scenario is the one with the highest value of carbon among the three scenarios, i.e. 28707
ME. The Low and BAU scenarios store lower values, respectively, 23442 M€ and 21564

ME.

Discussion

This study contributes with a methodology using the Portuguese national land cover map
(COS) to monitor the carbon sequestration in Portugal. A case study is provided which
evaluates the performance of current policies and new strategies for LULC management
that may impact carbon storage and sequestration with the use of open data and free
modelling tools. The results presented in this paper are innovative for Portugal and may
help Portuguese policymakers achieving United Nations 2030 Sustainable Development
Goals (UN n.d.).

Nevertheless, there are some limitations which should be considered. For instances, the
temporal series of land cover maps had to be harmonised for comparison purposes is the
basis for designing several national policies including environmental planning instruments
at municipal levels (ICNF - Instituto da Conservacao da Natureza e das Florestas 2010). Its

technical characteristics, such as scale, minimum mapping unit and the number of classes
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make it more advantageous than using other datasets, such as CORINE land cover
(Copernicus 2018), which does not have forest classes in such detail.

Other limitation, is the generalization of a complex ecosystem, such as the carbon cycle
(H. T. Tallis et al. 2018). The same consideration applies to LULC modelling which
considers static scenarios, conditioning the modelling processes to the hypothesis of LULC
short-period changes. Furthermore, the model results are highly dependent on the LULC
inputs which were based on a literature review. The conversion of the carbon classes should
be carefully processed, since it may induce to wrong results (H. T. Tallis et al. 2018). Thus,
modelling results should be carefully considered to avoid wrong interpretations.

There are several options in what concern the scenarios, although this type of analysis
should be adopted considering data scarcity and scale (H. T. Tallis et al. 2018). To
emphasize the impact of the analysis provided by this research over the land use
management decisions that affect the forest sector, it is crucial to apply a valuation method
for the regulating ES, such as carbon sequestration dynamics (Jacobs et al. 2016). The
valuation has an important role in the implementation for the decision-makers’ perspective
to take account the ES in management actions (H. Tallis and Polasky 2011). These methods
assess the balance between multiple dimensions, which can improve several human and
natural well-being indicators (Guisan et al. 2013; Nicholson et al. 2019). Although
variations (%) on carbon storage and sequestration should not have been impacted
importantly, we are aware that the quantities and economic values obtained for each
scenario are underestimated since only one carbon pool was considered (i.e., AGB).
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We think that the best approach to represent the stakeholders’ vision, according to the
scale of this project is through a national strategy specifically developed for LULC
management. Further LULC-based assessments would provide a better understanding on
how different stakeholders’ perception is from the modelling results (Burkhard et al. 2009).
Nevertheless, a future scenario approach should promote a stakeholders’ intervention,
where the parts should integrate not only the government sector but also economic and
environmental actors (Harrison et al. 2018). Future developments of this study will benefit
from the consultation of stakeholders and also from the study of other ES and trade-offs

(Naime et al. 2020).

Conclusions

This study measures AGB and assesses the impact of policies on carbon storage and
sequestration for Portugal using GIS, ES free open modelling tools and data. The study
demonstrates how useful scenario-based approaches can be in assisting the construction of
national strategies that include ES and LULC policies. It also underlines the importance of
scenarios over the definition of the current policies.

Results show that the Portuguese forests will improve its capacity for carbon storage
and sequestration if High and Low intervention scenarios are followed for 2030. These
scenarios will provide the highest levels of carbon storage and sequestration and economic

value. A BAU scenario is expected to decrease this ES in the country and mainly in the
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Norte, Lisboa and Algarve regions. The BAU development scenario is conditioned by the
constraints set by the Forest National Strategy since it blocks the evolution of foreign
species (i.e., eucalyptus) favouring the development of autochthonous ones (i.e., oak, pine).
The increase of autochthonous species based on the occupation of the deforested areas by
species with better adaptation to the soil and climate conditions are the main guideline for
this strategy.

Overall, this spatially explicit approach leads to new insights that may help the
discussion and delineation of sustainable forest policies regarding the GHG strategy goals

by 2030.
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