ANALYSIS AND SIMULATION OF SOCIAL UNREST IN EUROPE

Towards understanding social unrest in Europe

Elisabet Adeva Romero

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
ANALYSIS AND SIMULATION OF SOCIAL UNREST IN EUROPE
Towards understanding social unrest in Europe

Supervisor:
Professor Ana Cristina Costa
Instituto Superior de Estatística e Gestão de Informação (ISEGI)
Universidade Nova de Lisboa,
Lisbon, Portugal.

Co-supervisors:
Prof. Dr. Edzer J. Pebesma.
Institute for Geoinformatics (iFGI),
Westfälische Wilhelms-Universität,
Muenster, Germany.
&
Prof. Dr. Jorge Mateu M
Department of Mathematics,
Universitat Jaume I (UJI)
Castellon, Spain.

February 2014
Dedication

To my mother
Acknowledgments

I am very grateful to my supervisor, Profª Doutora Professor Ana Cristina Marinho da Costa and co-supervisors Professor Edzer Pebesma and Jorge Mateu for taking time off a busy schedule to supervise me at every stage of this project.

I am very grateful to the European Commission for being part of the Erasmus Mundus scholarship program for trusting me, and foster my career and studies. Thanks to the three partner universities - New University of Lisbon Portugal, Institute for Geoinformatics Muenster and Universitat Jaume I, and Castellon Spain for this great experience.

I would like to express my very great appreciation to Kalev Leetaru and Philip A. Schrodt, for their research on GDELT: Global Data on Events, Location and Tone, which I have, enjoy working with and knowing deeper in this study, thus I ought to congratulate them as I believe it is a countless innovation, I a further development.

I am particularly grateful for the assistance given by Mark Padgham regarding to R software.

I sincerely thank all my colleagues that without knowing me have believed in me for their gentleness in my difficult times. I appreciate the words of support of my family and friends around the world, in special to my best friends, Olga Blanca and Elba Guillaumes for making me smile everyday even the distance.

My special thanks are extended to Neel for making me believe again, in the impossible.

And to the many others who spend with me their time and gave me free suggestion and comments, you all have improve indirectly this work, to those whom I have not mention, I mean no ungratefulness. Thank you to all.
Declaration of Originality

I declare that the submitted work is entirely my own and not belongs to any other person. All references, including citation of published and unpublished sources have been appropriately acknowledged in the work. I further declare that the work has not been submitted to any institution for assessment for any other purpose.

Lisbon,
February 2014

Elisabet Adeva
Protest in Europe where analyzed to foster an understanding of the distribution and the behaviour of those during from 2000 to 2010 time frame.

The main object of this study is to discover if there is a relation between economic, social and other variables available in Eurostat in order to discover a pattern in the protests in Europe. For this purpose, least squared method and spatial point pattern analysis method were applied in the R Software environment. The final output indicates that variables can’t explain a cause-effect relation of protests due to its behaviour is complex and Europe is an inhomogeneous area. In the other hand, we saw that protest tend to increase mostly when other protest have happened in the past.

Protest location are scattered within the European megalopolis, and reveals attraction to some capitals some hot spots patterns are observed. They are mostly located in urban areas, close to the borders with other European countries. The resulting models discovered that protest/events distributions do not imitate an inhomogeneous Poisson process and thus we tried to model the behaviour describing special interaction between locations of protests.

The best interaction model was chosen by computing different distances. We analyzed the whole Europe area and due a strong influence of United Kingdom we computed the same model to Germany, France, United Kingdom and Spain. Finally, a step further spatial-temporal analysis was taken only for Spain.

This analysis is one of the first analyses set by the recently launched Global Database of Events, Language, and Tone (GDELT), a big free online data base of over 250m events and 300 categories including riots and protests codified from world news sources.

After this analysis we recommend, further analysis should contain models that apply border contagion including time.
KEYWORDS

Protest
GDELT Global Database of Events, Language, and Tone

R
Spatial Autoregressive model
Spatial Point Pattern Analysis
Spatial distribution pattern
spatstat
ACRONYMS

- AI - Area Interaction
- CSR - Complete Spatial Randomness
- EUROSTAT - Statistical Office of the European Union
- GDP - Gross Domestic Product
- GED - Geo-referenced Event Dataset
- GDELT - Global Database of Events, Language, and Tone
- ICP - Inhomogeneous Cluster Process
- IPP - Inhomogeneous Poisson Process
- OLS - Ordinary Least Square
- PPP - Point Pattern Process
- UCDP - Uppsala Conflict Data Program
- WEIS - World Event/Interaction Survey
- ICEWS - Integrated Conflict Early Warning System
TABLE OF CONTENTS

DEDICATION .. II
ACKNOWLEDGMENTS .. III
DECLARATION OF ORIGINALITY ... IV
ABSTRACT .. V
KEYWORDS .. VI
ACRONYMS .. VII
TABLE OF CONTENTS ... VIII
INDEX OF TABLES .. X
INDEX OF FIGURES .. XI

CHAPTER 1: BACKGROUND

1.1 Protests .. 01
1.2 Crisis ... 02
1.3 Protests and European Crisis ... 03
1.4 Why this study- Objective .. 04
1.5 Available event data .. 05
1.6 Study area .. 07
1.7 Structure of the thesis .. 09
1.8 Overview of methods used to support the analysis ... 09
1.8.1 Lattice approach .. 11
1.8.2 Point process analysis .. 11

CHAPTER 2: MATERIALS AND METHODS

2.1 Problem and area of study ... 13
2.2 Materials .. 14
2.2.1 Analysis tools ... 14
2.2.2 Event data: GDELT ... 14
2.2.3 Dependent, explanatory variables or predictor variables .. 18
2.3 Method chart ... 19
2.3.1 Explanatory Analysis .. 21
2.3.2 First order characteristics of protest events location and spatial distribution 22
2.3.3 Inhomogeneous Point Process .. 24
2.3.4 Area Interaction fitting model and simulation ... 26
2.3.5 Predictions from the fitted models ... 27

CHAPTER 3: RESULTS OF ANALYSIS

3.1 Explanatory Analysis .. 29
3.2 First-order characteristics of protests event distribution ... 34
3.3 Testing for Complete Spatial Randomness in protest events distribution 36
3.4 Inhomogeneous Poisson Point Process ... 37
3.5 Area Interaction fitting and simulation .. 39
3.6 Testing for Complete Spatial Randomness in protest events distribution in Spain 41

CHAPTER 4: DISCUSSION, RECOMMENDATIONS AND CONCLUSION

4.1 Results overview and limitations of the study ... 48
4.2 Conclusions ... 49
4.3 Further Analysis... 52

REFERENCES

APPENDICES

Appendix 1: Download and normalization of GDELT database in R......................... 57
Appendix 2: R Script for NUTS2 analysis ... 61
Appendix 3: R Script for analysis .. 62
Appendix 4: R Script for ppm analysis .. 64
Appendix 5: Table of Variables.. 69
Appendix 6: Least square regression results... 87
INDEX OF TABLES

Table 1: Event data projects Source: Schrodt, 2012 .. 06
Table 2: Example of a GDELT Event Data Event ... 15
Table 3: Sets and subsets for the code Protests inside the Cameo Code 16
Table 4: Primary and secondary codes added to country codes for each Action in GDELT 17
Table 5: International/Transnational Actors ... 17
Table 6: Actions codes related to the countries of the study .. 30
Table 7: Legend of the observed action codes ... 30
Table 8: Spider diagram of Action1 and Action2 in protest events ... 31
Table 9: Spider diagram of Action1 and Action2 without GOV and OPP 31
Table 10: The description of regression variables .. 32
Table 11: Intensity map protest/events in EU from 2000-10 .. 36
Table 12: Histogram of intensity protest/events in Europe from 2000 to 2010 36
Table 13: Spain event numbers and tone .. 53
INDEX OF FIGURES

Fig 1: NUTS 2, basic regions for the application of regional policies .. 10
Fig 2: Flow chart of overall methodology enforced to analyze protest event data 20
Fig. 3: Protests events found in GDELT data base since the start of recording data 29
Fig. 4: Approximation to countries of study .. 29
Fig. 5(a to d): Protests events found in GDELT data base in all European countries 35
Fig. 6: Inhomogeneous Poisson process for all protest events Spain (2000-2010) 37
Fig. 7: Inhomogeneous Poisson process for all protest events United Kingdom (2000-2010) 37
Fig. 8: Inhomogeneous Poisson process for all protest events France (2000-2010) 38
Fig. 9: Inhomogeneous Poisson process for all protest events Germany (2000-2010) 38
Fig. 10: Inhomogeneous Poisson process for all protest events Spain (2000-2010) 38
Fig. 11: Inhomogeneous Poisson process for all protest events United Kingdom (2000-2010) 38
Fig. 12: Inhomogeneous Poisson process for all protest events France (2000-2010) 39
Fig. 13: Inhomogeneous Poisson process for all protest events Germany (2000-2010) 39
Fig. 14: Inhomogeneous Area Interaction process for all protest /events France (2000-2010) 39
Fig. 15: Inhomogeneous Area Interaction process for all protest /events Germany (2000-2010) 39
Fig. 16: Inhomogeneous Area Interaction process for all protest /events France (2000-2010) 40
Fig. 17: Inhomogeneous Area Interaction process for all protest /events Germany (2000-2010) 40
Fig. 18: Simulation of protests events in Spain, based on data from 2000-2010 41
Fig. 19: Simulation of protests events in United Kingdom, based on data from 2000-2010 41
Fig. 20: Simulation of protests events in France, based on data from 2000-2010 41
Fig. 21: Simulation of protests events in Germany based on data from 2000-2010 41
Fig. 22: Intensity maps for each year from 2000 to 2010 for Spain .. 42
Fig. 23: Sample of Inhomogeneous Poisson Analysis for 2007 in Spain 43
Fig. 24: Inhomogeneous Poisson Analysis for each year from 2000 to 2010 for Spain 44
Fig. 25: Simulation maps for each year from 2000 to 2010 for Spain .. 47
CHAPTER 1: BACKGROUND

Now-a-day, protests have been established as most well recognized medium for expressing civil views in interstate conflicts in a non-violence manner. They are used for civilians as a practice of exercising democracy due to a change in policy lead to inconvenient growth, deterioration of the working class or unwanted arrest.

The cause of social unrest can lead to despair and trigger more protest or even bring inevitable revolutions (Thomassen, 2012), which means protest events matter to identify political and social unrest. What if we try to understand the dynamics of the current crisis by analyzing spatio-temporal happening of protest? What if we try to model crisis through protest? Are protest a potential indicator to predict crisis scenarios? This study is targeted to study protest and the crisis in Europe in time and per country.

1.1. Protests

The word protest has its origins in old French and Latin. Words as protestor and protestari have their root in a separated two parts: pro – meaning implication of “forth, publicly” and test meaning “to assert, to witness”. In the other hand, in late Middle English, to protest, was commonly considered as a verb, which concept accepted by Oxford Dictionary was defined as a description of the sense of ‘making a solemn declaration’.

Popularly protests are conceived as public demonstration of a strong objection, regarding an official policy or course of action. In conflict literature they are classified as a non-violent action conceived as a mechanism of change (Koopmans, 2004) or even a main indicator of domestic conflict (Braha, 2012). They are attributed to the use of individual rights under democracy (Kornhauser, 2002) enlightening a ‘non-violent struggle’, ‘a non-violent resistance’, ‘a direct action’, ‘a civil resistance’, and ‘a political defiance’ (Zunes, 1999) within others.

In despite of not been considered as a part of a conflict but more deeply as a civil engagement to prosecute aims of achieving political objectives, they can differ in their powers (Tanter, 1966) differentiating between General-Strikes (more than 1,000 against national government policies), Riots (clashes and violent actions
caused by opposition to government policies), and anti-government demonstrations (which are peaceful and try to rise voice against government authority or opposition towards government policies) (Braha, 2012).

The GDELT Database - Global Database of Events, Language, and Tone - we’ll be using (developed by the Kansas Event Data System) also defines “Protests” and subdivide them. Their action definition is coded in numbers and definitions: The CAMEO Code for protests is 14 which is subdivided in 141 action defined as a “Demonstrate or rally and includes demonstrate for leadership change, demonstrate for policy change, demonstrate for rights, demonstrate for change in institutions, regime” , 145 is “Protest violently, riot and includes violent protest for leadership change, violent protest for policy change, violent protest for rights and violent protest for change in institutions, regime” (CAMEO Codebook, Event Codes).

We pay attention in this study to the actions of protest. We consider them an expression of tree important elements: grievances, convictions of injustices. Those actions meant to provoke an ameliorative action towards an unjust condition (Turner, 1969) related to the European crisis situation.

1.2. Crisis

Crisis is commonly defined as a time of intense difficulty or danger. Similarly crisis is defined as “a time when a difficult or important decision must be made” allowing thoughts of a limit situation of change. The origin of the word crisis comes from Greek krisis 'decision', from krinein 'decide' and was used in the early 17th century as the general sense term to point to a 'decisive point'.

Now-a-day, the financial crisis that started in 2008 in United States is no longer restricted to the financial sector, but has spread to global economies and has created an ongoing class war against the global capitalism (So, 2012) is the first time so big in the Western world.

There are different types of crisis, caused for different type of causes as natural resources, ethnicity, corruption, labour, (Rose-Ackerman, 1999; El-Mahdi, 2011)
In this study, we want to focus on economic indices, due to the current situation in Europe to define what type of causes could be affecting.

