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Abstract 

The electrochemical CO2 reduction reaction (CO2RR) either to generate multi-carbon (C2+) or single 

carbon (C1) value-added products provides an effective and promising approach to mitigate the high 

CO2 concentration in the atmosphere and promote energy storage. However, cost-effectiveness of 

catalytic materials limits practical application of this technology in the short term. Herein, we 

summarize and discuss recent and advanced works on cost-effective oxide-derived copper (OD-Cu) 

catalysts for the generation of C2+ products (hydrocarbons and alcohols) and transition 

metal-nitrogen-doped carbon (M-N-C) electrocatalytic materials for C1 compounds production from 

CO2RR. We think they represent suitable electrocatalyst candidates for scaling up electrochemical 

CO2 conversion. This short review may provide inspiration for the future design and development of 

innovative active, cost-effective, selective and stable electrocatalysts with improved properties for 

either the production of C2+ (alcohols, hydrocarbons) or carbon monoxide from CO2RR. 
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Introduction 

The greenhouse gas carbon dioxide (CO2) concentration in the atmosphere is sustainably increasing, 

leading to a monthly averaged value of 411.76 ppm recently, thus causing severe environmental 

impacts and energy issues.[1,2] Among the available CO2 mitigation approaches, carbon capture and 

storage (CCS) and carbon capture and utilization (CCU) strategies are currently under development 

with the purpose of closing the anthropogenic CO2 cycle [3–5]. The development of materials for 

efficient CO2 capture is essential to facilitate a closed carbon cycle, nevertheless the focus of this 

article is on available technologies for converting CO2 into value-added products.[6–9] In particular, 

electrochemical CO2 reduction reaction (CO2RR), which is powered by electricity, has attracted the 

scientific community attention for producing different fuel feedstocks such as carbon monoxide (CO) 

[10,11], formic acid (HCOOH) [12–14], methane (CH4) [15,16], methanol (CH3OH) [17,18], ethanol 

(CH3CH2OH) [19,20] and ethylene (C2H4) [21,22], etc. CO2RR is mainly studied in aqueous media, 

however organic solvents and ionic liquids have also been explored.[23–25] The selectivity of this 

reaction is affected by different factors, such as the properties of both cathode electrocatalytic material 

and electrolyte, as well as the potential applied.[26–29] Moreover, another important aspect is the 

cell/electrolyzer design effect on productivity, selectivity and energy efficiency of CO2RR. The simple 

undivided cell configuration has been replaced by two-compartment electrolyzers to avoid the 

reoxidation of reduced species. In addition to this, vapor-fed systems using gas diffusion electrode 

(GDE) and membrane electrode assembly (MEA or zero-gap assembly) configurations have been 

proposed to improve the transport of CO2 to the catalyst surface, eliminating ohmic losses and thus 

maximizing energy efficiency [30,31].  

Nowadays, efficient electrocatalytic materials with high electrocatalysis, strong stability and high 

product selectivity must be explored with the purpose of lowering the high overpotential of CO2RR, 

avoiding also the effect of the competitive hydrogen evolution reaction (HER), which negatively affect 

the selectivity of the reaction toward the target product. In this context, different metallic 
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electrocatalysts have been studied for CO2RR, ranging from Cu (it seems to be the unique metal 

selective for hydrocarbons and alcohols formation) [32,33] to Au, Ag, Zn (mainly producing CO)[34–

36] and Pb, In, Sn, Bi (formate/formic acid generation).[13,37–39] Nonetheless, there are still many 

challenges to be addressed to reduce the overpotential and control the selectivity of CO2RR on 

metallic electrocatalysts [40]. The main key parameters that need to be studied to improve both 

activity and selectivity are, among others, operating conditions (applied voltage, current density, 

catalyst loading, etc.) [41], electrolyte type and its concentration [26,42], local pH [43] and particle 

size [44]. 

