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Abstract: The classification of the musculoskeletal images can be very challenging, mostly when it is
being done in the emergency room, where a decision must be made rapidly. The computer vision
domain has gained increasing attention in recent years, due to its achievements in image classification.
The convolutional neural network (CNN) is one of the latest computer vision algorithms that achieved
state-of-the-art results. A CNN requires an enormous number of images to be adequately trained,
and these are always scarce in the medical field. Transfer learning is a technique that is being
used to train the CNN by using fewer images. In this paper, we study the appropriate method to
classify musculoskeletal images by transfer learning and by training from scratch. We applied six
state-of-the-art architectures and compared their performance with transfer learning and with a
network trained from scratch. From our results, transfer learning did increase the model performance
significantly, and, additionally, it made the model less prone to overfitting.

Keywords: transfer learning; computer vision; convolutional neural networks; image classification;
musculoskeletal images; deep learning; medical images

1. Introduction

Bone fractures are among the most common conditions that are treated in emergency rooms [1].
Bone fractures represent a severe condition that could result from an accident or a disease like osteoporosis.
The fractures can lead to permanent damage or even death in severe cases. The most common way
of detecting bone fractures is by investigating an X-ray image of the suspected organ. Reading an
X-ray is a complex task, especially in emergency rooms, where the patient is usually in severe pain,
and the fractures are not always visible to doctors. Musculoskeletal images are a subspecialty
of radiology, which includes several techniques like X-ray, Computed Tomography (CT), and Magnetic
Resonance Imaging (MRI), among others. For detecting fractures, the most commonly used method
is the musculoskeletal X-ray image [2]. This process involves the radiologists, who are the doctors
responsible for classifying the musculoskeletal images, and the emergency physicians, who are the
doctors present in the emergency room where any patient with a sudden injury is admitted once
arrived at the hospital. Emergency physicians are not very experienced in reading X-ray images
like the radiologists, and they are prone to errors and misclassifications [3,4]. Image-classification
software can help emergency physicians to accurately and rapidly diagnose a fracture [5], especially in
emergency rooms, where a second opinion is much needed and, usually, is not available.

Deep learning is a recent breakthrough in the field of artificial intelligence, and it has demonstrated
its potential in learning and prioritizing essential features of a given dataset without being explicitly
programmed to do so. The autonomous behavior of deep learning makes it particularly suitable in the
field of computer vision. The area of computer vision includes several tasks, like image segmentation,
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image detection, and image classification. Deep learning was successfully applied in many computer
vision tasks, like in retinal image segmentation [6], histopathology image classification [7], and MRI
image classification [8], among others.

Focusing on image classification, in 2012, Krizhevsky et al. [9] proposed a convolutional neural
network CNN-based model, and they won a very popular image classification challenge called ILSVRC.
Afterward, CNNs gained popularity in the area of computer vision, and it is nowadays considered the
state-of-the-art technique for image classification. The process of training a classifier is time-consuming
and requires large datasets to be correctly trained. In the medical field, there is always a scarcity
of images that can be used to train a classifier, mainly due to the regulations implemented in the
medical field. Transfer learning is a technique that is usually used to train CNNs, when there are not
enough images available or when obtaining new images is particularly difficult. Transfer learning is
about training a CNN to classify large non-medical datasets and then use the weights of such a CNN
as a starting point for classifying other target images, in our case, X-ray images.

Several studies addressed the classification of musculoskeletal images using deep learning
techniques. Rajpurkar et al. [10] introduced a novel dataset called MURA dataset that contains 40,005
musculoskeletal images. The authors used DenseNet169 CNN to compare the performance of the
CNN against three radiologists. The model achieved an acceptable performance compared to the
predictions of the radiologists. Chada [11] investigated the performance of three state-of-the-art CNNs,
namely DenseNet169, DenseNet201, and InceptionResNetV2, on the MURA dataset. The author
fine-tuned the three architectures using Adam optimizer with a learning rate of 0.0001. Fifty epochs were
used with a batch size of eightimages to train the model. The author reported that DenseNet201 achieved
the best performance for the humerus images, with a Kappa score of 0.764, and InceptionResNetV2
achieved the best performance for the finger images, with a Kappa score of 0.555.

To demonstrate the importance of deep learning in the emergency room for fracture detections,
Lindsey et al. [5] investigated the usage of CNNs to detect wrist fractures. Subsequently, they measured
the radiologists” performance of detecting fractures with and without the help of CNN. The authors
reported that, by using a CNN, the performance of the radiologists increased significantly.
Kitamura et al. [12] studied the possibility of detecting ankle fractures with CNNs, using InceptionV3,
ResNet, and Xception networks for their experiments. The authors trained a CNN from scratch without
any transfer learning, and they used a private dataset and an ensemble of the three architectures and
reported an accuracy of 81%.

