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ABSTRACT

In the first essay of this dissertation I analyze predictability of returns generated by

the long-run risks model of Bansal and Yaron (2004). I uncover some counterfactual

features of the predictability and connect them with the specific features of the long-

run risks processes. In the second essay, I analyze the effect of the aggregation on the

predictability in the long-run risks model. I found that the aggregation implies that a

part of expected dividend growth is observable and points at the nature of the additional

to the dividend-price ratio variables which might help to predict returns. In the third

essay, I use expected returns and expected dividend growth processes implied by the long-

run risks and other models to analyze the out-of-sample performance of the predictive

regression and some of its alternatives. My analysis suggests that the poor out-of-sample

performance is due to the finite sample noise and a large unpredictable component in

returns.



To my grandparents
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1. INTRODUCTION

After almost two decades of research the question of whether it is possible to predict

stock returns is still open. On the one hand, the literature offers a wide list of the

variables and methods for predicting stock returns (Fama and French (1988a); Fama

and French (1989); Lettau and Ludvigson (2001); Lewellen (2004); Campbell and Yogo

(2006); Rapach, Strauss and Zhou (2010)). On the other, the validity of the statistical

tests for predictability is questioned. The problem is that many predictors are highly

persistent and their innovations are contemporaneously correlated with returns. This

leads to a finite sample bias in the coefficients and to the incorrect statistical inference

(Nelson and Kim (1993), Stambaugh (1999)). Additional problem is data mining (Ferson,

Sarkissian and Simin (2003)).

Recently more attention is paid to the out-of-sample predictability which is more

relevant for the real-time forecasting of stock returns. Goyal and Welch (2008) find that

popular predictors of returns perform poorly out-of-sample. There is a debate on the

interpretation of this result. Goyal and Welch (2008) argue that the poor out-of-sample

performance reflects instability of predictive relations, while Inoue and Kilian (2004),

Campbell and Thompson (2008) and Cochrane (2008b) claim that the poor out-of-sample

performance is related to the finite samples, high persistence of some of the predictors or

to the low power of the out-of-sample tests.

A different branch of the literature addresses the question of what are the economic

forces responsible for predictability of returns. Several asset pricing models capable of

generating variation in expected returns were proposed. One of them–the long-run risks

model by Bansal and Yaron (2004) emphases small and highly persistent components

of consumption growth as driving variability of expected returns. Even though, this

model is one of the most successful ones in explaining various asset-pricing puzzles, some

studies have revealed some inconsistencies of the model with the financial data. Beeler



and Campbell (2009) find counterfactual predictability patterns produced by the model,

Constantinides and Ghosh (2009) reject the model while testing it against a cross-section

of stock returns. Consequently, Bansal, Kiku and Yaron (2007a) and Bansal, Kiku and

Yaron (2009) respond that the long-run risk model is a valid description of cross-sectional

and time-series behavior of expected returns.

This work attempts to shed light on both, the correct interpretation of the poor

out-of-sample performance of the conventional predictive regression–the one where the

dividend-price ratio is used to predict returns and on the economic forces behind the

predictability. The paper consists of three essays. In the first essay, I analyze the ability

of the Bansal and Yaron (2004) model to generate predictability of returns consistently

with the data. I add more evidence against the model by finding counterfactual patterns

of the predictability of returns and riskless interest rate it produces. Furthermore, I

connected specific features of the predictability generated by the model to the specific

features of the long-run risks processes.

In the Bansal and Yaron (2004) model the decision interval of the representative agent

is monthly while the calibration is done to match the annual data. Several existing

papers stress the importance of the aggregation issue for the correct interpretation of the

calibration parameters and for testing asset pricing models, see for example Hansen and

Sargent (1983), Heaton (1995), Bansal, Kiku and Yaron (2007a). In the second essay I

address the effect of the aggregation on the processes for expected returns and expected

dividend growth and, consequently, on predictability of returns in the Bansal and Yaron

(2004) model.

In the third essay, I study the out-of-sample forecasting performance of the conven-

tional predictive regression and some alternatives to this method proposed in the litera-

ture. In order to do that, I set up a Monte Carlo simulation exercise based on different

models for expected returns and expected dividend growth. The aim is to understand the

source of the poor out-of-sample performance of the conventional predictive regression,

compare it with the alternative methods and to analyze the effect of the differences in the

existing models for expected returns and expected dividend growth on their performance.
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2. PREDICTABILITY IN THE LONG RUN RISKS MODEL

Introduction

In their celebrated work Mehra and Prescott (1985) stress the difficulty faced by equi-

librium asset pricing models to justify the magnitude of the equity premium. With a

time-separable constant relative risk aversion (CRRA) utility function, an excessively

high relative risk aversion (RRA) is needed to generate the 6% equity premium observed

in the data. CRRA utility does not allow separation between the RRA and the elasticity

of intertemporal substitution (EIS). As a result, a high level of RRA leads to a coun-

terfactually high level of the riskless interest rate provided a reasonable bound on the

subjective discount factor holds–the riskfree rate puzzle.

Bansal and Yaron (2004) (BY) offer a model capable of solving both the equity pre-

mium and riskfree rate puzzles. Their framework employs Epstein and Zin (1989) prefer-

ences which allow separation between RRA and EIS. Consequently, a high level of RRA

needed to fit the equity premium does not lead to the risk free rate puzzle. The level of

RRA needed to generate a sizable equity premium is further decreased to economically

justifiable levels by the presence of two additional sources of risk: an economic growth

risk which is caused by shocks to expected log-consumption growth and an economic un-

certainty risk which stems from an unexpected change in the volatility of log-consumption

growth.

The BY model is consistent with many asset pricing facts. It generates the observed

level of the equity premium and produces time variation in its volatility. It successfully

matches the means and standard deviations of market returns, dividend growth and the

interest rate. In addition, BY claim that the long run risk model is capable of reproducing

some of the predictability patterns observed in the data.

Some recent papers find empirical problems with the BY model. Using GMM, its



validity for describing the cross-section of stock returns is questioned by Constantinides

and Ghosh (2009). The persistence of consumption and dividend growth processes, some

of the predictability implications as well as other dimensions of the model are challenged

by Beeler and Campbell (2009). Moreover, Garcia, Meddahi and Tedongap (2010) set

the BY model in a Markov switching context and claim that predictability of returns in

the BY model is a finite sample phenomenon. Bansal, Kiku and Yaron (2007a), Bansal,

Kiku and Yaron (2007b) and Bansal, Kiku and Yaron (2009) respond by providing more

evidence in favor of high persistence of expected consumption growth, high persistence of

the time-varying volatility and cross-sectional and predictability implications generated

by the long-run risks model.

This paper contributes to this literature by focusing on predictability generated by

the BY model. Two main elements distinguish my analysis from the others. First, I

analyze predictability of returns and predictability of the riskless interest rate separately.

Although, existing evidence shows similar predictability patterns in returns and excess re-

turns over the riskless interest rate, implying a similar dynamics for expected returns and

expected excess returns, I show that this does not hold in the BY model. Furthermore, in

the model dividend-price ratio predicts both returns and dividend growth negatively and

predictability of returns is excessively weak–the reverse to what is observed in the data.

The negative sign of the slope coefficient from the predictive regression signals failure

of the model to produce the discount rate effect while the stronger evidence in favor of

predictability of dividend growth rather than returns indicates that most part of the vari-

ation in the dividend-price ratio stems from expected dividend growth. Additionally, I

find that the BY model produces a highly predictable by the dividend-price ratio riskless

interest rate which is inconsistent with the data. Lettau and Van Nieuwerburgh (2007)

and Koijen and Van Nieuwerburgh (2010) provide evidence in favor of structural breaks

in the mean of the dividend-price ratio. Since the model does not include this channel,

it makes sense to test the model against the data adjusted for the structural breaks fol-

lowing the reasoning of Constantinides and Ghosh (2009). Using the dividend-price ratio

adjusted for the structural breaks the model is rejected even strongly.

Second, my method is different from the methods used in the other papers in that I
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follow the logic behind the State Space Representation (SSR) for returns proposed by

Cochrane (2008a). The SSR is useful, since it allows interpreting the results of any pre-

dictive VAR in terms of the variation in expected returns and the variation in expected

dividend growth. Or, in other words, it provides a connection between the observed

predictability patterns with the unobserved factors influencing expected returns and ex-

pected dividend growth.

The SSR obtained on the basis of the equations describing the model shows that

expected returns and expected dividend growth are positively correlated and highly per-

sistent. Moreover, the innovations to expected dividend growth are much more volatile

than the innovations to expected returns. Therefore, it is expected dividend growth which

accounts for the biggest part of the variation of the dividend-price ratio. Connecting ex-

pected returns and expected dividend growth with the processes for the long run risks,

I find that the model fails to produce the predictability observed in the data since it

attributes a large portion of the variation in both, prices and cash flows, to expected

consumption growth.

Indeed, deriving the predictive relations from the SSR and substituting the parameters

of the calibration of the model, I find that the performance of the model can be improved

by decreasing the weight of expected consumption growth and increasing the weight of

the time-varying volatility in the variation of prices. A further analysis, however, reveals

the limitations of the model to generate the predictability patterns observed in the data.

Those limitations are caused by the specification of the processes for the long run risks.

The paper proceeds as follows. Section 1 outlines the long run risks model. Section

2 tests it against the real data using a simulation exercise. Section 3 uses the SSR to

explain the counterfactual predictability patterns and to indicate directions of a change

in the calibration of the model to reproduce the predictability patterns from the data.

Section 4 recalibrates the model. Section 5 concludes.

2.1 The long run risks model

Denoting ∆ct+1 and ∆dt+1 as log-consumption and log-dividend growth, BY specify the

following processes:
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∆ct+1 = m+ xt + σtηt+1, (2.1.1)

∆dt+1 = md + φxt + ϕdσtut+1, (2.1.2)

xt+1 = ρxt + ϕeσtet+1, (2.1.3)

σ2
t+1 = σ̄2(1− ν1) + ν1σ

2
t + σωωt+1, (2.1.4)

with all the shocks being mutually independent i.i.d Standard Normal. The values of the

parameters assumed in BY are provided in Table 2.1.

Tab. 2.1: Calibration

This table presents the values of the parameters of the calibration of the processes describing the long run risks

model. Panel A provides the calibration of the conditional means of the processes. Panel B, the calibration of

the conditional variances.

Panel A: Conditional means

Parameter: m md σ̄ ρ ν1 φ

Value: 0.0015 0.0015 0.0078 0.9790 0.9870 3.0000

Panel B: Conditional variances

Parameter: ϕe ϕd σω

Value: 0.0440 4.5000 2.3000× 10−6

The conditional means and the conditional variances of dividend growth and consump-

tion growth are time-varying. The dynamics of their moments is determined by highly

persistent processes for xt and σ2
t , which are the sources of the long run risks in the BY

model. From Eq.(2.1.1), xt equals to the conditional mean and σ2
t , to the conditional

variance of consumption growth. In other words, xt is a source of economic growth risk

and σ2
t is a source of economic uncertainty risk. Table 2.1 shows that the model places

a much larger weight on the variance of expected consumption growth than on the vari-

ance of the time-varying volatility. The innovations to the conditional mean are many

times more volatile than the innovations to the conditional variance. The above numbers

imply that the variance of the innovations to the conditional mean exceed the variance

of innovations to the time-varying volatility by a factor of 20,000. High persistence of

both processes then leads to the variance of expected consumption growth exceeding the

variance of the time-varying volatility by a factor of 14000. Note from Table 2.1 that
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while dividend growth and consumption growth have equal unconditional means, divi-

dend growth is more volatile than the consumption growth. Moreover, it has a leveraged

exposure to expected consumption growth. The leverage is governed by the parameter φ.

BY use Epstein and Zin (1989) preferences that allow separation of the relative risk

aversion (γ) and the intertemporal substitution (ψ). Denote by rc,t+1 log-returns on the

claim to the aggregate consumption at time t + 1, by rm,t+1 log-returns on the claim to

the aggregate dividends (market returns) at time t+ 1 and β as the time discount factor.

Epstein and Zin (1989) preferences lead to the following Euler equation for market returns:

Et

[
exp

(
θlogβ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 + rm,t+1

)]
= 1, (2.1.5)

with θ =
1− γ
1− 1

ψ

. BY assume that β = 0.998, γ = 10 and ψ = 1.5.

To obtain closed form solutions BY employ the Campbell and Shiller (1988) approxi-

mation, which in the case of returns on the claim to aggregate consumption is:

rc,t+1 = k0 − k1cpt+1 + cpt + ∆ct+1, (2.1.6)

with cpt being the consumption-price ratio at time t. The linearization constants:

k1 =
e−c̄p

1 + e−c̄p
and k0 = −(1 − k1)log(1 − k1) − k1log(k1) are endogenous since they

both, depend and determine the mean of the consumption-price ratio – c̄p1. A similar to

Eq.(2.1.6) expression also holds for market returns–rm,t+1:

rm,t+1 = k0m − k1mdpt+1 + dpt + ∆dt+1. (2.1.7)

BY show that in the above specified economy, the price-consumption ratio can be

written as the following function of expected consumption growth and the time-varying

volatility:

1For details refer to Beeler and Campbell (2009) or Bansal, Kiku and Yaron (2007).
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cpt = −A0 − A1xt − A2σ
2
t = −6.2704− 14.5549xt + 470.2738σ2

t . (2.1.8)

The solutions for A0, A1 and A2 are provided in Beeler and Campbell (2009) or

Constantinides and Ghosh (2009). The loadings A1, A2 as well as the variances of xt and

σ2
t determine correlations of price of a claim to the aggregate consumption with expected

consumption growth and with the time-varying volatility. Additionally, A0 determines the

mean of the consumption-price ratio and, therefore, influences the linearization constants

k0 and k1.

Since the time-varying volatility process is assumed to be homoscedastic, the vari-

ance of its innovation affects A0. Moreover, the coefficient A1 summarizes dependence of

expected consumption growth and expected returns on a claim to the aggregated con-

sumption on xt. BY assume that ψ > 1 which implies that A1 is positive or that a rise

in expected cash flows increases prices. The parameters entering A2 reflect the time-

heteroskedasticity of processes in Eq.(2.1.1)–Eq.(2.1.4). Note that since in the BY model

expected consumption growth itself is assumed to be a heteroskedastic process, its vari-

ance affects A2. The calibration of the model implies that A2 is negative or an increase

in the uncertainty decreases prices. The variance of the time-varying volatility is small.

Therefore, a large in absolute value A2 is needed to magnify its effect on prices.

An expression relating the dividend-price ratio to expected consumption and to the

time-varying volatility is:

dpt = −A0m − A1mxt − A2mσ
2
t = −5.6343− 93.2178xt + 2.3978× 103σ2

t . (2.1.9)

A0m, A1m and A2m have a similar interpretation to the coefficients in Eq.(2.1.8). A1m

summarizes dependence of expected market returns and expected dividend growth on

expected consumption growth. The assumption that φ >
1

ψ
, ensures that A1m is positive

or that an increase in expected cash flows increases prices. Moreover, A2m is negative

and high in absolute value implying a large negative effect of an increase in economic
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uncertainty on a price of a claim to the aggregate dividends. Returns on the aggregate

consumption claim enter the pricing kernel and, therefore, affect returns on any asset.

This implies a dependence of A0m, A1m and A2m on A0, A1 and A2.

2.2 Predictability of stock returns in the long run risks model

Beeler and Campbell (2009) report abnormal patterns in predictability of excess returns

and dividend growth by the dividend-price ratio in the BY model. In this section, I extend

their analysis by studying predictability of returns and of the risk free rate separately.

2.2.1 Data

The proxy for the market portfolio is the value-weighted portfolio of stocks in NYSE,

AMEX and NASDAQ obtained from CRSP. Following the common procedure, yearly

log-returns are constructed by summing up twelve monthly log-returns. The annual

dividend growth and the dividend-price ratio are obtained from the aggregated value

weighted total returns and the aggregated value weighted returns excluding cash flows.

The proxy for the riskless interest rate is the return on the one-month Treasury Bill from

Ibbotson Associates Inc. downloaded from Prof. Kenneth French’s Data Library. All the

nominal quantities are adjusted by the CPI. Finally, the data set covers 80 years from

1930 to 2009.

Using the equations describing the BY economy, I generate 1,000 paths of 960 monthly

data points and aggregate them to the annual frequency following the procedure described

in Beeler and Campbell (2009). Annual dividend growth series is constructed using

sample averages of the monthly data and the annualized dividend-price ratio employs

sample averages of dividend growth together with the price of the last month of a year.

Table 2.2 provides the means and the standard deviations of the data on returns, div-

idend growth and the dividend-price ratio generated from the BY model as well as the

data from CRSP. For the model I report the medians of the corresponding statistics taken

across simulation paths 2. Constantinides and Ghosh (2009) argues that the BY model

misses structural breaks observed in the data. Indeed, Lettau and Van Nieuwerburgh

2Since the mean values are close to the median ones they are not reported.
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(2007) and Koijen and Van Nieuwerburgh (2010) provide evidence in favor of structural

breaks in the dividend-price ratio. I repeat the analysis of the Koijen and Van Nieuwer-

burgh (2010) and Lettau and Van Nieuwerburgh (2007) and demean the dividend-price

ratio to account for the structural breaks in 1954 and 1994. In Table 2.2 the adjusted

dividend-price ratio is denoted as dpsb3

Tab. 2.2: Descriptive Statistics

This table reports the descriptive statistics. Columns marked Model report the descriptive statistics for the data

generated by the model. Columns marked Data report the descriptive statistics of the annual stock market data

adjusted by the CPI for a period 1930-2009. All the data is in logs. dps is the dividend-price ratio adjusted for

the structural breaks in 1954 and 1994 by demeaning. For the model, I report the medians of the descriptive

statistics taken across simulation paths. Standard deviations are in %

Statistics dp dpsb rm rf rm − rf ∆d

Panel A: Model

Mean −3.0116 – 0.0674 0.0258 0.0413 0.0178
Standard Deviation 18.38 – 16.52 1.22 16.65 11.05

Panel B: Data

Mean −3.3273 – 0.0571 0.0043 0.0528 0.0136
Standard Deviation 43.19 20.16 20.03 3.93 20.36 14.03

The model captures the mean of the market return, dividend-price ratio and dividend

growth well (see Bansal and Yaron (2004), Beeler and Campbell (2009)). The values of

the standard deviations for most of the variables are also close to the ones in the data.

The biggest discrepancy is observed for the standard deviation of the dividend-price ratio,

which in the model is more then twice lower than in the data. 4 Note, however, that

the model matches very closely the standard deviation of the adjusted dividend-price

ratio. Moreover, the riskless interest rate generated by the model has a higher mean

and a lower standard deviation than the one observed in the data. This is attributed to

inflation surprises and the 1951 Accord affecting returns on the Treasury Bill rate which

are not present in the model.

3I also used a data set which starts in 1952 to control for the 1951 Accord. The mean of the return on the Treasury
Bill in this subsample is somewhat higher while its standard deviation is lower. Using this smaller data set to analyze
predictability of the riskless interest rate and of the excess returns does not change the results reported in this paper.

4The fact that the model produces a less volatile than in the data dividend price ratio has already been mentioned in
Beeler and Campbell (2009).
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2.2.2 Regression analysis

Following Cochrane (2008b) I analyze predictability of returns jointly with predictability

of dividend growth. More specifically, in Table 2.3 I estimate the following predictive

VAR5:

dpt+1 = αdp + βdpdpt + εdpt+1, (2.2.1)

rm,t+1 = αr + βrdpt + εrt+1, (2.2.2)

∆dt+1 = αd + βddpt + εdt+1. (2.2.3)

To account for heteroskedasticity, I adjust the standard errors by GMM using the codes

downloaded from Prof. John H. Cochrane web page. Additionally to the usual regression

output, I report the absolute values of the long-run slope coefficients of Cochrane (2008b):

br,lr =
br

1− k′1mβdp
, (2.2.4)

bd,lr =
bd

1− k′1mβdp
. (2.2.5)

br,lr is interpreted as a fraction of the variation in the dividend-price ratio attributed

to expected returns and bd,lr as the fraction attributed to expected dividend growth. To

obtain the long-run coefficients in the model, in each simulation I calculate k
′

1m as:

k
′

1m =
e−d̄p

1 + e−d̄p

using the sample mean of the dividend price ratio d̄p.

Fama and French (1988a) and Pastor and Stambaugh (1999) provide evidence for the

discount rate effect–a negative contemporaneous covariance between the innovations to

expected and realized returns. To check for the presence of the discount rate effect in

the model, in the last row of Table 2.3 I add an estimate of this covariance given by

5Note that I can use any two regression equations from Eq.(2.2.1)-Eq.(2.2.3) together with the Campbell and Shiller
(1988) identity to identify the coefficients and the standard error of the other regression equation, see Cochrane (2008a)
and Cochrane (2008b).
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βrcov(εrt+1, ε
dp
t+1). All the values reported for the model are the medians of the corre-

sponding statistics taken across simulation paths. For the data, I report the estima-

tion results using the conventional dividend-price ratio in the column Data(dp) and the

dividend-price ratio adjusted for structural breaks in the column Data(dps). Finally, in

the columns named %, I report a percentile of the distribution of a given statistics in the

model which corresponds to its value in the data.