1.3. Protests and European Crisis

There is an increasing belief towards a fluctuation of trust regarding the public sector (Steven Van de Walle, 2014) and the European Institutions due to the current crisis within Europeans, based on how it has been managed in poorer countries in Europe.

The most affected of the crisis are, the also called “PIIGS” – Portugal, Ireland, Italy, Greece and Spain - which have been beneficiaries of European funds and, are nowadays, suffering from the new “austerity measures” suggested by the economic union and political union of Europe due to the economic crisis (Epitropoulos, 2012).

A broad explanation for the above fluctuation or decline can be due to capitalism, which is as a global inventiveness that seeks profit maximization and capital growth wherever it can find it in the world. Irony is that if capitalism is improving the life of citizens, it is also making them poorer. It is possible to believe that there is a confrontation between classes, from those that do not have a present support, towards the ones that are safe, as helps towards those in need are not part of the interest of the economy. Under this circumstances, citizens of the union feeling not supported, are expressing disapproval publicly.

In the other hand, some scholars have described the current financial crisis as also, a crisis on democracy. The most studied factor that encouraged studies of this sort, are the connection between economy and politics. Describing how a series situations (as crisis) were (and are), certainly linked to economic circumstances. Defining predictable consequences, as leading to authoritarianism and a higher level of conduction of democracy (Gasiorowski, 2010).

States in crisis will potentially become states of capitalism according to Friedman this statement made in the early 1976, was define due to a continuously and successive need of benefit search, instead of directing towards favor minorities with less benefits. This argument can be translated into the current situation in Europe, setting the conviction towards an expected loss of parliamentary
democracy, visibly described by the incapability of governments to meet intentions for both private and public sectors (Thomassen, 1990).

Therefore, under this circumstances economy is guilty for the decline of democracy, and therefore is compressible if demands coming from citizens in form of protests, are inevitably. Are they possible to rise if the current situation doesn’t change? Pacific and democratic actions, as protests have increase the last 5 years. Is visible how citizens and public sector have no longer communication, more over in a recession time it triggers to a decline of public/institution confidence, to an end of parliamentary democracy and therefore brings a 'decisive point' in time, where an important decision of change, should be made.

1.4. Why this study- Objective

I was motivated in this study because I am a direct affect person for the crisis, as I am a Spanish citizen, student and future worker; I had strong motivation in understanding the movements of the social unrest and the different within the rest of European countries. Why Spain is suffering and Germany not? Why there is social unrest in Spain and not in Netherlands?

My encounter with studies in the branch of international relations and peace-conflict research, approach my interest into model non-conflict events. After, seen that conflict prediction studies in the recent years, have been accepted as a science practice, and is in an ongoing improvement (Nathaniel et al.2000), convinced me to choose this topic.

The main research questions of the study are:
- What is the average or density of events in the different European countries?
- Are the current grievances and trends in Europe caused by the current crisis and is there any relation with economic variables and unemployment?
- Does one protest intentionally take place close to another protests and do they influence each other?
- Is it possible to understand the dynamics of euro crisis by analyzing spatio-temporal happening of protest?
- Is it possible to model crisis through protest?
- Are protests a potential indicator to predict or state a ‘crisis’ / ‘limit’ scenario?
Specific objectives are as follows:
- Evaluate the influence of social variables in protests
- Is there any pattern of cluster or interaction
- Simulation of protests/events taking in account historic data
- Does one protest intentionally take place next to another?

1.5. Available event data

Event data is used in conflict studies. It is becoming increasingly large subject, within conflict and political domain, especially among studies that accentuate in social forecasting, however, it’s being known in special these years. During these past years, social media helped to improve crisis in Haiti and other innovative technological tools have improve the conception of politics. In the conflict prediction, the most innovative initiative was the GDELT - Global Database of Events, Language, and Tone database.

The GDELT project is considered a “big data” project containing a quarter of a billion geo-referenced events. The initiative aim is to capture the global behavior and beliefs across all countries of the world. It contains more than 300 categories of events, with their location, the count, the theme and organizations implicated. It is based on downloading news and on-line sources, in order to make a massive network. To end, it starts from 1979 to present and is uploaded daily.

The strength of GDELT project, is due it’s the first database that has enabled the functionality, to record automatically and in real-time, online news from the entire world (Leetaru and Schrot, 2012). This is a stepping-off in data event projects, as last datasets related to the conflict literature, are mostly human coded.

In conflict literacy there are more than 10 projects related to conflicts, all of which are specified in the following table:
Table 1: Event data projects

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Focus</th>
<th>Geographical</th>
<th>Years</th>
<th>Geo-located</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACLED</td>
<td>Conflict</td>
<td>Primarily Africa</td>
<td>1997–2010</td>
<td>Yes</td>
<td>Raleigh et al. 2010</td>
</tr>
<tr>
<td>GTD</td>
<td>Terrorism</td>
<td>Global</td>
<td>1970–2010</td>
<td>Yes</td>
<td>START 2012</td>
</tr>
<tr>
<td>ICEWS</td>
<td>General</td>
<td>Asia; global</td>
<td>1998–2010</td>
<td>No</td>
<td>O’Beirn 2010</td>
</tr>
<tr>
<td>KEIDS</td>
<td>General</td>
<td>Primarily Middle East</td>
<td>1979–2011</td>
<td>No</td>
<td>Schrod and Gerner 2010</td>
</tr>
<tr>
<td>KOSVED</td>
<td>One-sided violence</td>
<td>Selected states</td>
<td>varies by case</td>
<td>No</td>
<td>Schneider et al. 2012</td>
</tr>
<tr>
<td>MID3 Incidents</td>
<td>Conflict</td>
<td>Global</td>
<td>1993–2001</td>
<td>Yes; MID- LOC</td>
<td>COW 2007; Braithwaite 2010</td>
</tr>
<tr>
<td>SPEED</td>
<td>General</td>
<td>Global</td>
<td>1946–2010</td>
<td>City</td>
<td>Nordholl 2011</td>
</tr>
<tr>
<td>UCDP/PRIOACD</td>
<td>Conflict</td>
<td>Global</td>
<td>1946–2011</td>
<td>Conflict site</td>
<td>Thennier and Wallenstein 2011; Hallberg 2012</td>
</tr>
<tr>
<td>WITTS</td>
<td>Terrorism</td>
<td>Global</td>
<td>2004–2010</td>
<td>City</td>
<td>NCTC 2011</td>
</tr>
</tbody>
</table>

Most of them are related to a specific theme and though object oriented. Currently, the most known platform in USA, called Integrated Conflict Early Warning Systems (ICEWS) project, includes the Penn State Event Data Project dataset the GDLET dataset, to provide information in a daily level format and even in a regional and local scale (Yonamine, 2012).

It is important to note, that the progress in conflict forecasting studies, are mainly differentiate in two types. Datasets are non-event data sets (MIDS, COW, ACLED, etc.) and machine coded event datasets as WEIS and its derivatives, which use the CAMEO and IDEA (Brandt et al., 2013) coding system. The non-event data studies as in (Hegre et al. 2012) and (Goldstone et al. 2010) are human constructed, which criticism remark their need to rely on humans to select the observations, forcing them to build a collection a priori which can trigger to mislay events, missing data and focus too much in the objective. Machine collections, in the other hand, cannot be influenced by human interests, because they are all automatically download and there are observations that will be included, collecting a huge magnitude of real-time news collection of any
kind.
Nonetheless the innovation, the difficulty resides in the complexity on the need of technical skills to build datasets with GDELT. While also, within conflict literacy, it is already hard to build your own data set and selecting the correct sample inside the correct window frame, with GDELT, the selection is more flexible and then projects as predicting Conflict in Afghanistan within region of Afghanistan (Yonamine 2013) are achievable.

1.6 . Study area

Social and political forecasts have include both country-level assessments of political instability, civil wars, coups, etc. (inter alia, Beck, King and Zeng, 2000; Goldstone et al., 2010; Hegre et al., 2012), as well as region and country specific predictions of social events of interest (EOI) (Brandt, Freeman and Schrod, 2011; Brandt et al. 2008; Brandt and Freeman, 2006; Goldstein and Pevehouse, 1997). It is based on this studies this research has been inspired to work first in European countrywide and NUTS2 region in Europe.

Europe is constantly under changes, one of the challenges the union is facing nowadays is the current financial crisis that is beating the southern countries. Social unrest has increasing in all countries, perhaps a cause of the introduction of the number of countries, in any case, is the first time that several countries rise their voice for same reason (Rucht, 2002) in Europe.

Europe is a unique economic and political partnership of 28 European countries that over time has been considered as a geographical region or for some researchers a continent, for others it is conceive much more as an idea (Stráth, 2002) as it is a real geographic area. Europe is surrounded by oceans and seas and delimited for the Caucasus and the Urals in the East, has a high number of islands and rivers. According to the United Nations, Europe is slightly the 11% of the population of the world (2007) while a century ago it was the 25% - decrease explained by the decrease of the nativity (nearby 2.5) now a day.

Europe is not homogenous; it is also divided in sub-divisions. The most known are the 4 areas, Northern Europe; formed by Ireland, Island, United Kingdom,
Denmark, Lithuania, Lithonia, Latvia and some of the Scandinavian countries, the Easter Europe, starting from Poland, Hungary, Chech Republic, Rumania, Moldavia until Russia, the Western Europe; France, Belgium, Netherlands, Germany, Luxemburg, Austria and Switzerland and the Southern Europe, Portugal, Spain, Italy, Greece, Croatia, Albania and Estonia and the Asian portion of the European countries as Georgia.

There are other sub regions in Europe that have risen by different conceptions as the known PIIGS acronym that usually refers to specific the economies in Europe. They belong to Portugal, Ireland, Italy, Greece and Spain, and has been changed to a general “southern economies of Europe” and those are the current vulnerable economies.

Nonetheless, Europe still is an idea, which doesn’t convince all, as the Eurosceptic. Institutions have been fighting to make a unique reality, which has been under changes, over the years, and tries to construct a European identity, expressing the strong unity of the different countries that form it.

Europe was created after the Second World War, to foster economic cooperation between countries touched by the wars, and to trade and avoid future conflicts. It has changed towards a political union, developing a numerous institutions that work toward consensus regulations on all kinds of policies, which include all the countries. The main goal is to establish a big democratic net that faces the dynamics of change of societies of all the nations and economies of each country in Europe taking part.

A broad estimation of the population in Europe is around of 711 million in (2010, Eurostat) is known for its excellence in education and its success on forming part of the most advanced agreements on different domains as are human rights and foster progressive policies with other international organizations, leading to include people from all nationalities of the world in its huge system, called Europe.

My study wants to reflect how Europe is failing to listen to their peoples need, and how them are trying to express by using a passive democratic initiative, and how those policies will increase towards authoritarism and in danger.
1.7. Structure of the thesis

This thesis is organized into four chapters, which follow a chronological course of ideas as follows:

Chapter 1- Introduction:
This chapter presents a background to the study, objectives and overview structure of this thesis.

Chapter 2- Materials and Methods:
Here, we present the software tools used for the thesis analysis, description of data used and analysis methods implemented in the study.

Chapter 3- Results of analysis:
In this chapter, we present the results obtained from statistical analysis of the protest data.

Chapter 4- Discussion, future research and conclusion:
We present discussion on the results of analysis in this chapter. Recommendations on the directions for future research, and general conclusions are also presented here.

1.8 Overview of methods used to support the analysis

The analysis has involved several steps. Firstly, we downloaded and process the dataset, choosing the codes, actors and actions that fall within the scope and window of study in Europe. Process the data, selecting the codes and understanding the relations between actors was tented in order to understand protests related to the crisis situation in Europe.

Regarding the descriptive variables, we approached two spatial scales, primarily we approached the EU-NUTS2 socio-economic units, and subsequently we approached a country-wise analysis. The NUTS classification (Nomenclature of territorial units for statistics) is a hierarchical system for dividing EU in regions of different. The aim of the first approach was to achieve a superior granularity of this study.
In order to compute the NUTS2 analysis obligates to aggregate protests events by regions. It is worth to mention that due missing values and noise in the GDELT database, plus inconsistency in Eurostat databases within countries. After, aggregation we considered several reasons to finally reject country-wise option and for that reason, you will not find all computations and analysis in included in this study.

We computed the analysis for 10 years (2000-2010) period. The countries included in the analysis included in the European area are the following: Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Ireland, Greece, Spain, France, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden and United Kingdom.

After the European analysis, we went for a country-wise study of France, United Kingdom, Germany and Spain and we finished the study computing yearly data of protest only for Spain.

In all together, we want to compute a spatial–temporal model, that characterize most conflicts (Weiderman, 2010) and by using linear model, examine spatial dependencies or correlation with political and economic variables related to the geo-located events.
1.8.1 Lattice approach

The first approach was based on a lattice approach. With the aim to find, if unemployment rate (within other variables related to austerity measures), are affecting the increase in number of protests? The porpoise here is to consider them as explanatory variables. Likewise, we choose economic, education and demographic variables seemly to estimate their influence with the aim to discover correlation with protests. To compute this objective we computed the Ordinary Least Squared Method.

The second model within the lattice approach included a temporal analysis of t-1 of Ordinary Least Square Regression Model, in which we operated protests of a past year with variables of the current years.

The overall process was computed using R environment, which I especially thanks to the developers of stats package.