In this paper, we are extending the work of Rajpurkar et al. [10] and Chada [11] by investigating
the usage of transfer learning of a CNN to classify X-ray images to detect bone fractures. To do
so, we used six state-of-the-art CNN architectures that were previously trained on the ImageNet
dataset (an extensive non-medical dataset). To the best of our knowledge, this is the first paper that
performs a rigorous investigation on the use of transfer learning in the context of musculoskeletal
image classification. More in detail, we investigate the following:

1. The effect of transfer learning on image classification performance. To do that, we compare the
performance of six CNN architectures that were trained on ImageNet to classify fractures images.
Then, we train the same datasets with the same networks, but without the ImageNet weights.

2. The best classifier that achieves the best results on the musculoskeletal images.

3. The effect of the fully connected layers on the performance of the network. To do that, two fully
connected layers were added after each network, and then we recorded their performance.
Subsequently, the layers are removed, and the performance of the networks is recorded as well.

The paper is organized as follows: In Section 2, we present the methodology used. In Section 3,
we present the results achieved by training the MURA dataset on the considered CNNSs. In Section 4,
we present a discussion about the results obtained, and we compare them to other state-of-the-art results.
In Section 5, we conclude the paper by summarizing the main findings of this work.
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2. Methodology

In this section, we briefly describe the main methods used in this paper.

2.1. Convolutional Neural Networks and Transfer Learning

A convolutional neural network is a feed-forward neural network with at least one convolution layer.
A convolution layer is a hidden neural network layer that has a convolution operation, where the
convolution operation is a mathematical operation that is used to make use of the spatial information
presented in images. Training a CNN requires a significant amount of images, and this is one of the
most severe limitations in deep learning. In particular, deep learning has a very strong dependence
on massive training data compared to traditional machine learning methods because it needs a large
amount of data to understand the latent patterns of data. Unfortunately, there are problems in which
insufficient training data are an inescapable issue. This may happen in domains in which obtaining new
observations are either expensive, time-consuming, or impossible. In these situations, transfer learning
provides a suitable way for training a CNN. More in detail, transfer learning is a technique used in the
deep learning field to make use of knowledge that can be shared by different domains. According to
Pan and Yang [13], transfer learning can be defined as improving the predictive function, fr(.) by using
the knowledge acquired from the source domain, Dg, into the target domain, Dr. Transfer learning
relaxes the hypothesis that the training data must be independent and identically distributed with the
test data. This allows us to use transfer learning for training CNNs in a given domain and to use them
to subsequently address a problem in which data scarcity is a significant limitation. For more details
on transfer learning, the interested reader is referred to Pan and Yang [13].

2.2. State-of-the-Art Architectures

Many CNNs were introduced to participate in the ILSVRC challenge. In this section, we present
different CNNs that are considered in this study.

2.2.1. VGG

Simonyan et al. [14] introduced the VGG network in 2014. The VGG was implemented in many
variations like VGG16 and VGG19, which only differ in the number of convolution layers used in each.
In this paper, we use VGG19 because it is the largest one, and it usually produces better performance
than VGG16. VGG19 consists of 19 convolution layers and one dense layer with 4096 neurons to classify
the ImageNet images. For more information, the reader is referred to the corresponding paper [14].

2.2.2. Xception

Chollet [15] introduced a novel architecture called Xception (extreme inception), where the
author replaced the conventional convolutional layers with depthwise separable convolutional layers.
These modified layers decreased the network parameters without decreasing its capacity, which yielded
a robust network with fewer parameters and so less computational resources needed for training.
For more information, the reader is referred to the corresponding paper [15].

2.2.3. ResNet

ResNet architecture was introduced by He et al. [16] in 2015. ResNet was developed by exploiting
the concept of residual connections. The authors introduced the concept of a residual connection
to minimize the effect of the vanishing gradient. The ResNet architecture comes in many variants.
In this paper, we use the ResNet50 network, which contains 50 layers. For more information, the reader
is referred to the corresponding paper [16].
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2.2.4. GoogLeNet

GoogLeNet architecture was introduced by Szegedy et al. [17] in 2014. The authors proposed a
novel idea called the inception module, which takes the aspect ratio of each image into account. There are
many variants for GoogLeNet architecture, and we use the InceptionV3 network. For more information,
the reader is referred to the corresponding paper [17].

2.2.5. InceptionResNet

Langkvist et al. [18] created a novel architecture called InceptionResNet, where the authors
combined the inception module idea from GoogLeNet architecture [17] with the residual idea from
ResNet architecture [16]. InceptionResNet is more computationally efficient than both ResNet and
Inception architectures and achieved higher results than both on the ImageNet dataset. For more
information, the reader is referred to the corresponding paper [18].

2.2.6. DenseNet

Huang etal. [19] introduced a novel architecture called DenseNet. In this architecture, the convolution
blocks are densely connected to each other, and the convolution blocks are concatenated to each other
instead of being added like in the ResNet network. For more information, the reader is referred to the
corresponding paper [19].