Tab. 2.3: Predictability of returns

In this table I report the results of estimating a predictive VAR where only the dividend-price ratio is used to

predict returns and dividend growth. In the column Model I report the medians of the corresponding statistics

taken across simulation paths. In Data(dp) I report the values obtained in the data. In Data(dps) I report the

values obtained in the data using the dividend-price ratio adjusted for structural breaks in 1954 and 1994 by

demeaning. In %– I report a percentile of the distibution the statistics obtained in the model which corresponds

to the value obtained in the data. For each regression, I report an estimated slope coefficient, its t-statistics and

the R-square statistics.
∣∣∣βd,lr∣∣∣ and

∣∣∣βr,lr∣∣∣ are the absolute values of the long-run slope coefficients of Cochrane

(2008b), defined in Eq.(2.2.4) and Eq.(2.2.5) in the text. Standard errors are GMM adjusted to account for

heteroskedasticity. Values of R-square statistics are in %

Statistics Model Data(dp) % Data(dps) %

Panel A: AR(1) process for the dividend-price ratio

βdp 0.6723 0.9399 100 0.6651 48
t-stat 8.2917 21.9996 – 6.7951–
R2 45.08 88.07 100 41.47 39

Panel B: Predictive regression for returns

βr −0.0168 0.0950 84 0.3343 99
t-stat −0.1830 1.9184 – 3.4916 –
R2 00.65 4.31 94 11.14 100

100×
∣∣βr,lr∣∣ 4.77 102.48 100 90.95 99

βrcov(εrt+1, ε
dp
t+1) 0.0003 −0.0019 16 −0.0047 2

Panel C: Predictive regression for dividend growth

βd −0.3739 0.0048 100 0.0477 100
t-stat −7.1629 0.1153 – 0.5506 –
R2 38.88 00.02 0 00.45 0

100×
∣∣βd,lr∣∣ 104.77 2.48 0 9.05 0

Table 2.3 shows that in the data the dividend-price ratio is a highly persistent pro-

cess. There is stronger evidence in favor of predictability of returns rather than dividend

growth. For returns, the slope coefficient is positive and marginally significant. The

value of the R2 indicates that the dividend-price ratio captures a bit more than 4 % of

the variation in future returns. The value of the long horizon coefficient implies that over

100 % of the variation in the dividend-price ratio is due to expected returns. A posi-

tive slope coefficient in the returns regression signals the presence of the discount rate
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effect–the estimated contemporaneous covariance between the innovations to expected

and realized returns is negative. For dividend growth, the slope coefficient is also posi-

tive, but small. Moreover, dividend-price ratio captures almost no variation in the future

dividend growth. The value of the long run coefficient indicates that virtually none of the

variation in the dividend-price ratio stems from expected dividend growth. Finally, ad-

justing dividend-price ratio for structural breaks decreases its persistence and reinforces

predictability evidence for returns. The slope coefficient in the returns regression with

the adjusted dividend-price ratio is highly statistically significant and R2 is over 11%.

Dividend-price ratio in the model is characterized by a low persistence. The median

AR(1) coefficient is 0.6723 against the value of 0.9399 in the data. Judging from the value

of % the model is clearly rejected. The model, however, matches very well dynamics of the

adjusted dividend price ratio generating the AR(1) coefficient and the R-square statistics

very close to the one observed in the data.

More importantly, Panel B and Panel C reveal that predictability patterns in the

model are strikingly different from those in the data. In the model, the slope coefficients

are negative for both returns and dividend growth regressions while they are positive for

both regressions in the data. R2 is excessively small for returns and excessively large

for dividend-growth. The value of the estimated covariance between the innovations to

expected and realized returns is small and positive indicating a failure of the model to

produce the discount rate effect. Moreover, judging from the long-run coefficients, in the

model most part of the variance of the dividend-price ratio stems from expected dividend

growth-an absolutely reverse pattern to the data. While from Panel A the dividend-price

ratio generated by the model matches the dynamics of the adjusted dividend-price ratio

well, there is even stronger evidence against the model in this case. The values of % for

both, returns and dividend growth regressions indicate a complete rejection of the model.

In Table 2.4 I analyze predictability of excess returns and of the interest rate. More

specifically, I estimate:
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rm,t+1 − rf,t+1 = αer + βerdpt + εert+1, (2.2.6)

rf,t+1 = αrf + βrfdpt + εrft+1. (2.2.7)

Tab. 2.4: Predictability of excess returns and riskless interest rate

In this table I report the results of predicting the excess returns and the riskless interest rate with the dividend-

price ratio. In the column Model I report the medians of the corresponding statistics taken across simulation

paths. In Data(dp) I report the values obtained in the data. In Data(dps) I report the values obtained in the

data using the dividend-price ratio adjusted for structural breaks in 1954 and 1994 by demeaning. In %– I report

a percentile of the distibution of the statistics obtained in the model which corresponds to the value obtained in

the data. For each regression, I report the estimated slope coefficient, its t-statistics and the R-square statistics.

Standard errors are GMM adjusted to account for heteroskedasticity. Values of R-square statistics are in %

Statistics Model Data(dp) % Data(dps) %

Panel A: Predictive regression for the excess returns

βer 0.0419 0.1080 74 0.3215 99
t-stat 0.4253 2.1716 – 3.3416 –
R2 0.63 5.56 96 10.30 99

Panel B: Predictive regression for the interest rate

βrf −0.0557 −0.0130 100 0.0128 100
t-stat −14.3086 −1.4490 – 0.5264 –
R2 71.06 2.17 0 0.44 0

I start with the predictability patterns observed in the data. Comparing the values

from Table 2.4 with the corresponding ones from Table 2.3, excess returns are more

predictable than returns. The slope coefficient, the t-statistics and the R-square statistics

increase. The riskless interest rate is not well forecasted by the dividend-price ratio.

The t-statistics and the R-square statistics are low. Adjusting dividend-price ratio for

structural breaks reinforces the evidence for predictability of excess returns. The slope

coefficient is highly statistically significant and R2 reaches 10 %. There is even less

evidence for predictability of the riskless rate, however. Comparing with the unadjusted

dividend-price ratio case, both the t-statistics and the R-square statistics decrease.

Note that in the model, while still being statistically insignificant, the slope coefficient

changes its sign from negative in the case of returns to positive in the case of the excess

returns. The rejection of the model becomes weaker since the value of % deccreases.

Using the adjusted dividend-price ratio, however, still leads to a strong rejection of the

model. The difference between the model and the data is especially strong in the case of
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the predictive regression for the riskless rate. While in the data the riskless rate is not well

forecasted by the dividend-price ratio, in the model lagged dividend-price ratio predicts

riskless rate with a negative and highly statistically significant coefficient and explains

around 70 % of its variation. The value of % for both the conventional dividend-price

ratio and the adjusted one indicate an absolute rejection of the model.

2.3 Expected returns and expected dividend growth in the long run risks model

Cochrane (2008a), Cochrane (2008b), Binsbergen and Koijen (2010) and Koijen and Van

Nieuwerburgh (2010) show the usefulness of the state-space representation for returns

(SSR) for interpreting predictive relations between returns, dividend growth and the

dividend-price ratio. In this paper, I analyze predictability patterns in the BY economy

through an SSR. Let:

µrt = Et [rt+1] ,

µdt = Et [∆dt+1]

In the Appendix, I show that the above economy implies the following SSR:

µrt+1 = αµr + δµrµrt + τµdt + εµrt+1, (2.3.1)

µdt+1 = αµd + δµdµdt + εµdt+1, (2.3.2)

∆dt+1 = µdt + εdt+1, (2.3.3)

I provide the expressions for the coefficients and errors of Eq.(2.3.1)–Eq.(2.3.3) in

Table 2.5.

From Table 2.5, expected returns inherit persistence of the time-varying volatility while

expected dividend growth that of expected consumption growth. The Euler equation im-

plies a dependence of expected returns on any asset on expected consumption growth. A

perfect correlation between expected dividend growth and expected consumption growth

assumed in the BY model then leads to the lagged expected dividend growth entering

the equation for expected returns. The value of persistence of the time-varying volatility
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Tab. 2.5: State-space representation for returns

This table provides the expressions for the coefficients and errors of the state-space representation for returns in
terms of parameters of the long run risks model.

Variable Expression in terms of the model parameters Value

αµr (1 − ν1)
[
k0m − (1 − k1m)A0m + k1mA2mσ̄

2(1 − ν1) +md

]
− 7.5804 × 10−5

−A2mσ̄
2(1 − k1mν1)(1 − ν1) − (ρ− ν1)md

φψ

αµd (1 − ρ)md 3.1500 × 10−5

δµr ν1 0.9870

δµd ρ 0.9790

τ
(ρ− ν1)

φψ
−0.0018

εµrt+1

1

ψ
ϕeσtet+1 − (1 − ν1k1m)A2mσωωt+1 –

εµdt+1 φϕeσtet+1 –

εdt+1 ϕdσtut+1 –

is close to the value of persistence of expected consumption growth. Additionally, the

dividend leverage on expected consumption growth and elasticity of intertemporal sub-

stitution are more than one. This implies a small absolute value of τ and, consequently,

a small contribution of the lagged expected dividend growth to the volatility of expected

returns. The errors to expected dividend growth are completely determined by the risk

of poor economic growth. A φ > 1 implies an even higher variance of the innovations

to expected dividend growth than of the innovations to expected consumption growth.

The errors to expected returns, on the other hand, are determined by both risks. The ef-

fect of the innovations to expected consumption growth on expected returns is decreased

by a value of elasticity of intertemporal substitution larger than one. The effect of the

innovations to the time-varying volatility on expected returns is magnified by a large

(1 − ν1k1m)A2m. Note that whenever expected consumption growth shocks contribute

the most to the volatility of the innovations to expected returns, expected returns are

correlated with expected dividend growth. In an extreme case, when the innovations to

expected consumption growth determine all the variation in the innovations to expected

returns, which happens if (1 − ν1k1m)A2m is small, expected returns will be perfectly

correlated with but less volatile than expected dividend growth.

Using Eq.(2.3.1)–Eq.(2.3.3) in the Appendix I derive an identity linking the dividend-

price ratio to expected returns and expected dividend growth. In Panel A of Table

2.6 I report the standard deviations on the diagonal and the cross-correlations on the
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off-diagonal of the dividend-price ratio, expected returns and expected dividend growth

and in the Panel B I decompose the standard deviation of the dividend-price ratio into

the parts related to the variation in expected returns and to the variation in expected

dividend growth. The values reported are calculated using the original calibration of the

BY model.

Tab. 2.6: Implications of state-space representation for returns

Panel A of this table presents the values of the standard deviations on the diagonal and the correlations on the

off-diagonal of the dividend-price ratio, expected returns and expected dividend growth. Panel B provides the

values of fractions of the standard deviations of expected returns and expected dividend growth in the standard

deviation of the dividend-price ratio. The calculations are based on the state-space representation for returns

derived using equations describing the long run risks model. All the numbers are in %.

Panel A: Correlations and standard deviations

Components dp µr µd

dp 16.11 -74.50 -96.75
µr -74.50 00.13 85.25

µd -96.75 85.25 0.51

Panel B: Decomposition of the volatility of the dividend-price ratio

y

Share
µr

1− k1mδµr
(1− (τ + δµr)k1m)µd

(1− k1mδµd)(1− k1mδµr)
std(y)/std(dp) 47.29 139.76

In line with the evidence on the negative slope coefficient in the predictive regression

for returns and dividend growth reported in Section 2, dividend-price ratio is negatively

correlated with both expected returns and expected dividend growth. Moreover, ex-

pected returns and expected dividend growth are positively correlated and the variance

of expected dividend growth is higher than the variance of expected returns. Expected

dividend growth is very volatile. From Table 2.6, the standard deviation of expected

dividend growth exceeds the standard deviation of expected returns by a factor of five.

Given that both processes are highly persistent, it should not come as a surprise that

expected dividend growth accounts for 140 % of the standard deviation of the dividend

price ratio against slightly more than 47 % of the standard deviation stemming from

expected returns as reported in the Panel B. Since:
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corr(dp, µr) =

(
1

1− k1mδµr

)
σ(µr)

σ(dp)
−
(

(1− (τ + δµr)k1m)

(1− k1mδµd)(1− k1mδµr)

)
σ(µd)

σ(dp)
corr(µr, µd);

(2.3.4)

and

corr(dp, µd) =

(
1

1− k1mδµr

)
σ(µr)

σ(dp)
corr(µr, µd)−

(
(1− (τ + δµr)k1m)

(1− k1mδµd)(1− k1mδµr)

)
σ(µd)

σ(dp)
,

(2.3.5)

a positive correlation between expected returns and expected dividend growth together

with an excessive volatility of expected dividend growth leads to a negative correlation

of the dividend-price ratio with both, expected returns and expected dividend growth.

To elaborate further, in Table 2.7 I connect expected returns, expected dividend

growth, the expected excess returns, the interest rate and the dividend-price ratio to

the sources of the long run risks-the processes for expected consumption growth and the

time-varying volatility. In Panel A of Table 2.7 I present the shares of the volatility

attributed to expected consumption growth and to the time-varying volatility. In the

Panel B I provide the values of the correlations of each of the variables with xt and σ2
t .

All the values are computed using the calibration the BY model.

Table 2.7 offers another explanation to the counterfactual features generated by the

model. Almost all the variance of the dividend-price ratio, expected returns and the

riskless interest rate and all the variance of expected dividend growth are attributed

to expected consumption growth. An increase in expected consumption leads to an

increase in prices in the BY economy. Consequently, the dividend-price ratio is negatively

correlated with expected consumption growth. The riskless interest rate, expected returns

and expected dividend growth, however, are positively correlated with it. This explains

a negative sign in the predictive regressions for returns, dividend growth and riskless

interest rate. Correlations of over 95 % between expected consumption growth and

the dividend-price ratio, expected dividend growth and the riskless interest rate explain
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Tab. 2.7: Variation in expected consumption growth and time-varying volatility

Panel A of this table presents the fractions of the variance of the dividend-price ratio, expected dividend growth,

expected returns, the riskless interest rate and the excess returns attributed to expected consumption growth

and to the time-varying volatility. Panel B, provides the correlations of each of the variables with xt and σ2
t . All

the numbers are reported in %. All the values are computed using the calibration of the long run risks model.

Series xt σ2
t

Panel A: The fractions of the variance

dpt 95.44 4.56

µdt 100.00 0.00
µrt 78.61 21.39

rf,t+1 97.03 2.97
µrt − rf,t+1 0.00 100.00

Panel B: The correlations

dpt −98.06 21.23

µdt 100.00 0.00
µrt 87.18 45.04

rf,t+1 94.44 −16.36
µrt − rf,t+1 0.00 100.00

a highly significant predictive relations between the dividend-price ratio and dividend

growth and riskless interest rate.

Note that while expected consumption growth determines the biggest fraction of the

variation in expected returns it contributes nothing to the variation in the expected

excess returns, implying a very different economic meaning of the predictability of these

processes. An increase in economic uncertainty leads to a decrease in prices and to

an increase in the dividend-price ratio. Increase in economic uncertainty also increases

expected excess returns. This explains a positive sign of the slope coefficient in the excess

returns regression. These features of the model point at the need in giving more weight

to the variance of the time-varying volatility in the variation of prices.

Finally, the contemporaneous covariance between the innovations to expected and

realized returns is related to the innovations to expected consumption growth and to the

time-varying volatility through:

cov
(
εrt+1, ε

µr
t+1

)
= 0.1198σ2

t − 5.1686× 10−7 = k1m
1

ψ
A1m − k1m(1− k1mν1)(A2mσω)2 =

= k1m
1

ψ

φ− 1
ψ

1− k1mρ
ϕ2
eσ

2
t − k1m(1− k1mν1)(A2mσω)2.

(2.3.6)
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The discount rate effect states that the covariance between the innovations to the

realized and expected returns is negative. The unconditional mean of σ2 is 6.084× 10−5

implying that, on average, the above covariance is positive rather than negative. In the

second equality of Eq.(2.3.6), I express the discount rate effect in terms of the parameters

which govern the shares of the variance of the dividend-price ratio attributed to expected

consumption growth and to the time-varying volatility–A1m and A2m. In line with the

above conclusions, then the second equality shows that the model fails to produce the

discount rate effect because it assigns too much weight to the poor economic growth risk

and too little weight to the high economic uncertainty risk in the variation of prices.

To get more insights, in the third equality I substitute for A1m. Going back to Table

2.5,
1

ψ
ϕeσt measures the variance of the component of the innovations to expected returns

attributed to the risk of the poor economic growth and (1− k1mν1)A2mσω of the compo-

nent attributed to the risk of a high economic uncertainty. Similarly, φϕeσt governs the

variance of the innovation to expected dividend growth, while ρ measures its persistence.

Thus, the third equality in Eq.(2.3.6) indicates the need in a decrease in the volatility and

persistence of expected dividend growth and in an increase in the volatility of expected

returns. Additionally, it provides guidance on the specific parameters which should be

affected. Specifically, the third equality in Eq.(2.3.6) indicates a need in a decrease in φ,

ϕe and ρ and in an increase in σω and A2m
6

Exactly the same conclusions are made based on the implications of the SRR to the

predictive regressions. Given the SSR described by Eq.(2.3.1)-Eq.(2.3.3), in the Appendix

I derive the following predictive relations implied by the model:

dpt+1 =

= −0.0717 + 0.987dpt + 0.2486µdt + εdpt+1

= −0.0713 + 0.987dpt + 0.7458xt + εdpt+1

= αdp + ν1dpt + (ν1 − ρ)
φ− 1

ψ

1− k1mρ
xt −

φ− 1
ψ

1− k1mρ
ϕeσ

2
t et+1 − A2mσωωt+1,

(2.3.7)

6An increase in the volatility of expected returns can also be achieved through a decrease in the elasticity of intertemporal
substitution. The long run risk model, however, relies on the value of this parameter larger than one. See for example
Beeler and Campbell (2009) and Bonomo, Garcia, Meddahi and Tedongap (2010).
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with αdp = (1− ν1)
[
−A0m − A2mσ̄

2
]
;

rt+1 =

= 0.0982 + 0.0171dpt + 0.7524µdt + εrt+1

= −0.0372− 0.0072dpt + 58.0643σ2
t + εrt+1

= αr + (1− k1mρ)

[
− 1
ψ

φ− 1
ψ

]
dpt +

(
(1− k1mρ)

[
−φ
φ− 1

ψ

]
+ k1m(ν1 − ρ)A2m

)
σ2
t + εdt+1 − k1ε

dp
t+1,

(2.3.8)

with αr = k0m − k1mα
dp + αd + k1m(ν1 − ρ)A0m;

∆dt+1 =

= −0.1304− 0.0227dpt + 1.329µrt + εdt+1

= −0.1798− 0.0322dpt + 77.1677σ2
t + εdt+1

= αd + (1− k1mρ)
−φ
φ− 1

ψ

dpt + (1− k1mρ)
−φ
φ− 1

ψ

A2mσ
2
t + ϕdσtut+1,

(2.3.9)

with αd = md + (1− k1mρ)
−φ
φ− 1

ψ

A0m.

In Eq.(2.3.7)-Eq.(2.3.9) the first equality follows directly form the SSR. In the sec-

ond equality I substitute out expected returns/expected dividend with the time-varying

volatility or expected consumption growth. Finally, in the third equality I present pre-

dictive relations in terms of the calibration parameters.

The first equality in Eq.(2.3.7)-Eq.(2.3.9) clearly shows that it is a negative correlation

of the dividend-price ratio with expected returns and expected dividend growth that leads

to all the counterfactual predictability features generated by the model. According to

Eq.(2.3.7), regressing an uncorrelated with expected dividend growth dividend-price ratio

should deliver a high AR(1) coefficient estimate. The dividend-price ratio, however, is

highly negatively correlated with expected dividend growth implying a large negative bias

in the AR(1) coefficient estimate.

Similarly, Eq.(2.3.8) shows that the dividend price ratio uncorrelated or positively
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correlated with expected dividend growth should predict returns positively and that a

high in absolute value negative correlation between the dividend-price ratio and expected

dividend growth leads to a negative coefficient in the predictive regression for returns.

Moreover, Eq.(2.3.9) shows that a negative correlation between the dividend-price ratio

and expected returns decreases further the slope coefficient in the predictive regression

for dividend growth, reinforcing its predictability.

The second equality in Eq.(2.3.7)-Eq.(2.3.9) points at a need in a smaller correlation of

the dividend-price ratio with expected consumption growth and in its larger correlation

with the time-varying volatility. Eq.(2.3.7) shows that regressing the dividend-price ratio

uncorrelated with expected consumption growth should deliver a high AR(1) coefficient

estimate. Eq.(2.3.8) and Eq.(2.3.9) imply that it may be possible to obtain a positive slope

coefficient in predictive regressions for returns and dividend growth rate by increasing the

correlation between the dividend-price ratio and the time-varying volatility. Finally, the

third equality indicates a need in a smaller ϕe, ρ and φ and a larger A2m and σω. I explore

the possibility of adjusting these parameters in the next section.

2.4 Long run risks processes

In this section I conduct a comparative statics analysis to show that it is the specification

of the long run risks processes which limits the ability of the model to match the pre-

dictability patterns. I start with the equations describing the model and then support the

analysis by simulations. The BY model relies of the following process governing expected

consumption growth:

xt = ρxt−1 + ϕeσt−1et = 0.979xt−1 + 0.044σt−1et.

Expected consumption growth is heteroskedastic. This heteroskedasticity leads to the

dependence of A2m on the parameters determining the share of the expected consumption

growth in the volatility of prices. To elaborate, the solution to A2m is:
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A2m =
(1− θ)A2(1− k1ν1) + 0.5 [γ2 + ϕ2

d + ((θ − 1)k1A1 + k1mA1m)2ϕ2
e]

1− k1mν1

, (2.4.1)

Recall that A2m is negative, implying that higher uncertainty decreases prices. Ad-

ditionally, in order a small variance of the time-varying volatility to have an effect on

prices, A2m should be large in absolute value. It is visible from Eq.2.4.1, that negativity

and the value of A2m is crucially dependent on A2. Since:

A2 = 0.5


(
− θ
ψ

+ θ
)2

θ (1− k1ν1)
+

(θk1A1ϕe)
2

θ (1− k1ν1)

 =
0.5θ

1− k1ν1

(1− 1

ψ

)2

+

(
k1ϕe

1− 1
ψ

1− k1ρ

)2
 =

= −100.5537− 369.7201,

(2.4.2)

the value of A2 in turn is largely determined by a value the variance of expected

consumption growth, that is by ϕe and by ρ. Decrease in the value of these parameters

leads to an increase in A2m. Note that the parameter φ which governs the variance of

expected dividend growth enters A2m through A1m. (θ−1)k1A1 is negative and k1mA1m is

positive. This implies that a decrease in φ also leads to an increase in A2m. In other words,

decreasing the share of expected dividend growth in the variance of the dividend-price

ratio leads to an increase in A2m or, equivalently, to a decrease in the share of expected

returns. Moreover, a large decrease in ϕe, φ and ρ may lead to a counterintuitively

positive A2m which implies a positive effect of the uncertainty on prices.

On the other hand, the time-varying volatility in the BY model is a homoscedastic

process:

σ2
t = σ̄2(1− ν1) + ν1σ

2
t−1 + σωωt = 7.909× 10−7 + 0.987σ2

t−1 + 2.300× 10−6ωt.

Heteroskedasticity of expected consumption growth and homoscedasticity of the time-

varying volatility together imply that the dynamics of the excess returns depends on the
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variance of the expected consumption growth. Specifically, it can be shown that:

µrt − rf,t+1 = αµr − αrf − 0.5
[
(k1mA1mϕe)

2 − 2(1− θ)k1mk1A1mA1(ϕe)
2 + ϕ2

d

]
σ2
t =

= A0re + A1reσ
2
t ,

(2.4.3)

with αµr defined in Table 2.5 and αrf = −θlogβ +
θ

ψ
m − (θ − 1)(k0 + (k1 − 1)A0 +

k1A2(1−ν1)σ2 +m)−0.5(θ−1)2(k1A2σω)2. Loadings of the consumption-price ratio and

the dividend-price ratio on expected consumption growth–A1 and A1m and the parameter

which determines the variance of the innovations to expected consumption growth –ϕe

affect the sign and the value of the response of the excess returns to the time-varying

volatility. Consequently, a decrease in the share of expected dividend growth in the

variance of the dividend-price ratio may lead to a decrease in the effect of the time-

varying volatility on the excess returns and weaken the predictive relation between the

excess returns and the dividend-price ratio.