1.8.2 Point process analysis

This second part of the study, concerns spatial analysis. Firstly, we computed for Europe and then, for each disjointed country. After the results, we extend the analysis to a spatio-temporal analysis for one country, Spain.

Spatial point processes is a model used to compute random point pattern frequently used in 2 or 3 dimensions. In this study we will use the 2 dimension approach, which takes in consideration the longitude and latiture. Bivand in 2007, contributes to point pattern model defining it as “...a stochastic process in which we observe the locations of some events of interest within a bounded region or window W.” (Bivand et al., 2007).

Spatial point process modeling is a leading study inside the field of spatial statistics, which further explains the spatial distribution and the data pattern inside a database. It drives to explain the reasons of why the observed points proceed from a particular pattern. This technique to model patterns can be compared with a regression models in classical (non-spatial) statistics, if there are covariance that can be included as determined content that influences a
point location. There is a broad literature in different fields that use point patter
analysis (of fields including forestry and plant ecology, epidemiology,
seismology, wildlife ecology, geography and event conflict forecasting).

The core of spatial point processes modeling is first to affirm whether or not
the points observed are in a point pattern random distribution. Therefore, in
point process a first step is to compute the kernel function of intensity and
evaluate the principle Complete Spatial Randomness (CSR) – where events are
assumed to be randomly distributed or inhomogeneous, indeed, if would be no
randomness any analysis will end here.

Point process models are essential used to interpret the result of the different
factors on point organization, but also is used to anticipate events location in
regions, where the point distribution is unknown, just by using only their
location.

All this analysis was computed in R statistical software. To download database
and processing and computing the first statistical analysis we used the STATS
package. Similarly, for spatial point pattern models we used the packages
spatstat (Baddeley and Turner 2005) and SPLANCS (Rowlinson and Diggle
1993).
CHAPTER 2: MATERIALS AND METHODS.

This chapter describes the methodology followed in analyzes the impact of unemployment and other variable. Also, it includes the distribution and simulation of protest event data. It presents the study area, sources of the data and the tools used.

2.1 Problem and area of study

In 1999, most countries in the European Union adopted the euro as a common currency. This union allowed poorer countries like Spain, Portugal, Italy and Ireland, to borrow money at a low rate of interest and get rich as other northern countries in Europe.

The strategy mentioned summed policies allowing building a huge bubble of debt and housing. It was collectively accepted, mostly in countries of the south of Europe as Greece and Spain, hence the idea was sponsored of the dream of achieving a large public-welfare state. Unfortunately, the output was not what was expected, after 20 years of strategy, Greece was the first country to broke, with a high corruption and the result left the country with a superficial development that has being increase by measure to try to recover it.

Grievances regarding this situation haven’t change since the starting of the first wave of crisis in 2000; indeed they have grown in each country, creating large European citizens’ complaints, making of them one of the biggest protest in our European contemporaneous history. The problem is bringing chaos, the sum of sudden cuts on social policies and health, the amount of privatizations recommended by the named ‘austerity measures’ has led to an almost default states and an unhappiness and fear between social classes. In consequence, investors are more concerned about the risks, and indeed consequently borrowing risk in the region has increase distrust. After all this years, not only citizens of Greece, but also Germans and all over Europe citizens starts to believe that this situation is contagious and not easy to solve.
A fast overview of the protests started in May 15th in Spain, where 15,000 people gathered in “Puerta del Sol”. In May 17th 30 cities around Spain including Barcelona and Valencia, joined this protests. According to Britain's “The Guardian”, "tens of thousands" camped in the floor of the Spanish capital in Madrid and around the country on the night of 19–20 May. Since then as situations hasn’t change, every May, people still gathering to protest for what it’s being called “the walk for dignity” in the mentioned cities. Similarly, in Greece, the pacifist protests have transformed into riots, attacking banks and burning countries infrastructures. A small event, made and after part for the demonstration: the dead of a 15 year student in Athens in 2008. Before those, other type of protest did already happen and where ignored for most people as the interruption of students in the public TV, just before the crisis started.

Outside Greece, as a solidarity, protest and riots or some places clashed with local police, in around 70 cities around Europe; London, Brussels, Rome, Dublin, Paris, Berlin, Copenhagen, Madrid, The Hague, Barcelona, Frankfurt, Bordeaux, Seville, Cologne, Nicosia (Cyprus), Amsterdam to mention some of the places that have share the same opinions.

2.2 Materials

2.2.1 Analysis tools.

In this study we have used more than one tool. An important tool used mainly to download the data, process and do statistical analysis was R Software, in different versions in which we use different packages within the R environment. The principal package was spatstat. Event protest data was also processed using Microsoft Office Excel but was mainly to build a data set that would be used as an explanatory variables. ArcGIS was used to have a preliminary overview of the data for NUTS2 and country in a layers format.

2.2.2 Event data: GDELT

The Global Database of Events, Language, and Tone that we are using, comes as a sum of columns and rows. Each observation includes a series of complex
attributes under 3 dimensions: Action, Actor and Temporal-Dimension.

An event is read and coded from online sources. Machine learning systems convert the transitive sentences to natural language sentences, in order to find events or actions that are indirect or indirect interactions between elements of a “set of actors” or a “set of actions”. Those phrases are always associated to time and space (Schrodt, 2013).

Event and actor ontology, are compound of simple verbs and nouns of phrases dictionaries, that are automated and define the EOI (Events Of Interest) inside a political/journalism vocabulary of events.

The GDELT database thus has: [who-did what-to whom, when] structure.

<table>
<thead>
<tr>
<th>Date</th>
<th>Source</th>
<th>Target</th>
<th>Action</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>201240512</td>
<td>GOV</td>
<td>CVL</td>
<td>140</td>
<td>41.39484</td>
<td>2.175179</td>
</tr>
</tbody>
</table>

Table 2: Example of a GDELT Event Data Event

Actions include protests, bombings, speeches, peace agreements and a myriad of others. The interest of this study is to take protest events, thus we must convert raw event datasets to a more usable dataset (Yanomine, 2012), in order to indicate the specific actions that occur between actors an action theme.

The GDELT events are under the WEIS Conflict data framework, which is inside the CAMEO Code, also used for other Conflict Projects as IDEA event data studies.

The CAMEO Code has 20 “categories”, or classes of events, called as Event Codes and containing sub and sub-sub categories. In our case of study we proceed to route Actions number 14, named as PROTEST and which include also other subsets.
Table 3: Sets and subsets for the code Protests inside the Cameo Code

In a second step of the process once, we had to select the events of interest from 2000-2010 periods, then, we proceed to select from our historic database of protests events to select the **Actors** and **Actions**. Always, considering our window of observation or area of study, Europe.

Actions had to happen in Europe [when]. In the other hand, **Actors** participating in action are considered to be two, explained as [who-did what-to whom], is it clear that always, there is a direction, two parties taking part in an action. Thus we find two different columns, one for **Actor1** and other for **Action2**.

Actors can be countries, but can similarly have been secondary role or attribute. Those attributes are besides European countries, institutions, locations, governments or social extracts (e.g. a religious group or people under education). The actors that happened to be countries, are defined as well, defined in 2-Digits (based on the NATO country codes), the name of the
countries, region and local city are in English language, in a separated column.

In the following table, the roles or attributes we selected for this study:

<table>
<thead>
<tr>
<th>Country Codes</th>
<th>Primary Role codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COP</td>
<td>Police forces, officers</td>
</tr>
<tr>
<td>GOV</td>
<td>Government, the executive, government parties, coalitions parties</td>
</tr>
<tr>
<td>OPP</td>
<td>Political opposition, opposition parties, individuals, activists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Role Codes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS</td>
<td>Businessmen, companies, etc...</td>
</tr>
<tr>
<td>CVL</td>
<td>Civilian individual or group</td>
</tr>
<tr>
<td>EDU</td>
<td>Education, educators, school, students</td>
</tr>
<tr>
<td>ELI</td>
<td>Elites, former government officials or celebrities</td>
</tr>
<tr>
<td>LAB</td>
<td>Labor, workers, unions</td>
</tr>
<tr>
<td>LEG</td>
<td>Legislature, parliaments, assemblies, Lawmakers</td>
</tr>
<tr>
<td>MED</td>
<td>Media journalist, newspapers, television stations</td>
</tr>
</tbody>
</table>

Table 4: Primary and secondary codes added to country codes for each Action in GDELT

<table>
<thead>
<tr>
<th>Global</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IGOGOE</td>
<td>Group of Eight (G8)</td>
</tr>
<tr>
<td>IGOSCE</td>
<td>Council of Security and Cooperation in Europe (OSCE)</td>
</tr>
<tr>
<td>IGOIMF</td>
<td>International Monetary Fund (IMF)</td>
</tr>
<tr>
<td>IGOUNWBK</td>
<td>World Bank</td>
</tr>
<tr>
<td>IGOWTO</td>
<td>World Trade Organization (WTO)</td>
</tr>
</tbody>
</table>

Other Action codes

IGOECC	European Union
EUR	Europe
IGOEEC	European Union

Table 5: International/Transnational Actors

GDELT database is a Geo-referenced Event Dataset (GED). It offers geo-location for each event giving it as columns for each “longitude” and “latitude” coordinates. Names of the location are recorded thanks to the automatic TABARI system. The observations recorded preserve the local names (e.g. Barcelona, if there is one) and translated to the countries (e.g. Spain) and translates them into 2-Digit NATO code vocabulary. To end, the temporal dimension is specified in the first column of each event raw, with a MM/DD/YYYY structure, meaning the date of the online publication of the new.

In order to obtain the region location for our first analysis, we used GeoAction_CountryCode from GDELT and took the expressed longitude and latitude.
The database is an ongoing project that was relies the last months of 2012, it is now free available, but improvements have been occurring since last years, some sources have been unclouded in the past times, for that reasons is compulsory to normalize the data for the all protests recorded. Luckily, online in a blog posted by Patrick Brandt (http://blog.gdelt.org/2013/09/28/normalizing-gdelt-protest-data/) is a good source to get to know the tools to analyze the project and start to work on it.

To download the entire database, process and visualize event data we used R software, the GDELTools package and Excel.

2.2.3 Dependent, explanatory variables or predictor variables

Eurostat is a Directorate-general of the European Commission. Its main responsibility is to provide statistical information to the institutions of the European Union and to promote the harmonization of statistical methods across the member states and candidates for accession as well as EFTA (European Free Trade Association). Organizations that cooperate with Eurostat are summarized under the concept of the European statistical System. Eurostat statistical databases are structured into Themes and Sub-themes. I have selected variables related to economy and finance, demography and social conditions, industry trade and services and even science and technology. The list of the variables selected is the following:

a. Government deficit and debt
b. Taxes on production and imports
c. Total genera/central/local government expenditure/revenue/Net lending(+)/net borrowing(-)
d. International investment position
e. National GDP and main components
f. Final consumption aggregates
g. Labour productivity
h. Population density
i. Crimes recorded by the police
j. Social protection expenditure
k. House price index.
1. Unemployment rates by sex, age and highest level of education attained
2. Unemployment rates by sex, age and highest level of education attained (%)
3. Expenditure on education as % of GDP or public expenditure
4. Number of Student in Tertiary education (1 000)
5. Income, saving and net lending/ borrowing

It has been mentioned before, that economic crisis leads to an increasing gab to produce a good government performance, to see in what extend is this gab we have selected indicators of government performance for all countries also: total expenditure and revenue for general, central and local (a, b, c, d, e).

According to “modernization theory” the level per capital income (l, m, p), the extent of literacy and education (o, n), the degree of urbanization (g), and the quality and extent of communication media (not considered as GDELT is built from media) have been selected in order to evaluate the situation of each country.

Based on the availability of the data, a second approach was to take country level database for year for all the countries taking in consideration. This last approach was the one decided to use based on the availability of the database. An attempt to acquire monthly data and quarterly data was dismissed as the amount of data was not available for all the variables.

Details on the datasets constructed on the explanatory variables can be found on Appendix A.

2.3 Method chart
Figure X shows a flow chart of the overall methodology used to analyze the protests event data. Each component of the methodology is detailed below.
Data Preparation
- Download and Pre-Process GDELT database code 140 and explanatory variables
- Intensity, frequency, plot data analysis
- Temporal (annual/monthly) and spatial analysis (Country/NUTS2)

Analysis

Lattice approach
- Ordinary least squared regression - (NUTS2)
- If correlation: Special autoregressive model
- No correlation: Independently temporal special analysis
- Special Temporal Ordinary Least Square with lag (1-t) lag (2-t)
- Long table analysis - to increase the number of observations

Point Process Analysis
- Intensity map - Kernel smooth intensity estimation
- Complete Random Spatial Randomness CSR
- Inhomogeneous Poisson model

Prediction
- Model of Inter-point Interaction
- Best fit model (five distances)
- Simulation

Figure 2: Flow chart of overall methodology enforced to analyze protest event data
2.3.1 Explanatory Analysis

a. Data pre-processing

The GDELT database has been growing since 1979 to present, several sources have been added in 2005, and thus the situation requires normalizing the conjunct of data before we can do any further of analysis.