2.3. Evaluation Metrics

Two evaluation metrics are being used to assess the performance of each network. Accuracy and Kappa.
Below, we briefly summarize each metric:

2.3.1. Accuracy

This metric quantifies how accurate the classifier is. It is calculated as the number of correctly classified
data points divided by the total number of the data points. The formula is shown in Equation (1).

Accuracy = IN+ 1P
Y= TP 1IN + FP + FN

)

where TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands
for false negative. In the context of this study, images without fractures belong to the negative class,
whereas images with a bone fracture belong to the positive class.

2.3.2. Kappa

This is an evaluation metric that is usually used to take into account the probability of selecting
by chance, especially in cases of unbalanced datasets, and it was introduced by Cohen [20]. The upper
limit of the Kappa metric is 1, which means that the classifier classified everything correctly. At the
same time, the lower bound can go below zero, which indicates the classifier is just classifying by luck.
The Kappa formula is presented in Equation (2).

Agreementyy . ved — AgreementExpected

Kappa = @)

1- AgreementEXpeCted

2.4. Statistical Analysis

A statistical analysis was performed to assess the statistical significance of the results. We considered
a confidence interval with a 95% error rate (95% CI) and a hypothesis test. Two hypothesis tests can
be used: ANOVA or Kruskal-Wallis test. The choice of the test mainly depends on the normality of
the data under observation. The ANOVA test is a parametric test that assumes that the data have a
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normal distribution. The null hypothesis of the ANOVA test is that the considered samples have the
same mean, and the alternative hypothesis is that the samples have a different mean.

The non-parametric test is the Kruskal-Wallis hypothesis test [21]. This test does not make any
assumption on the normality of the data, and it compares the medians of different samples. The null
and alternative hypotheses tested are the following:

Hypothesis 0 (HO0). The populations medians are all equal.
Hypothesis 1 (H1). The populations medians are not all equal.

In this paper, we first tested the normality assumption by using the Shapiro-Wilk test. Considering that
the test does not allow to reject the alternative hypothesis (i.e., data not normally distributed),
the Kruskal-Wallis test was used to test the significance of the results obtained. To make the hypothesis
test and to report means and significance errors, each setting was repeated 30 times using different
seeds and different validation split. In this way, each approach’s stability can be assessed by also
mitigating the effect of lucky seeds [22].

2.5. Dataset

The dataset used in this paper is the publicly available MURA dataset [10]. The dataset consists of
seven different skeletal bones: elbow, finger, forearm, hand, humerus, shoulder, and wrist. Each category
has a binary label, indicating if the image presents a broken bone or not. The dataset contains a total of
40,005 images. The authors of the dataset split it into training and test sets. The train set included
21,935 images without fractures (54.83% of the dataset) and 14,873 images with fractures (37.17% of
the dataset), and the test set contained 1667 images without fractures (4.16% of the dataset) and 1530
images with fractures (3.84% of the dataset).

Allin all, 92% of the dataset is used for training, and 8% of the dataset is used for testing the results.
The summary of the dataset is presented in Table 1. A sample of the MURA dataset is presented in
Figure 1.

Table 1. MURA dataset summary.

C Training Dataset Test Dataset
ategory
Normal Fractured Normal Fractured
Elbow 2925 2006 235 230
Finger 3138 1968 214 247
Hand 4059 1484 271 189
Humerus 673 599 148 140
Forearm 1164 661 150 151
Shoulder 4211 4168 285 278
Wrist 5765 3987 364 295
Total 21,935 14,873 1667 1530

Broken Forearm Normal Forearm Broken Wrist Normal Wrist

Figure 1. A sample of the MURA dataset.
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3. Results

Throughout the experiments, all the hyperparameters were fixed. All the networks were either
fine-tuned completely or trained from scratch. Adam optimizer [21] was used in all the experiments.
As noted by studies [22,23], the learning rate should be low to avoid dramatically changing the
original weights, so we set the learning rate to be 0.0001. All the images were resized to 96 X 96 pixels.
Binary cross-entropy was used as the loss function because the images are binary classified. An early
stopping criterion of 50 epochs would be used to stop the algorithms if no updates happened to the
validation score. The batch size was selected to be 64, and the training dataset was split into 80%
to train and 20% to validate the results during training. Four image augmentation techniques were
used to increase the training dataset’s size and make the network more robust against overfitting;
the augmentation techniques used are horizontal and vertical flips, 180 rotations, and zooming.

Additionally, image augmentation is performed to balancing the number of images in the two
target classes, thus achieving 50% of images without fractures and 50% of images with fractures
in the training set. After the training, each network’s performance was tested using the dataset
that was supplied by the owner and creator of the dataset. The test dataset was not used during
the training phase, but only in the final testing phase. The hyperparameters used are presented in
Table 2. In the following sections, Kappa is the metric considered for comparing the performance of
the different architectures.

Table 2. The hyperparameters were used for all the experiments.