Following Eq.(2.4.1) and Eq.(2.4.3), heteroskedasticity in expected consumption growth

and homoscedasticity in the time varying volatility imply that any decrease in the share

of expected dividend growth in the variance of the dividend-price ratio should be com-

pensated with an increase in the share of expected returns through parameters ν1 and σω.

Moreover, below it will be shown that an increase in these parameters will lead to a large

number of negative realizations of σ2
t and, therefore, requires an increase in the mean of

the time-varying volatility measured by σ̄2. A large increase in σ̄2, however, leads to a

counterfactually high variance of consumption growth.

The assumption of homoscedasticity of the time-varying volatility process leads to

another difficultly. It implies the dependence of A0m on the parameters determining the

share of expected returns in the variance of the dividend-price ratio. More specifically,

A0m is related to A2m and σω through:

A0m = ¯A0m + 0.5
[(θ − 1)k1A2 + k1mA2m]2 σ2

ω

1− k1m

. (2.4.4)
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¯A0m is a part of A0m which depends on the unconditional means of dividend growth,

consumption growth and of the time-varying volatility, on the linearization constants k0

and k0m and on the time discount factor β. Since A0m defines the mean of the dividend-

price ratio, a change in A2m or in σω then may lead to excessively high or low values

of the mean of the dividend-price ratio and to an undefined solution to the endogenous

linearization constant k1m.

To quantify the analysis, in Figure 2.1 I plot the loading of the excess returns on the

time-varying volatility and loadings of the dividend-price ratio on the long run risk pro-

cesses, decreasing the variance of the innovation to both, expected consumption growth

and expected dividend growth, through a decrease in ϕe. While changing the value of ϕe

I adjust σ̄ to keep the variance of the realized consumption growth constant. Figure 2.1

presents, from the right to the left, in the first row the loading of the excess returns on

the time-varying volatility, A1re , followed by the mean of the dividend-price ratio, A0m.

In the second row I plot the loading of the dividend-price ratio on expected consump-

tion growth, A1m, followed by the loading of the dividend-price ratio on the time-varying

volatility A2m. The values of the loadings which correspond to changing the value of ϕe

from the original 0.044 to 0.004 are represented by a solid line while the values under the

original calibration are indicated by a line in stars.

Figure 2.1 shows that, keeping a negative effect of the economic uncertainty on prices,

a decrease in the variance of expected consumption growth leads to a decrease in the

predictability of both returns and excess returns. A decrease in ϕe leads to a fast decrease

in A1re . Reducing ϕe by half leaves A1re with less than one-fifth of its initial value. A

decrease in ϕe also leads to a rapid increase in A2m implying a decrease in the share of

expected returns in the variance of the dividend-price ratio. A decrease in ϕe from the

original 0.044 to 0.036 leads to an increase in A2m from the original -2409.308 to around

-1207.294. A further decrease in ϕe leads to a positive A2m which implies a counter

intuitively positive effect of the uncertainty on prices.

In Figure 2.2 I plot the loading of the excess returns together with the loadings of

dividend-price ratio decreasing the value of φ, that is decreasing the variance of expected

dividend growth and leaving the variance of expected consumption growth fixed. While
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Fig. 2.1: Elasticity of loadings of expected excess returns and dividend-price ratio to variance of expected
consumption growth

In this figure I plot the values of loadings of the expected excess returns and of the dividend-price ratio on the

long run risks against the variance of the innovation to expected consumption growth. The values of the loadings

which correspond to changing the value of ϕe from the original 0.044 to 0.004 are represented by a solid line

while the values under the original calibration are indicated by a line in stars.

changing φ, I adjust ϕd to keep the unconditional variance of the dividend growth con-

stant7. Similarly to Figure 2.1, the values of the loadings which correspond to changing

a value of φ are depicted using a solid line while the values under the original calibration,

by a line in stars.

Starting with the loading of the excess returns on the time-varying volatility in the

upper-right corner, decreasing the variance of expected dividend growth leads to a rapid

decrease in the predictability of excess returns. Figure 2.2 shows that decreasing φ by a

7Note that for values of φ < 1, expected dividend growth is less volatile than expected consumption growth.

35



Fig. 2.2: Elasticity of loadings of expected excess returns and dividend-price ratio to variance of expected
dividend growth

In this figure I plot the values of loadings of the expected excess returns and of the dividend-price ratio on the

long run risks against the variance of the innovation to expected dividend growth. The values of the loadings

which correspond to changing the value of φ from 0.000 to the original 3.000 are represented by a solid line while

the values under the original calibration are indicated by a line in stars.

half, leads to a decrease in A1re by more than two-thirds of its initial value. Similarly

to the expected excess returns, a decrease in the variance of expected dividend growth

leads to a lower predictability of returns, since a decrease in φ leads to a rapid increase

in A2m. Reducing φ by a half is met with a virtually zero A2m.

Finally, in Figure 2.3 I plot the loadings while changing values of ρ from 0.000 to the

original value of 0.979. Predictability of returns and excess returns is highly sensitive to

a change in the persistence of expected consumption/dividend growth. Decreasing the

value of the persistence from 0.979 to 0.900 leads to a negative and low in absolute value
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A1re . Additionally, for ρ = 0.900 A2m is positive implying a counter intuitively positive

effect of the time-varying volatility on prices.

Fig. 2.3: Elasticity of loadings of expected excess returns and of dividend-price ratio to persistence of expected
dividend growth

In this figure I plot the values of loadings of the expected excess returns and of the dividend-price ratio on the

long run risks against persistence of expected dividend growth. The values of the loadings which correspond to

changing the value of ρ from 0.000 to the original 0.979 are represented by a solid line while the values under the

original calibration are indicated by a line in stars.

The analysis of Figure 2.1–Figure 2.3 reveals a high sensitivity of the parameters

measuring the share of expected returns in the variance of the dividend-price ratio to

a change in the share of expected dividend growth. In the BY model, a decrease in

the share of expected dividend growth leads to a considerable decrease in the share of

expected returns. This suggests that a large increase in ν1 and σω might be needed to

compensate for the decrease in the share of expected dividend growth in the variance of
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the dividend-price ratio.

I switch to increasing the share of expected returns in the variance of the dividend-

price ratio analyzing the effect of an increase σω in Figure 2.4 and of an increase in ν1

in Figure 2.5. Similarly to the previous figures, the solid line indicates the values of the

loadings which correspond to changing the values of σω or ν1 while the line in stars, to

the values under the original calibration.

Fig. 2.4: Elasticity of loadings of expected excess returns and of dividend-price ratio to variance of innovations
to time-varying volatility

In this figure I plot the values of loadings of the expected excess returns and of the dividend-price ratio on the

long run risks against the variance of the innovations to the time-varying volatility. The values of the loadings

which correspond to changing the value of σω from the original 2.300 × 10−5 to 2.300 × 10−4 are represented by

a solid line while the values under the original calibration are indicated by a line in stars.

Figure 2.4 shows that the mean of the dividend-price ratio is sensitive to the variance

of the innovation to the time-varying volatility. A large increase in the variance leads to
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a negative and high in absolute value A0m, implying that an increase in σω may lead to a

counterfactually high mean of the dividend price ratio. Additionally, since the mean of the

dividend-price ratio determines the endogenous linearization constant k1m, an excessively

low or an excessively high value of A0m might lead to an undefined k1m. In this case the

model does not have a solution.

In Figure 2.5 I plot the loadings of the expected excess returns and the dividend-price

ratio on the long-run risks against the persistence of the time-varying volatility. The

figure exposes a high elasticity of the share of expected returns in the variance of the

dividend-price ratio to the persistence of the time-varying volatility. An increase in the

persistence from the original value of 0.987 to 0.990 leads to a decrease in the value of

A2m from -2409.308 to -2921.314. A further increase in ν1 leads to A2m exceeding the

value of -10000.000. Note that ν1 has only a small effect on A0m and does not affect A1m

or A1re . This makes the persistence of the time-varying volatility a good candidate for

compensating for a decrease in ρ, φ and ϕe.

To summarize, I found that specification of the long run risks processes leads to prob-

lems faced by the model in accommodating a decrease in the share of expected dividend

growth in the variance of the dividend-price ratio. Heteroskedasticity in expected con-

sumption growth leads to the dependence of the share of expected returns on the share of

expected dividend growth. My analysis reveals that potentially large increase in σω and

in ν1 is needed match the predictability patterns. An increase in these parameters, how-

ever, can lead to an excessively volatile consumption growth or to undefined linearization

constants.

Finally, to get an idea of how large an increase in σω and ν1 should be and what are the

consequences of that increase for the model, In Table 2.8 I recalibrate the model setting

ν1 = 0.9999 and σω = 3.500× 10−6. I intentionally keep the values of ρ, φ and ϕe on the

original level. Since a decrease in the value of these parameters will lead to a decrease

in the share of expected returns in the variance of the dividend-price ratio, keeping their

original values and increasing σω and ν1 can give an idea about the ability of the model to

generate required level of predictability. The assumed value of ν1 less than one preserves

stationarity of σ2
t . I, however, tried to set ν1 equal one. This leads to only a slight
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Fig. 2.5: Elasticity of loadings of expected excess returns and of dividend-price ratio to persistence of
time-varying volatility

In this figure I plot the values of loadings of the expected excess returns and of the dividend-price ratio on the

long run risks against persistence of the time-varying volatility. The values of the loadings which correspond to

changing the value of ν1 from 0.750 to 1.000 are represented by a solid line while the values under the original

calibration are indicated by a line in stars.

improvement over the results reported in Table 2.8. Moreover, I also tried values of σω

above 3.500 × 10−6. Without adjusting the mean of the time-varying volatility, in most

cases this led to a problem with convergence while solving for linearization constant k1m.

The recalibrated in this way model has a high probability of getting a large number of

negative realizations of σ2
t . To address this issue, I also adjust σ̄2 to preserve the original

mean/standard deviation ratio.

In Table 2.8 I report the results for the case when the recalibrated model produces a

small number of negative σ2
t in Model new (good), when the model produces almost all
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of σ2
t negative in Model new (bad) and adjusting the mean of the time-varying volatility

by preserving the mean/standard deviation ratio of the original calibration in Model

new (adjusted). For a comparison I also report the results obtained using the original

calibration of the model in Model old, these results are identical to those reported in

Table 2.2-Table 2.4.

Tab. 2.8: Increase in volatility of expected returns

This table reports the implications of the long run risks model when the persistence of the time-varying volatility
(ν1) and the variance of its innovation (σω) is increased from the original value to ν1 = 0.9999 and σω = 3.5000×
10−6. Model new (good) reports the results when only a small number of the realizations of the time-varying
volatility process were negative. Model new (bad) reports the results when a large number of the realizations of
the time-varying volatility process were negative. Model new (adjusted) reports the results when the mean of the
time-varying volatility process is adjusted to preserve the mean/standard deviation of the original calibration.
Model old reports the results obtained under the original calibration. Panel A reports the descriptive statistics.
Panel B reports the implications for predictability. The numbers reported correspond to the medians of statistics
taken across simulation paths. Standard deviations and R-square statistics are in %.

Panel A: Moments of the data

Statistics dp rm rf rm − rf ∆d ∆c

Mean: Model new (good) −2.4721 0.0986 0.0135 0.0854 0.0172 0.0178
Model new (bad) −2.8641 0.0719 0.0251 0.0462 0.0178 0.0178

Model new (adjusted) −1.4004 0.2520 −0.1452 0.3939 0.0182 0.0176
Model old −3.0116 0.0674 0.0258 0.0413 0.0178 0.0178

Standard Deviation: Model new (good) 26.18 18.76 1.45 18.63 12.47 3.09
Model new (bad) 0.23 0.21 0.02 0.56 0.25 0.20

Model new (adjusted) 63.41 65.21 5.46 64.96 51.05 12.76
Model old 18.38 16.52 1.22 16.65 11.05 2.81

Panel B: Predictability

Variable dp rm rf rm − rf ∆d –

β Model new (good) 0.7868 0.0513 −0.0465 0.0984 −0.2235 –
Model new (bad) 0.6517 −0.0184 −0.0595 0.0581 −0.4187 –

Model new (adjusted) 0.5978 −0.0404 −0.0721 0.0461 −0.5447 –
Model old 0.6723 −0.0168 −0.0557 0.0419 −0.3739 –

t-stat Model new (good) 10.8743 0.5972 −14.0588 1.1714 −4.8241 –
Model new (bad) 7.5817 −0.1787 −15.5274 0.4323 −7.7244 –

Model new (adjusted) 6.9038 −0.3672 −13.9529 0.4092 −8.4163 –
Model old 8.2917 −0.1830 −14.3086 0.4253 −7.1629 –

R2 Model new (good) 62.39 1.08 72.33 2.04 24.40 –
Model new (bad) 42.45 0.88 75.01 5.66 42.76 –

Model new (adjusted) 35.60 0.64 69.56 0.61 46.49 –
Model old 45.08 00.65 71.06 0.63 38.88 –

In Panel A I report the descriptive statistics of the data obtained from the models.

A good realization of the recalibrated model matches the moments of the data well.

Comparing with the original calibration, the recalibrated model performs slightly worse

in matching the means of the dividend-price ratio and market returns and performs

somewhat better in matching the standard deviations of market returns, the interest
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rate, the excess returns and dividend growth. More importantly, Panel B shows that the

performance of the model significantly improves in matching the predictability patterns,

providing additional evidence in favor of the larger role of the time-varying volatility

channel in the BY model. The predictive relation between returns and the dividend-

price ratio now is positive and the slope coefficient and R2 are significantly higher than

under the original calibration. There is also an improvement in the predictability of the

interest rate and the dividend growth. The new model, however, still produces excessive

predictability of these series.

Calibrating ν1 = 0.9999 and σω = 3.500 × 10−6 it is also possible to get the results

reported under Model new (bad). This are the results when almost all the realizations of

σ2
t were negative. Negative realizations of σ2

t are substituted by a small positive number.

Not surprisingly, therefore, the model severely understates the volatilities of the data.

Additionally, Panel B shows that in this case the model produces similar to the original

calibration predictability patterns.

Adjusting the mean of the time-varying volatility to decrease the probability of getting

negative realizations of σ2
t leads to excessively high volatility of the generated data. The

variance of the consumption growth under the adjusted new model is far over 12 %, indi-

cating that this new volatility process does not describe the variance of the consumption

growth well. Moreover, as Panel B shows, the recalibrated model does not improve the

original calibration in matching the predictability patterns observed in the data.

2.5 Conclusion

Bansal and Yaron (2004) offer the long run risks model which is capable of solving the

equity premium puzzle with a reasonable level of the risk aversion and elasticity of in-

tertemporal substitution more than one. The model is based on the Epstein and Zin

(1989) preferences and on two highly persistent processes which govern the conditional

mean and the conditional variance of consumption growth–the long run risks.

In this article, I have analyzed predictability patterns generated by the long run risks

model. First, I conducted a Monte Carlo simulation exercise and compared predictability

of dividend growth, market returns, the riskless interest rate and the excess returns by
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the dividend-price ratio generated by the model with the one observed in the data. Since

there is evidence that dividend-price ratio is subject to structural breaks and the model

does not include this channel, I also included into the analysis the dividend-price ratio

adjusted for the structural breaks. I found that the model produces very different from

the data predictability patterns. Contrary to the data, in the model dividend growth

is more predictable than returns with the slope coefficient being negative in the both

regressions. These results indicate that in the model most part of the variation in the

dividend-price ratio is from expected dividend growth rather than expected returns and

that the model does not produce the discount rate effect. Additionally, it produces a

highly predictable by the dividend-price ratio interest rate contradicting the evidence

from the data. The model is rejected even stronger if the dividend-price ratio adjusted

for the structural breaks is used in the predictive regressions.

Using the state-space representation for returns of Cochrane (2008a), I connected the

predictability patterns to the processes of expected returns and expected dividend growth.

I found that the long run risks model implies that both processes are highly persistent,

positively correlated and that the innovation to expected dividend growth is much more

volatile than the innovation to expected returns. This implies that expected dividend

growth is much more volatile than expected returns and leads to an excessive fraction of

the variance of the dividend-price ratio attributed to expected dividend growth.

Furthermore, using the state-space representation I have connected the predictability

patterns generated by the model to the specific parameters of the calibration. I found that

the model ability to reproduce the predictability patterns is limited by the specification

of the long run risks processes.
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3. EXPECTED STOCK RETURNS AND AGGREGATED LONG RUN

RISKS

Introduction

One of the most successful models proposed to solve the equity premium puzzle is the

long-run risks model by Bansal and Yaron (2004) (BY). This model generates the level

of the mean and the variance of the equity premium and the risk-less interest rate relying

on the plausible values of the risk aversion. Other dimensions of the performance of the

model, however, are a subject of a debate. Some research clam that the BY model is

not consistent with the cross-sectional and time-series behavior of stock returns, that it

implies too much predictability in consumption growth and that it relies on a value of the

intertemporal substitution which is rejected by the data (See Beeler and Campbell (2009),

Constantinides and Ghosh (2010), Bonomo, Garcia, Meddahi and Tedongap (2010)).

Most of the research which tests the long-run risks model, however, is based on the

annual data, leaving the question of the effect of the aggregation on the conclusions

opened.

The aggregation issue in the BY model arises since the decision interval of the agent

is monthly, but the data observed is annual. The problem is that aggregating consump-

tion growth requires a nonlinear transformation of the monthly series. This creates a

difficulty with interpretation of the estimation results based on the annual data in terms

of the equations describing the evolution of the economy in the monthly frequency. The

aggregation problem in the context of asset pricing was addressed by Hansen and Sargent

(1983) and by Heaton (1995). Even more relevant for this study, Bansal, Kiku and Yaron

(2007a) show that the value of an estimate of the elasticity of intertemporal substitution

less than one obtained from the Generalized Method of Moments applied to the annual

data is totally consistent with its value of more than one in the monthly BY economy.



Moreover, using an approximation to the aggregated consumption growth, they show

that the aggregation introduces a moving average component to the consumption growth

process and changes a correlation structure of the basis stochastic equations describing

the model. In this paper I extend the analysis of Bansal, Kiku and Yaron (2007a) to the

effect the aggregation has on predictability of returns in the long-run risks model.

Aggregating dividend and consumption growth requires taking a natural log of the

averages of dividend/consumption growth over the last two years in levels. Bansal, Kiku

and Yaron (2007a) approximate the log of a sum by a sum of logs. Such an approxima-

tion leads to an excessively volatile series. Instead, I approximate the log of a sum by

regressing it on the sum of logs. Simulation results show that this approximation works

very well–the resulting approximated series is almost indistinguishable from the actual

one. Using this approximation I connect the aggregated expected dividend/consumption

growth with the monthly economy. As the result I find that a part of expected divi-

dend/consumption growth is observable. The observable part is completely character-

ized by the realized monthly dividend/consumption growth. Differently from dividend

growth, aggregation of returns is done through a simple summation of the monthly se-

ries. Thus, the aggregated expected returns are fully characterized by the latent long run

risks processes. This implies that the aggregation breaks the tight link between expected

dividend growth, expected returns and expected consumption growth which is a charac-

teristic of the monthly economy. Moreover, confirming Bansal, Kiku and Yaron (2007a),

my analysis exposes problems with the usual approaches to estimation of the elasticity

of intertemporal substitution.

To characterize the effect of the aggregation on predictability of returns, I proceed by

deriving the state-space representation for returns implied by the aggregated economy.

Comparing with the monthly state-space representation I find that the aggregation leads

to an additional state variable and a moving average component for expected dividend

growth process. Moreover, a correlation structure of the errors also changes. Differently to

the monthly frequency, the innovations to both, expected returns and expected dividend

growth are contemporaneously correlated with the innovations to the realized dividend

growth. This implies additional to the dividend-price ratio variables might help to predict
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returns and exposes some possible statistical difficulties faced by the predictive regression.

Finally, using the calibration of BY, I find that in both, the monthly and the annual

frequencies, most part of the variation in the dividend-price ratio in the model stems

from expected dividend growth and that the dividend-price ratio tracks the variation in

the poor economic growth risk component in expected returns and expected dividend

growth.

The paper proceeds as follows. Section 1 summarizes the main features of the long-

run risks model. Section 2 describes the aggregation procedure. Section 3 presents

the analysis of the effect of the aggregation on expected returns and expected dividend

growth. Section 4 analyses the effect of the aggregation on predictability of returns.

Section 5 concludes.

3.1 The long run risks model specification

Denoting ∆ct+1 and ∆dt+1 as log-consumption and log-dividend growth, the BY model

is described by the following dynamics of the monthly series:

∆ct+1 = m+ xt + σtηt+1, (3.1.1)

∆dt+1 = md + φxt + ϕdσtud,t+1, (3.1.2)

xt+1 = ρxt + ϕeσtet+1, (3.1.3)

σ2
t+1 = σ̄2(1− ν1) + ν1σ

2
t + σωωt+1. (3.1.4)

From Eq.(3.1.1), m+xt equals to the conditional mean and σ2
t equals to the conditional

variance of consumption growth. These processes in the BY economy are highly persistent

and, therefore, are the sources of the long run risks: the risk of poor economic growth

and the risk of high economic uncertainty. Dividend growth has a leveraged exposure

to the long run risks. Its exposure to the poor economic growth risk is governed by the

parameter φ and to the high economic uncertainty risk by the parameter ϕd.

Each month a representative agent chooses her consumption stream by maximizing

the Epstein and Zin (1989) utility function given the feasibility and non-negativity of
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the consumption choice. Recall that Epstein and Zin (1989) utility function leads to the

following Euler Equation:

Et

[
exp

(
θlogβ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 + ri,t+1

)]
= 1, (3.1.5)

with rc,t+1 being log-returns on the claim to the aggregate consumption at time t+ 1

and ri,t+1 being log return on any other asset at time t+ 1. Moreover, β is the subjective

time discount factor and θ is related to the relative risk aversion γ and the elasticity of

intertemporal substitution ψ through: θ =
1− γ
1− 1

ψ

.