The CAMEO codebook is a method to gives order to the recorded news. Our study focus in protests, which is translated in CAMEO Code as number 14 and for deeper specification we selected a political deviation selecting only code 140, 145 and 141, which description is the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>PROTEST</td>
</tr>
<tr>
<td>140</td>
<td>Engage in political dissent, not specified below</td>
</tr>
<tr>
<td>141</td>
<td>Demonstrate or rally, not specified below</td>
</tr>
<tr>
<td>1411</td>
<td>Demonstrate for leadership change</td>
</tr>
<tr>
<td>1412</td>
<td>Demonstrate for policy change</td>
</tr>
<tr>
<td>1413</td>
<td>Demonstrate for rights</td>
</tr>
<tr>
<td>1414</td>
<td>Demonstrate for change in institutions, regime</td>
</tr>
<tr>
<td>145</td>
<td>Protest violently, riot, not specified below</td>
</tr>
<tr>
<td>1451</td>
<td>Engage in violent protest for leadership change</td>
</tr>
<tr>
<td>1452</td>
<td>Engage in violent protest for policy change</td>
</tr>
<tr>
<td>1453</td>
<td>Engage in violent protest for rights</td>
</tr>
<tr>
<td>1454</td>
<td>Engage in violent protest for change in institutions, regime</td>
</tr>
</tbody>
</table>

We selected then, the *Action_code*, European countries and long/lat units of the action observed.

a. Descriptive analysis with variable

Least Squared Regression Method is used to fit linear models, frequently used to calculate the slope and interception of the best line through a set of data arguments. It is also use to carry out regression, single section analysis of variance between two datasets and to analyze the covariance (Chambers, 1992)

We choose Least Square Regression because is a common technique to compare data in most models of conflict (Wiedmann, 2010), it defines the relationship between two methods, the test and the reference method, and is based on two arguments, the slope and intercept of this line, providing an estimation of the constant error.
\[y = a_{\text{Ord} \times \text{SQ}} + b_{\text{Ord} \times \text{SQ}} x^{(1)} \]

Equation x: Equation of Ordinary Squared Regression Methodology

Where \(x \) is the independent variable (protests) and \(y \) is the dependent variable (variables from Eurostat), \(b_{\text{Ord} \times \text{SQ}} \) is the slope and \(a_{\text{Ord} \times \text{SQ}} \) is the interception of the line.

The method also finds residuals, resulting of the difference between the \(y \) values observed and those predicted by least-square model. More closely, after computed the line by least-square regression, it minimizes the sum of squares of each point distance that is found between the observed data points and the line.

In principle, what we try, is to fit the data minimizing the residuals, meaning minimizing the error from the observed data and the real data. The methodology to fit these errors in the variables is the least square.

\[b. \text{ Ordinary Square Method for t-1} \]

We believe that social unrests-protests or riots are a consequence of an injustice in the place they live.

The striving component of the hypothesis is to discover, in what measure those components influence protests. Besides discussing if the measures are proper or not, we want to see if this measures are a cause.

\[2.3.2 \text{ First order characteristics of protest events location and spatial distribution.} \]

First-order provides a general idea of the spatial distribution of our point/event data. Firstly, we study the distribution since intensity is the average density, there for it will determine if the data is constant (‘uniform’ or ‘homogeneous’) or inhomogeneous. This is a mandatory step in order to start with first order characteristics; it is the first measurement to learn more about our data and its distribution concerning our boundary or concrete area of study (Bivand et al. 2007).

Our hypothesis is that every event/protest is independent from other events in space since each event has some characteristics that are the cause. In any case, we need to prove that our assumption is true, for that reason we need to discover if there is a
pattern.

During this process, the main objective is to discover the pattern and mostly to decode if the intensity of the point process differs from place to place, in which case, the pattern intensity may be inhomogeneous. If the output is inhomogeneous the events are not related to each other and they location depends on their own coordinates.

The observations we are considering are defined within a defined region of study or window, we accurately selected those points inside the window, and therefore any point that is outside that boundary is not taken in account in the study (Baddeley 2008).

The distribution is given by the kernel intensity estimation function (1), where if there is concentration or the intensity function will be satisfying.

\[
E[N(X \cap B)] = \int_B \lambda(u) du
\]

(1)

In deep, Kernel-smoothing intensity was calculated by an algorithm in R that uses a regular grid and then uses the fast Fourier to calculate to approximate to the kernel and uses linear approximation to evaluate the density (Scott, 1992).

The statistical properties of a kernel are defined as \(\text{sig}^2(K) = \int t^2 K(t) dt \) that =1 and \(R(K) = \int K^2(t) dt \) (Scott, 1992).

The function defined in an area an estimation of the total number of observations fall in the same areas, and uses the measures it accordingly to the given location (“long/lat”) of each observation.

Non parametrical technique is the one suspected in this research, as we work with data naturally inhomogeneous (Diggle, 2003).
2.3.3 Inhomogeneous Point Process

b. Second-order characteristics in event protests spatial distribution.

After a first-order analysis, we went for a second-order characteristics in order to provide information about a possible event-point to event-point interaction. The first-order distribution exclusively provides information about the event pattern distribution, where we can find trends in the data, but on the other hand, second-order properties offer the best spatial tool to evaluate a point pattern interaction and explain if there is a relation between each point (Illian et al. 2008).

Second order uses Ripley's K function to test for Complete Spatial Randomness of the protests events. There are three reasons for testing Complete Spatial Randomness or inhomogeneous point processes:

(1) CSR is used when data is random to verify its randomness
(2) CSR is a start in order to explore the distribution of our data
(3) CSR has to be rejected to continue a point pattern modeling as it found clustering

Therefore, to prove our data is random and pursue these three condition we run the kernel density which estimates with the given kernel and bandwidth 50km the distribution of the protests, considering all the points and therefore will determine trends.

Adjusting the model for the spatial inhomogeneity of the data takes in consideration modification of the K function, due to in this case each point will be weighted by \(w_i = 1/\lambda(x_i) \).

Moreover, K function considers different distances from point to point relationship, second-order properties are especially interesting because are used to include points that are far away. Ripley function, takes for each point further distances than the nearest neighbors, thus each point computes a large distance.

The concept behind K function, by Ripley (1977), considers first the average number of points within a distance \(r \) from a regular point. Then \(\lambda K(r) \) marks the mean number of points in a disc around the radius \(r \) from the centroid of the point \(x \).
selected, then this is computed in n times and in N number of points that are located in the window W of study. As a result we have an equation where $n_i(r) = N(b(x_i, r) \setminus \{x_i\})$ meaning that the total number of points N that occur within a distance r from the selected point x_i, that excludes x_i itself,

\[
K_{\text{inhomogeneous}}(r) - \pi r^2
\]

Equation x: Inhomogeneous K function

estimates $\lambda K(r)$ distances. means the expected number of events within a distance r of an random event-point i and λ is the intensity or the mean number of points per unit area.

When computed the K function it is firstly compared under Complete Spatial Randomness to find the intensity of the points and the spatial distribution, then computed 99 simulations (recommended in point process modeling).

Based on point process model we fitted the model and out if this model we computed 99 simulations and figured an envelope to define the upper limit of the envelope and the lower limit of the envelope. If the model for each country relies inside the envelope we will consider that the model is good and thus, the protests are independent from interaction between each other, if the lines of the model rely outside the envelope the model will not serve to describe the inhomogeneity.

When create an envelope we look at different indicators in order to explain the results, the empirical line (black line) which is computed with the real data and the theoretical line (red line). In the case of having the black line close to the theoretical line, means that the model fits. If the black line is over the envelope, suggests that there exist clustering (protests gathering), while in the contrary case it suggest heterogeneity (protests dispersion) on the spatial distribution. If both lines are closer to each other, it means that the model we computed is worthily, both real data and expected data are the matching.

We used spatstat package to compute the K function, the 99 envelopes, select the best fit the model and plot the simulation.
2.3.4 Area Interaction fitting model and simulation.

The Models were fitted to estimate the intensity function and possibly describe the best of point pattern model.

1. Modeling for a homogeneous Poisson Process (HPP)

This model assumes that the data is constant in a study area W (window), where the mean intensity is $\lambda|W|$, for the Poisson distribution, and therefore describes isotropy and stationary (Bivand et al. 2007) meaning that there is not spatial interaction between points and furthermore, explains that the number of events n occurring within the W (window) are uniform. (Baddeley, 2008; Bivand et al., 2007).

2. Modeling for an Inhomogeneous Poisson Process (IPP)

Protests are hard to simulate as they can occur under any circumstances and their behaviour is not linear, they can change under any circumstance. If the model computed by IPP fits correctly, the assumption of inhomogeneity is confirmed, meaning that protests are independent from interaction between points.

We used spatstat functionalities as Maximum Pseudo likelihood and polynomial to compute a wide range of sequence of distances. The Maximum Psudo Likelihood Estimation Method was used to estimate the coefficients for IPP, to find the best model, using this function we found the optimal distance, and using this distance we fitted the best model.

Polynomial function was also used to capture the spatial trend of the point distribution. Polynomial function is defined as a conditional intensity function by 2nd order polynomial function (Baddeley 2008).

In this section we expect to see a fit model, which explain the distribution or trends of the event/protests. If the model doesn’t fit, meaning the lines are not inside the envelopes, we’ll conclude that a better model can explain the trend or the spatial pattern distribution of the events.

3. Area Interaction model
Area interaction model was computed in order to discover if there is a spatial pattern between the points. We will calculate this model, due Inhomogeneous Poisson process model did not fit the data. Therefore, Area Interaction attempts to capture the higher order properties as inter-point interaction, merely if the model before was inadequate.

The assumption of Area Interaction is that the distribution of the protests is influenced by the same distribution of the protests, and assumes that interaction is influencing the distribution of the events.

The model imprisons a radius for each location, first a default distance and then we set five different distances with an interval of 50km each. The analysis is made to find the probability of finding a point base on inter-point interaction within different discs. Thanks to this computation we can understand if the data is clustered or is dispersed.

In order to perform the simulations, we used the command areainter in R software. The envelopes are a summary statistic than when plotted in envelope. (Baddeley, 2014). We used R and the spatstat functions for to compute this analysis.

2.3.5 Predictions from the fitted models.

I used the fitted models to evaluate the trend of the location of the future protests and so predict them in the area of study. It would be important on conflict science to verify where else protest could occur, given the fitted model, using historical event-point data with locations we obtain information about the unknown protests locations, taking in account different distances. This is provided by the function predict.ppm in spatstat (Baddeley and Turner, 2000).

This function fits the observed point pattern, including spatial trend, interpoint interaction (Baddeley and Turner, 2000) and can also compute the dependence on covariates but in this study it was not computed.

The model have fitted the point process model computed the interpoint interaction of the observed point pattern, considering the best distance for each point observed and
computed the starting from 1000 m until 250000 m, and compute the function by 50000m, creating a sequence 50 km until 250 km.
CHAPTER 3: RESULTS OF ANALYSIS.

3.1 Explanatory Analysis

We computed an overall explanatory analysis regarding the protests, in order to understand the nature of the GDELT database. In Fig 2 we can observe the countries with more number of events since the beginning in 1979. United Kingdom, France, Germany and Greece, Spain, Ireland and Italy have between 20000 to 60000 observations.

![Number of Protest (1979-2012)](image)

Figure 3: Protests events found in the database, since its start.

Temporal analysis during those countries displays a clear raising trend of protests which can be observed in the following Figure, for the above countries mentioned.

![Trend of protest since 1980 to 2010 of the countries of the study.](image)

Figure 4: Trend of protest since 1980 to 2010 of the countries of the study.

Considering accurately the Actors involved in the protests events during the period studied (2000-2010), we observe a clear amount of events related to Government (GOV) and to Opposition (OPP), followed by education (EDU) and police (POL).
The higher counts are in United Kingdom and Greece counts with a not significant amount of events related to government compared with other countries, in despite of being the code with higher numbers. Police and opposition are the second code for all the countries.

In the other hand, education, labor (LAB) and civil (CVL) are also noticeable in all the countries. United Kingdome (UK) differentiate from the patterns described before, because has a high rate of observations related to business (BUS).

Table 6: Actions codes related to the countries of the study

<table>
<thead>
<tr>
<th>Codes</th>
<th>AGR</th>
<th>BUS</th>
<th>COP</th>
<th>CVL</th>
<th>EDU</th>
<th>GOV</th>
<th>JUD</th>
<th>LAB</th>
<th>LEG</th>
<th>MED</th>
<th>MIL</th>
<th>NGO</th>
<th>OPP</th>
<th>Total Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>40</td>
<td>213</td>
<td>489</td>
<td>155</td>
<td>613</td>
<td>831</td>
<td>44</td>
<td>371</td>
<td>138</td>
<td>62</td>
<td>105</td>
<td>13</td>
<td>847</td>
<td>5117 9207</td>
</tr>
<tr>
<td>FR</td>
<td>59</td>
<td>84</td>
<td>318</td>
<td>66</td>
<td>430</td>
<td>492</td>
<td>40</td>
<td>440</td>
<td>58</td>
<td>29</td>
<td>46</td>
<td>9</td>
<td>428</td>
<td>3824 6422</td>
</tr>
<tr>
<td>GM</td>
<td>36</td>
<td>62</td>
<td>247</td>
<td>53</td>
<td>130</td>
<td>292</td>
<td>18</td>
<td>164</td>
<td>23</td>
<td>38</td>
<td>34</td>
<td>364</td>
<td>3037 4578</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>16</td>
<td>19</td>
<td>143</td>
<td>100</td>
<td>127</td>
<td>228</td>
<td>20</td>
<td>95</td>
<td>43</td>
<td>33</td>
<td>15</td>
<td>3</td>
<td>257</td>
<td>2077 3215</td>
</tr>
<tr>
<td>SP</td>
<td>27</td>
<td>20</td>
<td>71</td>
<td>51</td>
<td>76</td>
<td>190</td>
<td>14</td>
<td>98</td>
<td>66</td>
<td>30</td>
<td>10</td>
<td>3</td>
<td>163</td>
<td>1930 2778</td>
</tr>
<tr>
<td>EZ</td>
<td>12</td>
<td>3</td>
<td>66</td>
<td>34</td>
<td>49</td>
<td>114</td>
<td>10</td>
<td>34</td>
<td>19</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>76</td>
<td>1123 1590</td>
</tr>
</tbody>
</table>

Table 7: Legend of the observed action codes

In order to understand in deep the nature of the relation between Actors coded in the protest, we attempt to describe their relation computing a spider diagram. We selected the actors with more than 100 mentions shown in Table 6 and plot them. The first spider diagrams consider all the actors, and then we computed another spider diagram erasing the actors with more mentions.