From an industrial implementation point of view, generation of multi-carbon (C2+) products 

(hydrocarbons and alcohols) from CO2RR at Cu-based electrocatalysts represents an appealing 

approach because of their high energy density (used as liquid fuels) compared to C1 feedstocks.[28,45] 

Nevertheless, Cu atoms mobility during CO2RR (especially in the presence of CO) is well-known and 

provokes surface restructuring, which affects the electrode activity and product selectivity. For this 

reason, oxide-derived copper (OD-Cu) electrocatalytic materials have been widely studied in recent 

years, since OD-Cu electrodes provide better long-term stability under reaction conditions and keep a 

similar product selectivity [46]. Oxidation pretreatments on Cu electrodes can either increase surface 

roughness or provide subsurface oxygen at the electrocatalyst surface, which may lead to improve 

CO2RR performance.[47–49] 

Additionally, another interesting cost effective approach based on pyrolyzed catalysts for C1 

compounds production from CO2RR, is reviewed in this work. In particular, transition 

metal-nitrogen-doped carbon (M-N-C) materials have been already studied for CO2RR[50,51], 

HER[52] and Oxygen Reduction Reaction (ORR)[53,54] because of their high selectivity, stability and 

activity, huge catalytic surface area and low-cost. So far, generation of C2+ products from CO2RR is 

not possible on M-N-C catalysts, since those are considered single active site catalysts and do not 

allow carbon-carbon coupling. Since Varela et al. reported the utilization of Fe/Mn-N-C for the first 

time on CO2RR to CO with a Faradaic efficiency (FE) of 80% in 2015[55], there have been several 

attempts to explore different metals in M-N-C to catalyze CO2RR such as Fe, Co, Ni, Mn, Cu, Cr, 

etc.[52,56,57] Among all these metals, Fe-N-C and Ni-N-C exhibit superior electrocatalysis by 

lowering the overpotential and improving CO selectivity, respectively.[56,58] Each component in 
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M-N-C catalysts for CO2RR may have a particular impact on the overall activity performance, since 

different types of carbon, nitrogen source and metallic center have been explored.[59–61] However, 

most of the studies for CO2RR have been mainly focused on the effect of different metallic centers in 

M-N-C catalysts. 

To sum up, this work is mainly focused on the product-selectivity performance for CO2RR on two 

types of cost-effective electrode materials, since we think they are feasible electrocatalytic material for 

real applications: i) OD-Cu catalysts for C2+ products formation, and ii) M-N-C materials for C1 

compounds production. 

 

OD-Cu catalysts for multi-carbon products generation (alcohols and hydrocarbons) 

Copper seems to be the unique metal which shows in literature the possibility of converting CO2 into 

multi-carbon products (i.e. C2+ alcohols and hydrocarbons) with significant efficiencies.[62] 

Nevertheless, several drawbacks such as catalyst activity decrease during electrolysis and product 

selectivity limit the practical application of this technology in the short term. Different electrochemical 

and non-electrochemical oxidation pretreatments on Cu electrodes have been already tested to 

synthesize OD-Cu materials, since a relevant increase in grain boundaries and a rougher surface is 

created on those OD-Cu electrodes as soon as the required potential for CO2RR is applied [63]. However, 

alterations in catalyst structure and morphology during CO2RR may negatively affect the productivity 

and selectivity. Deactivation is mainly attributed to catalyst physical detachment due to HER, surface 

poisoning by adsorption of CO2RR intermediates and/or restructuring of the electrode surface under 

reaction conditions.[64,65] This is not usually relevant when high surface area OD-Cu electrodes are 

used, otherwise it is an issue that must be addressed. In this regard, the continuous investigation on the 

CO reduction reaction mechanism, which is a key intermediate reaction to produce C2+ hydrocarbons 

and C2+ oxygenated products should help to move forward the development of alternative 

electrocatalysts and optimize operating conditions for CO2RR. Furthermore, OD-Cu electrocatalytic 

materials selectivity for CO2RR can also be tuned by the electrolyte. In particular by controlling the 

buffer capacity, local pH, anion and cation of the supporting electrolyte in solution [26,42,43]. Neutral 

unbuffered and alkaline aqueous solutions favor formation of C2+ over C1 products on OD-Cu electrodes. 

For this reason, oxidation-reduction cycles at the OD-Cu electrodes, which create a higher roughness 
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electrode surface, lead to a higher local pH close to the electrode surface, which enhances C2+ products 

formation. Additionally, electrolyte anions and cations play a critical role in the CO2RR selectivity 

towards C2+ products, being Cs+ as alkali cation and halides as anions the most active electrolytes for 

that purpose. 