To solve the model, BY use the Campbell and Shiller (1988) linearization. Denot-

ing the consumption-price ratio at time t as cpt, the linearization implies the following

expression for returns on the claim to aggregate consumption:

rc,t+1 = k0 − k1cpt+1 + cpt + ∆ct+1. (3.1.6)

k1 =
e−c̄p

1 + e−c̄p
and k0 = −(1 − k1)log(1 − k1) − k1log(k1) are linearization constants

which both, depend and determine the mean of the consumption-price ratio ¯cpt.

BY show that the solution for the consumption-price ratio in the monthly long run

risks economy takes the following form:

cpt = −A0 − A1xt − A2σ
2
t . (3.1.7)

The exact expressions for the loadings A0, A1 and A2 are provided by many authors

including Beeler and Campbell (2009), Bansal, Kiku and Yaron (2007a) and Constan-

tinides and Ghosh (2009). A0 together with A2σ̄
2(1 − ν1) determine the mean of the

consumption-price ratio and is dependent on the parameters which govern the uncon-

ditional means of the processes described by Eq.(3.1.1)-Eq.(3.1.4). A1 summarizes a

dependence of returns on the claim to aggregate consumption and consumption growth

on xt while A2 reflects heteroskedasticity of expected and realized consumption growth.
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The long run risks economy is characterized by the following innovation to the pricing

kernel:

mt+1 − Et [mt+1] = −γσtηt+1 − (1− θ)k1A1ϕeσtet+1 − (1− θ)k1A2ωt+1. (3.1.8)

From Eq.(3.1.8), the innovation to the pricing kernel has three independent compo-

nents stemming from the innovation to the realized consumption growth–the short run

risk, from the innovation to expected consumption growth– the economic growth risk and

from the innovation to the time-varying volatility– the economic uncertainty risk. Since

the long run risks affect the innovation to the pricing kernel, they are the sources of the

risk premium.

3.2 Aggregation

Most of the papers analyze the BY model using the monthly equations. An exception is

Bansal, Kiku and Yaron (2007a) who claim that aggregation is responsible for a downward

bias in estimates of the intertemporal elasticity of substitution resulting from a GMM.

They show that the aggregation procedure employed in the BY model introduces an MA

component into consumption growth and, consequently to the pricing kernel. Moreover,

the aggregation changes the correlation structure of the errors in Eq.(3.1.1)-Eq.(3.1.4).

To be more specific, aggregation dividends and consumption in the BY model involves

taking averages of the levels of the monthly series. Using a superscript a for the annual-

ized series, a subscript 12t to indicate that the annualized variable is measured over 12

month and large letters for the levels, consumption is aggregated through the following

expression:

∆ca12(t+1)≡log
Ca

12(t+1)

Ca
12t

= log

∑11
j=0 C12(t+1)−j∑11
j=0C12t−j

(3.2.1)

By approximating ∆ca12(t+1) as:
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∆ca12(t+1) ≈
22∑
j=0

χj∆c12(t+1)−j, (3.2.2)

with:

χj =


j + 1

12
, j < 12

23− j
12

, j≥12,

Bansal, Kiku and Yaron (2007a) show that the aggregated consumption is related to

the monthly expected consumption growth through:

∆ca12(t+1) ≈ φacm+ φacx
a
12(t+1)−23 + ηa12(t+1), (3.2.3)

with:

φac =
22∑
j=0

χjρ
j,

ηa12(t+1) =
22∑
j=0

χj

[
σ12(t+1)−j−1η12(t+1)−j + ϕe

22−j∑
i=1

ρi−1σ12(t+1)−j−1−ie12(t+1)−j−i

]

According to Eq.(3.2.3) the aggregation introduces an MA structure to the consump-

tion growth process. Note additionally, that while the errors to expected consumption

growth were independent from the errors to the realized consumption growth, it is not

the case after the aggregation. Consequently, Bansal, Kiku and Yaron (2007a) model the

aggregated consumption growth as:

∆ct+1 = m+ xt + ασt−1ηt + σtηt+1.

Moreover, from Eq.(3.2.3), the new long run risks components coincide with the De-

cember counterpart, so that the aggregated risk of poor economic growth is described

by:
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x12t = ρ12x12(t−1) + ϕe

11∑
j=0

ρjσ12(t+1)−j−1e12(t+1)−j, (3.2.4)

while the aggregated risk of high economic uncertainty follows:

σ2
12t = σ̄2(1− ν12

1 ) + ν12
1 σ

2
12(t−1) + σω

11∑
j=0

ω12(t+1)−j (3.2.5)

The innovation to the pricing kernel after the aggregation is:

mt+1 − Et [mt+1] = −α
ψ
σt−1ηt −

(
(γ − 1

ψ
)k1α + γ

)
σtηt+1−

−(1− θ)k1A1ϕeet+1 − (1− θ)k1A2σωωt+1.

(3.2.6)

Comparing with Eq.(3.1.8), the aggregation procedure employed in the BY model

introduces a lagged error of the realized consumption growth into the innovation to the

pricing kernel. This additional term and the correlation between the errors to expected

and to the realized consumption growth are new sources of the volatility of the pricing

kernel and the risk premium.

In this paper I extend the analysis of Bansal, Kiku and Yaron (2007a) to predictability

generated by the long-run risks model. To do that I modify the approximation given by

Eq.(3.2.2). The new approximation works well and allows a derivation of the closed form

solutions for dividend growth in terms of monthly processes for the long run risks.

Similarly to consumption growth, the annualized dividend growth is obtained from:

∆da12(t+1) = log

∑11
j=0D12(t+1)−j∑11
j=0 D12t−j

. (3.2.7)

In the Appendix, it is shown that Eq.(3.2.7) can be approximated as:
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∆da12(t+1) = b1

11∑
j=0

(j + 1)∆d12(t+1)−j + b2

10∑
j=0

(11− j)∆d12t−j. (3.2.8)

with b1 and b2 being picked up by a regression.

In Table 3.1 I estimate the coefficients of Eq.(3.2.8) and a similar equation for con-

sumption growth. I report the means and the medians of the finite sample distribution of

the statistics obtained from simulating 80 annual observations 1000 times and the pop-

ulation estimates obtained from a single simulation of 5000 annual observations. Note

that the standard errors are GMM-adjusted using the codes downloaded from Prof. John

H. Cochrane web page.

Tab. 3.1: Approximation

Panel A of this table provides the results of the regression:

∆da12(t+1) = c0 + c1

11∑
j=0

(j + 1)∆c12(t+1)−j + c2

10∑
j=0

(11 − j)∆c12t−j + εc12(t+1). ,

while Panel B, that of:

∆da12(t+1) = b0 + b1

11∑
j=0

(j + 1)∆d12(t+1)−j + b2

10∑
j=0

(11 − j)∆d12t−j + εd12(t+1).

Population values are calculated from a single simulation of 5000 annual observations. The minimum, the

maximum, the mean and the median of the finite sample distribution of the statistics are calculated based on 80

annual observations generated 1000 times. Standard errors are GMM-adjusted to account for heteroskedasticity.

t-statistics are reported in the round brackets. R-squared statistics are reported in %.

Pop. Value Min Max Mean Median

Panel A: Consumption growth

ĉ0 0.0000 −0.0000 0.0003 0.0000 0.0000
(0.5110) (−1.4631) (2.0082) (0.0335) (0.0094)

ĉ1 0.0835 0.0824 0.0845 0.0835 0.0835
(83.96× 102) (12.23× 10) (73.37× 10) (33.61× 10) (32.99× 10)

ĉ2 0.0831 0.0820 0.0847 0.0831 0.0831
(67.57× 102) (99.98) (62.05× 10) (27.79× 10) (27.06× 10)

R2 100.00 99.90 99.99 99.97 99.99

Panel B: Dividend growth

b̂0 −0.0000 −0.0003 0.0004 0.0000 0.0000
(−0.0081) (−1.6049) (2.8780) (0.0182) (0.0078)

b̂1 0.0835 0.0821 0.0847 0.0835 0.0835
(20.75× 102) (12.30× 10) (66.48× 10) (30.63× 10) (30.01× 10)

b̂2 0.0831 0.0815 0.0847 0.0831 0.0831
(17.02× 102) (92.99) (62.07× 10) (25.38× 10) (24.83× 10)

R2 99.97 99.90 99.99 99.97 99.97
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The constant term in the regression equals to zero and statistically insignificant for

the population, the mean and the median of the finite sample distribution. The slope co-

efficients for both of the elements of the approximation are highly statistically significant

with the values having low dispersion across the simulation paths. Moreover, the means

and the medians of the slope coefficients are equal to the population values. Importantly,

the R2 close to one indicates that the two elements of the decomposition capture virtually

all the time-variation of the aggregated dividend growth and of the aggregated consump-

tion growth. Note that the approximation used in Bansal, Kiku and Yaron (2007a) is

obtained by restricting b1 and b2 equal to one. My simulation results show that restrict-

ing the coefficients to one leads to an excessively volatile approximated dividend growth

process, with the standard deviation equal to 137.64 % v.s. the standard deviation of

11.48 % of the actual dividend growth.

3.3 Expected returns and expected dividend growth in the aggregated economy

In the monthly frequency expected returns and expected dividend growth are related to

expected consumption growth and the time-varying volatility through:

µrt = aµr +
1

ψ
xt − (1− k1mν1)A2mσ

2
t ; (3.3.1)

µdt = md + φxt; (3.3.2)

∆dt = µdt−1 + εdt+1, (3.3.3)

with aµ,r = k0m+k1m(A0m+A2mσ̄
2(1−ν1))−A0m+md and A2m being a loading of the

dividend-price ratio on the time-varying volatility. Eq.(3.3.1) lies behind a commonly used

procedure for estimating the elasticity of intertemporal substitution. If the time-varying

volatility does not vary much, the elasticity of intertemporal substitution can be recovered

from a regression of returns or the interest rate on consumption growth1. Note that while

expected returns are related to the both long run risks, expected dividend growth is

determined only by expected consumption growth. Additionally, since the innovations

1Such a regression may suffer from the endogeneity problem. Therefore, an IV estimation is usually used
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to xt are independent from the innovations to ∆dt, the innovations to expected dividend

growth are uncorrelated with the innovations to the realized dividend growth.

Expected annualized dividend growth is related to the monthly series through:

µd,a12t = 78b1md + b1

11∑
j=0

(j + 1)ρ11−jφx12t + b2φ

10∑
j=0

(11− j)∆d12t−j. (3.3.4)

Similarly, expected annualized consumption growth is:

µc,a12t = 78c1m+ c1

11∑
j=0

(j + 1)ρ11−jx12t + c2

10∑
j=0

(11− j)∆c12t−j. (3.3.5)

Part of expected dividend growth is observable. From Eq.(3.3.4) expected aggregated

dividend growth consists of a latent x12t and a weighted sum of the observable realized

monthly dividend growth series. Eq.(3.3.5) shows that expected consumption growth

has a similar to expected dividend growth form, consisting of a part due to x12t and

a part stemming from the realized monthly consumption growth. This implies that

the aggregation breaks a tight link between expected dividend growth and expected

consumption growth. Each of the processes is affected by an independent component

given by the innovations to the realized dividend growth and to the realized consumption

growth. To elaborate, in Panel A of Table 3.2 I decompose the variation in expected

dividend growth and in expected consumption growth into the components related to

the aggregated state variable x12t and to the monthly realized dividend/consumption

growth. In Panel B, in addition, I calculate the correlations of each of the components

with expected dividend growth and expected consumption growth.

Panel A of Table 3.2 shows that x12t accounts for only 13 % of the variation in expected

dividend growth and only 18 % of the variation in expected consumption growth. The

other component accounts for over 67 % of the variance of expected dividend growth and

over 51 % of the variance of expected consumption growth. Moreover, Panel B of Table

3.2 shows that the correlations of expected dividend growth and expected consumption

growth with the other component is over 90 %. This evidence implies that x12t has a
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Tab. 3.2: Variation in expected consumption/dividend growth

This table reports the fractions of the variance of expected dividend growth and expected consumption growth

attributed to the aggregated long-run risk x12t and to the weighted sum of the monthly realized dividend growth

over the previous year in the case of expected dividend growth or to the weighted sum of the monthly realized

consumption growth over the previous year in the case of expected consumption growth, in Panel A. In Panel B the

table reports correlations of expected dividend growth and expected consumption growth with the components.

All the values are in %.

Series x12t other component

Panel A: Fractions of the variance

µdt 12.81 67.31
µct 18.22 51.31

Panel B: Correlations

µdt 63.56 94.16
µct 78.37 92.90

somewhat different from xt interpretation. Though a small predictable component x12t

does capture some part of the variation in expected consumption growth it does not

completely describe dynamics of expected consumption growth.

The expression relating expected aggregated returns to the monthly economy is:

µr,a12t = 12aµr − (1− k1mν1)A2mσ̄
2 12ν1 − ν12

1 − 11

ν1 − 1
+

+
ρ12 − 1

ψ(ρ− 1)
x12t − (1− k1mν1)A2m

ν12
1 − 1

(ν1 − 1)
σ2

12t

(3.3.6)

Differently to dividend growth, returns are aggregated by a simple summation of the

monthly series. Consequently, expected returns in the monthly and in the annual fre-

quency are completely characterized by the monthly long run risks processes. Note that

Eq.(3.3.6) exposes problems of the common approach to estimation of the elasticity of in-

tertemporal substitution. Specifically, the aggregation implies that expected returns are

related to expected consumption growth only indirectly, through x12t. Moreover, even if

x12t were perfectly correlated with expected consumption growth, expected returns have

a loading of
ρ12 − 1

ψ(ρ− 1)
on x12t. Therefore, Eq.(3.3.6) confirms the evidence for the bias in

the estimate of the intertemporal substitution which arises from the aggregation provided

in Bansal, Kiku and Yaron (2007a).

Cochrane (2008a) shows that the state-space representation–a system which includes

the equations describing the dynamics of expected returns, expected dividend growth
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and the innovation to the realized dividend growth is sufficient to fully recover predictive

relations between returns and the dividend-price ratio. Using dynamics of the state

variables given by Eq.(3.1.3) and Eq.(3.1.4) for the monthly series and by Eq.(3.2.4) and

Eq.(3.2.5) for the annual series in the appendix I derive the state-space representation

for returns for the monthly and for the aggregated economy.

In the monthly frequency, the state-space representation is:

µrt+1 = αµr + δµrµrt + τµdt + εµrt+1; (3.3.7)

µdt+1 = αµd + δµdµdt + εµdt+1; (3.3.8)

∆dt+1 = µdt + εdt+1. (3.3.9)

While in the aggregated economy the state space-representation is described by the

following system:

µr,a12(t+1) = αµr,a + δµr,aµr,a12t + τaxa12t + εµr,a12(t+1); (3.3.10)

µd,a12(t+1) = αµd,a + δµd,aµd,a12t + ϑaεX12t + εµd,a12(t+1); (3.3.11)

xa12(t+1) = δx,axa12t + εx,a12(t+1); (3.3.12)

∆da12(t+1) = µd,a12t + εd,a12(t+1). (3.3.13)

A perfectly correlated expected consumption growth and expected dividend growth

implies that lagged expected dividend growth affects expected returns in the monthly

frequency. Since the aggregation weakens the relation between expected dividend growth

with the long-run risks process, an additional state variable–x12t, imperfectly correlated

with expected dividend growth affects expected returns. Moreover, while in the monthly

frequency expected dividend growth follows an AR(1) specification, expected aggregated

dividend growth has an MA component.

Bansal, Kiku and Yaron (2007a) show that aggregation affects a correlation structure

of errors in the economy. I present the correlation structure of the errors of the monthly

and the annual state-space representation in Table 3.3.
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Tab. 3.3: State-space representation for returns: correlation structure

This table reports the variance-covariance matrix of the state-space representation for returns for the monthly

economy in Panel A and for the annualized economy in Panel B. The values on the diagonal are the standard

deviations while those on the off-diagonal are the correlations. The values are computed from a single simulation

of 60000 monthly or 5000 annual observations. All the values are in %.

Panel A: Monthly economy

Errors εµr εµd εd

εµr 00.00 95.22 00.00

εµd 95.22 00.10 00.00

εd 00.00 00.00 03.51

Panel B: Aggregated economy

Errors εµr,a εµd,a εd,a εx,a εX

εµr,a 00.84 37.98 08.15 91.65 11.85

εµd,a 37.98 07.27 49.08 41.68 −84.88

εd,a 08.15 49.08 07.49 08.78 −48.43
εx,a 91.65 41.68 08.78 00.11 12.66

εX 11.85 −84.88 −48.43 12.66 05.17

I start from the monthly system. From Panel A of Table 3.3 innovations to expected

returns in the BY model are characterized by a very low volatility. Their standard

deviation is lower than four digits after the decimal point reported in the table. The

volatility of the innovations to expected dividend growth, on the other hand, is very

high. Their standard deviation exceeds the standard deviation of the innovations to

expected returns by many times. Moreover, the innovations to expected returns and

expected dividend growth are highly positively correlated and both are uncorrelated with

innovations to realized dividend growth.

After aggregation, two additional shocks appear in the variance-covariance matrix of

the state-space representation. The first is due to the additional state variable x12t, the

second is from the MA structure of expected aggregated dividend growth. Similarly to

the monthly frequency case, the volatility of the innovations to expected returns is low

and the volatility of the innovations to expected dividend growth is high. The corre-

sponding numbers from Panel B of Table 3.3 show that the standard deviation of the

innovations to expected dividend growth exceeds the standard deviation of the innova-

tions to expected returns by a factor of more than eight. The correlation between the

innovations to expected returns and expected dividend growth, however, is much lower

than in the monthly frequency, being less than 40 % against over 95 % for the monthly

frequency. Moreover, innovations to the realized dividend growth are now correlated with
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the innovations to expected dividend growth. The correlation between the innovations,

according to Panel B of the table is 49 %. In the monthly frequency, the innovations

to expected dividend growth were perfectly correlated with the risk of poor economic

growth given by εxt . After aggregation, this correlation is lower than 42 %. Note that the

innovations to expected aggregated returns are highly correlated with the innovations to

the long run risks process x in both the monthly and the annual frequency.

I devote the next section to the predictive relations implied by the aggregated BY

economy.

3.4 Aggregation and predictability of returns in the long run risks model

Predicting returns using a regression frequently involves examining dynamics of the ex-

planatory variable. This approach is justified since, as shown in Stambaugh (1999), a

highly persistent regressor may lead to a bias and incorrect inference in a predictive

regression for returns. Additionally, following Cochrane (2008b) it is useful to analyze

predictability of returns jointly with predictability of dividend growth. Therefore, in this

section I analyze the following VAR:

dpt+1 = αdp + βdpdpt + εdpt+1; (3.4.1)

rm,t+1 = αr + βrdpt + εrt+1; (3.4.2)

∆dt+1 = αd + βddpt + εdt+1. (3.4.3)

Running a predictive regression for returns, we estimate expected returns using infor-

mation contained in the regressor. To examine how good the dividend-price ratio is a

proxy for expected returns, in the appendix I derive the following expressions relating the

dividend-price ratio to expected returns in the monthly and in the aggregated economy:

dpt = B0 +
µrt

1− k1mδµr
− (1− (τ + δµr)k1m)µdt

(1− k1mδµr)(1− k1mδµd)
(3.4.4)

and
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dpa12t = Ba
0 +

µr,at
1− ka1mδµr,a

− µd,at
1− ka1mδµd,a

+
τaka1mx

a
12t

(1− ka1mδµr,a)(1− ka1mδµd,a)
−

− ϑaεX12t

δµd,a(1− ka1mδµd,a)

(3.4.5)

In the monthly frequency, the variation in the dividend-price ratio reflects the variation

in both expected returns and expected dividend growth. Eq.(3.4.5) shows that, after

aggregation, additionally to expected returns and expected dividend growth, variation in

the dividend-price ratio contains information about the state variable affecting expected

returns–x12t and about the lagged innovation to expected dividend growth–εX12t. In both,

the monthly and the annual frequency, the dividend-price ratio is a noisy proxy for

expected returns since it contains information about the variation in the other variables.

Because two more latent processes affect dividend-price ratio, controlling for the noise is

more difficult in the annual frequency.

The state-space representation allows to obtain predictive relations implied by the

model. Specifically, the following dynamics of the dividend-price ratio characterizes the

monthly and the annual frequencies:

dpt+1 = adp + δµrdpt +
τ + δµr − δµd

1− k1mδµd
+ εdpt+1; (3.4.6)

dpa12(t+1) = adp,a + δµr,adpa12t +
δµr,a − δµd,a

1− ka1mδµd,a
µd,a12t +

[
τa

1− ka1mδx,a

]
xa12t+

+
ϑa

1− ka1mδµd

(
δµr,a

δµd,a
− 1

)
εX12t + εdp,a12(t+1).

(3.4.7)

Eq.(3.4.6) and Eq.(3.4.7) show that the dividend-price ratio follows a more complicated

than AR(1) dynamics. Additionally to its lagged value, expected dividend growth enters

the implied monthly relation while expected dividend growth, the long run risk process–

x12t and the MA component of expected dividend growth enter the implied annualized

relation. If the dividend-price ratio is contemporaneously correlated with any of the

additional variables, fitting Eq.(3.4.1) will result in an inconsistent estimate of the slope
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coefficient. This inconsistency can be important for applying the Stambaugh (1999)

correction to the predictive regression for returns since it accounts only for a finite sample

bias and ignores a possible bias from the additional variables.

The implied predictive relation between returns and the dividend-price ratio in the

monthly and the aggregated economies are:

rm,t+1 = ar + (1− k1mδ
µr)dpt +

[
1− k1m

(
τ

1− k1mδµd
− (δµd − δµr)

1− k1mδµd

)]
µdt + εrt+1.

(3.4.8)

ram,12(t+1) = ar,a + (1− ka1mδµr,a)dpa12t +

[
1− ka1m(δµr,a − δµd,a)

1− ka1mδµd,a

]
µd,a12t −

ka1mτ
a

1− ka1mδx,a
xa12t−

− ka1mϑ
a

1− ka1mδµd,a

(
δµr,a

δµd,a
− 1

)
εX12t + εr,a12(t+1).

(3.4.9)

Following a version of Eq.(3.4.8) which is based on unequal persistence of expected

returns and expected dividend growth, some authors have shown that it is important to

control for variation in expected dividend growth while predicting returns2. According

to Eq.(3.4.9), two additional variables–the aggregated long run risk process and the MA

component of expected dividend growth may be important for predicting returns. More-

over, an exclusion of the relevant variables from the predictive regression may lead to a

difficulty with tests for predictability of returns by the dividend-price ratio. The omitted

variable problem can also be viewed from a slightly different angle. Additional variables

affect an interpretation of the slope coefficient resulting from the predictive regression.