Government is mostly related to labor and to police being the actors with more mentions, about 300 mentions. It is followed by opposition; which obviously fits with the nature of the protests.
Table 8: Spider diagram of Action1 and Action2 in protest events

After erasing the most mentioned actors, we see how education and police have a high relation of around 100 to 50 mentions. We can also notice a sign in labor and in police, perhaps related to news where police was involved, which could also be the same new coded twice.

Table 9: Spider diagram of Action1 and Action2 without GOV and OPP
\textit{a. Regression analysis for NUTS2}

The output of the following table has no correlation with the actual protests. We can conclude that the model fails to explain the actual protests, because the proportion of variation of the dependent variable explained by all indices is very low (Adjusted R-squared=0.0948).

\begin{table}
\centering
\begin{tabular}{lccccc}
\hline
 & Min & IQ & Median & 3Q & Max \\
\hline
(Intercept) & -181.88 & -62.80 & -28.41 & 17.82 & 1644.02 \\
unemployment _00 _1 & -2.174e+02 & 5.051e+01 & -4.304 & 2.10e-05 \\
People in education _00 _10 & 2.314e+00 & 2.923e+00 & 0.792 & 0.4291 \\
\textit{c} _00 _10 & 2.705+00 & 1.720e+00 & 1.573 & 0.1165 \\
\textit{hdu} _00 _10 & 6.686e-02 & 2.740e-02 & 2.440 & 0.0151 \\
\textit{ppi} _00 _10 & -3.850e-02 & 2.963e-02 & 1.299 & 0.1945 \\
\textit{rop} _00 _10 & 1.462e+00 & 2.958e-01 & 4.926 & 1.22e-06 \\
Young population _00 _10 & -6.014e-01 & 5.958e-01 & 1.009 & 0.3134 \\
Young not working not studying _00 _10 & 3.135e-03 & 7.087e-03 & 0.442 & 0.6584 \\
\hline
\end{tabular}
\end{table}

Residual standard error: 167.7 on 409 degrees of freedom
(2574 observation deleted due the missingness)
Multiple R-squared: 0.1122, Adjusted R-squared 0.0948
F-statistics: 6.459 on 8 and 409 DF, p-value: 6.32e-08

\textit{b. Ordinary Least Squares}

We computed another database country wide in which we put the year’s one under each then, to increment the number of observations and then computed the Ordinary Least Square Regression.

Table 10: the description of regression variables is listed in Annex 1.
All variables are averages for 2000 to 2010 period of study.
There is a 10% statistical significance of **gov_00_10** which is the average of the general government revenue, expenditure and main aggregates indicator of net lending (+)/net borrowing (-).

The situation of having, that could affect them and do not agree on, and so they want to stop it or change it.

c. Ordinary Least Square Method for lag-1 Results

We created a database with the average of protest for each year from 2000 to 2010 and added the variables we explained before in the materials chapter.

We computed Least Squared Regression for lag-1, taking the protests for the last years and using the data from that current year. The result was a correlation of 100% significance with last year protests, meaning that last year increases the probability to other protest to occur.
A possible explanation of this result can be that, social unrest could be considered as a sign where citizens act pacifically in order to rise the voice towards a policy that is been discussed or will be apply for the government (Braha, 2011). To confirm this statement under our study, I suggest identifying the dates concerning a policy change using other Cameo Codes.

We can conclude with the statement that protests have an accumulative property which the influence falls to the past protests or increases, as previous protests encourage other protest to happen (Koopmans, 2004). This statement as been founds in our study with the correlation with last past events.

3.2 First-order characteristics of protest site distribution

The map in Fig. 3 explains the distribution of the protest events during the years 2000 to 2010 all the European countries considered in this study. By visual analysis events are dispersed with some hotspots in the cities or urban areas, as for example Paris and Berlin.

The higher amounts of protests occur in United Kingdom, France, and Germany. A possible explanation can be that most of news sources included in GDELT are in English, which can be disapproved because one of the sources is French. Another explanation that needs deeper analysis is to know the amount of newspapers in each country. Also, it would be important to understand why a country such as Germany, which is usually perceived as not being very active protesting, is essentially protesting more continuously than other countries. Spain for example, has fewer protests more disperse.
Figures in this page are the events some of which are overlapped.

Figure 5a: United Kingdom protest events distribution after removing overlapped points from 2000-2010

Figure 5b: France protest events distribution after removing overlapped points from 2000-2010

Figure 5c: Germany protest events distribution after removing overlapped points from 2000-2010

Figure 5d: Europe and protest events distribution after removing overlapped points 2000-2010

Figure 5e: Spanish protest events distribution after removing overlapped points from 2000-2010
3.3 Testing for Complete Spatial Randomness in protest events distribution.

In order to test the Complete Spatial Randomness we computed map intensity in R tools and commands. The results show a clear random distribution of protests, with some hot spots in some areas as in the central area of Europe enclosing Belgium, France and Germany until Greece and Italy. The dispersion of the protest is probably influenced for the amount of protests in the United Kingdom.

![Europe protest density](image1)

Table 11: Intensity map protest/events in Europe from 2000 to 2010, as yellow the color as higher the intensity

![Histogram of intensity protest/events in Europe](image2)

Table 12: Histogram of intensity protest/events in Europe from 2000 to 2010.

This results gives is a probe of the randomness of the data, in which case we can consider to continue how analysis. After seeing we decided to go for each country as the intensity map for Europe presented an important influence of United Kingdom.
3.4 Inhomogeneous Poisson Point Process

We plotted the inhomogeneous point data, which state that the trend is mostly until
certain location clustered but in the same time is not homogenous, the intensity is not
constant or may vary from location to location has we saw in the intensity map
before.

Similarly the description for each country (Spain, United Kingdom, France and
Germany) in the following figures is presented. The following figures display graph
for Inhomogeneous Poisson Process for those countries, taking in consideration all
points of the event protests location. Spain and the United Kingdom graphs below,
demonstrate the occurrence of overlapping events at the same location 0m. Both
have a similar graph; presenting an extraordinary cluster or overlapped points at 0m
and dispersion until 150000m and 80000m respectively. Nonetheless, Spain differs
from United Kingdom in two means, intensity and distribution. Spain has a 10%
higher intensity of protests than UK, and distribution; there is a smooth stage at
50000m of overlapped points. Both graph present complete dispersion at certain as
they diverge from the center and become more distant.

Figure 6: Inhomogeneous Poisson process for all protest
events Spain (2000-2010)

Figure 7: Inhomogeneous Poisson process for all protest
events United Kingdom (2000-2010)
Germany tracks similar silhouette to those presented previously, similar to United Kingdom on the dispersion point at 8000m and intensity. Accordingly to the results, and after the presented results of the empirical line was found outside the envelope, there is a clear potential improvement of the model, and therefore this model is not enough to explain the distribution of the events/protests, as there incites to discover a spatial trend. Necessarily, we decided that the model requires removing the overlapped points and the results are shown in the following Figures. The estimator we use to calculate to estimate inhomogeneous Point Process was k function as explained in other sections.

![Inhomogeneous Poisson process for all protest events France (2000-2010)](image1.png)

![Inhomogeneous Poisson process for all protest events Germany (2000-2010)](image2.png)

Figure 8: Inhomogeneous Poisson process for all protest events France (2000-2010)

Figure 9: Inhomogeneous Poisson process for all protest events Germany (2000-2010)

![Inhomogeneous Poisson process for all protest events Spain (2000-2010)](image3.png)

![Inhomogeneous Poisson process for all protest events United Kingdom (2000-2010)](image4.png)

Figure 10 Inhomogeneous Poisson process for all protest events Spain (2000-2010)

Figure 11: Inhomogeneous Poisson process for all protest events United Kingdom (2000-2010)
3.5 Area Interaction fitting and simulation

In this section we display four models computing the influence of the interaction from the location of protest. All the countries are well fitted and describe a good model as they are inside the simulations but, only Germany is not well defined, that explain the situation on which Germany doesn’t have a good prediction. France shows a Germany the data is not clustered at all. France cluster until xxx, inside the envelope, Spain also next to the theoretical line.
We computed the simulation, for Spain, United Kingdom, France and Germany. The legend in the figure explains the intensity of the protests, yellow-white color is for high intensity and dark-blue is for low intensity. The results are an average of protests/events for the period of study. Spain, present the light areas of higher amount of protests in the north and north-east side, as well as in the south. United Kingdom has clear clustering in the south-east in the urban area of London and surroundings as well as in the north-west of Scotland, the intensity is lower between this two areas. Similarly, France has a clear concentration of protests in the border with Belgium and the capital Paris. Germany has the higher amount of protests and all are mostly concentrated in the east part of the country, touching the Netherlands. Spain and Germany have also a hot spot in their capitals, but we can conclude that the amount of protests in these areas is not higher enough which in this case explains other factors and not the location of the capital is creating this amount of events.
3.6 Testing for Complete Spatial Randomness in protest events distribution in Spain.

In order to test the Complete Spatial Randomness we computed map intensity in R tools and commands, only for one country, to avoid the influence of United Kingdom, in the case of the Europe. Before starting the analysis, we took each year and evaluate the randomness of the events. As we can see in Figure X, protests vary from time to time, concentrating in mostly in the peripheries, as Galicia, Bask Country and Catalonia and the capital, Madrid. All this areas have the same features, high demographic density and high income or GDP.
Figures 22: Intensity maps for each year from 2000 to 2010 for Spain. The red points are the protests locations and the last map is represents the average of protests from the overall period.
In order to give more importance to the primary idea before mentioned, we computed the Inhomogeneous Poisson process with all the data protests and we saw clearly that protest are overlapped. The arguments to define Inhomogeneity are by understanding the output of the Figure 25. In that Figure we see there is a big amount of points in the same location, defined by the straight line at 0m and abrupt trend of steps along the prolongation of the line. A possible justification is the amount of missing points or insufficient number of points, where there are potential locations but there is not enough data, that is why the escalation of the black line.

We can explain the model by observing at the trend of the empirical line. If it is under the theoretical line is red color, means that there is no interaction and if it is over it, means that the data is clustered.

The reason before mentioned, encourages to remove the overlapped points and compute again the identical analysis; the output is visualized the following Figures for each year, from 2000 to 2010.

We compute inhomogeneous Poisson for each year, to discover if there is a spatial tends in the events.

Figures 24: Inhomogeneous Poisson Analysis for each year from 2000 to 2010 for Spain.
The analysis of Inhomogeneous Poisson varies for every year and all of them are inside the envelope, which concludes that the model fits and therefore the location of the protest is not depending on the interaction of other events. In despite of, we see some years as 2000 and 2001 indicating a good fitted model, where we find both lines close to each other. Other models indicate dispersion of the envelopes towards a longer distance, meaning that there are not enough points in those areas. Also, we found in the last years as 2009 and 2010 smaller envelopes and both lines again closer. In overall, the model computed for all years together, from 2000 to 2010, show how the empirical line is outside the envelope and there is clear defined cluster until 150km.

Mostly all the models are fitting inside the envelopes which mean that the model computed has a 100% of fidelity in all cases. Spain has similar figures for all years, in which all graphs show empirical lines and theoretical lines inside the envelope computed. The main variance is the trend of the empirical line suffers abrupt variances and doesn’t show a smooth tendency, probably owed to missing data.

Regarding the simulation for Spain, we computed, all years from 2000 to 2010 to see the distribution of the protests in time in space. We observe different patterns for each year, which displays a pattern of distribution that would need further research in order to give a fitting explanation. This would be a start for a further research that could be applicable for each country of study.

We could try to explain the pattern we obtained, in vast lines. Spanish crisis was in progress in the beginning of 2000, which regarding the graph we see a north and south higher distribution in the north and south. Spain has a characteristic distribution of protests, wealth and population density. The north of Spain has the highest income and GDP, but also the capital, Madrid which is in the center. Regarding population density and the South has high rate of youth people as the capital, but it has one of the higher rates of unemployment, which could explain the protest intensity. In the other hand, when a very important protest happens, usually occur in capital or big cities. It would be brave, and in the same time humble because it needs references and further study, to confirm the possibility to term the intensity found in the North-East (Catalonia) in 2008 to 2010 is a starting of the current movement in Catalonia, due the austerity measures and a bad management of history.
Figures 25: Simulation maps for each year from 2000 to 2010 for Spain. The red points are the location of the protests.
4.1 Results overview and limitations of the study

The main objective of this study was to evaluate how economic, education and demographic variables, as unemployment could affect to increase the level of protests in Europe. We wanted to compute a simulation for Europe using protests events.