Framework Keras with Python
Optimizer Adam
Learning Rate 0.0001
Loss Function Binary Cross-entropy
Early Stopping 50 epochs
Batch Size 64
Validation Split 20%
Horizontal flips
Image Augmentation Vertical ﬂlps
180 rotations
Zooming

3.1. Wrist Images Classification Results

Two main sets of experiments were performed: the first consists of adding two fully connected
layers after each architecture to act as a classifier block. The second consists of adding only a sigmoid
layer after the network. Both the results of the first set and the second set are presented in Table 3.

In the first set of experiments, the fine-tuned VGG19 network had a Kappa score of 0.5989, while the
network that was trained from scratch had a score of 0.5476. For the Xception network, the transfer
learning score was higher than the one trained from scratch by a large margin. The ResNet50 network
performance improved significantly by using transfer learning rather than training it from scratch.
This indicates that transfer learning is fundamental for this network, that it could not learn the features
of the images from scratch. Both the fine-tuned InceptionV3, InceptionResNetV2, and DenseNet121
networks have a higher score than training them from scratch. Overall, fine-tuning the networks did
yield better results than training the networks from scratch. The best performance for the first set of
experiments was achieved by fine-tuning the DenseNet121 network.

In the second set of experiments, all the networks’ performance increased by fine-tuning than
by training from scratch. The ResNet network was the network with the highest difference between
fine-tuning and training from scratch. Overall, the best performance for the second set of experiments
was achieved by fine-tuning the Xception network. Comparing the first set of experiments to the
second set, we see that the best performance for classifying wrist images was the fine-tuned DenseNet121
network with fully connected layers. The presence of fully connected layers did not have any noticeable
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increase in performance; however, it is worth noting that the ResNet network with fully connected
layers did not converge when trained from scratch.

Table 3. Accuracy and Kappa scores of classifying wrist images with and without fully connected

layers (+£95% CI).
With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
VGGI9 TL 80.45% + 1.26% 05989 +2.39%  80.63% + 1.64%  0.6035 + 3.33%
Scratch 78.07% + 0.94% 05476 £2.11%  79.89% + 1.84%  0.5846 + 3.74%
. TL 79.92% +2.07% 05886 +3.61%  79.94% + 1.46%  0.5876 + 2.77%
InceptionV3

Scratch 77.01% +298% 05241 +6.49%  77.59% + 1.51%  0.5389 + 3.03%
ResNet TL 78.76% + 0.88% 05647 +2.04%  80.85% + 1.70%  0.6046 + 3.63%
esie Scratch 58.65% + 8.70%  0.0836 +21.31%  70.99% + 4.20%  0.4018 + 8.27%
Xeention TL 80.93% + 0.88%  0.6098 + 1.69%  81.18% + 0.47%  0.6133 + 0.94%
P Scratch 77.44% +1.99% 05333 +4.41%  77.14% + 1.86%  0.5318 + 3.32%
DerseNet TL 81.71% + 0.94%  0.6245+1.98%  78.76% +227%  0.5663 + 4.29%
enseiNe Scratch 76.40% +2.30% 05083 £5.17%  76.68% + 3.62%  0.5214 + 7.25%
InceptionResNet TL 80.1% + 1.66% 05917 +3.32%  80.55% + 1.06%  0.6010 + 2.25%
P Scratch 77.77% + 1.59% 05450 +2.85%  78.55% + 1.70%  0.5580 + 3.48%

3.2. Hand Images Classification Results

As done with the wrist images, two sets of experiments were performed. Both the results of the
first set and the second set are presented in Table 4.

In the first set of experiments, for the VGG19 and the ResNet networks, fine-tuning the networks
resulted in significantly higher performance than training the networks from scratch. The networks
trained from scratch did not converge to an acceptable result. This fact highlights that the importance
of transfer learning for these networks, that are not able to learn the images’ features from scratch.
For the remaining networks, fine-tuning achieved significantly better performance than by training the
networks from scratch. Overall, all the fine-tuned networks achieved better results than by training
from scratch. The best performance of the first set of experiments was obtained with the fine-tuned

Xception network.

Table 4. Accuracy and Kappa scores of classifying hand images with and without fully connected