Using the monthly state-space representation, the slope coefficient in Eq.(3.4.2) incorpo-

rates information about the correlation between the dividend-price ratio with expected

dividend growth. Using the annual state-space representation, however, the slope coef-

ficient is also affected by the correlation of the dividend-price ratio with the additional

state variable and with the MA component of expected dividend growth.

Finally, the implied predictive relation between dividend growth and the dividend-

2See Binsbergen and Koijen (2010) and Ferreira and Santa-Clara (2011).
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price ratio is:

∆dt+1 = B0
(1− k1mδ

µr)(1− k1mδ
µd)

(1− (τ + δµr)k1m)
+

(1− k1mδ
µr)(1− k1mδ

µd)

(1− (τ + δµr)k1m)
dpt−

− 1− k1mδ
µd

(1− (τ + δµr)k1m)
µrt + εdt+1;

(3.4.10)

and

∆d12(t+1) = Ba
0(1− ka1mδµd,a) + (1− ka1mδµd,a)dpa12t −

1− ka1mδµd,a

(1− ka1mδµr,a)
µr,a12t−

− τaka1m
(1− ka1mδµr,a)

xa12t +
ϑa

δµd,a
εX12t + εdt+1

(3.4.11)

Similarly to the case of fitting an AR(1) dynamics to the dividend-price ratio and

the predictive regression for returns, predictive regression for dividend growth described

by Eq.(3.4.3) may suffer from the omitted variable problem. In addition to the lagged

dividend-price ratio, expected returns enter the implied monthly predictive relation and

expected returns, the additional state variable and the MA component of expected divi-

dend growth enter the implied annual predictive relation.

To summarize, aggregation implies that additional variables enter the predictive re-

lations and, consequently, may help to predict returns. Moreover, a presence of the

additional variables may affect statistical inference and the interpretation of estimated

coefficients resulting from the predictive regression. I devote the rest of this section to

the predictability implied by the BY calibration of the long run risks model.

In Table 3.4 I estimate the predictive VAR given by Eq.(3.4.1)–Eq.(3.4.3) using a

single simulation path of 6000 annual observations generated by the BY model.

Tab. 3.4: Predictive regressions

This table reports the results of predicting the dividend-price ratio, returns and dividend growth by the dividend-

price ratio using a single simulation path of 5000 annual observation generated from the long run risk model.

Standard errors are GMM-adjusted to account for heteroskedasticity. R-squared statistics is in %.

Regression β t-stat R2

dpt+1 = αdp + βdpdpt + εdpt+1 0.7822 84.5614 61.19
rm,t+1 = αr + βrdpt + εrt+1 −0.0376 −2.8821 00.17

∆dt+1 = αd + βddpt + εdt+1 −0.2933 −39.2850 24.29
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Table 3.4 shows that the distinguishing feature of the BY model is that the slope

coefficient for the predictive regression for returns and for dividend growth is negative.

Moreover, predictability of dividend growth by the dividend-price ratio is excessively

strong and predictability of returns by the dividend-price ratio is excessively weak. The

R2 in the dividend growth regression is more than 24 % indicating that the dividend-price

ratio captures 24 % of the variation in expected dividend growth. While a virtually zero

R2 for the returns’ regression indicates a low variability of expected returns in the model.

How different is interpretation of the results presented in Table 3.4 using the monthly

or the annual state-space representation? I address this question in Table 3.5. In Panel

A of Table 3.5 I decompose the variation in the dividend-price ratio into the components

following Eq.(3.4.5) and in Panel B of Table 3.5 I calculate the cross-correlations between

the variables of the state-space representation and the dividend-price ratio.

Tab. 3.5: Variation in dividend-price ratio

Panel A of this table reports the fractions of the standard deviation of the dividend-price ratio attributed to

the elements of the state-space representation. Panel B, the standard deviations on the diagonal and the cross-

correlations on the off-diagonal of the elements of the state-space representation. All the values are in %.

Frequency dp µr µd x εX

Panel A: Fractions of the variation of the dividend-price ratio

monthly 100.00 46.25 138.01 – –
annual 100.00 42.06 173.01 12.92 135.12
Panel B: Correlations and standard deviations

monthly dp 16.13 −76.94 −97.68 – –
µr −76.94 00.13 88.84 – –

µd −97.68 88.84 00.51 – –
annual dp 19.50 −72.17 −84.46 −92.49 23.55

µr −72.17 01.37 56.03 87.27 08.20

µd −84.46 56.03 08.51 63.38 −70.30
x −92.49 87.27 63.38 00.17 10.44

εX 23.55 08.20 −70.30 10.44 05.13

Consistently with the evidence on higher predictability of dividend growth generated

by the BY model, from Panel A of Table 3.5, variation in expected dividend growth

is the major contributor to the volatility of the dividend-price ratio in the BY model

both in the monthly and in the annual frequency. The ratio of the standard deviation

of expected dividend growth to the standard deviation of the dividend-price ratio in the

monthly frequency is 138 % and in the annual frequency 173 %. Moreover, in the annual
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frequency, the MA component of expected dividend growth also accounts for a significant

part of the variation in the dividend price ratio. Variation in expected returns in the

both monthly and annual frequency, account only for a small fraction of the variation in

the dividend-price ratio. The ratio of the standard deviation of expected returns to the

standard deviation of the dividend-price ratio does not exceed 50 %. The monthly and

the annual state-space representation imply the following expressions for the correlation

of the dividend-price ratio with expected returns:

corr(dpt, µ
r
t ) =

1

1− k1mδµr
σµr

σdp
− (1− (τ + δµr)k1m)

(1− k1mδµr)(1− k1mδµd)

σµd

σdp
corr(µr, µd)

= 0.4625− 1.2261;

c

corr(dpa, µr,a) =
1

1− k1δµr,a
σµr,a

σdp,a
− 1

1− k1δµd,a
σµd,a

σdp,a
corr(µr,a, µd,a)+

+
τak1

(1− k1δµr,a)(1− k1δµd,a)

σx,a

σdp,a
corr(xa, µr,a)− ϑa

δµd,a
1

1− k1δµd,a
σε

X

σdp,a
corr(εX , µr,a)

= 0.4206− 0.9694− 0.1128− 0.1108

The Panel B shows that expected returns are positively correlated with expected

dividend growth in both the monthly and the annual frequency. This positive correlation

together with a high fraction of expected dividend growth in the variation of the dividend-

price ratio is responsible for the negative correlation between expected returns and the

dividend-price ratio in the both frequencies. Additional variables which appear in the

annual predictive regression reinforce a negative correlation between the dividend-price

ratio and expected returns.

In line with the evidence on a larger predictable component of dividend growth in

Table 3.4, Panel B of Table 3.5 shows that expected dividend growth is highly volatile

in the BY economy in both monthly and annual frequencies. The standard deviation of

expected dividend growth exceeds the standard deviation of expected returns by more

than a factor of four in the monthly frequency and by more than a factor of six in the

annual frequency implying a much higher predictability of dividend growth than that of

returns.

62



Moreover, the dividend-price ratio is highly negatively correlated with the long run

risk variable xt in the monthly frequency and with x12t in the annual one. In the monthly

frequency 100 % of the variation of expected dividend growth comes from xt. Therefore,

a correlation of 97.68 % between the dividend-price ratio and expected dividend growth

reported in the table translates into an equal correlation between the dividend-price ratio

and xt. The correlation between the annualized dividend-price ratio and the long run

risk process x12t is only slightly less than in the monthly frequency. This evidence implies

that the dividend-price ratio is a good proxy for x and that it tracks variation in this

state variable in the predictive regressions, Eq.(3.4.1), Eq.(3.4.2) and Eq.(3.4.3).

3.5 Conclusion

Bansal, Kiku and Yaron (2007a) stress the importance of accounting for the aggregation

problem while testing the long-run risks model. In this paper I extended their analysis.

Specifically, I developed an improved version of their approximation in order to connect

the aggregated dividend growth with the monthly economy and analyzed the effect of the

aggregation on the predictability of returns in the model.

I found that the aggregation implies that a part of expected dividend growth is observ-

able, since it is determined by a weighted sum of the monthly realized dividend growth.

Additionally, the aggregation breaks the tight link between expected returns, expected

dividend growth and expected consumption growth which characterizes the monthly econ-

omy. Moreover, my analysis exposes problems with the common procedures used to

estimate the elasticity of intertemporal substitution.

After aggregation, an additional variable enters the state-space representation and the

process for expected dividend growth is augmented by a moving average structure. Fur-

thermore, even though in the monthly frequency the innovations to expected dividend

growth are uncorrelated with the innovations to realized dividend growth, they become

correlated after aggregation. These changes in the state-space representation imply ad-

ditional to the dividend-price ratio variables should help to predict returns and needed

to be controlled for in the predictive regression whenever they are correlated with the

dividend-price ratio.
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Using the calibration of Bansal and Yaron (2004), I found that the counterfactually

negative relation between returns and the dividend-price ratio is due to excessive vari-

ability of expected dividend growth and a high correlation between expected returns

and expected dividend growth. The presence of the additional variables in the implied

predictive relation reinforces the negative correlation between expected returns and the

dividend-price ratio.
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4. SIMULATION STUDY OF PREDICTIVE REGRESSIONS

1

Introduction

Goyal and Welch (2008) note that the dividend-price ratio, together with the other popu-

lar variables, predicts returns poorly out-of-sample. The out-of-sample R-squared of the

conventional predictive regression is small and frequently negative, indicating that the

historical mean produces a forecast with an equal or even lower mean square error than

the conventional predictive regression.

There is still a debate on an interpretation of this result. Goyal and Welch (2008)

argues that a poor out-of-sample performance might indicate non-stability of the models

used to predict stock returns. Cochrane (2008b) and Campbell and Thompson (2008)

attribute it to a high persistence of the dividend-price ratio and finite samples, while

Inoue and Kilian (2004) documents a low statistical power of out-of-sample tests.

In this article we examine statistical properties of the conventional predictive regression

which involves regressing stock returns on a lagged dividend-price ratio. We confirm and

extend the results of Cochrane (2008b) and Ferreira and Santa-Clara (2011) that the

conventional predictive regression performs poorly out-of-sample even in the environment

when the dividend-price ratio is designed to predict returns. Moreover, we provide more

evidence on low power of the conventional predictive regression, confirming Inoue and

Kilian (2004). Additionally, we show that a large unpredictable component in realized

returns leads to a small out-of-sample R-squared ever possible to obtain. Using the

true expected returns in place of an estimate, we calculate that the maximum out-of-

sample R-squared attainable in our economies only slightly exceeds 10 %. Moreover, this

unpredictable component conceals high correlations of the estimates by the prediction

1This essay represents joint work with Pedro Sana Clara



methods with the true expected returns.

Furthermore, we examine statistical properties of alternatives to the conventional pre-

dictive regression. Several possible alternatives are offered by the literature. Stambaugh

(1999) suggests a correction based on an approximation of the finite sample bias in the

persistence of the dividend-price ratio. Lewellen (2004) uses evidence against explosive

bubbles in stock prices to set up an upper bound on the bias in the coefficients resulting

from predictive regression. Ashley (2006) develops a shrinkage based on the coefficient

of variation due to the sampling error. Differently to these methods, Connor (1997) and

Ferreira and Santa-Clara (2011) approach the problem through economic rather than

pure statistical perspective. Connor (1997) advocates a Bayesian adjustment to the co-

efficients. Ferreira and Santa-Clara (2011) defines expected returns by a combination

of the dividend-price ratio and dividend growth forecasts. None of the existing works,

however, compares the performance of these methods.

For our analysis we set up a simulation exercise. We follow Cochrane (2008b), Ferreira

and Santa–Clara (2011) and Moon and Velasco (2010) and base our simulation design on

the Campbell and Shiller (1988) identity. Our approach recognizes a full dependence of

the observed return predictability patterns on the processes of expected returns, expected

dividend growth and an innovation to the realized dividend growth and, therefore, allows

to obtain a fully controlled environment for studying a predictive regression.

From the existing literature, we find four different systems–economies determining

the processes for expected returns, expected dividend growth and an innovation to the

realized dividend growth. One economy, while being consistent with many empirical

facts, implies that the dividend-price ratio does not predict returns but, instead, predicts

dividend growth. Therefore, we view this economy as an economically justified Null of

no predictability in returns.

While in all the other three alternative economies dividend-price ratio predicts returns,

they differ in the specification of the dynamics of expected returns and expected dividend

growth and thus all the three economies have different implications for the predictive re-

gressions. In one economy, expected returns and expected dividend growth have different

persistence which implies an additional variable in the predictive relation between returns
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and the dividend-price ratio. In another, expected dividend growth has an MA structure

leading to an ARMA process for the dividend-price ratio.

Our results can be summarized as follows. We find that the conventional predictive

regression is likely to produce a higher mean square error than the historical mean in all

the alternative economies. Furthermore, it has a low power to reject our null economy.

We attribute these disadvantages to a high variance of its expected returns estimate.

This evidence, however, does not imply a superiority of the forecast based on a historical

mean. Our analysis shows that its estimate has a low correlation with the true expected

returns and is, possibly, biased.

From the alternatives to the predictive regression, applying Stambaugh (1999) correc-

tion, leads to a deterioration of the out-of–sample performance, the methods of Lewellen

(2004), Ashley (2006) and Connor (1997) show some improvement and the method of

Ferreira and Santa-Clara (2011) is a considerable improvement over the predictive re-

gression. The differences in the performance are largely attributed to a change in the

noisiness of the estimate and to the covariance of the estimate with the realized returns.

Furthermore, we show that, even though the conventional predictive regression and the

method of Stambaugh (1999) have a bad performance judging from the out-of-sample R-

squared, these methods have a high correlation with the true expected returns explaining

a significant part of their time variation.

Overall, the sum-of-parts method of Ferreira and Santa-Clara (2011) has a good perfor-

mance producing a high out-of-sample R-squared and having a good power. Our analysis

shows that this method produces a less noisy expected returns estimate which is highly

correlated with the true expected returns.

Section 1 describes the economies we use for the simulation. Section 2 summarizes

the conventional predictive regression and its alternatives. Section 3 presents the results.

Section 4 concludes.

4.1 Economies

In this section we discuss distinguishing features of economic models we use for the

simulation design. These economic models consist of the processes for expected returns,
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expected dividend growth and the innovation to the realized dividend growth. Cochrane

(2008a) shows that this environment is sufficient to completely characterize a predictive

relation between the market return and the dividend-price ratio.

Denote rt+1 and ∆dt+1 as log of stock returns and log of dividend growth at time t+1.

Let dpt+1 be the dividend-price ratio at time t+ 1. Furthermore, let:

µrt≡Et[rt+1],

µdt≡Et[∆dt+1],

We consider four different specifications for the processes for the expected returns,

expected dividend growth–four different economies. In our Null economy, the dividend-

price ratio does not predict returns, while in the three alternative economies which we

refer to as Economy I, Economy II and Economy III, the dividend-price ratio predicts

returns.

A model for expected returns and expected dividend growth which incorporates all

the economies as special cases is:

µrt+1 = aµ,r + bµ,rµrt + cµ,rxt + εµ,rt+1, (4.1.1)

µdt+1 = aµ,d + bµ,dµdt + cµ,dεMt + εµ,dt+1, (4.1.2)

xt+1 = ax + bxxt + εxt+1, (4.1.3)

∆dt+1 = µdt + εdt+1. (4.1.4)

Table 4.1 reports parameter values we use to calibrate the economies.

Null Economy. Our Null economy corresponds to the Bansal and Yaron (2004) model.

In the simulations, we use monthly calibration of the model and aggregate the data to the

annual frequency. We use approximate annual processes, however, to demonstrate the

differences between this economy and the alternative economies. In the annual frequency,

the Null economy is characterized by the following system:
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Tab. 4.1: Calibration

This table presents the values of the calibration of:

µrt+1 = aµ,r + bµ,rµrt + cµ,rxt + εµ,rt+1,

µdt+1 = aµ,d + bµ,dµdt + cµ,dεMt + εµ,dt+1,
xt+1 = ax + bxxt + εxt+1,

∆dt+1 = µdt + εdt+1.

corresponding to the Null Economy (second column), Economy I (third column), Economy II (fourth column)

and Economy III (fifth column). Note that parameter values presented for the Null economy are approximate. In

the simulation we use monthly calibration and follow the aggregation procedure described in Beeler and Campbell

(2009).

Null Economy Economy I Economy II Economy III

aµ,r 0.0031 0.0029 0.0061 0.0037

aµ,d 0.0018 7.5220× 10−4 0.0401 0.0217
ax 0.0000 – – –
bµ,r 0.8547 0.9410 0.9320 0.9570

bµ,d 0.7752 0.9410 0.3540 0.6380
bx 0.7752 – – –
cµ,r −0.5676 – – –

cµ,d 1.0000 – – 0.6380

σε
d

0.0761 0.1400 0.0020 0.0542

σε
µ,r

0.0084 0.0155 0.0160 0.0160

σε
µ,d

0.0738 0.0012 0.0580 0.0721

σε
x

0.0011 – – –

σε
M

0.0520 – – 0.0540

ρε
µ,r

εµ,d 0.3951 1.0000 0.4170 0.4170

ρε
µ,r

εx 0.9167 – – –

ρε
µ,r

εM 0.0957 – – −0.4369

ρε
µ,r

εd 0.0754 0.0750 −0.1470 −0.1470

ρε
µ,d

εx 0.4276 – – –

ρε
µ,d

εM −0.8524 – – 0.1728

ρε
µ,d

εd 0.4851 0.0750 0.0000 0.0000

ρε
x

εM 0.9167 – – –

ρε
x

εd 0.0773 – – –

ρ
M

εd −0.4888 – – 0.0963

µrt+1 = 0.0031 + 0.8547µrt − 0.5676xt + εµ,rt+1,

µdt+1 = 0.0018 + 0.7752µdt + εMt + εµ,dt+1,

xt+1 = 0.7752xt + εxt+1,

The Null economy is the most general one. Expected returns at time t+1, in addition

to their lagged value depend on a state variable xt. This state variable corresponds

to the December expected consumption growth in the Bansal and Yaron (2004) model.

Moreover, expected dividend growth has an MA structure. The additional state variable

and the MA component are absent in a monthly formulation of the Bansal and Yaron
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(2004) model and arise due to the aggregation to the annual frequency.

From Table 4.1, comparing with the alternative economies, the Null economy is char-

acterized by the lowest persistence of expected returns and a high persistence of expected

dividend growth. An additional distinguishing feature of the Null economy is a very low

standard deviation of the error to expected returns. Its value of 0.0084 is almost twice

lower than the value of 0.0160 in the alternative economies. The standard deviation

of the innovation to expected dividend growth is also slightly higher than in the other

economies.

It will be clear from the results presented below that those differences will translate

into very different predictability patterns observed in the Null economy if compared with

the alternatives.

Economy I. Economy I is obtained from a predictive VAR estimated in Cochrane

(2008b). Expected returns and expected dividend growth in this economy follow:

µrt+1 = 0.0029 + 0.9410µrt + εµ,rt+1,

µdt+1 = 7.5220× 10−4 + 0.9410µdt + εµ,dt+1,

Economy I is the most restrictive. The additional state variable and the MA com-

ponent in this economy are absent. Both processes follow are AR(1) and are equally

persistent. Moreover, Table 1 shows that standard deviation of the innovation to ex-

pected dividend growth is only 0.0012 which is many times lower than the corresponding

value in the other economies.

Economy II. Our Economy II is obtained from the Binsbergen and Koijen (2010)

cash-invested dividends system. It is characterized by the following processes:

µrt+1 = 0.0061 + 0.9320µrt + εµ,rt+1,

µdt+1 = 0.0401 + 0.3540µdt + εµ,dt+1,

Economy II is less restrictive than Economy I. While in the both economies expected

returns and expected dividend growth are an AR(1) process, in Economy II expected

returns are more persistent than expected dividend growth. Another difference is that,

from Table 1, in Economy II the innovation to expected returns is less volatile than the
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innovation to expected dividend growth.

Economy III. Economy III is the Binsbergen and Koijen (2010) market-invested divi-

dends case. In this economy, expected returns and expected dividend growth follow:

µrt+1 = 0.0037 + 0.9570µrt + εµ,rt+1,

µdt+1 = 0.0217 + 0.6380µdt + 0.6380εMt + εµ,dt+1,

Reinvesting dividends in the stock market leads to an additional MA structure for

expected dividends. Note that, while persistence of both, expected returns and expected

dividend growth, is higher in Economy III than in Economy II, persistence of expected

dividend growth increases by more. Additionally, reinvesting dividends in the stock

market increases volatility of the innovation to expected dividend growth and of the

innovation to the realized dividend growth.

In simulations, data on returns and the dividend-price ratio is obtained from the

Campbell and Shiller (1988) identity which states:

rt+1 = k0 − k1dpt+1 + dpt + ∆dt+1. (4.1.5)

2

It follows from Eq.(4.1.5) that the dividend-price ratio is connected with the state

variables through the present value identity:

dpt = B0 +B1µ
r
t +B2µ

d
t +B3xt +B4ε

M
t . (4.1.6)

Coefficients B0, B1, B2, B3 and B4 are determined by the structural parameters of

Eq.(4.1.1)–Eq.(4.1.4). The exact expressions, for the interested reader, are provided in

the Appendix.

For each of the economies we generate 80 observations which correspond to the 80

annual observations from the stock market data. In Table 4.2 we report the means taken

2In Eq.(5) k1 =
e−d̄p

1 + e−d̄p
and k0 = −(1− k1)log(1− k1)− k1log(k1).
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across the 10000 simulation paths of the descriptive statistics of the generated data.

Tab. 4.2: Descriptive statistics

This table presents descriptive statistics of realized returns, dividend growth and the dividend-price ratio implied

by each of the economies. The calculations are based on 80 observations simulated 10000 times. The Null

economy (Bansal and Yaron (2004) model) is simulated using a monthly system and then aggregated to the

annual frequency using the procedure of Beeler and Campbell (2009). All the entries of the table correspond to

the means of corresponding statistics taken across the simulation paths.