In this project we have computed different types of analysis. Our first analysis was the lattice approach, in which we have worked in different resolutions. In order to assess a good resolution of analysis, to have a significant output, we started selecting the variables from Eurostat in a base NUTS2 regions database.

After computing this analysis, we conclude choosing a NUTS2 region for this type of analysis is not the best option. The reasons why this is not the best option is because the variables are disorganized and there is a high degree of incompleteness, which makes difficult to compare southern European countries with northern countries. One of the reasons for this incompleteness is because a wide range of NUTS2 in Europe is empty or as the case of Greece can be falsified [1] variables are empty for certain years. Other countries as Italy and Spain do not have the same procedure and publishes variables in a different region definition, as are geographical divisions (e.g. north, south, east, west) which create any comparison complicated.

Based on the argumentation before, we decided to repeat the analyses in country wise bases and founded completeness, thus this is the best practice. Additionally a good practice was to implement the variables selected from Eurostat in a country wise as a long table, where we could observe each year under another.

Similarly, in the GDELT database, we face incompleteness, in situations where observations within Protest events 145, ActionGeo_CountryCode was empty. In this situation, the GDETL database is automatize and sets as a location the centroid of the county mentioned, having then another motive to use a country wise approach.
The GDELT data base suffers of noise, for example, in Inhomogeneous Poisson Process graphs for all data presents a distortion of 50000m in Spain. We consider it as an inaccuracy in the geo-location tool as it is most likely to not define the boundary of the urban areas.

Least-square regression analysis is the appropriate technique use in a model where the independent variable \(x \) (protests), is measured without errors and the dependent variable \(y \) is random, for this reason we consider that the GDELT data base is not good enough to compute quantitative analysis but as it is constant development , we consider that this is a punctual opinion.

4.2 Conclusions:
During the lattice approach we found difficult to create a model that will explain the causes of the appearance of protest, as we are dealing with very different type of countries. After this analysis we considered that each country should be studied separately for better accuracy.

On the other hand, we faced some difficulties to select the amount of historical data (time scale) we need for a simulation. The issues regarding the efficiency over the forecasting zones (scale) have been discussed over the literature. Important questions as how larger conflict datasets are build, thus the sample size and the methods of estimation are still unclear.

The complexity remains here; the literature doesn’t clarify how to quantify and qualify the scale and temporal dimension of the historical data. Building a new database is an important task as the approach can influence the result. Moreover, the selection of regions and aggregation facts/observations (other events) are in current treatment in the branch of international studies and political forecasting (Brandt et al., 2013).

The objective of the study is not forecasting events as in social and political science, even the popularity of applying quantitative studies it still not trusted due the unpredictability of social behaviour events. Instead an objective is to achieve a further understanding of how people participate in collective protest because of long-standing social, economic, and political stress, and because others have recently done
so (Braha, 2012).

Forecasting must consider until what extent past tendencies will continue in a future. In social behaviour or political forecasting, as social unrest events, the linearity of the trend can change abruptly. To evaluate the reasons and when these change of dynamics or the critical points are a complex task that a system still cannot predict (Doran, 2002). Even though, the developments in this field are based on knowledge of past behavior and acknowledge to the last technology development it will be better-quality.

Regarding the decision of performance of Least Squared Regression Analysis, total government expenditure and revenue, even the correlation, might be off interest, because in any economic crisis, governments are force, meaning no-choice to bring their growing deficits under control, thus these leads countries to narrow strategies towards policies that favor the macro economy.

It is assumed that relationship between different indexes affect protests, but taking only labor market status and/or use of military violence as descriptive variables is courageous. In fact in our study it was negative or not enough important.

Crime and poor societies are correlated with protests, studies point out that both can intensification together, as protests can convert to serious disorders depending on the government reaction and crimes can claim ideological meanings (Turner, 1969). Other weakness as lack of democracy in government institutions, international pressure and difference between elite population and the working class, ethnicity, all of them can be potentially describing the creation of revolutions (Goldstone, 2001; Braha, 2012).

In other words, it is assumed that social, economic, and political tensions accumulates through the country as an inter-state conflict, before they lead to sudden explosion of unrest (Dowe et al. 2001, Glurr, 1970, Braha, 2012).

On the other side, it’s being hard to include governance indices for institutions, authority characteristics of states and country regime trends, as those variables are binominals (0,1) and consider a big scale. An example is the Polity IV Project.
database from the Center for Systematic Peace and Societal-System Research Inc, are world rankings making difficult to register minor changes in e.g. in European countries because they are not noticeable compared with African countries.

Indexes of administration variables (number of government employees, number of policemen, income) are of difficult access, Europe doesn’t have a database with such Institution variables regarding the institutions, with which we could consider to evaluate in deep the political structures or some of the accessible ones are indexes with no access to the raw data.

The simulations driven in this analysis take as a final assumption that area interaction method is good enough to estimate the location of future protest/events. The result presents an average 250 km which is more likely to belong to the cities or urban areas. We can assume that urban areas tend to poses higher difficulties respect to services, poverty, and human well-being which are indivisibly linked with social unrest (Gurr, 1970; Dowe, 2001 and Bai, 2005).

This conclusion appears to be intuitive and thus there is need to increase the resolution to the world area or bigger regional areas, in order to obtain more efficient results, which is to get a general overview of real-time social sciences in the earth.

GDELT database is a very interesting initiative, is the first news database automatized, for all the world and daily and 24h free available. After this analysis, we conclude that GDELT database should be used as a tool to define worldwide trends or bigger areas instead of an accurate precision in regions, because data is chaotic regarding geo locations. For instance, some events have empty values and thus if the name is explicit is given the centroid of the country, which can confuse results.

Area interaction explained that point to point location is a good model to simulate future protest/events. Even though, it is still unclear the cause or explanation of the protests and its location, perhaps in Spain, where the fact that the capital is in the centroid of the country, influence to smooth the results. There is, nonetheless an higher intensity in the north part of Spain. An affirmative explanation could be a relation with gdp and income, which carries high qualify inhabitants who we could
assume to be more conscious and higher civil engaged culture. The higher amount of protests, result on the same areas are still in dispute after the Civil War, as those areas have a historical culture of grievance towards the government, the amount of protest could be related to that subject. The south is also considerate in Spain as a broad visited university area with higher amount of young population.

Richard Rosecrance concludes that through time there is a tendency for international instability to be associated with domestic insecurity of elites (Rosecrance, 193, p.304)

4.3 Further Analysis

Relative to the type of data and the processes to study political science, international conflict data in general have unusual characteristics. They are based on thousands of and whether the amount of dyads should be included or dismissed, or if only actors in the conflict should be considered, all nations, or only some group is in the literature no clear.

Regarding the window of study, using Europe as a unique region is a challenge, the lack of data for each country, emptiness or the use of different nomination of its geographic regions made it complicated, even the effort to harmonize and join statistics in EU all data is acquired for each country. The variables we selected to build a model are good starting to understand the environment of each country, but for a further analysis there is a need for further selection on economic variables.

After this analysis, we conclude that in complicated cases of studies as conflict forecasting/politics, should include countries with similar features together, therefore the analysis should be deepen country by country. In despite of, each country is different, and so each country should be studied separately, there are facts that social unrest contagion is governed by the same mechanisms to individual countries and geographic regions (Stanley, 2000).

We suggest further analysis within GDELT database functionalities. Find correlation between Action and Actors, to improve the accuracy of the observation we want to describe as the dynamics of protests occur as a response of sudden and punctual events (Dowe et al. 2001), a suggestion would be to combine news coded as appeal
and threat (CAMEO Code 02 and 13) could introduced an interesting descriptive factors (Turner, 1969).

We could select events by the tone in further studies, in the following graph we show the events that have a tone of more than 10 mentions on the sources; this could help us to define the most important events.

Table 13: Spain event numbers and tone

Spatial analysis can be improved, despite the computed analysis in this project has been satisfactory enough. We have observed that protests are close to the most populated places, which sometimes rely close to boundaries (e.g Germany & France) we accordingly we conclude that a further analysis regarding contamination of protest from country to country would be interesting.

To include different forms of social or communication networks influence protests (González-Bailón, 2011) and has not been included in this study. This will imply understanding a new technological factor which influences a faster spreading of civil unrest and a new way of organization (Braha, 2012).

The new database it should be considered as a prodigious innovation due to the increase of sources and observations recorded, it is the first database to include protests events as an observation and it still on constant development (Schrodt, 2013) for those interested in what it has been called a social science of earth observation studies.

Crozier, Michel, Samuel P. Huntington, and Joji Watanuki. The crisis of democracy.

Stråth, Bo. "A European Identity To the Historical Limits of a Concept." *European

Appendix 1: Download and normalization of GDELT database in R

Title: Download_Data_SP.R
Author: Adeva, Elisabet
Date: January 26th 2014
Topic: Assessing economic variables and simulation of social unrest in Europe.

*** RELOAD DATA AND START AGAIN

load("subset19792011_sp14.dat")

recodes <- c(1, 4, 6:12)
for (i in recodes) {
 dat.sp [, i] <- as.numeric (paste (dat.sp [, i]))
}

Map of the country:
plot (dat.sp$ActionGeo_Lon, dat.sp$ActionGeo_Lat, pch=1, col="red",
 xlim=c(07,20), ylim=c(37,48)) # this is Italy

Map of whole world:
plot (dat.sp$ActionGeo_Lon, dat.sp$ActionGeo_Lat, pch=1, col="red")
library(maps)
map (add=TRUE)

years <- sort (unique (floor (dat.sp$Day / 10000)))
nyears=length(years)
EV <- sort (unique(dat.sp$EventCode)) # the codes
ncodes <- length (EV)

Aggregate into all events per year:
num.events.sp <- array (NA, dim=c(nyears, ncodes))
for (i in 1: nyears){
 for (j in 1:ncodes) {
 indx <- which (floor (dat.sp$Day / 10000) == years [i] &
 dat.sp$EventCode == EV [j])
 num.events.sp [i, j] <- length (indx)
 }
}
num.events.sp <- data.frame (num.events.sp)
names (num.events.sp) <- paste (EV)
rownames (num.events.sp) <- paste (years)

Aggregate into only some events 141 and 145 per year:
num.events.sp <- array (NA, dim=c(nyears, ncodes))
for (i in 1: nyears){
 for (j in 1:ncodes) {
 indx <- which (floor (dat.sp$Day / 10000) == years [i] &
 dat.sp$EventCode == EV [2,6])
 num.events.sp [i, j] <- length (indx)
 }
}
num.events.sp <- data.frame (num.events.sp)
names (num.events.sp) <- paste (EV)
rownames (num.events.sp) <- paste (years)

*** AGGREGATION INTO MONTHLY COUNTS

years <- sort (unique (floor (dat.sp$Day / 10000)))
nyears=length(years)
nmonths <- nyears * 12
EV <- sort (unique(dat.sp$EventCode)) # the codes
ncodes <- length(EV)

Aggregate into events per months:
num.events.sp.mo <- data.frame(array(NA, dim=c(nmonths, ncodes + 3)))
names(num.events.sp.mo) <- c("year", "month", "indx", paste(EV))
for (i in 1:nyears) {
 for (j in 1:12) {
 # make a list of the months from the dates, which are yyyyMMdd. First remove
 # the year by dividing by 10,000 and getting the remainder (= "%"):
 month <- dat.sp$Day % 10000
 # That is then mmdd, so then remove the day by:
 tindx <- (i - 1) * 12 + j
 num.events.sp.mo$year[tindx] <- floor(dat.sp$Day / 10000)
 num.events.sp.mo$month[tindx] <- j
 num.events.sp.mo$indx[tindx] <- tindx
 for (k in 1:ncodes) {
 indx <- which(floor(dat.sp$Day / 10000) == years[i] & month == j &
 dat.sp$EventCode == EV[k])
 num.events.sp.mo[tindx, k + 3] <- length(indx)
 }
 }
}
rownames(num.events.sp.mo) <- paste(years)
num.events.sp.mo

Load and pre-process normalisation data
library(GDELTtools)
data(NormEventCountsData)
norm.yc <- NormEventCountsData$yearly.country
norm.yc is then the normalisation dat.spa for each year and each country
norm.yc <- norm.yc[norm.yc$country == "IT",] # NATO country code no like
in norm.yc that ISO Codes are used
indx <- order(norm.yc$year)
norm.yc <- norm.yc[indx,]
EVt <- norm.yc$total

annual unemployment country
setwd("/home/elisabet/Documents/Thesis/Countries/EU/with_crisis/SPN")
unempl.sp <- read.csv(file = "SPN.csv", header = TRUE)
unempl.sp <- data.frame(unempl.sp)
names(unempl.sp) <- c("Year", "unempl")

monthly unemployment country
setwd("/media/elisabet/OS/Users/Elisabet/Desktop/Eli_Data/monthly")
unempl.sp.mo <- read.csv(file = "unempl_.csv", header = FALSE)
unempl.sp.mo <- data.frame(unempl.sp.mo)
names(unempl.sp.mo) <- c("", "unempl")

annual unemployment nuts2
setwd("/home/elisabet/Documents/eliLINUXmint/Documents/Thesis/Countries/EU/SPN/NUTS2")
unempl.sp.nuts <- read.csv(file = "sp_NUTS2_unemp.csv", head = TRUE)
unempl.sp.nuts <- data.frame(unempl.sp.nuts)
names(unempl.sp.nuts) <- c("", "")