layers (+£95% CI).
With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
VGG19 TL 70.11% + 9.23%  0.3089 + 25.42%  73.04% + 1.27%  0.3960 + 3.23%
Scratch 58.91% + 0% 0+ 0% 63.22% +5.90%  0.1312 + 15.90%
| . TL 70.25% + 1.34% 0.3261 + 3.57% 72.10% + 0.79%  0.3829 + 2.15%
nceptionV3
Scratch 66.38% =+ 3.80% 0.2382 + 9.76% 66.56% + 2.48%  0.2361 + 6.07%
ResN TL 72.25% + 1.25% 0.3754 + 3.55% 71.12% + 1.94%  0.3503 + 5.44%
esNet Scratch 59.28% + 0.93%  0.0103 £2.65%  62.10% +121%  0.0971 + 3.26%
Xeention TL 75.36% + 2.56% 0.4621 + 6.27% 72.50% +2.0%  0.3778 + 5.41%
P Scratch 66.74% + 2.58% 0.2277 + 7.20% 66.81% + 3.60%  0.2334 + 10.05%
DenseNet TL 72.21% + 1.69% 0.3746 + 4.33% 70.22% + 3.28%  0.3243 + 9.03%
enseiNe Scratch 63.33% + 1.16%  0.1308 +3.47%  62.79% + 1.50%  0.1231 + 4.39%
InceptionResNet TL 71.96% + 1.80% 0.3709 + 4.33% 71.81% +1.91%  0.3670 + 4.65%
P Scratch 68.48% + 1.53% 0.2788 + 4.36% 69.09% + 1.04%  0.3071 + 2.43%
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In the second set of experiments, the performance of all the networks increased by fine-tuning
than by training from scratch. The ResNet network was the network with the highest difference
between fine-tuning and training from scratch. Overall, the best network was the VGG19 network.
Comparing the first set of experiments to the second set, we see that the best performance for classifying
hand images was the fine-tuned Xception network with fully connected layers. The presence of fully
connected layers did not significantly increase the performance; however, it is important to point out
that the VGG19 network with fully connected layers did not converge when it was trained from scratch.

3.3. Humerus Images Classification Results

For the humerus images, the results of both the first and second sets of experiments are presented
in Table 5. In the first set of experiments, fine-tuning VGG19 architecture did not converge to any
acceptable results, while training the VGG19 from scratch did yield higher performance. For the
rest of the networks, fine-tuning did achieve better results than training the networks from scratch.
The highest difference was between fine-tuning the ResNet network and training it from scratch.
Overall, the best network in the first sets of experiments was the fine-tuned DenseNet network, with a
Kappa score of 0.6260.

In the second set of experiments, fine-tuning did achieve better results for all the networks than
training the networks from scratch. The best-achieved network was the VGG19 network, with a
Kappa score of 0.6333. Comparing the first set of experiments to the second set, we see that the
best performance for classifying humerus images was the fine-tuned VGG19 network without fully
connected layers. Just as in the previous experiments, the fully connected layers’ presence did
not provide any significant performance improvement; however, fine-tuning the VGG19 with fully
connected layers did not converge compared to fine-tuning the same network without any fully
connected layers.

Table 5. Accuracy and Kappa scores of classifying humerus images with and without fully connected

layers (£95% CI).
With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
VGG19 TL 51.39% + 0% 0+ 0% 81.66% =+ 2.74% 0.6333 + 5.43%
Scratch 62.04% =+ 3.67% 0.239 + 8.01% 69.44% =+ 8.28% 0.3893 + 16.77%
I . TL 80.32% =+ 2.74% 0.6070 + 5.51% 80.56% + 1.48% 0.6114 + 2.94%
nceptionV3
Scratch 67.77% + 3.12% 0.3603 + 6.08% 64.06% + 3.51% 0.2879 + 6.81%
ResNet TL 80.38% + 2.55% 0.6084 + 5.03% 78.18% + 2.20% 0.5647 + 4.31%
esiNe Scratch 54.28% + 7.46% 0.0849 + 14.97% 65.63% +5.19%  0.3171 + 10.26%
Xception TL 80.03% + 1.92% 0.6010 + 3.81% 79.75% + 1.67% 0.5942 + 3.40%
Scratch 66.55% =+ 2.84% 0.3386 + 5.46% 66.32% + 4.72% 0.3334 £9.11%
D Net TL 81.31% + 1.88% 0.6260 + 3.81% 77.84% + 1.52% 0.5563 + 3.16%
enseNe Scratch 70.54% +5.85% 04134+ 11.37%  71.93% +2.74%  0.4406 + 5.35%
InceptionResNet TL 78.41% + 1.84% 0.5697 + 3.61% 78.76% + 2.56% 0.5761 + 5.07%
P Scratch 65.34% + 3.89% 0.3135 £ 7.61% 65.34% + 4.37% 0.3139 + 8.47%

3.4. Elbow Images Classification Results

For the elbow images, we performed the same two sets of experiments performed with the
previously analyzed datasets. Both the results of the first set and the second set are presented in Table 6.
In the first set of experiments, the fine-tuned VGG19 score was less than training the same network
from scratch. For the rest of the networks, fine-tuning did achieve higher performance than training
the networks from scratch. The ResNet network achieved the highest difference between fine-tuning
and training from scratch. Overall, the best network was the fine-tuned DenseNet121, with a Kappa
score of 0.6510.
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In the second set of experiments, no fully connected layers were added. For all the networks,
fine-tuning did achieve higher results than training from scratch. Overall, the best network was the
fine-tuned Xception network, with a Kappa score of 0.6711. Comparing the first set of experiments
to the second set, we see that the best performance for classifying elbow images was the fine-tuned
Xception network without fully connected layers.