Descriptive Null Economy Economy I Economy II Economy III
Statistics

dp:
Mean −3.0075 −3.2626 −3.4428 −3.8296
Std 0.1892 0.3415 0.3774 0.5358
Min −3.4398 −3.9806 −4.2280 −4.9083
Max −2.5504 −2.5490 −2.6582 −2.7496

r:
Mean 0.0682 0.0509 0.1011 0.0692
Std 0.1693 0.1987 0.1534 0.2076
Min −0.3493 −0.4340 −0.2719 −0.4351
Max 0.4888 0.5370 0.4736 0.5739

∆d:
Mean 0.0178 0.0120 0.0622 0.0584
Std 0.1130 0.1388 0.0609 0.1006
Min −0.2604 −0.3279 −0.0858 −0.1853
Max 0.2967 0.3521 0.2099 0.3033

The dividend-price ratio in the Null economy is characterized by the highest mean and

the lowest volatility if compared with the other economies. The difference is especially

pronounced for the standard deviation which is more than twice lower than the standard

deviation of the dividend-price ratio in Economy III. Economy III, which corresponds to

the case of dividends reinvested into the stock market, implies the most volatile dividend-

price ratio and returns. The market reinvested dividend–price ratio is characterized by

the volatility which is more than 1,5 times higher than the volatility of the dividend-price

ratio in Economy I and Economy II. Finally, cash-reinvestment strategy, Economy II,

produces a low volatility of dividend growth.

A conventional approach to predict stock returns involves estimating a VAR:

dpt+1 = αdp + βdpdpt + εdpt+1, (4.1.7)

rt+1 = αr + βrdpt + εrt+1. (4.1.8)
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Eq.(4.1.1)-Eq.(4.1.4) together with Eq.(4.1.5) allow to derive the implied predictive

relations in each economy. Using Eq.(4.1.1)–Eq.(4.1.4) in Eq.(4.1.6) leads to the following

dynamic description of the dividend-price ratio:

dpt+1 = K0 + bµ,rdpt +K1µ
d
t +K2xt +K3ε

M
t +B1ε

µ,r
t+1 +B2ε

µ,d
t+1 +B3ε

x
t+1 +B4ε

M
t+1.

(4.1.9)

In Eq.(4.1.9) K0 = (1 − bµ,r)B0 + aµ,rB1 + aµ,dB2 + axB3, K1 = (bµ,d − bµ,r)B2,

K2 = (bx − bµ,r)B3 and K3 = (cµ,dB2 − bµ,rB4).

Furthermore, substituting Eq.(4.1.9) into Eq.(4.1.5) leads to the following implied

predictive relation between the returns and the dividend-price ratio:

rt+1 = (1− k1)K0 + (1− k1b
µ,r)dpt + (1− k1K1)µdt − k1K2xt − k1K3ε

M
t + εdt+1 − k1ε

dp
t+1,

(4.1.10)

with:

εdpt+1 = B1ε
µ,r
t+1 +B2ε

µ,d
t+1 +B3ε

x
t+1 +B4ε

M
t+1.

Eq.(4.1.9) and Eq.(4.1.9) expose several problems with the predictive VAR, Eq.(4.1.7)–

Eq.(4.1.8). The error to the dividend-price ratio from Eq.(4.1.9) enters negatively into

Eq.(4.1.10). If εdt+1 and εdpt+1 are uncorrelated this implies that the prediction error to

returns is negatively correlated with the error to the dividend-price ratio leading to a

violation of the strict exogeneity assumption. As the result, Stambaugh (1999) shows

that predicting returns with the dividend-price ratio leads to a finite sample bias in the

estimated coefficients and standard errors.

There are several other potential problems with the predictive VAR. Eq.(4.1.9) in-

dicates that estimating Eq.(4.1.7) we omit the other variables. Similarly, Eq.(4.1.10)

shows that the additional variables may help to predict returns. Both equations imply

that if the dividend-price ratio tracks other variables in addition to the expected re-
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turns, estimates of the persistence of the dividend-price ratio by fitting an AR(1) process

or predicting returns with only a lagged dividend-price ratio may produce inconsistent

coefficient estimates.

Table 4.3 provides the values of the coefficients of Eq.(4.1.9) and Eq.(4.1.10). It shows

that additional variables enter the implied predictive relations in Economy II, Economy

III and the Null economy.

Tab. 4.3: Implied predictive relations

This table summarizes the implications of each of the economies on the predictive relations between the returns

and the dividend-price ratio. All the values are computed using the calibration parameters. The fractions and

the correlations are in %.

Parameter Null Economy Economy I Economy II Economy III

Panel A: Shares of the variance of the dividend-price ratio

std(B1µ
r
t )

std(dpt)
47.81 108.54 102.40 94.63

std(B2µ
d
t )

std(dpt)
192.71 8.57 21.36 34.34

Panel B: dpt+1 = Kdp
0 +Kdp

1 dpt +Kdp
2 µdt +Kdp

3 xt +Kdp
4 εMt + εdpt+1

Kdp
1 0.08547 0.9410 0.9320 0.9570

Kdp
2 0.3042 – 0.8798 0.8342

Kdp
3 −2.1710 – – –

Kdp
4 0.3924 – – 0.8342

Panel C: rt+1 = Kr
0 +Kr

1dpt +Kr
2µ

d
t +Kr

3
x
t +Kr

4ε
M
t + εrt+1

Kr
1 0.1857 0.0931 0.0969 0.0736

Kr
2 0.7102 – −0.8525 0.1925

Kr
3 2.0684 –

Kr
4 −0.5264 – −0.8075

corr(εrt+1, ε
µ,r
t+1) 58.53 −72.80 −85.05 −74.41

Evidence in favor of predictability of returns by the dividend-price ratio implies that

a fraction of the variation of the dividend-price ratio which is attributed to expected

returns is larger than the fraction attributed to expected dividend growth. Panel A of

Table 4.3 shows that in all but one economy the fraction of the standard deviation due

to expected returns exceeds the fraction due to expected dividend growth. The fraction

of the standard deviation of the dividend-price ratio due to expected returns in Economy

I, Economy II and Economy III is around 100 % which exceeds the fraction due to

expected dividend growth by many times. In the Null economy, the pattern reverses. In

this economy, the contribution of expected dividend growth is three times higher than

that of expected returns. In other words, while in Economy I, Economy II and Economy
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III the dividend-price ratio predicts returns, in the Null economy it predicts dividend

growth.

Many return predictability patterns, like for example low autocorrelation and an in-

creasing R2 in the long horizon predictive regressions are explained by a presence of the

discount rate effect. The discount rate effect states that a contemporaneous correlation

between the innovations to expected returns and to the realized returns is negative. We

check the presence of the discount rate effect in our economies in the last row of the Panel

C. While the discount rate effect is present in Economy I, Economy II and Economy III,

it is absent in the Null economy.

We estimate the predictive VAR in each of the economies in Table 4.4. While all

the coefficients for the dividend growth regression follow from Eq.(4.1.7)-Eq.(4.1.8) and

Eq.(4.1.5), to facilitate the comparison of the predictability patterns across the economies,

we also include the results of the predictive regression for dividend growth.

Tab. 4.4: In-sample performance of conventional predictive regression

This table presents the results of the predictive VAR, Eq.(4.1.7)–Eq.(4.1.8) in the text, augmented by a predictive

regression for dividend growth. The results are based on 80 observations simulated 10000 times. All the entries of

the table correspond to the means of corresponding statistics taken across the simulation paths. The R2-statistics

is in %.

Parameter Null Economya Economy I Economy II Economy III

Panel A: dpt+1 = αdp + βdpdpt + εdpt+1

b 0.6566 0.8812 0.8841 0.9151
t-stat 8.00 17.70 18.77 22.53
R2 44.17 77.12 79.29 83.95

Panel B: rt+1 = αr + βrdpt + εrt+1

b −0.0058 0.1553 0.1353 0.1151
t-stat −0.15 2.21 2.89 2.47
R2 1.31 6.55 10.08 7.86

Panel C: ∆dt+1 = αd + βddpt + εdt+1

b −0.3810 0.0044 −0.0081 0.0017
t-stat −7.28 0.11 −0.34 0.12
R2 40.07 1.31 2.47 2.35

The Null economy is characterized by very different from the alternatives predictabil-

ity patterns. The estimated AR coefficient for the dividend-price ratio is 0.65 and the R2

in this regression is 44 %, much lower than in all the alternative economies. More impor-

tantly, dividend growth is highly predictable by the dividend-price ratio whereas returns
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are not. The R2 in the dividend growth regression indicates that current dividend-price

ratio captures 40 % of the variation in future dividend growth.

While additional variables enter the implied predictive relations in Economy II and

Economy III and are absent in Economy I, all alternative economies produce very similar

results. In all of these economies, fitting an AR(1) process to the dividend-price ratio

leads to estimates of the slope coefficient close to 0.9 and there is more evidence that

returns are predictable by the dividend-price ratio and the dividend growth is not.

4.2 Predicting returns out-of-sample

In this section we briefly summarize the methods to predict stock returns. We start from

the conventional predictive regression.

The conventional predictive regression involves estimation of:

rs = αr + βrdps−1 + εrs. (4.2.1)

An out-of-sample prediction of the returns for the period s + 1 is formed by using

the estimated parameters from Eq.(4.2.1) and a current observation of the dividend-price

ratio. In other words, the out-of-sample estimate of the current expected returns is:

µ̂PRs = α̂r + β̂rdps. (4.2.2)

Note that each period, the information used to estimate Eq.(4.2.1) expands leading to

different α̂r and β̂r.

As was already emphasized in the previous section, the conventional predictive re-

gression suffers from several drawbacks. Using the dividend-price ratio as a predictor of

returns leads to a violation of the strict exogeneity assumption and, consequently, to the

Stambaugh (1999) problem. Moreover, the uncertainty about the processes for expected

returns and expected dividend growth leaves a possibility of the additional variables we

omit while estimating Eq.(4.2.1) .
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Almost none of the methods we consider address the problem of the omitted variables.

Only the sum–of–parts method by Ferreira and Santa–Clara (2011) takes into account

the possibility of expected dividend growth entering the implied predictive relation for

returns.

Stambaugh (1999) shows that the bias in the estimated coefficient in Eq.(4.2.1) obeys:

E
[
β̂r − βr

]
=
cov(εrt+1, ε

dp
t+1)

var(εdpt+1)
E
[
β̂dp − βdp

]
. (4.2.3)

The methods–alternatives to the conventional predictive regression try to solve the

Stambaugh (1999) problem through either applying corrections to the bias to the coeffi-

cients from the predictive regression directly, or following Eq.(4.2.3) through correcting

the estimate of the persistence of the dividend-price ratio. 3

We consider the following alternatives to the conventional predictive regression.

Stambaugh (1999). Stambaugh (1999) explores a possibility of correcting the bias

in coefficients of the predictive regression by using an approximation to the bias in the

persistence of the dividend-price ratio. Following Marriott and Pope (1954) and Kendall

(1954) the approximation to the bias in the persistence of the dividend-price ratio is:

E
[
β̂dp − βdp

]
= −1 + 3βdp

T
+O(1/T ).

Since the true persistence is unobserved, Stambaugh (1999) replaces it with an estimate

leading to the following correction to the bias:

β̂r,Stambaugh = β̂r +
cov(εrt+1, ε

dp
t+1)

var(εdpt+1)

(
1 + 3β̂dp

T

)
. (4.2.4)

defining the constant term as:

3Our simulations show that
cov(εrt+1, ε

dp
t+1)

var(εdpt+1)
can be precisely estimated.
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α̂r,Stambaugh = r̄ − β̂r,Stambaughd̄p, (4.2.5)

we form the estimates of the expected returns using the Stambaugh (1999) correction

method as:

µ̂Stambaughs = α̂r,Stambaugh + β̂r,Stambaughdps. (4.2.6)

Lewellen (2004). Lewellen (2004) avoids the problem of the unobserved persistence of

the dividend-price ratio in a different way. Eq.(4.2.3) implies a negative relation between

the bias in the coefficients resulting from the predictive regression and the bias in the

estimate of the persistence of the dividend-price ratio. A lower bound on the bias in the

persistence, then, provides an upper bound on the bias in the predictive coefficient. In

order to obtain the lower bound, Lewellen (2004) refers to the evidence against explosive

bubbles in the stock prices.

To elaborate, note that the conditional bias in the slope coefficient of the conventional

predictive regression is:

E
[
β̂r − βr|β̂dp

]
=
cov(εrt+1, ε

dp
t+1)

var(εdpt+1)

[
β̂dp − βdp

]
By fixing βdp ≈ 1, the adjusted β̂r is:

β̂r,Lewellen = β̂r −
cov(εrt+1, ε

dp
t+1)

var(εdpt+1)

[
β̂dp − 0.999

]
(4.2.7)

Similarly to the Stambaugh (1999) method case, we let:

α̂r,Lewellen = r̄ − β̂r,Lewellend̄p, (4.2.8)

Consequently, we form the estimate of expected returns by:
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µ̂Lewellens = α̂r,Lewellen + β̂r,Lewellendps. (4.2.9)

Connor (1997). Connor (1997) uses a Bayesian adjustment to coefficients of the con-

ventional predictive regression.

The main idea is that, under the efficient market hypothesis, a predictable variation

in returns from their long-run mean should be distributed around zero. Setting up this

prior, a Bayesian adjustment for the slope has the following form:

β̂r,Connor =

[
Tvar(dpt)/var(ε

r
t+1)

Tvar(dpt)/var(εrt+1) + 1/var(βr)

]
β̂r

var(βr) is the prior variance of the unknown βr. Though var(βr) is unobserved,

Connor (1997) shows that the Bayesian adjustment for the predictive coefficient can be

written as a function of the sample size and of the expected R2 of the predictive regression.

Therefore, letting:

ρ = E

[
R2

1−R2

]
,

An adjusted slope coefficient is:

β̂r,Connor =

[
T

T + 1/ρ

]
β̂r. (4.2.10)

As usual, we set the constant to be equal to:

α̂r,Connor = r̄ − β̂r,Connord̄p (4.2.11)

Consequently, we estimate expected returns as:

µ̂Connors = α̂r,Connor + β̂r,Connordps. (4.2.12)
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In our analysis we follow Ferreira and Santa-Clara (2011) and set 1/ρ = 100 corre-

sponding to the expected R2 of approximately 1%.

Ashley (1990), (2006). Ashley (1990) and (2006) shows that in the case of a highly

noisy forecast which results from finite samples the mean square error-minimizing forecast

is always a forecast that is shrunk towards zero. The method is appealing for predicting

returns since it addresses the issue of a noisy forecast and, as it is shown in the next

section, it is a noise in the forecast which contributes considerably to the mean square

error of the conventional predictive regression. To demonstrate, let:

µ̂t − µt = νt,

Note that νt is an error that the forecast by the predictive regression makes while

estimating expected returns. Recall that:

rt+1 = µt + εrt+1.

Denote λ as the shrinkage factor. Following Ashley (2006), the optimal shrinkage factor

is:

λ =
1

1 +
E[ν2

t ]

E[µ2
t ]

.

E[ν2
t ]

E[µ2
t ]

is the coefficient of variation of µ̂t due to the sampling error νt.

The corrected slope coefficient is:

β̂r,Ashley = λβ̂r. (4.2.13)

Following Ashley (2006), we estimate the coefficient of variation as:

ĉvt =
s2
t [1 dpt]

′ (
[ι dp]

′
[ι dp]

)−1
[1 dpt]

µ̂t
2 ,

where ι is a vector of ones, dp = [dp1 dp2 . . . dpt−1]
′
, µ̂t is the forecast resulting from
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the conventional predictive regression and s2 is an estimate of the variance of εr.

Defining the constant term as:

α̂r,Ashley = r̄ − β̂r,Ashleyd̄p. (4.2.14)

We estimate expected returns using the method of Ashley (2006) as:

µ̂Ashleys = α̂r,Ashley + β̂r,Ashleydps. (4.2.15)

Ferreira and Santa-Clara (2011). Another alternative to the conventional predictive

regression is the sum–of–parts method suggested by Ferreira and Santa-Clara (2011). To

demonstrate their method, denote Rt+1 as level of returns. Then:

1 +Rt+1 =
Dt+1 + Pt+1

Pt
=

(
1 +

Dt+1

Pt+1

)
Pt+1/Dt+1

Pt/Dt

Dt+1

Dt

,

implying:

rt+1 = log (1 +Rt+1) = log

(
1 +

Dt+1

Pt+1

)
−∆dpt+1 + ∆dt+1.

Moreover, taking the expectation conditional on information available at time t:

µt = Et

[
log

(
1 +

Dt+1

Pt+1

)]
− Et [∆dpt+1] + Et [∆dt+1] . (4.2.16)

Eq.(4.2.16) relates expected returns to the expectation of a function of the future

dividend-price ratio and the expectation of the future dividend growth. Consequently, a

proxy for expected returns can be obtained by forecasting separately the dividend-price

ratio and dividend growth. We follow Ferreira and Santa Clara (2011) and use a current

dividend-price ratio as an estimate of the future dividend-price ratio and a twenty years

moving average of the past dividend growth to estimate expected dividend growth.

We denote an estimate of expected returns formed using the method of Ferreira and
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Santa-Clara (2011) as:

µ̂F&SC
s = log

(
1 +

Ds

Ps

)
+

s∑
t=s−19

∆dt. (4.2.17)

Note that this approach avoids regression of returns on a valuation ratio and, therefore,

does not face the Stambaugh (1999) problem. Additionally, it controls for a possibility

that expected dividend growth enters the implied predictive relation for returns.

4.3 Results

4.3.1 Relative performance of the methods

Following Goyal and Welsh (2008) and Campbell and Thomson (2005) we use the out-

of-sample R-squared to evaluate the performance of each method. The out-of-sample

R-squared compares the mean square error (MSE) of a given method with the MSE of

the historical mean and is calculated as:

R2
OOS = 1−

∑T−1
s=s0

[µ̂s − rs+1]2∑T−1
s=s0

[r̄s − rs+1]2
, (4.3.1)

with r̄s being the expected returns estimate by the historical mean and µ̂s the estimate

produced by each of the methods. R2
OOS is negative whenever the prediction by the

historical mean produces a lower root-mean-squared error than the prediction by an

alternative method.

Performance of each of the methods is evaluated in Table 4.5. Panel A of the table

presents the results for the Null economy. For this economy, we report the mean, the

median as well as the 95th percentile of the distribution of the R2
OOS. In Panel B, Panel C

and Panel D we evaluate performance of the methods in the alternative economies. For

these economies we report the percentage of the negative realizations of the R2
OOS in the

%-negative and the power of each method to reject the Null economy in the Power. We

define the power as the percentage of the R2
OOS produced by each of the methods with a

value greater or equal to the 95th percentile under the Null economy.
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Using Table 4.5 we confirm the result of Cochrane (2008b) who documents a poor

out-of-sample performance of the conventional predictive regression even under the pre-

dictable returns null. In Economy I, Economy II and Economy III the number of negative

realizations of the R2
OOS for the conventional predictive regression ranges from 37.34 %

to 46.32 %.

Additionally, Table 4.5 reports a high fraction of negative realizations of the R2
OOS

for the methods by Stambaugh (1999), Lewellen (2004) and Ashley (2006). Note that

Stambaugh (1999) correction produces even a larger value of the %-negative than the

conventional predictive regression. For this method, the fraction of the negative realiza-

tions is so high, that it leads to a negative mean and a negative median of the distribution

of the R2
OOS .

While the value of the %-negative for the methods by Lewellen (2004) and Ashley

(2006) is somewhat smaller than for the conventional predictive regression, the percentage

of the negative relaizations of R2
OOS for these methods is still high, ranging from 25.20 %

to 42.93 % for Lewellen (2004) and from 29.15 % to 39.78 % for the method by Ashley

(2006). The %-negative is smaller than for the above mentioned methods for the shrinkage

of Connor (1997). The number of the negative realizations of the R2
OOS for this method

ranges from 6.68 % to 14.65 %.

The method of Ferreira and Santa–Clara (2011) performs significantly better than the

other methods by producing only from 1.83 % to 5.18% of negative realizations of the

R2
OOS. Note that the mean and the median of the R2

OOS for this method is higher than

for any other method across all the alternative economies.

Furthermore, we document a low power of the conventional predictive regression to

reject our Null economy. From Table 4.5 the Power for the conventional predictive

regression ranges from 36.88 to 51.13, indicating that only from 37% to 51% of realizations

of the R2
OOS in the alternative economies were higher than the value of the 95th percentile

in the Null economy. Moreover, the Stambaugh (1999) method is less powerful and

the method by Ashley (2006) has approximately the same power as the conventional

predictive regression.

The methods which are more powerful than the conventional predictive regression are
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Lewellen (2004), Connor (1997) and Ferreira and Santa-Clara (2011)4. The method of

Lewellen (2004) is more powerful than the method of Connor (1997) in Economy I and

Economy III while the method of Connor (1997) is only slightly more powerful than the

method of Lewellen (2004) in Economy II.

The most powerful method from those we consider is the sum-of-parts method of

Ferreira and Santa-Clara (2011). This method produces around 80 % in Economy I and

Economy III and over 90 % in Economy II of the R2
OOS larger than the value of the 95th

percentile.

In short, the results presented in Table 4.5 indicate that the conventional predictive

regression and the methods of Stambaugh (1999), Lewellen (2004) and Ashley (2006) tend

to produce a negative R2
OOS. For these methods, observing a negative R2

OOS does not

indicate an absence of return predictability or instability of a predictive relation between

returns and the dividend-price ratio. Moreover, the conventional predictive regression and

the methods of Stambaugh (1999) and Ashley (2006) have a very low power to detect a

presence of predictability in returns.

It is the sum-of-parts method of Ferreira and Santa-Clara (2011) which produces the

best results. This method is characterized by a low number of negative realizations of the

R2
OOS and has a comparatively high power to distinguish the null from the alternative

economies.

Finally, our simulation design allows calculation of the maximum R2
OOS which is at-

tainable by replacing an estimate with the true expected returns in Eq.(4.3.1). We present

the value of the maximum R2
OOS for each of the economies in the last column of Table

4.5. Our results indicate that the maximum possible R2
OOS only slightly exceeds 10 %.

In Table 4.6 we apply the methods to the data from the original papers used to

construct the economies. Below the values of R2
OOS, in the round brackets, we report

the fraction of the values of R2
OOS larger or equal to the value in the simulations. Note

that in this exercise we simulate the data sets with the sample sizes which equal to

the sample sizes of the papers. The Null economy is based on the data sample which

starts in 1929 and ends in 1998. Thus, it covers the pre-WWII years and the second

4High power of the Lewellen (2004) method has been already documented in Goyal and Welch (2008)
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half of 90’s-the periods where the predictive relation between the dividend-price ratio

and returns was weak5. The data sample used for Economy I starts in 1926 end ends in

2004. Therefore, it includes a period of a good predictive performance of the dividend-

price ratio occurring during early 2000’s. The main characteristics of the data set used

in Economy II and Economy III, is that it excludes the pre-WWII period-the period of

the weak predictability of returns. The data for Economy II uses dividends reinvested

into the one month T-bill while the data for Economy III employs dividends reinvested

into S&P 500. As Section 1 of this paper shows, reinvestment of dividends into S&P 500

leads to an MA structure for the dividend-price ratio and, consequently, to an additional

variable entering the predictive relation between returns and the dividend-price ratio

which is omitted by the methods we consider.