Herein, we summarize recent research on OD-Cu electrocatalysts with high catalytic efficiency and 

activity (Table 1). Since Frese et al. firstly reported that OD-Cu electrodes can be used to convert CO2 to 

methanol in aqueous solution, [66] several authors have extensively investigated the use of OD-Cu 

surfaces in CO2RR for alcohols production. For instance, the treatment of Cu2O with Prussian Blue 

analogue (K-PBA) to form core-shell nanocubes (Cu2O@K-PBA) increases C2+ products yields with FE 

of 23.9% (ethylene 10.8%, ethanol 3.6% and n-propanol 9.5%) due to the ability of K-PBA for changing 

the intrinsic energetics of Cu2O.[67] From another point of view, theoretical methods such as the density 

functional theory (DFT) may provide a new approach to study reaction mechanisms of 

CO2RR-to-methanol process on Cu2O. [68] Thus, DFT was used to investigate the formation of the 

helpful reaction intermediate CH3OH*-OH*, as well as figuring out the influence of catalyst surface 

morphology and solvation during methanol formation from CO2RR. Furthermore, the authors also 

strengthened the “variation trend of charge distribution”, leading to the choice of “minimum-energy 

pathway”. 

Likewise, a lot of efforts have been also dedicated to develop and improve OD-Cu electrocatalysts for 

CO2RR to produce C2+ hydrocarbons. For instance, Boron-doped OD-Cu greatly catalyze CO2 to C2 

products owing to the impact of Boron on stabilizing Cu+ species. [69] In this regard, the effect of Zn on 

stabilizing Cu+ atoms as well as suppressing H2 evolution in Cu oxides/ZnO-based electrocatalytic 

surfaces for the production of hydrocarbons from CO2RR was also illustrated, leading to an outstanding 

performance toward ethylene with FE as high as 91.1%, which the authors associated to the synergic 

effect between Cu oxides and ZnO, with improved adsorption of reaction intermediates for the 

generation of ethylene. [70] Similarly, N-doped carbon (NxC) was adopted as a carrier of CuO by 

catching more CO2 to increase ethylene selectivity. Compared to CuO loaded onto carbon black, the 

former shows better ethylene selectivity and activity. This research provides an efficient method to 

increase catalytic activity and reaction selectivity by combining CuO and CO2 capture materials.[71] In 

addition, the utilization of ionic liquid functionalized graphite sheets was also studied for controlling the 
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morphology and size of Cu2O nanocubes (Cu2O/ILGS).[72] Cu2O/ILGS are able to inhibit the latter’s 

aggregation, thus enlarging the surface active sites for CO2RR and reaching a high ethylene efficiency 

(Fig 1a). Moreover, OD-Cu catalysts may modify their morphology during CO2RR. For example, Cu2O 

nanoparticles can undergo fragmentation to smaller pieces during the electrochemical process, thus 

increasing compact morphology and grain boundaries, which may facilitate the selectivity and activity 

toward C2+ products.[73] Fig.1b shows a typical OD-Cu electrode morphology with numerous grain 

boundaries. In particular, grain boundaries play a crucial role for faster oxygen diffusion and oxide 

nucleation in OD-Cu catalyst. The high presence of grain boundaries in the catalyst structure is 

responsible for promoting the formation of C2/C3 products.[74][75] Interestingly, the major impact of 

applied potential and current on reaction selectivity at OD-Cu catalysts was proven.[76] The authors 

prepared 3 different kinds of OD-Cu films with different surface roughness factors and illustrated that 

product selectivity relies on surface roughness: methane, ethylene, ethanol, CO or formate generation 

can be improved successively as the OD-Cu films surface roughness aggravates. As shown in Fig. 1c, 1d 

and 1e, the control of the applied potential (ranging from -0.45V to -1.3 V vs. RHE) is crucial to tailor 

the selectivity of CO2RR. The different products are related to the different energy barriers in the 

CO2RR process. For instance, a slightly rough metallic Cu surface (Cu-10) produces preferentially CH4 

while OD-Cu surfaces (CuO-1, CuO-10 and CuO-60) produce more C2H4 and C2H5OH. In addition to 

this, the method of isotopic labelling, which can trace the products composition and uncover the reaction 

mechanism by supplying isotopic reactant, provides information to understand product distribution 

during CO2RR. This method can be used for the correct identification of active sites in electrocatalysis, 

that is, the specific facet/feature on the catalyst surface where CO2RR to form the target product is taken 

place.[77] For instance, given a mixture of 13CO and 12CO2, three different existing actives sites were 

identified for different C-C coupled products formation from CO2RR at OD-Cu catalysts such as 

ethylene, ethanol/acetate and 1-propanol, respectively. 