Table 6. Accuracy and Kappa scores of classifying elbow images with and without fully connected

layers (+95% CI).
With FC Without FC

Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
VGGI9 TL 71.36% + 16.95%  0.4232 +13.01%  81.61% + 1.56%  0.6316 + 3.12%
Scratch 75.81% + 34.45% 05136 = 26.45%  76.52% + 13.45%  0.5279 + 27.33%

IncentionV3 TL 81.72% + 0.91% 0.6339 + 1.84% 80.93% + 2.3% 0.6180 + 4.6%
P Scratch 77.96% + 2.92% 0.5583 + 5.84% 76.09% + 429%  0.5208 + 8.6%
ResNet TL 81.79% + 3.28% 0.6351 + 6.61% 81.9% +2.22%  0.6374 + 4.44%
esiNe Scratch 56.20% + 9.60%  0.1161 +19.68%  71.04% +4.02%  0.4191 + 8.09%
Xeeption TL 82.15% + 1.21% 0.6425 + 2.42% 83.58% + 1.64%  0.6711 + 3.31%
P Scratch 78.21% + 2.83% 0.5631 + 5.70% 78.49% + 1.88%  0.5690 + 3.75%
DerseN TL 82.58% + 1.97% 0.6510 + 3.92% 81.08% + 2.23%  0.6208 + 4.47%
enseNet Scratch 75.38% + 3.36% 05060 = 6.82%  73.84% +4.70%  0.4754 + 9.49%
IncentionResNet TL 80.82% =+ 0.61% 0.6159 + 1.21% 80.47% + 1.68%  0.6087 + 3.37%
P Scratch 79.82% + 1.45% 0.5955 + 2.91% 78.49% + 1.28%  0.5694 + 2.58%

3.5. Finger Images Classification Results

As with the previous datasets, two main sets of experiments were performed. Both the results
of the first set and the second set are presented in Table 7. In the first set of experiments, fine-tuning
achieved better results than training the networks from scratch for all the networks. The best-achieved
network was the fine-tuned VGG19, with a Kappa score of 0.4379. In the second set of experiments,
fine-tuning produced better results than training from scratch for all the six networks. The best
network was the fine-tuned InceptionResNet network, with a Kappa score of 0.4455. Comparing the
first set of experiments to the second set, we see that the best performance for classifying finger
images was the fine-tuned InceptionResNet network without fully connected layers. Moreover, in this
case, the presence of the fully connected layers did not provide any significant advantage in terms

of performance.

Table 7. Accuracy and Kappa scores of classifying finger images with and without fully connected

layers (+95% CI).
With FC Without FC

Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
VGGI9 TL 71.4% + 1.84% 04379 +3.59%  68.44% +2.76%  0.3847 + 5.10%
Scratch 66.78% +2.83%  0.3505+522%  66.16% +3.10%  0.3413 + 5.26%
IncentionV3 TL 67.68% +2.15%  0.3686+3.87%  68.55% +3.19%  0.3834 +5.97%
P Scratch 63.52% + 2.66% 02911 +4.82%  63.88% +2.15%  0.2916 + 4.09%
ResN TL 70.17% + 1.16% 04129 +2.17%  69.02% +2.52%  0.3900 + 4.44%
esNet Scratch 60.34% + 8.07% 02341 +13.90%  66.41% +2.98%  0.3431 + 5.68%
Xeention TL 71.37% +243%  0.4369 + 4.42%  70.64% +2.27%  0.4234 + 4.28%
P Scratch 64.75% +2.79%  0.3109 +5.33%  64.57% +2.72%  0.3055 + 5.31%
DerseNet TL 66.78% + 2.64%  0.3552 +4.66%  66.81% +1.92%  0.3512 + 3.61%
enseiNe Scratch 62.18% +2.10%  0.2692 + 3.60%  64.32% +3.16%  0.3051 + 5.64%
IncentionResNet TL 70.97% + 2.05%  0.4294 + 3.80% 71.8% + 1.49%  0.4455 + 2.88%
p Scratch 64.64% + 3.07%  0.3112+570%  65.29% +3.09%  0.3204 + 5.72%
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3.6. Forearm Images Classification Results

As with the previous datasets, two sets of experiments were performed on the forearm
images dataset. Both the results of the first set and the second set are presented in Table 8. In the first
set of experiments, fine-tuning all the networks produced better results than training from scratch.
Training of ResNet network from scratch did not yield any satisfactory results, which can imply
that fine-tuning this network was crucial for obtaining a good result. The best network was the
DenseNet121 network, with a Kappa score of 0.5851. Moreover, in the second set of experiments,
fine-tuning achieved better results than training from scratch. The best network was the fine-tuned
ResNet network, with a Kappa score of 0.5673. Comparing the first set of experiments to the second set,
we see that the best performance for classifying forearm images was the fine-tuned DenseNet network
with fully connected layers. As observed in other datasets, the presence of the fully connected layers
did not have any significant advantage in terms of performance.