Tab. 4.6: Test of economies

This table presents the results of applying different predictability methods to the stock market data. The data

samples correspond to the ones used in Cochrane (2008b), Binsbergen and Koijen (2010) and Bansal and Yaron

(2004)– the theoretical frameworks we use to construct our economies. The first row reports the sample size, the

rest report R2
OOS in %. Numbers in round brackets are the percentage of the simulation paths with the value of

R2
OOS of more or equal to its value obtained in the data.

Method Null economy Economy I Economy II Economy III
N 70 79 62 62

Predictive regression −14.21 −9.96 −0.26 0.44
(97) (94) (64) (51)

Stambaugh (1999) −26.07 −21.41 −8.57 −6.04
(99) (96) (67) (51)

Lewellen (2004) −1.36 2.49 6.94 6.24
(7) (36) (20) (27)

Ashley (2006) 0.60 1.12 10.96 10.48
(16) (50) (12) (10)

Connor (1997) −0.43 2.12 3.30 3.24
(45) (53) (55) (43)

Ferreira and Santa-Clara (2011) 3.56 3.91 6.98 6.75
(3) (60) (36) (33)

Table 4.6 confirms evidence for the sensitivity of predictability of returns to the data

samples. Predictability of returns is sensitive to the inclusion of the pre-WWII period,

since all the methods produce lowerR2
OOS in the Null economy and Economy I. Comparing

with the data set used in the Null economy, an inclusion of the early 2000s into the

sample leads to some improvement, while an exclusion of the pre-WWII data leads to

a considerable improvement in the performance of all the methods. Moreover, existence

5See, for example, Goyal and Welch (2008).
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of the additional variable in the predictive relation leads to a slight deterioration of the

predictive performance of Lewellen (2004), Ashley (2006), Connor (1997) and Ferreira

and Santa-Clara (2011) since for these methods the values of the R2
OOSs observed in

Economy II are larger than the ones in Economy III.

Furthermore, Table 4.6 reveals a large dispersion of the distribution of the R2
OOS pro-

duced by the method of Stambaugh (1999) and by the conventional predictive regression.

The dispersion for the method of Stambaugh (1999) is very large. The difference be-

tween the highest and the lowest value of the R2
OOS produced by this method is over 20

%. Note that in all the data sets this method is over performed by the historical mean as

indicated by negative and high in absolute value R2
OSSs. For the conventional predictive

regression, the dispersion of the distribution of the R2
OOS is considerably smaller, since

the difference between the lowest and the highest value of the R2
OOS is over 14 %. This

method produces an only one slightly positive value of the R2
OOS confirming a systematic

failure of the conventional predictive regression to predict returns out-of-sample reported

by Goyal and Welch (2008). The method of Stambaugh (1999) and the conventional

predictive regression are followed by the shrinkage of Ashley (2006) with the difference

between the highest and the lowest value of the R2
OOS of around 10 %. This method does

not produce any negative R2
OOS. Moreover, it performs especially well in the post-WWII

data producing the value of the R2
OOS of over 10 % in Economy II and Economy III–the

maximum across all the methods.

The method of Lewellen (2004) seems to be characterized by a lower dispersion of the

R2
OOS. This method produces a negative R2

OOS in the data used in the Null economy and

an R2
OOS of almost 7 % in the post-WWII data of Economy II. The lowest dispersion,

however, is observed for the methods of Connor (1997) and of Ferreira and Santa-Clara

(2011). The shrinkage of Connor (1997) produces a negative R2
OOS in the data set used

to calibrate the Null economy and R2
OOS of over 3 % in the post-WWII data of Economy

II and Economy III. The sum-of-parts method of Ferreira and Santa-Clara (2011) does

not produce a negative R2
OOS in any data sample used. Note that the method of Ferreira

and Santa-Clara (2011) is the only one significantly outperforming the historical mean in

the data set of the Null economy. In the post-WWII the value of the R2
OOS it produces
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is also quite high–almost 7 %.

Below each of the values of the R2
OOS, in the round brackets we report the fraction of

the simulation paths with realizations of the R2
OOS more or equal to the value obtained

in the data. Recall from Section 1 that the Null economy is characterized by the unusual

predictability patterns. Comparing with the data, in this economy the dividend-price

ratio is less persistent, less volatile and predicts dividend growth rather than returns

with the slope coefficient in both regressions being negative.

Judging from the results for the conventional predictive regression, the Null economy

is not rejected by the data. The numbers in Table 4.6 indicate that the probability of

observing the value of R2
OOS as high as -14.21 in the Null economy is 97 %. The method

of Stambaugh (1999) produces even stronger evidence in favour of the model by having

99 % of observing the value of the R2
OOS larger or equal to the one obtained in the data.

Interestingly, the method of Connor (1997) also does not have an ability to reject the

Null economy. In fact, it gives roughly equal evidence in favor of each of the economies. A

relatively high power of this method to reject the Null economy in favor of the alternative

economies reported in Table 4.5, then might signal that all of the economies miss some

features of the data. Indeed, Lettau and Van Nieuwerburgh (2007) and Koijen and Van

Nieuweburgh (2010) provide evidence in favor of structural breaks in the stock market

data that are not modeled by any of the economies. The evidence for a weak power of

the method of Connor (1997) from Table 4.6 might then indicate vulnerability of the

performance of this method to structural breaks.

The method of Lewellen (2004) and of Ferreira and Santa-Clara (2011) appear to be

the most powerful in detecting the unusual predictability patterns of the Null economy.

Results presented in Table 4.6 show that applying methods of Lewellen (2004) and Ferreira

and Santa-Clara (2011) in the Null economy produces only 7 % and 3 % of R2
OOS larger

than the value observed in the stock market data.

We devote the next subsection to explaining the differences in the performance of the

methods in the alternative economies.
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4.3.2 Decomposition of the MSE

Ferreira and Santa-Clara (2011) using a simulation design which corresponds to our Econ-

omy II find that it is an excessive variance of the estimate of expected returns that is

responsible for the poor performance of the conventional predictive regression and that

it is a low variance of the estimate which leads to a lower mean square error produced

by the historical mean. Additionally, the estimate of expected returns produced by the

historical mean has a low correlation with the true expected returns. Their sum-of-parts

method achieves a better combination of the variance of the estimate and the covariance

of the estimate with true expected returns resulting in a lower than that of the historical

mean mean square error and a high correlation of the estimate with the true expected

returns. This section confirms and extends their results using the other economies for

the simulation design and the other methods to predict stock returns.

Following Ferreira and Santa-Clara (2011) we start the analysis with scatter plots

of the estimates of expected returns produced by each of the methods against the true

expected returns. Figure 4.1 presents the scatter plot for Economy III. We find that the

relative performance of the methods is similar in all the alternative economies. To save

the space, therefore, we present the scatter plot only for Economy III.

From Figure 4.1, the historical mean does not capture well the true expected returns.

The graph is parallel to the x-coordinate implying that the estimate by the historical mean

severely understates high and overstates low realizations of the true expected returns.

More points are concentrated on the 45-degree line for the conventional predictive

regression. The points, however, are also more dispersed with some extreme outliers.

Campbell and Thompson (2008) document an improvement of the out-of-sample perfor-

mance of the conventional predictive regression if negative estimates of expected returns

produced by this method are replaced by zero. Figure 4.1 explains why. The conventional

predictive regression produces a large number of extreme negative estimates not matched

by the true expected returns realizations. Additionally, this method performs badly in

capturing high realizations of the true expected returns.
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The bad performance of the conventional predictive regression in the upper tail of

the realizations of the true expected returns worsens after applying Stambaugh (1999)

correction. Comparing with the scatter plot for the predictive regression, more points

are concentrated along the 45-degree line. However, there is even a higher number of

extreme positive estimates.

The method of Lewellen (2004) is a visible improvement over the previous methods.

The points on the scatter plot are less dispersed and this method produces significantly

lower number of extreme negative and extreme positive estimates not matched by the

true realizations. The method of Ashley (2006) produces a higher number of the extreme

estimates than the method by Lewellen (2004), while the method by Connor (1997)

understates large realizations of expected returns.

More points are located close to the 45-degree line for the method of Ferreira and Santa-

Clara (2011). The points on the scatter plot are less dispersed. Moreover, this method

captures better than the alternatives high realizations of the true expected returns and

does not produce extreme negative estimates.

We support the above analysis in Table 4.7 by decompose the mean square error (MSE)

as follows:

MSE = E

[
1

T − s0

T−1∑
s=s0

(µ̂s − rs+1)2

]
=

1

T − s0

T−1∑
s=s0

[E(µ̂s − rs+1)]2 +
1

T − s0

T−1∑
s=s0

var(µ̂s)+

+
1

T − s0

T−1∑
s=s0

var(rs+1)− 2
1

T − s0

T−1∑
s=s0

cov(µ̂s, rs+1).

(4.3.2)

We refer to the first term in the decomposition as to the square bias, the second

component is the variance of estimate, the third is the variance of target and the forth,

the covariance term–corresponds to covariance of the estimate of expected returns with

the realized returns. The value of the variance of target is the same across all the

methods. The sum of the other elements can add to or subtract from the value of the

variance of target resulting in a higher or lower MSE. In Table 4.7, we combine the

variance of estimate and the square bias with the covariance term into a single element
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which we call the difference in order to measure the net effect of a change in the values

of these components on MSE. Additionally, we report the values of the elements of the

decomposition for the true expected returns. Since using the true expected return instead

of an estimate leads to the highest mean of the R2
OOS, it can serve as the benchmark.

Table 4.7 shows that it is the variance of the realized returns which contributes the

most to the MSE. Applying each method results in a value of the MSE which only slightly

deviates from the value of the variance of target. The values for the true mean set up

a lower bound on the MSE. Therefore, the last column of Table 4.7 implies that the

minimum value of the difference attainable in the alternative economies ranges from 5 %

to 8 % of the value of the variance of the realized returns.

As it has been already mentioned in Ferreira and Santa–Clara (2011) the main ad-

vantage of the historical mean is a low variance of the estimate of expected returns it

produces. The variance of estimate is the lowest comparing with all the methods in

all the economies. However, the magnitude of the covariance of the estimate with the

realized returns is also the smallest and negative.

Note that the sign of the covariance of the estimate by the historical mean depends

on the presence and the strength of the discount rate effect. Using Economy III, a simple

algebra yields:

cov

[
1

s

s∑
j=1

rj, rs+1

]
= cov

[
1

s

s∑
j=1

rj, µs

]
= cov

[
1

s

s∑
j=1

(
µj−1 + εrj

)
, aµ + bµµs−1 + εµs

]
=

=
1

s
[bµvar(µj−1) + cov(εµs , ε

r
s)] =

1

s

[
bµvar(εµs )

1− (bµ)2
+ cov(εµs , ε

r
s)

]
.

Therefore, an estimate of expected returns produced by the historical mean will have

a positive correlation with the true expected returns if:

bµ

1− (bµ)2
> −βεµ,εr . (4.3.3)
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The square bias is of some importance for the historical mean. Comparing with the

other methods, the difference is high in Economy II and Economy III and the squared

bias contributes over a third of its value.

Confirming the result of Ferreira and Santa-Clara (2011), the estimate by the conven-

tional predictive regression is characterized by an excessive variance. The value of the

covariance term for the predictive regression is high, close to the corresponding value for

the true expected returns. A high value of the variance of estimate, however, eliminates

the benefit of a high covariance.

We find that the method of Stambaugh (1999) is even noisier than the conventional

predictive regression and is possibly biased. Comparing with the conventional predictive

regression, both the covariance term and the variance of estimate increase. The variance

of estimate, however, increases by more, resulting in a high value of the difference and

significantly increasing MSE. The value of the bias is the largest across all the methods.

The square bias accounts for more than a third of the value of the difference in Economy

II and over one fifth of the value of the difference in Economy III.

Applying the methods of Lewellen (2004), Ashley (2006) and Connor (1997) results

in an improvement over the conventional predictive regression. The methods of Lewellen

(2004) and Connor (1997) results in a negative difference, which decreases the value of

the variance of target to deliver a 2 % lower MSE than the MSE for the conventional

predictive regression. The covariance, however, is somewhat low for these methods if

compared with the others. For the method by Ashley (2006), the value of the covariance

term is roughly equal to the variance of estimate plus the square bias resulting in a

zero net effect on the variance of target. For this method, the values of the variance of

estimate and the square bias are somewhat high. The MSE for this method is 1 % lower

than the MSE produced by the conventional predictive regression.

The sum-of-parts method by Ferreira and Santa-Clara (2011) leads to the lowest differ-

ence if compared with all the other methods. This method achieves a significant decrease

in the variance of estimate while keeping a moderate value of the covariance term. The

resulting MSE of the estimate is 4 % lower than the MSE of the conventional predictive

regression.
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The elements of the decomposition can be combined to produce the squared correlation

coefficient:

corr(µ̂s, rs+1)2 =
T−1∑
s=s0

[
cov(µ̂s, rs+1)

std(µ̂s)std(rs+1)

]2

. (4.3.4)

The values of the squared correlation coefficient are reported in Table 4.8. Our simu-

lation set up allows a calculation of the squared correlation of an estimate with the true

expected returns. In Panel B of Table 4.8 we report values of the squared correlation

replacing the realized returns with the true expected returns in Eq.(4.3.4). Note that in

this case the squared correlation can be interpreted as the R2 in the regression of the true

expected returns on their estimate. It measures the fraction of the variation in the true

expected returns captured by the estimate.

Tab. 4.8: Variation in expected returns

In Panel A of this table we present the values in % of corr(µ̂s, rs+1)2 calculated as:

corr(µ̂s, rs+1)2 =

T−1∑
s=s0

[
cov(µ̂s, rs+1)

std(µ̂s)std(rs+1)

]2

.

In Panel B, we present the values in % of corr(µ̂s, µs)
2 calculated as:

corr(µ̂s, µs)
2 =

T−1∑
s=s0

[
cov(µ̂s, µs)

std(µ̂s)std(µs)

]2

.

Method Economy I Economy II Economy III
Panel A: Correlation the estimate with the realized returns

Historical mean 0.09 0.22 0.10
Predictive regression 2.10 3.78 2.63
Stambaugh (1999) 2.82 4.86 3.66

Lewellen (2004) 0.76 2.05 1.89
Ashley (2006) 1.28 3.05 1.92
Connor (1997) 1.10 2.51 1.70

Ferreira and Santa-Clara (2011) 2.41 5.05 3.56

Panel B: Correlation the estimate with the true expected returns

Historical mean 1.64 4.19 1.09
Predictive regression 39.90 41.79 40.76
Stambaugh (1999) 54.08 56.38 56.78

Lewellen (2004) 14.39 17.81 29.75
Ashley (2006) 24.27 30.19 29.77
Connor (1997) 20.63 21.41 26.40

Ferreira and Santa-Clara (2011) 45.94 58.24 56.02
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Only a small fraction of realized returns is predictable as implied by the large contri-

bution of the variance of the realized returns into the MSE. In Table 4.7, the covariance

term constitutes from 1% to 21 % of the value of the variance of the realized returns across

the methods. This leads to small values of the squared correlation coefficient reported in

Panel A of Table 4.8, indicating that the methods we consider are able to capture 5.05 %

of the variation in the realized returns at maximum. Panel B, however, reveals that the

methods capture a significant part of the variation in expected returns. All the predictive

methods except the historical mean produce values of more than 20 % , while for some

methods the values exceed 50 % in all the alternative economies.

Comparing the values across the methods, the historical mean captures from 1.09 %

to 4.19 % of the variation of the true expected returns. These values are very low not

only in absolute but also in relative terms. Thus, the results of Table 4.8 indicate that if

expected returns vary, the historical mean explains little of their variation.

Though frequently producing MSE higher than the MSE of the historical mean, the

conventional predictive regression captures a significant part of the variation in expected

return. The value of the squared correlation for the conventional regression is also high

in comparison with the other methods.

The methods of Lewellen (2004), Ashley (2006) and Connor (1997) have mediocre

performance while the methods of Stambaugh (1999) and the sum-of-parts method of

Ferreira and Santa–Clara (2011) show the best performance in capturing variation in the

true expected returns. The methods of Stambaugh (1999) and of Ferreira and Santa–

Clara (2011) allow to explain from 46 % to 57 % of their variation.

To summarize this section, a low MSE produced by the historical mean is entirely

due to a low variance of its estimate of expected returns. The estimate of expected

returns produced by the historical mean is biased and has a low correlation with the

true expected returns. Extremely large and extremely low estimates produced by the

conventional predictive regression lead to an excessively high variance of its expected

returns estimate. This results in a poor out-of-sample performance. The method of

Stambaugh (1999) produces even a higher number of extreme positive estimates than the

predictive regression. This leads to even higher noise and a possible bias in the estimate
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of expected returns, substantially increasing MSE. While those methods fail to beat the

historical mean if judged by R2
OOS, they produce an estimates which explain a substantial

part of variation in the true expected returns.

Applying the methods of Lewellen (2004), Ashley (2006) and Connor (1997) leads to

a somewhat lower MSE than applying the conventional predictive regression due to a

lower noise in the estimate of expected returns. These methods, however, are charac-

terized by a lower than the conventional predictive regression correlation with the true

expected returns. The method of Ferreira and Santa-Clara (2011) performs better than

the conventional predictive regression producing a significantly lower MSE and a higher

correlation with the true expected returns. Only a small part of the realized returns

is predictable. The variance of the realized returns dominates the other element of the

decomposition and hides the high correlations with the true expected returns produced

by the forecasting methods.

4.4 Conclusion

In this paper, we study the out-of-sample predictability of stock returns. We use the

models for expected returns, expected dividend growth together with the innovation to

the realized dividend growth to set up a simulation exercise. Imposing the Campbell and

Shiller (1988) present value identity then leads to a completely controlled environment

to analyze the conventional predictive regression and its alternatives proposed in the

literature.

Our results show that all the methods but Connor (1997) and Ferreira and Santa -

Clara (2011) tend to perform poorly out of sample and all the methods except of Lewellen

(2004), and Ferreira and Santa-Clara (2011) have a low statistical power. Further analysis

indicates that most of the methods either overestimate or underestimate true expected

returns producing too much or too little variation in the estimates. In other words,

most of the methods produce estimates of expected returns which are characterized by

an excessively high variance or by an excessively low covariance with the true expected

returns.

Furthermore, the poor out-of-sample performance of a given method does not imply a

97



superiority of the expected returns estimate by the historical mean. Whenever expected

returns vary, the historical mean is not able to capture their variation. Moreover, it

possibly produces a biased estimate of the true expected returns.

Additionally, we show that a large unpredictable component of the realized returns

conceals high correlations of the estimates produced by the forecasting methods with the

true expected returns.

The sum-of-parts method of Ferreira and Santa-Clara (2011) is superior to the other

methods we consider. This method avoids predicting returns by running a regression

on a valuation ratio and, therefore, does not face the Stambaugh (1999) problem and

incorporates an additional proxy for the expected dividend growth entering the implied

predictive relations whenever expected returns and expected dividend growth are char-

acterized by a different persistence. The good performance of the method comes from a

low volatility of the estimate of expected returns which is highly correlated with the true

expected returns.
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APPENDIX



A. CHAPTER 2

A.1 Derivation of the state-space representation for returns in the long run risks model

This Appendix provides derivations of the state-space representation for returns in the BY

model, Eq.(2.3.1)-Eq.(2.3.3) in the text. The derivations employ Eq.(2.1.2)-Eq.(2.1.4),

Eq.(2.1.7) and Eq.(2.1.9). More specifically the following system of equations is used:

xt+1 = ρxt + ϕeσtet+1, (A.1.1)

σ2
t+1 = σ̄2(1− ν1) + ν1σ

2
t + σωωt+1, (A.1.2)

∆dt+1 = md + φxt + ϕdσtud,t+1, (A.1.3)

rm,t+1 = k0m − k1mdpt+1 + dpt + ∆dt+1, (A.1.4)

dpt+1 = −A0m − A1mxt+1 − A2mσ
2
t+1. (A.1.5)

Substituting Eq.(A.1.1) and Eq.(A.1.2) into Eq.(A.1.5):

dpt+1 = −A0m − A2mσ̄
2(1− ν1)− A1mρxt − A2mν1σ

2
t − A1mϕeσtet+1 − A2mσωωt+1.

(A.1.6)

Eq.(A.1.3) implies:

µdt = Et [∆dt+1] = md + φxt. (A.1.7)

Using Eq.(A.1.1), then leads to the following dynamics for expected dividend growth

(Eq.(2.3.2) in the text):



µdt = (1− ρ)md + ρµdt−1 + φϕeσt−1et, (A.1.8)

Using Eq.(A.1.3), Eq.(A.1.5) and Eq.(A.1.6) in Eq.(A.1.4) leads:

rm,t+1 = k0m − k1m

[
−A0m − A2mσ̄

2(1− ν1)− A1mρxt − A2mν1σ
2
t

]
+

+k1m [A1mϕeσtet+1 + A2mσωωt+1]− A0m − A1mxt − A2mσ
2
t +md + φxt + ϕdσtud,t+1 =

=
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md

]
+ [φ− A1m(1− k1mρ)]xt−

−A2m(1− k1mν1)σ2
t + [ϕdσtud,t+1 + k1mA1mϕeσtet+1 + k1mA2mσωωt+1]

(A.1.9)

This implies:

µrt = Et [rm,t+1] = k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md−

−A2m(1− k1mν1)(1− ν1)σ̄2 + ρ [φ− A1m(1− k1mρ)]xt−1 − ν1A2m(1− k1mν1)σ2
t−1+

+ [φ− A1m(1− k1mρ)]ϕeσt−1et − A2m(1− k1mν1)σωωt =

= (1− ν1)
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md − A2m(1− k1mν1)σ̄2

]
+

+ν1µ
r
t−1 + (ρ− ν1) [φ− A1m(1− k1mρ)]xt−1 + [φ− A1m(1− k1mρ)]ϕeσt−1et−

−A2m(1− k1mν1)σωωt,

Noting that:

φ− A1m(1− k1mρ) =
1

ψ
;

and using Eq.(A.1.7):

µrt = (1− ν1)
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md − A2m(1− k1mν1)σ̄2

]
−

−(ρ− ν1)md

φψ
+ ν1µ

r
t−1 +

(ρ− ν1)

φψ
µdt−1 + [φ− A1m(1− k1mρ)]ϕeσt−1et − A2m(1− k1mν1)σωωt,

establishing Eq.(2.3.1) in the text.
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A.2 Derivation of the present value identity

To obtain the relation between the dividend-price ratio and expected returns and expected

dividend growth explored in Table 2.6, start with the SSR:

µrt+1 = αµr + δµrµrt + τµdt + εµrt+1,

µdt+1 = αµd + δµdµdt + εµdt+1,

∆dt+1 = µdt + εdt+1.