Transition Metal-Nitrogen-Carbon materials for single carbon products generation 

As mentioned above, OD-Cu materials mainly boost the catalytic activity for promoting the formation 

of C2+ products. For CO generation, however, M-N-C catalysts (Fig. 2a) have been widely studied in 

literature due to their numerous active sites of synergistic M-Nx moieties on their huge surface area, 

which might modify the binding energy of key reaction intermediates related to CO2RR. Unfortunately, 
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these transition metals have excellent and prior catalysis on competing side HER rather than CO2RR. 

However, when metal arrangement goes into a single atom structure, its electrocatalytic role on 

CO2RR can be greatly enhanced due to the electronic environment, which has received a lot of 

attention recently.[60] The comparison of CO faradaic efficiencies (FEs) at different metals-N-C 

electrocatalysts as a function of the applied potential is shown in Fig.2b. The highest CO production 

efficiency is exhibited by Ni-N-C, but the lowest overpotential is achieved by Fe-N-C catalyst. For 

these reasons, we focus this section in Fe-N-C and Ni-N-C catalysts for CO2RR. The identification of 

single active sites on those catalyst depends on each case, since the nature of the metal center and its 

coordination environment define different types of active sites (M-N, M-C, M-N2+2, M-N4-C…), 

which mainly control activity and selectivity in M-N-C catalysts.[50] For instance, the utilization of 

porous nanosphere Fe-N-C for CO2RR to CO shows an interesting high FE (around 90%), where the 

key aspect in terms of active sites was demonstrated to be the synergistic role between the single-atom 

Fe-N4 moieties and adjacent C [78]. In addition, rotating disk electrode (RDE) was used to carry out 

linear sweep voltammetry (LSV) analyses in order to measure the electrochemical response in the 

presence or absence of Fe center (Fig.2c). In this regard, the presence of Fe center notably enhances 

the catalytic performance despite nitrogen moieties are already catalytically active for CO2RR. This 

leads to the conclusion that the Fe atom plays a vital role in the active sites of the electrocatalytic 

material for an efficient CO2RR. In this context, DFT calculations were used to evaluate the nature of 

real active sites in this type of electrocatalyst. It was proven that the most active sites are the Fe-N4 

moieties surrounded by defective graphitic carbon, because this kind of moieties possesses the 

smallest Gibbs free energy (Fig.2d). Surprisingly, this research reports an extremely small 

overpotential of 90 mV, which is the lowest reported for Fe-N-C catalysts.[79]. Zhou et al. stated that 

Fe-N-C materials derived from Fe(SCN)3 (denoted as SMFeSCN) are responsible for an improved FE 

to CO up to 99% at a moderate overpotential of 0.44 V, in comparison with the performance reached 

on SMFe (without SCN). Nevertheless, this enhancement was mainly attributed to the 3D graphene 

microporous nanostructure of SMFeSCN, which leads to an increased CO2 local concentration.[80] 

Another strategy following this approach is based on sulfur (S) incorporation in the Fe-N-C synthesis 

for producing numerous micropores and high surface area electrodes, which reach an enhanced FE for 

CO generation of 98%.[81] The dopant S is embedded in the graphitic layer together with Fe-N4, thus 
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increasing the activity of the latter by changing its Fermi level and charge density (Fig.2e and 

2f).unlike Fe-N-C catalysts, which are beneficial for lowering the overpotential for CO formation, 

Ni-N-C materials are popular mainly because of their high CO selectivity. This fact is mainly 

attributed to the presence of Ni single atoms within the Ni-N-C electrocatalysts.[60] Based on this, we 

summarize here the proposed active sites present on those catalysts, which justify high FEs to CO 

achieved on Ni-N-C electrocatalysts. The combination of experimental and DFT calculations proved 

that N and C surrounding Ni atoms can help the transportation of electrons through Ni d orbital to 

reactants and lower the energy [82]. In principal, the most important active sites are located in the 

Ni-Nx moieties, which can act either in a synergistic way with different N or be affected by the 

surrounding environment. For instance, two different groups of research have demonstrated the 

importance of pyrrolic N in the synergistic effect with Ni-Nx by controlling nitrogen precursors in an 

attempt to tune the catalytic activity for FEs of 96.5% and 80% to CO, respectively. [83] [84] In 

addition to this, different Ni-Nx moieties can be found depending on the number and species of N and 

the surrounding environment, causing different catalytic activities. As a result, DFT is used to analyze 

the most valuable active site Ni-Nx.[85,86] In this regard, the free energies of the intermediate *COOH 

on different Ni-N-doped carbon nanotubes such as Ni@N3 (pyrrolic), Ni@N3 (pyridinic) and Ni@N4, 

respectively, were calculated [85]. Ni@N3 (pyrrolic) was the most efficient active site due to its lowest 

free energy (Fig. 3a). Moreover, rhombic dodecahedron shape of Ni-N-C was also developed in order 

to compare the behavior of this catalysts in the presence/absence of the metal center (Ni). Thus, 