Table 8. Accuracy and Kappa scores of classifying forearm images with and without fully connected

layers (+95% CI).
With FC Without FC

Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
VGG19 TL 77.02% +1.27%  0.5408 + 2.54% 76.3% +2.16%  0.5264 + 4.31%
Scratch 64.29% +9.50% 02870 +18.91%  71.15% + 6.41%  0.4237 + 12.75%

IncentionV3 TL 76.52% + 1.46%  0.5308 + 2.91% 77.46% + 1% 0.5496 + 1.99%
P Scratch 64.84% +550% 02973 +11.01%  65.84% +4.95%  0.3171 + 9.89%
ResNet TL 74.7% + 1.20% 04943 +2.38%  78.35% +3.46%  0.5673 + 6.92%
esiNe Scratch 50.11% + 0.56%  0.0055 + 1.11%  63.79% + 3.58%  0.2764 + 7.12%
Xeention TL 75.08% + 1.84% 05022 +3.69%  76.08% + 1.66%  0.5222 + 3.32%
P Scratch 66.00% +2.54% 03204 +5.08%  65.73% +531%  0.3148 + 10.64%
DenseNet TL 79.24% + 0.53%  0.5851 + 1.05%  76.14% +2.32%  0.5232 + 4.63%
enseiNe Scratch 68.77% + 3.75% 03755 +751%  69.66% +3.12%  0.3935 + 6.25%
InceptionResNet TL 74.7% + 2.64% 0.4945 + 527%  74.86% +1.98%  0.4977 + 3.95%
P Scratch 65.45% + 3.36%  0.3096 + 6.69% 69.1% + 6.07%  0.3824 + 12.12%

3.7. Shoulder Images Classification Results

In the first set of experiments, the VGG19 network did not converge to an acceptable result by
using both methods. For the rest of the networks, fine-tuning the networks achieved better results than
training the networks from scratch. The best network was the fine-tuned Xception network, with a
Kappa score of 0.4543. Both the results of the first set and the second set are presented in Table 9. In the
second set of experiments, training the ResNet network from scratch achieved slightly better results
than fine-tuning. For the rest of the networks, fine-tuning achieved better results. The best network
was the fine-tuned VGG19, with a Kappa score of 0.4502. Comparing the first set of experiments to
the second set, we see that the best performance for classifying shoulder images was the fine-tuned
Xception network with fully connected layers. The presence of the fully connected layers did not show
any significant advantage in terms of performance. Anyhow, the VGG19 network with fully connected
layers did not converge to any satisfactory result compared to the same network without any fully
connected layers.

3.8. Kruskal-Wallis Results

We applied the Kruskal-Wallis test to assess the statistical significance of different settings.
The Kruskal-Wallis test yielded a p-value < 0.05 for all the results, which indicates to reject the null
hypothesis that the settings have the same median and to accept the alternative hypothesis that there is
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a statistically significant difference between different settings (transfer learning “with and without
fully connected layers” vs. training from scratch “with and without fully connected layers”).

Table 9. Accuracy and Kappa scores of classifying shoulder images with and without fully connected

layers (+£95% CI).
With FC Without FC

Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa
veaLo TL 77.02% +1.27%  0.5408 + 2.54% 76.3% +2.16%  0.5264 + 4.31%
Scratch 64.29% + 9.50%  0.2870 + 1891%  71.15% + 6.41%  0.4237 + 12.75%

. TL 76.52% + 1.46%  0.5308 +2.91% 77.46% + 1% 0.5496 + 1.99%

InceptionV3

Scratch 64.84% + 550% 02973 +11.01%  65.84% +4.95%  0.3171 + 9.89%

ResNet TL 74.7% + 1.20% 04943 +2.38%  78.35% +3.46%  0.5673 + 6.92%
esie Scratch 50.11% + 0.56%  0.0055 = 1.11%  63.79% + 3.58%  0.2764 + 7.12%
eention TL 75.08% + 1.84% 05022 +3.69%  76.08% + 1.66%  0.5222 + 3.32%
P Scratch 66.00% + 2.54%  0.3204 +£5.08%  65.73% +531%  0.3148 + 10.64%
DenseNet TL 79.24% + 0.53% 05851 +1.05%  76.14% +2.32%  0.5232 + 4.63%
enseiNe Scratch 68.77% + 3.75% 03755 +7.51%  69.66% +3.12%  0.3935 + 6.25%
InceptionResNet TL 74.7% + 2.64% 0.4945 +527%  74.86% +198%  0.4977 + 3.95%
P Scratch 65.45% + 3.36%  0.3096 + 6.69% 69.1% + 6.07%  0.3824 + 12.12%

4. Discussion

In this paper, we compared the performance of fine-tuning on six state-of-the-art CNNss to classify
musculoskeletal images. Training a CNN network from scratch can be very challenging, especially in
the case of data scarcity. Transfer learning can help solve this problem by initiating the weights with
values learned from a large dataset instead of initializing the weights from scratch. Musculoskeletal
images play a fundamental role in classifying fractures. However, these images are always challenging
to be analyzed, and a second opinion is often required, which will not always be available, especially in
the emergency room. As pointed out by Lindsey et al. [5], the presence of an image classifier in the
emergency room can significantly increase physicians’ performance in classifying fractures.