Convert all three data sets (GDELT = dat.sp, normalisation = norm.yc, and
unemployment = unempl) to have same number of rows for the same years.
years <- 2000:2011 #change the years related to the unemployment data
dat.sp$year <- floor(dat.sp$Day / 10000)
indx.dat.sp <- which(as.numeric(rownames(num.events.sp))) %in% years
indx.norm <- which(as.numeric(rownames(norm.yc))) %in% years
indx.unempl <- which(as.numeric(rownames(unempl.sp))) %in% years

Then reduce all data just to the common years:
num.events.sp <- num.events.sp[indx.dat.sp,]
norm.yc <- norm.yc [indx.norm,]
unempl.sp <- unempl.sp [indx.unempl,]

Then normalise the numbers of events,
thus all the norm.unempl and ita.events have the same amount of
years/rows
num.events.sp <- num.events.sp / norm.yc$total
num.events.sp$total.events <- rowSums (num.events.sp)

*********************** PLOTTING EACH
EVENT*************************
Time series:
ncols <- ncol (num.events.sp) - 1
ylims <- range (num.events.sp [1:ncols])
First plot time series of numbers of events
par (mar=c(2,2,0.5,0.5))
plot (years, num.events.sp [,1], "l", col=1, ylab="Number of Events in
SP", ylim=ylims)
for (i in 1:ncols) {
 lines (years, num.events.sp [,i], col=i)
 points (years, num.events.sp [,i], col=i, pch=19)
}
legend ("topleft", names (num.events.sp) [1:ncols], lwd=1, col=1:ncols,
bty="n")

Then related unemployment to numbers of events. There are 10 types of
events, so
arrange these in a 3-by-4 grid
par (mfrow=c(3,4))
for (i in 1:length (EV)) { # length (EV) = number of categories of events
 plot (unempl.sp$unempl, num.events.sp [,i], pch=1, col=i,
 xlab="Unemployment", ylab="Number of events")
 # Then calculate a linear regression:
 mod <- lm (num.events.sp [,i] ~ unempl.sp$unempl)
 mod.predict <- predict.lm (mod)
 lines (unempl.sp$unempl, mod.predict, col=i)
 r2 <- formatC (summary (mod)$r.squared, format="f", digits=4)
 title (main=paste ("Event#", EV [i], ": R2 = ", r2, sep=""))
}

******************** PLOTTING TOTAL
EVENT*************************
Time series year:
ylims <- range (num.events.sp$total.events)
First plot time series of numbers of events
#par (mar=c(2,2,0.5,0.5))
plot (years, num.events.sp$total.events, "l", col=1, ylab="Total Number of
Events in SP", ylim=ylims)
par (new=TRUE)
plot (years, unempl.sp$unempl, "l", col="blue", xlab="", ylab="",
xaxt="n", yaxt="n", frame=FALSE)
axis (pretty (unempl.sp$unempl), side=4)
legend("topright", lwd=1, col=c("black", "blue"), legend=c("#events",
"unemployment"))

Time series monthly:
ylims <- range (num.events.sp.mo$total.events)
First plot time series of numbers of events
#par (mar=c(2,2,0.5,0.5))
plot (years, num.events.sp.mo$total.events, "l", col=1, ylab="Total Number of
Events in SP", ylim=ylims)
par (new=TRUE)
plot (years, unempl.sp.mo$unempl, "l", col="blue", xlab="", ylab="",
xaxt="n", yaxt="n", frame=FALSE)
axis (pretty (unempl.sp.mo$unempl), side=4)
legend("topright", lwd=1, col=c("black", "blue"), legend=c("#events",
"unemployment"))

59
Autoregression analysis yearly:
\[\text{ar.sp} \leftarrow \text{ar} \left(\text{num.events.sp$total.events, unempl.sp$unempl} \right) \]

plot (unempl.sp$unempl, num.events.sp$total.events)
par (ps=10) # point size= size of font
text (unempl.sp$unempl, num.events.sp$total.events, labels=years, pos=3, col="blue")
mod <- lm (num.events.sp$total.events ~ unempl.sp$unempl)
mod.predict <- predict.lm (mod)
lines (unempl.sp$unempl, mod.predict, col="red", lwd=2)
r2 <- formatC (summary (mod)$r.squared, format="f", digits=4)
title (main=paste ("R2 = ", r2, sep=""))

Autoregression analysis yearly:
\[\text{ar.sp} \leftarrow \text{ar} \left(\text{num.events.sp.mo$total.events, unempl.sp.mo$unempl} \right) \]

plot (unempl.sp.mo$unempl, num.events.sp.mo$total.events)
par (ps=10) # point size= size of font
text (unempl.sp.mo$unempl, num.events.sp.total.events, labels=years, pos=3, col="blue")
mod <- lm (num.events.sp$total.events ~ unempl.sp$unempl)
mod.predict <- predict.lm (mod)
lines (unempl.sp$unempl, mod.predict, col="red", lwd=2)
r2 <- formatC (summary (mod)$r.squared, format="f", digits=4)
title (main=paste ("R2 = ", r2, sep=""))
Appendix 2: R Script for NUTS2 analysis.
Title: NUTS2_Analysis_Thesis.R
Author: Adeva, Elisabet
Date: January 26th 2014
Topic: Assessing economic variables and simulation of social unrest in Europe.

reading the data
data_1=read.csv("v_comb.csv", head=T, na.strings = "NA")

variables
p_00_10=data_1$p_00_10
u_00_10=data_1$u_00_10
edu_00_10=data_1$edu_00_10
e_00_10=data_1$e_00_10
hdu_00_10=data_1$hdu_00_10
ppi_00_10=data_1$ppi_00_10
rop_00_10=data_1$rop_00_10
y_00_10=data_1$y_00_10
ypnie_00_10=data_1$ypnie_00_10

creating the regression formula with dependent and independent variables
formula_st_long=p_00_10 ~ u_00_10+edu_00_10+e_00_10+hdu_00_10+ppi_00_10+rop_00_10+y_00_10+ypnie_00_10
run the OLS model with the above formula
mod.lm_st_long <- lm(formula_st_long, data = data_1)
read the model output
summary(mod.lm_st_long, Nagelkerke=TRUE)

reading the data
data_1=read.csv("v_comb.csv", head=T, na.strings = "NA")

variables
p_10=data_1$p_00_10
u_00_10=data_1$u_00_10
edu_00_10=data_1$edu_00_10
e_00_10=data_1$e_00_10
hdu_00_10=data_1$hdu_00_10
ppi_00_10=data_1$ppi_00_10
rop_00_10=data_1$rop_00_10
y_00_10=data_1$y_00_10
ypnie_00_10=data_1$ypnie_00_10

creating the regression formula with dependent and independent variables
formula_st_long=p_00_10 ~ u_00_10+edu_00_10+e_00_10+hdu_00_10+ppi_00_10+rop_00_10+y_00_10+ypnie_00_10
run the OLS model with the above formula
mod.lm_st_long <- lm(formula_st_long, data = data_1)
read the model output
summary(mod.lm_st_long, Nagelkerke=TRUE)
Appendix 3: R Script for analysis.

#...
Title: Eco_Analysis_Thesis.R
Author: Adeva, Elisabet
Date: January 26th 2014
Topic: Assessing economic variables and simulation of social unrest in Europe.
#...
#...
#####################last model long table eco
database###################
data_1=read.csv("C:\Users\Elisabet\Documents\Thesis_update27thDec\data\ecodata\eu_ecodata_longtable_until2000.csv", head=T, na.strings = "NA")
data_1
str(data_1)
#Explanatory variables (see attachment for further explanation)
geo=data_1$geo_code
p=data_1$p_ deb_00_10=data_1$debt_ deb_t00_10=data_1$debt_t t-1 year % of GDP Debt deb_d00_10=data_1$debt_d deb_t00_10=data_1$debt_d
unempl_00_10=data_1$unempl t-1 year Unemployment rate %
unempl_d00_10=data_1$unempl_d % Difference on unemployment rate %
gdp_00_10=data_1$gdp_ General government gross
gdpcap_00_10=data_1$gdp_cap General government gross per capita
consump_00_10=data_1$consum_gdp Euro per inhabitant-Final consumption expenditure
consum_00_10=data_1$consum Percentage of GDP-Final consumption expenditure
lab_prod_00_10=data_1$lab_prod_eu Labour productivity
lab_00_10=data_1$lab_pro
d prc_hicp_00_10=data_1$prc_hicp current prices
share_00_10=data_1$share Export market shares
invest_00_10=data_1$invest International investment
infl_00_10=data_1$inflat Inflation rate
inclend_00_10=data_1$incl_lending Income, saving and net lending/borrowing
tax_00_10=data_1$tax_gov Main national accounts tax aggregates
gov_00_10=data_1$gov_gen_main General government, Net lending(+)/net borrowing(-)
gov1_00_10=data_1$gov_gen_exp General government, Total expenditure
gov2_00_10=data_1$gov_gen_rev General government, Total revenue
gov3_00_10=data_1$gov_cen_main Central government, Net lending(+)/net borrowing(-)
gov4_00_10=data_1$gov_cen_exp General government, Total expenditure
gov5_00_10=data_1$gov_cen_rev Central government, Total revenue
gov6_00_10=data_1$gov_loc_main Local government, Net lending(+)/net borrowing(-)
gov7_00_10=data_1$gov_loc_exp Local government, Total expenditure
gov8_00_10=data_1$gov_loc_rev Local government, Total revenue

62
gov9_00_10=data_1$gov_soc_main # Social security funds, Net lending(+) / net borrowing(-)
gov10_00_10=data_1$gov_soc_exp # Social security funds, Total General Government expenditure
gov11_00_10=data_1$gov_soc_rev # Social security funds, Total General Government revenue
edu3rd00_10=data_1$edu_3 # Students in 3rd education
edu_exp00_10=data_1$edu_exp # Expenditure on education (% GDP / public expenditure)
educ_invest00_10=data_1$edu_invest
part5600_10=data_1$part56
pdens_00_10=data_1$pdens # Population density
oldp_00_10=data_1$old_dep # Old-age-dependency ratio
inactive00_10=data_1$inactive # Inactive population
temp00_10=data_1$temp # Temporary employees (1 000)
earn_00_10=data_1$earn_snk_net # Annual net earnings
ern_tax00_10=data_1$ern_tx # Tax rate
poli_00_10=data_1$poli # Police officers
crim_00_10=data_1$crime # Crimes recorded by the police
ext_00_10=data_1$ext_trade # Share of imports by Member State (%)
gba_00_10=data_1$gba_nabste # all public budget spending related to R & D
spr_00_10=data_1$exp_publ # Social protection expenditure

Multivariable Linear Regression Model
formulap~
unempl_d00_10+unempl_t00_10+gdpcap_00_10+consum_00_10+lab_prod_00_10+lab_00_10+gov_00_10+invest_00_10+gov2_00_10+gov4_00_10+deb_d00_10+edu3rd00_10+earn_00_10+ern_tax00_10+poli_00_10+ext_00_10+gba_00_10

mod.lm<-lm(formula, data = data_1)
summary(mod.lm, Nagelkerke=TRUE)

No correlation variables
+unempl_00_10
+gov10_00_10
+consump_00_10
+deb_00_10
+share_00_10
+tax_00_10
gdp_00_10
+gov1_00_10
+inf1_00_10 # no correlation, perhaps try with the difference as I did with the unempl
+gov3_00_10
+gov5_00_10
+gov6_00_10
+gov7_00_10
+gov8_00_10
+gov9_00_10
temp00_10
+prc_hicp_00_10
+gov11_00_10
+incliend_00_10
+educ_invest00_10
+edu_exp00_10
+exp_3rd00_10
+part5600_10
+oldp_00_10
+inactive00_10
crim_00_10
+pdens_00_10
Appendix 4: R Script for ppm analysis.