Ni-N-C showed better electrocatalysis than N-C catalyst in terms of high FE toward CO (Fig.3b) and 

more positive onset potential (Fig.3c). Nevertheless, the authors found out that Ni-N4 (Ni-N4-C10) 

matters in the catalysis reaction, that is, in other words, the edge-located Ni-N2+2 (Ni-N2+2-C8) is 

responsible for the high selectivity to CO (96% FE) rather than Ni-N4 in bulk Ni-N-C rhombic 

dodecahedron (Fig.3d).[86] These conclusions may provide new insights into the synthesis of specific 

Ni-N-C electrocatalysts with desired properties for an improved CO2RR-to-CO process efficiency and 

selectivity. In conclusion, M-N-C catalysts are promising low-cost catalytic materials for CO 

generation from CO2RR due to their enhanced electrocatalytic activity compared to metal-free 

N-doped carbon materials, especially Fe-N-C and Ni-N-C catalysts, which shown excellent 

performance for converting CO2 to CO with high FEs.  
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Conclusions  

In summary, the most recent trends on cost-effective OD-Cu catalysts and M-N-C materials for the 

CO2RR in aqueous media are reviewed here. On the one hand, different operating conditions (pH, 

electrolyte, applied potential etc.) as well as electrode morphology control and increased surface 

roughness seem to dramatically enhance the performance of CO2RR to C2+ products (alcohols and 

hydrocarbons) in terms of reaction selectivity and catalyst activity. In our opinion, most of the future 

research on OD-Cu catalysts should be focused on continuing the study of the CO reduction reaction 

mechanism, which is a key intermediate reaction to produce C2+ hydrocarbons and C2+ oxygenated 

products on OD-Cu catalysts. On the other hand, pyrolyzed catalysts for C1 compounds production 

(mainly CO) such as Fe-N-C and Ni-N-C materials have already demonstrated an outstanding FE to 

convert CO2 into CO at low overpotentials. Some controversy is present in the identification of the real 

active sites on those materials. Most of the reported studies agree in the nature of the metal center and 

its coordination environment with the surrounding nitrogen and carbon atoms as the main active sites. 

Nevertheless, the long-term stability of M-N-C materials is still an issue, since relevant leaching of the 

metal center is produced under reaction conditions during CO2RR. For this reason, we suggest to 

concentrate future research developments on that. Finally, this short review may provide new insights 

for the future development of cost-effective, selective, and stable electrocatalysts for an improved 

CO2RR performance toward the generation of different types of value-added products.  
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Table 1. Comparison of the performance of different OD-Cu catalysts recently reported in literature for 

CO2RR. 

 

Fig. 1 (a) Schematic presentation of CO2 electroreduction to C2H4 on interface-induced method to 

prepare Cu2O nanocubes on ionic liquid functionalized graphite sheets. Reprinted with permission from 

ref [72]. Copyright 2019 Elsevier. (b) HRTEM image for Cu based nanoparticles after 10 h of CO2RR. 

Adapted with permission from ref [73]. Copyright 2019 American Chemical Society. (c) (d) (e) 

Faradaic efficiency of methane, ethylene and ethanol, carbon monoxide and formate on different 

catalysts at different potentials, respectively. Different catalysts Cu-10, CuO-1, CuO-10, and CuO-60 

are Cu based catalysts electrodeposited for 1 min, 10 min and 60 min, respectively, which are shown in 

color of orange, green, red and blue, respectively. Error bars in (c)–(e) represent the standard deviations 

of three independent measurements. Open access article ref [76]. Distributed under the terms of the 

Creative Commons CC BY license. 

 

Fig. 2 (a) General synthesis strategy of M-N-C catalysts and their obtained structure. Reprinted with 

permission from ref [50]. Copyright 2019 American Chemical Society. (b) CO FEs at different 

metal-N-C catalysts. Reprinted with permission from ref [56]. Copyright 2018 Elsevier. (c) LSV curves 

of Fe−N−PC, op−Fe−N−PC and N−PC in CO2-saturated 0.5 mol·L−1 KHCO3 solution (scan rate = 10 

mV/s). Reprinted with permission from ref [78]. Copyright 2019 American Chemical Society. (d) Gibbs 

free energy diagrams of CO2RR on different sites by DFT. Reprinted with permission from ref [79]. 