Iterating Eq.(A.1.4) for dpt:

dpt = − k0m

1− k1m

+
∞∑
j=0

(k1m)jEt [rm,t+1+j −∆dt+1+j]− (k1m)∞dp∞. (A.2.1)

The no asset bubbles condition states:

(k1m)∞dp∞ = 0. (A.2.2)

Et [rm,t+1+j] = Et [Et+j (rm,t+1+j)] = Et
[
µrt+j

]
= Et

[
αµr + δµrµrt+j−1 + τµdt+j−1 + εµ,rt+j

]
=

= αµr
j−1∑
i=0

(δµr)i + (δµr)jµrt + τ

j−1∑
i=0

(δµr)iEt
[
µdt+j−1

]
.

Using the dynamics of µdt+j−1−i:

Et
[
µdt+j−1−i

]
= αµd

j−2−i∑
y=0

(δµd)y + (δµd)j−1−iµdt .

This implies:

τ

j−1∑
i=0

(δµr)iEt
[
µdt+j−1

]
=

ταµd

1− δµd

[
1− (δµr)j

1− δµr
− (δµd)j − (δµr)j

δµd − δµr

]
+ τ

(δµd)j − (δµr)j

δµd − δµr
µdt .

Therefore:

106



Et
[
µrt+1

]
= αµr

1− (δµr)j

1− δµr
+ (δµr)jµrt +

ταµd

1− δµd

[
1− (δµr)j

1− δµr
− (δµd)j − (δµr)j

δµd − δµr

]
+

+τµdt
(δµd)j − (δµr)j

δµd − δµr
.

(A.2.3)

In a similar fashion:

Et
[
µdt+j

]
= αµd

1− (δµd)j

1− δµd
+ (δµd)jµdt . (A.2.4)

To obtain the identity linking the dividend-price ratio with expected returns and

expected dividend growth used in Table 2.6 I plug Eq.(A.2.2), Eq. (A.2.3) and Eq.(A.2.4)

into Eq.(A.2.1):

dpt = adp +
∞∑
j=0

(k1m)j
[
(δµr)jµrt + τ

(δµd)j − (δµr)j

δµd − δµr
µdt − (δµd)jµdt

]
=

= adp +
µrt

1− k1mδµr
− 1− (τ + δµr)k1m

(1− k1mδµr)(1− k1mδµd)
µdt ,

(A.2.5)

with

adp = − k0m

1− k1m

+
αµrk1m

(1− k1m)(1− k1mδµr)
+

ταµdk1m

(1− δµd)(1− k1m)(1− k1mδµr)
−

− ταµdk1m

(1− δµd)(1− k1mδµr)(1− k1mδµd)
− αµdk1m

(1− k1m)(1− k1mδµd)
,

A.3 Derivation of predictive relations implied by the model

To obtain Eq.(2.3.7) start with Eq.(A.1.5) and use the dynamics of expected consumption

growth, Eq.(A.1.1) and the dynamics of the time-varying volatility, Eq.(A.1.2):
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dpt+1 = −A0m − A1mxt+1 − A2mσ
2
t+1 = −A0m − A1m(ρxt + ϕeσtet+1)−

−A2m(σ̄2(1− ν1) + ν1σ
2
t + σωωt+1) = −A0m − A2mσ̄

2(1− ν1)−

−A1mρxt − A2mν1σ
2
t − A1mϕeσtet+1 − A2mσωωt+1.

(A.3.1)

The second equality in Eq.(2.3.7) follows from regrouping the elements of Eq.(A.3.1).

Using Eq.(A.1.7) then leads to the first equality in Eq.(2.3.7):

dpt+1 = (1− ν1)
[
−A0m − A2mσ̄

2
]

+ ν1dpt − (ρ− ν1)
φ− 1

ψ

1− k1mρ
xt+

+ [−A1mϕeσtet+1 − A2mσωωt+1] =

= (1− ν1)
[
−A0m − A2mσ̄

2
]

+ (ρ− ν1)
A1m

φ
md + ν1dpt − (ρ− ν1)

A1m

φ
µdt+

+ [−A1mϕeσtet+1 − A2mσωωt+1] .

(A.3.2)

In order to receive the first equality in Eq.(2.3.8) use the second equality of Eq.(A.3.2)

in Eq.(A.1.4):

rm,t+1 = k0m − k1m

[
(1− ν1)(−A0m − A2mσ̄

2) + (ρ− ν1)
A1m

φ
md

]
−

−k1mν1dpt + k1m(ρ− ν1)
A1m

φ
µdt − k1mε

dp
t+1 + dpt + µdt + εdt+1 =

=

[
k0m − k1m

(
(1− ν1)(−A0m − A2mσ̄

2) + (ρ− ν1)
A1m

φ
md

)]
+

+(1− k1mν1)dpt +

(
1 + k1m(ρ− ν1)

A1m

φ

)
µdt − k1mε

dp
t+1 + εdt+1.

The second equality of Eq.(2.3.8) is obtained from the first by using Eq.(A.1.3) and:

xt = −A0m

A1m

− 1

A1m

dpt −
A2m

A1m

σ2
t . (A.3.3)

To obtain the first equality in Eq.(2.3.9), note that Eq.(A.2.5) implies:

µdt = αdp
(1− k1mδ

µr)(1− k1mδ
µd)

1 + (τ + δµr)k1m

+
(1− k1mδ

µd)

1− (τ + δµr)k1m

µrt −
(1− k1mδ

µr)(1− k1mδ
µd)

1 + (τ + δµr)k1m

dpt
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and substitute this expression into Eq.(2.3.3). Moreover, the second equality in

Eq.(2.3.9) is obtained by using Eq.(A.3.3) in Eq.(A.1.3).
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B. CHAPTER 3

B.1 Calibration of the long run risks model

This appendix provides the parameters used to calibrate the long run risks model. The

calibration is the one used in Bansal and Yaron (2004). The following table provides the

values of the parameters used to calibrate the model.

Tab. B.1: Calibration

This table presents the values of the parameters of the calibration of the processes describing the long run risks

model. Panel A provides the calibration of the conditional means of the processes. Panel B, the calibration of

the conditional variances. Panel C, the values of the preference parameters.

Panel A: Conditional means

Parameter: m md σ̄ ρ ν1 φ

Value: 0.0015 0.0015 0.0078 0.9790 0.9870 3.0000

Panel B: Conditional variances

Parameter: ϕe ϕd σω

Value: 0.0440 4.5000 2.3000× 10−6

Panel C: Preference parameters

Parameter: β γ ψ

Value: 0.9980 10.0000 1.5000

B.2 Derivation of the approximation to the aggregated dividend growth

This appendix provides derivation of the approximation of the aggregated dividend

growth in terms of the monthly series, Eq.(3.2.8) in the text. The approximated con-

sumption growth is obtained in a similar way and, to save the space, its derivation is

omitted.

Eq.(3.2.7) in the text implies:

∆da12(t+1) = log

∑11
j=0D12(t+1)−j∑11
j=0D12t−j

= log

∑11
j=0D12(t+1)−j

D12t∑11
j=0 D12t−j

D12t

.



Note:

log
11∑
j=0

D12(t+1)−j

D12t

= log

11∑
j=0

11−j∏
k=0

D12(t+1)−j−k

D12(t+1)−j−k−1

≈b1

11∑
j=0

11−j∑
k=0

∆d12(t+1)−j−k.

Similarly:

log

11∑
j=0

D12t−j

D12t

= log
11∑
j=0

j−1∏
k=0

D12t−j+k

D12t−j+k+1

≈− b2

11∑
j=0

j−1∑
k=0

∆d12t−j−k+1.

Combining both:

∆da12(t+1) ≈ b1

11∑
j=0

(j + 1)∆d12(t+1)−j + b2

10∑
j=0

(11− j)∆d12t−j, (B.2.1)

B.3 Derivation of the state-space representation for the long run risks model

This appendix provides derivations of the monthly and the annual state-space representa-

tion for the BY model. The model is characterised by the following system of equations:

xt+1 = ρxt + ϕeσtet+1, (B.3.1)

σ2
t+1 = σ̄2(1− ν1) + ν1σ

2
t + σωωt+1, (B.3.2)

∆dt+1 = md + φxt + ϕdσtud,t+1, (B.3.3)

rm,t+1 = k0m − k1mdpt+1 + dpt + ∆dt+1, (B.3.4)

dpt+1 = −A0m − A1mxt+1 − A2mσ
2
t+1. (B.3.5)

I first derive the monthly state-space representation. Substituting Eq.(B.3.1) and

Eq.(B.3.2) into Eq.(B.3.5):

dpt+1 = −A0m − A2mσ̄
2(1− ν1)− A1mρxt − A2mν1σ

2
t − A1mϕeσtet+1 − A2mσωωt+1.

(B.3.6)

Eq.(B.3.3) implies:
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µdt = Et [∆dt+1] = md + φxt. (B.3.7)

Using Eq.(B.3.1), then leads to the following dynamics for expected dividend growth:

µdt = (1− ρ)md + ρµdt−1 + φϕeσt−1et, (B.3.8)

Using Eq.(B.3.3), Eq.(B.3.5) and Eq.(B.3.6) in Eq.(B.3.4) leads:

rm,t+1 = k0m − k1m

[
−A0m − A2mσ̄

2(1− ν1)− A1mρxt − A2mν1σ
2
t

]
+

+k1m [A1mϕeσtet+1 + A2mσωωt+1]− A0m − A1mxt − A2mσ
2
t +md + φxt + ϕdσtud,t+1 =

=
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md

]
+ [φ− A1m(1− k1mρ)]xt−

−A2m(1− k1mν1)σ2
t + [ϕdσtud,t+1 + k1mA1mϕeσtet+1 + k1mA2mσωωt+1]

(B.3.9)

This implies:

µrt = Et [rm,t+1] = k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md−

−A2m(1− k1mν1)(1− ν1)σ̄2 + ρ [φ− A1m(1− k1mρ)]xt−1 − ν1A2m(1− k1mν1)σ2
t−1+

+ [φ− A1m(1− k1mρ)]ϕeσt−1et − A2m(1− k1mν1)σωωt =

= (1− ν1)
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md − A2m(1− k1mν1)σ̄2

]
+

+ν1µ
r
t−1 + (ρ− ν1) [φ− A1m(1− k1mρ)]xt−1 + [φ− A1m(1− k1mρ)]ϕeσt−1et−

−A2m(1− k1mν1)σωωt,

Noting that:

φ− A1m(1− k1mρ) =
1

ψ
;

and using Eq.(B.3.7):

112



µrt = (1− ν1)
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md − A2m(1− k1mν1)σ̄2

]
−

−(ρ− ν1)md

φψ
+ ν1µ

r
t−1 +

(ρ− ν1)

φψ
µdt−1 + [φ− A1m(1− k1mρ)]ϕeσt−1et − A2m(1− k1mν1)σωωt,

Finally, the last equation of Eq.(3.3.1)-Eq.(3.3.3) follows from Eq.(B.3.3) and the

definition of expected dividend growth given by Eq.(B.3.7).

To derive the annual state-space representation for returns, write:

∆d12(t+1)−j = µd12(t+1)−j−1+εd12(t+1)−j = md+ρ
11−j (µd12t −md

)
+

10−j∑
k=0

ρkεµd12(t+1)−j−1−k+ε
d
12(t+1)−j.

Then, since:

E12t [∆d12t−j] = ∆d12t−j,

from Eq.(B.2.1) the expression for the aggregated expected dividend growth is:

µd,a12t = b1md

11∑
j=0

(j + 1) + b1

11∑
j=0

(j + 1)ρ11−j (µd12t −md

)
+ b2

10∑
j=0

(11− j)∆d12t−j.

(B.3.10)

Note that, from Eq.(B.3.7):

µd12t −md = φx12t. (B.3.11)

Using Eq.(B.3.11) in Eq.(B.3.10) leads to:

µd,a12t = 78b1md + b1

11∑
j=0

(j + 1)ρ11−jφx12t + b2

10∑
j=0

(11− j)∆d12t−j,

which is Eq.(3.3.4) in the text.

From Eq.(B.3.1):
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x12t = ρ12x12(t−1) +
11∑
i=0

ρiϕeσ12t−1−ie12t−i,

which implies:

µd,a12t = 78b1md + b1

11∑
j=0

(j + 1)ρ11−jφ

[
ρ12x12(t−1) +

11∑
i=0

ρiϕeσ12t−1−ie12t−i

]
+

+b2

10∑
j=0

(11− j)∆d12t−j = (1− ρ12)78b1md + ρ12µd,a12(t−1) − ρ
12b2

10∑
j=0

(11− j)∆d12(t−1)−j+

+b2

10∑
j=0

(11− j)∆d12t−j + b1φ

11∑
j=0

(j + 1)ρ11−j
11∑
i=0

ρiϕeσ12t−1−ie12t−i.

(B.3.12)

Noting that:

∆d12t−j − ρ12−j∆d12(t−1) =

11−j∑
i=0

ρiφϕeσ12t−j−2−ie12t−j−1−i− (B.3.13)

−
11−j∑
i=0

ρi [ρϕdσ12t−j−2−iud,12t−j−1−i − ϕdσ12t−j−1−iud,12t−j−i] , (B.3.14)

the process describing the dynamics of expected dividend growth is:

µd,a12t = (1− ρ12)78b1md + ρ12µd,a12(t−1) + ρ12b2

10∑
j=0

(11− j)
[
ρ−j∆d12(t−1) −∆d12(t−1)−j

]
+

+b2

10∑
j=0

(11− j)
[
∆d12t−j − ρ12−j∆d12(t−1)

]
+ b1φ

11∑
j=0

(j + 1)ρ11−j
11∑
i=0

ρiϕeσ12t−1−ie12t−i

Aggregation of returns is done through a simple summation. The aggregated series is

connected to the monthly one through:

ram,12(t+1) =
11∑
j=0

rm,12(t+1)−j =
11∑
j=0

µr12(t+1)−j−1 +
11∑
j=0

εr12(t+1)−j.
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Note that Eq.(B.3.9) implies:

µr12(t+1)−j−1 =
[
k0m + k1m

(
A0m + A2mσ̄

2(1− ν1)
)
− A0m +md

]
+

1

ψ
x12(t+1)−j−1−

−(1− k1mν1)A2mσ
2
12(t+1)−j−1 = aµr +

1

ψ
x12(t+1)−j−1 − (1− k1mν1)A2mσ

2
12(t+1)−j−1,

E12t

[
µr12(t+1)−j−1

]
= aµr +

1

ψ
E12t

[
x12(t+1)−j−1

]
− (1− k1mν1)A2mE12t

[
σ2

12(t+1)−j−1

]
.

Moreover:

E12t

[
x12(t+1)−j−1

]
= ρ11−jx12t;

and

E12t

[
σ2

12(t+1)−j−1

]
= σ̄2 + ν11−j

1 (σ12t − σ̄2).

Therefore:

µr,a12t = E12t

[
ram,12(t+1)

]
=

11∑
j=0

[
aµr − (1− k1mν1)A2mσ̄

2
]

+
1

ψ

11∑
j=0

ρ11−jx12t−

−(1− k1mν1)A2m

11∑
j=0

ν11−j
1 (σ12t − σ̄2).

(B.3.15)

An expression relating expected returns to its lagged value is obtained by using:

x12t = ρ12x12(t−1) +
11∑
i=0

ρiϕeσ12t−1−ie12t−i

and

σ2
12t = σ̄2 + ν12

1 (σ2
12(t−1) − σ̄2) +

11∑
i=0

νi1σωω12t−i

in Eq.(B.3.15) and regrouping the terms.
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B.4 Derivation of the present value identity implied by the state-space representation

for the aggregated economy

In this appendix I derive the present value relation implied by the aggregated state-space

representation, Eq.(3.4.5) in the text. The present value relation in the monthly fre-

quency, Eq.(3.4.4) is obtained by restricting corresponding coefficients of the aggregated

system. To save the space, its derivation is not included.

The annualized state-space representation for returns is described by the following

system of equations:

µr,a12(t+1) = αµr,a + δµr,aµr,a12t + τaxa12t + εµr,a12(t+1),

µd,a12(t+1) = αµd,a + δµd,aµd,a12t + ϑaεX12t + εµd12(t+1),

xa12(t+1) = δx,axa12t + εx,a12(t+1),

∆da12(t+1) = µd,a12t + εd,a12(t+1),

together with the Campbell and Shiller (1988) linearization:

ram,12(t+1) = ka0m − ka1mdpa12(t+1) + dpa12t + ∆da12(t+1).

The Campbell and Shiller (1988) linearization implies:

dpa12t = − ka0m
1− ka1m

+
∞∑
j=0

(ka1m)jE12t

[
ra12(t+1+j) −∆da12(t+1+j)

]
− (ka1m)∞dpa∞. (B.4.1)

The no asset bubbles condition states:

(ka1m)∞dpa∞ = 0. (B.4.2)

Note that:
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E12t

[
r12(t+1+j)

]
= E12t

[
E12(t+j)

(
r12(t+1+j)

)]
= E12t

[
µr,a12(t+j)

]
=

= E12t

[
αµr,a + δµr,aµr,a12(t+j−1) + τaxa12(t+j−1) + εµr,a12(t+j)

]
=

= αµr,a
j−1∑
i=0

(δµr,a)i + (δµr,a)jµr,a12t + ϑa
j−1∑
i=0

(δµr,a)iE12t

[
xa12(t+j−1−i)

]
.

Moreover, using the dynamics of x12(t+j−1−i):

E12t

[
x12(t+j−1−i)

]
= (δx,a)j−1−ix12t,

implying that:

τa
j−1∑
i=0

(δµr,a)iE12t

[
xa12(t+j−1−i)

]
= τa

(δx,a)j − (δµr,a)j

δx,a − δµr,a
xa12t

Therefore:

E12t

[
µr,a12(t+j)

]
= αµr,a

1− (δµr,a)j

1− δµr,a
+ (δµr,a)jµr,a12t + τa

(δx,a)j − (δµr,a)j

δx,a − δµr,a
xa12t

(B.4.3)

In a similar fashion:

E12t

[
µd,a12(t+j)

]
= αµd,a

1− (δµd,a)j

1− δµd,a
+ (δµd,a)jµd,a12t + τa(δµd,a)j−1εX12t. (B.4.4)

Using Eq.(B.4.2), Eq.(B.4.3) and Eq.(B.4.4) in Eq.(B.4.1) leads to:

dpa12t = Ba
0 +

µr,at
1− ka1mδµr,a

− µd,at
1− ka1mδµd,a

+
τaka1mx

a
12t

(1− ka1mδµr,a)(1− ka1mδµd,a)
−

− ϑaεX12t

δµd,a(1− ka1mδµd,a)
,

(B.4.5)

with:

Ba
0 = − ka0m

1− ka1m
+

αµr,aka1m
(1− ka1m)(1− ka1mδµr,a)

− αµd,aka1m
(1− ka1m)(1− ka1mδµd,a)

,

which is Eq.(3.4.5) in the text.
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C. CHAPTER 4

C.1 Derivation of the constants in the present-value identity

This Appendix provides derivations of constants in Eq.(4.1.6). The derivations employ

the generalized economy described by Eq.(4.1.1)-Eq.(4.1.4) :

µrt+1 = aµ,r + bµ,rµrt + cµ,rxt + εµ,rt+1,

µdt+1 = aµ,d + bµ,dµdt + cµ,dεMt + εµ,dt+1,

xt+1 = ax + bxxt + εxt+1,

∆dt+1 = µdt + εdt+1,

together with the Campbell and Shiller (1988) linearization, Eq.(4.1.5):

rt+1 = k0 − k1dpt+1 + dpt + ∆dt+1.

The Campbell and Shiller (1988) linearization implies:

dpt = − k0

1− k1

+
∞∑
j=0

(k1)jEt [rt+1+j −∆dt+1+j]− (k1)∞dp∞. (C.1.1)

The no asset bubbles condition states:

(k1)∞dp∞ = 0. (C.1.2)

Note that:



Et [rt+1+j] = Et [Et+j (rt+1+j)] = Et
[
µrt+j

]
= Et

[
aµ,r + bµ,rµrt+j−1 + cµ,rxt+j−1 + εµ,rt+j

]
=

= aµ,r
j−1∑
i=0

(bµ,r)i + (bµ,r)jµrt + cµ,r
j−1∑
i=0

(bµ,r)iEt [xt+j−1−i] .

Moreover, using the dynamics of xt+j−1−i:

Et [xt+j−1−i] = ax
j−2−i∑
y=0

(bx)y + (bx)j−1−ixt,

implying that:

cµ,r
j−1∑
i=0

(bµ,r)iEt [xt+j−1−i] =
axcµ,r

1− bx

[
1− (bµ,r)j

1− bµ,r
− (bx)j − (bµ,r)j

bx − bµ,r

]
+ cµ,r

(bx)j − (bµ,r)j

bx − bµ,r
xt

Therefore:

Et
[
µrt+j

]
= aµ,r

1− (bµ,r)j

1− bµ,r
+ (

¯
µ, r)jµrt +

axcµ,r

1− bx

[
1− (bµ,r)j

1− bµ,r
− (bx)j − (bµ,r)j

bx − bµ,r

]
+

+cµ,r
(bx)j − (bµ,r)j

bx − bµ,r
xt

(C.1.3)

In a similar fashion:

Et
[
µdt+j

]
= aµ,d

1− (bµ,d)j

1− bµ,d
+ (bµ,d)jµdt + cµ,d(bµ,d)j−1εMt . (C.1.4)

Using Eq.(C.1.2), Eq.(C.1.3) and Eq.(C.1.4) in Eq.(C.1.1) leads to the Eq.(4.1.6) in

the text with:
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B0 = − k0

1− k1

+
aµ,rk1

(1− k1)(1− k1bµ,r)
+
axcµ,r

1− bx

[
k1

(1− k1)(1− k1bµ,r)
− k1

(1− k1bx)(1− k1bµ,r)

]
−

− aµ,dk1

(1− k1)(1− k1bµ,d))
;

B1 =
1

1− k1bµ,r
;

B2 =
1

1− k1bµ,d
;

B3 =
cµ,r

bx − bµ,r

[
1

1− k1bx
− 1

1− k1bµ,r

]
B4 =

(
cµ,d

bµ,d

)
1

1− k1bµ,d
.
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