For the first research question, about the effect of transfer learning, we noted that transfer learning
produced better results than training the networks from scratch. For our second research question,
the classifier that achieved the best result for wrist images was the fine-tuned DenseNet121 with
fully connected layers; the classifier that achieved the best performance for elbow images was the
fine-tuned Xception network without fully connected layers; for finger images, the best classifier was
the fine-tuned InceptionResNetV2 network without fully connected layers; for forearm images, the best
classifier was the fine-tuned DenseNet network with fully connected layers; for hand images, the best
classifier was a fine-tuned Xception network with fully connected layers; the best classifier for humerus
images was the fine-tuned VGG19 network without fully connected layers; finally, the best classifier
for classifying the shoulder images was the fine-tuned Xception network with fully connected layers.
A summary of the best CNNss is presented in Table 10. Concerning the third research question, the fully
connected layers had a negative effect on the performance of the considered CNNs. In particular,
in many cases, it decreased the performance of the network. Further research is needed to study,
in more detail, the impact of fully connected layers, especially in the case of transfer learning.

The authors of the MURA dataset [10] assessed the performance of three radiologists on the
dataset and compared their performance against the one of a CNN. In Table 11, we present their results,
along with our best scores.

For classifying elbow images, the first radiologist achieved the best score, and our score was
comparable to other radiologists [10]. For finger images, our score was higher than the three radiologists.
For forearm images, our score was lower than the radiologists. For hand images, our score was the lowest.
For humerus images, shoulder images, and wrist images, our score was lower than the radiologists.
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We still believe that the scores achieved in this paper are promising, keeping in mind that these scores
came from off-the-shelf models that were not designed for medical images in the first place and that the
images were resized to be 96 x 96 pixels due to hardware limitations. Nevertheless, additional efforts
are needed to outperform the performance of experienced radiologists.

Table 10. The best convolutional neural network (CNN) for each image category.

Fracture CNN
Wrist DenseNet
Elbow Xception
Finger InceptionResNetV2
Forearm DenseNet121
Hand Xception
Humerus VGG19
Shoulder Xception

Table 11. Kappa scores of three radiologists reported in Reference [10] compared to our results.

Fracture 1st Radiologist 2nd Radiologist  3rd Radiologist Our Score

Elbow 0.850 0.710 0.719 0.671
Finger 0.304 0.403 0.410 0.445
Forearm 0.796 0.802 0.798 0.585
Hand 0.661 0.927 0.789 0.462
Humerus 0.867 0.733 0.933 0.633
Shoulder 0.864 0.791 0.864 0.454
Wrist 0.791 0.931 0.931 0.625

On the other side of the spectrum, there is the study of Raghu et al. [24], where the authors
argued that transfer learning is not good enough for medical images and will be less accurate
compared to training from scratch or compared to novel networks explicitly designed for the
problem at hand. The authors studied the effect of transfer learning on two medical datasets, namely,
retina images and chest X-ray images. The authors stated that designing a lightweight CNN can be
more accurate than using transfer learning. In our study, we did not consider “small” CNNs trained
from scratch. Thus, it is not possible to directly compare the results obtained to the ones presented in
Raghu et al. [24]. Anyway, more studies are needed to better understand the effect of transfer learning
on medical-image classification.

5. Conclusions

In this paper, we investigated the effect of transfer learning on classifying musculoskeletal images.
We find that, out of the 168 results obtained that were performed by using six different CNN
architectures and seven different bone types, transfer learning achieved better results than training
a CNN from scratch. Only in 3 out of the 168 results did training from scratch achieve slightly
better results than transfer learning. The weaker performance of the training-from-scratch approach
could be related to the number of images in the considered dataset, as well as to the choice of the
hyperparameters. In particular, the CNNs taken into account are characterized by the presence of a large
number of trainable parameters (i.e., weights), and the number of images used to train these networks
is too small to build a robust model. Concerning the hyperparameters, we highlight the importance
of the learning rate. While we used a small value of the learning rate in the fine-tuning approach,
to avoid changing the architectures’ original weights dramatically, the training-from-scratch approach
could require a higher value of the learning rate. A complete study on the hyperparameters’ effect will
be considered in future work, aiming to fully understand the best approach to be used when dealing
with fracture images. Focusing on this study’s results, it is possible to state that transfer learning is
recommended in the context of fracture images. In our future work, we plan to introduce a novel CNN



J. Imaging 2020, 6, 127 13 of 14

to classify musculoskeletal images, aiming at outperforming fine-tuned CNNs. This would be the first
step towards the design of a CNN-based system, which classifies the image and provides the probable
position of the fracture if the fracture is present in the image.
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