Copyright 2019 American Chemical Society (e) S doped Fe-M-C structure. (f) Comparison of FEs to 

CO in 0.1 M KHCO3 aqueous solution on different catalysts. Reprinted with permission from ref [81]. 

Copyright 2019 Elsevier. 

 

Fig.3 (a) Free energy diagram of CO2RR to CO on Ni@N4, Ni@N3 (pyrrolic) and Ni@N3 (pyridinic). 

Reprinted with permission from ref [85]. Copyright 2019 John Wiley and Sons. (b) CO and H2 Faradaic 

efficiency and (c) CO partial current density for N–C and Ni–N–C. (d) Initial and final states for the 

COOH dissociation reaction on Ni–N4–C10 and Ni–N2+2–C8 sites. Reprinted with permission from ref 

[86]. Copyright 2019 Royal Society of Chemistry. 
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Table 1. 

 

OD-Cu catalysts Electrolyte 

 

E / V vs. RHE Target products FE (%)    Ref 

Cu2O NP KHCO3 -2.0 V vs. SHE CH3OH 47.5 [17] 

Cu2O@K-PBA n.a. -1.11 C2H4 23.9 [67] 

B-OD Cu 0.1 M KHCO3 -1.05 C2 48.2 [69] 

Cu oxides/ZnO 0.1 M KHCO3 -2.5 V vs. 

Ag/AgCl 

C2H4 91.1 [70] 

CuO/NxC 0.1 M NaHCO3 -1.25 C2H4 36 [71] 

Cu2O/ILGS 0.1 M KHCO3 -1.15 C2H4 31.1 [72]  

Cu2O NP/C 0.1 M KHCO3 -1.1 C2/C3 74 [73] 

OD Cu 0.1 M KHCO3 -1.0 C2/C3 60 [74] 

CuxO 2.0 M KOH -1.17 C2 40 [75] 

Different OD Cu 0.1 M KHCO3 -0.9 ~ -1.1 

-1.15 

-0.5 

-0.6 

C2 

CH4 

CO 

HCOO- 

48 

40 

46 

35 

[76] 

Abbreviations: Nanoparticles (NP), Prussian Blue Analogue (PBA), B-OD (Boron-doped oxide-derived) 

and Ionic Liquid functionalized Graphite Sheets (ILGS). 
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Appendix 

Papers of particular interest, published within the period of review, have been highlighted as: 

*   of special interest  

**  of outstanding interest 

 

*[5] This review comprehensively summarized metal–organic complexes, metals, metal alloys, 

inorganic metal compounds and carbon-based metal-free nanomaterials for CO2 reduction. 

*[27] Different abbreviation systems for denoting imidazolium-based room temperature ionic 

liquids (RTILs) used for CO2 electrochemical conversion are reviewed about their 

physicochemical properties. 

**[50] This review analyzed various factors and described DFT directing experiments on the 

activity and selectivity of M-N-Cs.  

**[60] This paper strengthened the importance of single atoms Ni for CO2RR in several aspects and 

demonstrated different performance of various Ni active sites.  

**[71] This paper described cubic Cu2O crystalline particles electrochemically fragmentate into 

smaller particles and the grain boundaries generated can promote C-C coupling in CO2RR. 

**[72] This article demonstrated faster oxygen diffusion and oxide nucleation in Cu oxides catalyst 

for Cu reoxidation on grain boundaries. 

**[74] The authors illustrated products selectivity relies on surface roughness and revealed the 

effects of applied potential on the products selectivity of CO2RR. 

**[80] This paper showed an outstanding Faradaic efficiency (99%) for CO and studied the stable 

catalytic performance of the Fe-N-CSCN even with the addition of metal-ion impurities 

because of the numerous separated active sites. 

*[81] This paper proved the dopant sulfur in Fe-N-C structure can enhance the Faradaic efficiency 

to CO (98%). 

**[86] This paper adopted DFT calculation to compare the active sites of Ni-N4-C10 and Ni-N2+2-C8 

and found that the edge-located Ni-N2+2-C8 are responsible for the good performance of 

CO2RR because of lower free energy. 

 