#...
####
Title: ppm_Analysis_Thesis.R
Author: Adeva, Elisabet
Date: January 26th 2014
Topic Assessing economic variables and simulation of social unrest in Europe.
 waorganizepointareaforEurope2000-2010

library(splancs)
library(spatstat)
library(stpp)
library(maptools)
#reading the boundary polygon
bound_owin= readShapePoly("/media/elisabet/MYLINUXLIVE/Thesis_update_27thDec/data/Shapefiles/eu_region_generalized_etrs89larea.shp")
proj4string(bound_owin)=CRS("+init=epsg:3034") # ETRS 1989 Larea EPSG:3034
#reading the protest data
events=read.csv("/media/elisabet/MYLINUXLIVE/Thesis_update_27thDec/data/prot est_data/eu_data_with_real_coordinates.csv",header=T)
CoorXY=events[,60:61]
coordinates(events)<-CoorXY
x<-events$X
y<-events$Y
#making the polywindow region
polyowinRegion=as(bound_owin,"owin")
source("/media/elisabet/MYLINUXLIVE/Thesis_update_27thDec/others/kinhom2.txt")
making the point process class combining the protest and spain boundary
eventsppp=ppp(x=events$lon_m_etrs,y=events$lat_m_etrs,window=polyowinRegion)
removing the duplicate points
eventsppp=unique(eventsppp)
summary(eventsppp)
QRegion=quadscheme(data= eventsppp,
dummy=list(x=events$lon_m_etrs,y=events$lat_m_etrs))
QRegion
MODEL 1: Inhomogeneous Poisson (2000-2010) (trend = ~polynom(x,y,2))

creating the envelop from 99 simulation
Alldata_Po_xy2.eu=envvelope(Model.all.xy2.eu,Linhom,nsim=99, global=F)
plotting the ppm with simulation envelop
plot(Alldata_Po_xy2.eu,ylab="L(r)",xlab="r (distance in meters)",cex.lab=1,cex.axis=1,cex.main=1,main="Inhomogeneous Poisson EU (2000-2010) (trend = ~polynom(x,y,2))")
polygon(c(Alldata_Po_xy2.eu$r,rev(Alldata_Po_xy2.eu$r)),c(Alldata_Po_xy2.eu$lo,rev(Alldata_Po_xy2.eu$h)),col="grey",border="grey");
lines(Alldata_Po_xy2.eu$lo,Alldata_Po_xy2.eu$obs,1wd=2);
lines(Alldata_Po_xy2.eu$r,Alldata_Po_xy2.eu$m,1col=2,lty=2,1wd=1);
lines(Alldata_Po_xy2.eu$lo,Alldata_Po_xy2.eu$h,1col=4,lty=2,1wd=1);
lines(Alldata_Po_xy2.eu$r,Alldata_Po_xy2.eu$h,1col=3,lty=2,1wd=1)

MODEL 2 : Area-Interception Model

creating the sequence for testing the best bit
s = data.frame(r=seq(1000,250000, by=50000))

ratioAla <- profilepl(s,AreaInter,eventsppp,-polynom(x,y,2),rbord=0.05)

choosing the best fit model
AI<-ratioAla$fit

creating the simulation envelop for the fitted model from 9 simulaiton
Model_AI_envelopes=envelope(AI,fun=Linhom2,global=T,nrank=2,nsim=99,correction="border",control=list(expand=1))

plotting the AI model with envelop
plot(Model_AI_envelopes,ylab="L(r)",xlab="r",cex.lab=1,cex.axis=1,cex.main=1,
main="Inhomogeneous AI (2000-2010) trend = -polynom(x,y,2)"");
polygon(c(Model_AI_envelopes$r,rev(Model_AI_envelopes$r)),c(Model_AI_envelopes$lo,rev(Model_AI_envelopes$hi)),col="grey",border="grey");
lines(Model_AI_envelopes$r,Model_AI_envelopes$obs,lwd=2);
lines(Model_AI_envelopes$r,Model_AI_envelopes$mmean,col=2,lty=2,lwd=1);
lines(Model_AI_envelopes$r,Model_AI_envelopes$lo,col=4,lty=2,lwd=1);
lines(Model_AI_envelopes$r,Model_AI_envelopes$hi,col=3,lty=2,lwd=1)

making the prediction map
plot(predict.ppm(AI, type="trend"))

calculating the AIC value of the fitted model (explains the strength of the model)
evaluateAIC(AI)

simulating points and plot

sim.all<-rmh(AI)
plot(sim.all)

Analysis for United Kingdom 2000-2010
library(splancs)
library(spatstat)
library(stpp)
library(maptools)
library(lattice)

#1
events=read.csv("C:\Users\Elisabet\Desktop\Thesis_update_27thDec\data\protest_data\eu_data_with_real_coordinates_file_used_for_eu.csv",header=T)
events=subset(events, ActionGeo_CountryCode %in% "UK")
events=subset(events, Year %in% 2000 & ActionGeo_CountryCode %in% "UK")
names(events)
events$ActionGeo_CountryCode
events

#2
bound_owin=readShapePoly("C:\Users\Elisabet\Desktop\Thesis_update_27thDec\data\Shapefiles\boundaries\deu_uk_fra\gbr_region_etrs89larea_v01.shp")
proj4string(bound_owin)=CRS("+init=epsg:3034") # ETRS 1989 Larea EPSG:3034
plot(bound_owin)

#3
###here I have to add the subset for a particular year
CoorXY=events[,60:61] # look for lon_m_etrs in the file and write the position here
coordinates(events)<-CoorXY
x<-events$lon_m_etrs
y<-events$lat_m_etrs
plot(events,add=T,col="red")

#4
polyowinRegion=as(bound_owin,"owin")
source("C:\\Users\\Elisabet\\Documents\\Thesis_update_27thDec\\others\\kinhom2.txt")

#5
events=ppp(x=events$lon_m_etrs,y=events$lat_m_etrs,window=polyowinRegion)
events=unique(events)
summary(events)
MODEL 1: Inhomogeneous Poisson UK (2000-2010) (trend = ~poly(x,y,2))
Model.all.xy2.uk=ppm(events,~poly(x,y,2),Poisson())
Alldata_Po_xy2.uk=envelope(Model.all.xy2.uk,Linhom,nsim=99, global=F)

MODEL 2: Area-Interceot Model
creating the sequence for testing the best bit
s = data.frame(r=seq(1000,250000, by=50000)) #1km to 250km, by 50km
ratioAIa <- profilepl(s,AreaInter,events,~poly(x,y,2),rbord=0.05)

calculating the AIC value of the fitted model (explains the strength of the model)
extractAIC(AI)

making the prediction map
plot(predict.ppm(AI, type="trend",main="Simulation UK (2000-2010)"))

simulating points and plot
sim.all<-rmh(AI)
plot(sim.all main="Simulation UK (2000-2010)") # pch=3, mark.col=5,col='sienna', col='sienna'

Analysis for France 2000-2010
library(splancs)
library(spatstat)
library(stpp)
library(maptools)
library(lattice)

Read point data in R and create a subset
events=read.csv("C:\\Users\\Elisabet\\Documents\\R\\plots\\uk\\events20002010.csv")
events=subset(events, ActionGeo_CountryCode %in% "FR")
events = subset(events, Year %in% 2000 & ActionGeo_CountryCode %in% "FR")

2
bound_owin = readShapePoly("C:\\Users\\Elisabet\\Desktop\\Thesis_update_27thDec\\data\\Shapefiles\\boundaries\\deu_uk_fra\\fra_region_etrs89larea_v01.shp")
proj4string(bound_owin) = CRS("+init=epsg:3034") # ETRS 1989 Larea EPSG:3034
plot(bound_owin)

3 Creation of point data into class "ppp"
and here I have to add the subset for a particular year
CoorXY = events[, 60:61] # look for lon_m_etrs in the file and write the position here
coordinates(events) <- CoorXY
x <- events$lon_m_etrs
y <- events$lat_m_etrs
plot(events, add = T, col = "red")

4 creation of a window
polyowinRegion = as(bound_owin, "owin")
source("C:\\Users\\Elisabet\\Documents\\R\\plots\\fra\\events20002010.jpg")

5 point pattern analysis
events = ppp(x = events$lon_m_etrs, y = events$lat_m_etrs, window = polyowinRegion)
QRegion = quadscheme(data = events, dummy = list(x = events$lon_m_etrs, y = events$lat_m_etrs))
plot(events, add = T, main = "Protests in France (2000-2010)"")

6 MODEL 1: Inhomogeneous Poisson FRA (2000-2010) (trend = ~polynom(x,y,2))
Model.all.xy2.fra = ppm(events, ~ polynom(x,y,2), Poisson())
Alldata_Po_xy2.fra = envelope(Model.all.xy2.fra, Linhom, nsim = 99, global = F)

7 MODEL 2: Area-Interaction Model
s = data.frame(r = seq(1000, 250000, by = 50000)) # 1km to 250km, by 50km
trendAI <- profilepl(s, AreaInter, events, ~ polynom(x,y,2), rbord = 0.05)

choosing the best fit model
AI = trendAI$fit

creating the simulation envelop for the fitted model from 99 simulaiton
Model_AI_envelopes = envelope(AI, fun = Linhom2, global = T, nrank = 2, nsim = 99, correction = "border", control = list(expand = 1))

plotting the AI model with envelop
plot(Model_AI_envelopes, ylab = "L(r)", xlab = "r", cex.lab = 1, cex.axis = 1, main = "Inhomogeneous AI FRA (2000-2010) trend = ~polynom(x,y,2)")
polygon(c(Model_AI_envelopes$r,rev(Model_AI_envelopes$r)),c(Model_AI_envelopes$lo,rev(Model_AI_envelopes$hi)),col="grey",border="grey");
lines(Model_AI_envelopes$r,Model_AI_envelopes$obs,lwd=2);
lines(Model_AI_envelopes$r,Model_AI_envelopes$mmean,col=2,lty=2,lwd=1);
lines(Model_AI_envelopes$r,Model_AI_envelopes$lo,col=4,lty=2,lwd=1);
lines(Model_AI_envelopes$r,Model_AI_envelopes$hi,)
jpeg(file = "C:\\Users\\Elisabet\\Documents\\R\\plots\\uk\\M220002010.jpg")
dev.off()

making the prediction map
plot(predict.ppm(AI, type="trend",main="Simulation FRA (2000-2010)"))
#"trend","cif","lambda","se","SE", col="red",cex=0.5
calculating the AIC value of the fitted model (explains the strength of
the model)
extractAIC(AI)
simulating points and plot
sim.all<-rmh(AI)
plot(sim.all, main="Simulation FRA (2000-2010)",add=T,mark.col=5) # pch=3,
mark.col=5,col='sienna
GOVERNMENT STATISTICS - ECONOMY AND FINANCE

debt
General government gross debt
% of GDP and million EUR
PC_GDP

infl
HICP - inflation rate
Annual average rate of change (%)

gdp
GDP and main components - Current prices
- Euro per inhabitant
- Gross domestic product at market prices

gdp_cap
GDP per capita - annual Data
- Nominal Gross Domestic Product per capita
- Euro per inhabitant

balance
GDP and main components - Current prices
- External balance of goods and services
- Euro per inhabitant

consum
Final consumption aggregates - Current prices
- Euro per inhabitant
- Final consumption expenditure

consum_gdp
Final consumption aggregates - Current prices
- Percentage of GDP
- Final consumption expenditure

lab_prod
Labour productivity - annual data
- Real labour productivity per person employed
- Percentage change on previous period

lab_prod_eu
Labour productivity - annual data
PRICES

HICP

HICP (2005 = 100) - annual data (average index and rate of change)

<table>
<thead>
<tr>
<th>INFOTYPE</th>
<th>average index</th>
<th>COICOP</th>
<th>All-items HICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>prc_hicp</td>
<td>Annual</td>
<td>HICP (2005 = 100) - annual data (average index and rate of change)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balance of payments - International transactions

share

Export market shares [bop_q_exmash]

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Percentage of world total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST</td>
<td>Goods</td>
</tr>
<tr>
<td>FLOW</td>
<td>Credit</td>
</tr>
<tr>
<td>PARTNER</td>
<td>All countries of the world</td>
</tr>
</tbody>
</table>

invest

International investment position - annual data [bop_ext_intpos]

<table>
<thead>
<tr>
<th>CURRENCY</th>
<th>Million euro (from 1.1.1999)/Million ECU (up to 31.12.1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARTNER</td>
<td>the world</td>
</tr>
<tr>
<td>FINPOS</td>
<td>Net position</td>
</tr>
<tr>
<td>FIN_TYP</td>
<td>International investment position: Total</td>
</tr>
<tr>
<td>(inclend) inc_lend</td>
<td></td>
</tr>
</tbody>
</table>

Income, saving and net lending/ borrowing - Current prices

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Euro per inhabitant</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIC_NA</td>
<td>Gross domestic product at market prices</td>
</tr>
</tbody>
</table>

tax_gov

Main national accounts tax aggregates [gov_a_tax_ag]

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>General government; institutions of the EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>percentage of GDP</td>
<td>Total receipts from taxes and social contributions (including imputed social contributions) after deduction of amounts assessed but unlikely to be collected</td>
</tr>
</tbody>
</table>

Additional Notes

- **UNIT**
 - worked
 - Euro per hour

- **INFOTYPE**
 - Annual
 - Average index

- **COICOP**
 - All-items HICP

- **CURRENCY**
 - Million euro (from 1.1.1999)/Million ECU (up to 31.12.1998)

- **PARTNER**
 - All countries of the world
Taxes on production and imports less subsidies

At current prices

Annual Goverment Finance Statistics

Government revenue, expenditure and main aggregates

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **S13** - General government

INDIC_NA

- **B9** - Net lending (+) /net borrowing (-)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **TE** - Total general government expenditure

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **TR** - Total general government revenue

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **S1311** - Central government

INDIC_NA

- **B9** - Net lending (+) /net borrowing (-)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **TE** - Total central government expenditure

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **TR** - Total central government revenue

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PC_GDP - Percentage of GDP</th>
</tr>
</thead>
</table>

SECTOR

- **S1313** - Local government

INDIC_NA

- **B9** - Net lending (+) /net borrowing (-)

<p>| UNIT | PC_GDP - Percentage of GDP |</p>
<table>
<thead>
<tr>
<th>SECTOR</th>
<th>INDIC</th>
<th>UNIT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1313 - Local government</td>
<td>TE</td>
<td>PC_GDP</td>
<td>Total general government expenditure as a percentage of GDP</td>
</tr>
<tr>
<td>S1314 - Social security funds</td>
<td>TE</td>
<td>PC_GDP</td>
<td>Total general government expenditure as a percentage of GDP</td>
</tr>
<tr>
<td>S1314 - Social security funds</td>
<td>TR</td>
<td>PC_GDP</td>
<td>Total general government revenue as a percentage of GDP</td>
</tr>
</tbody>
</table>

EDUCATION

<table>
<thead>
<tr>
<th>EDUCATION</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>edu_3rd</td>
<td>Students Tertiary education (1 000)</td>
</tr>
<tr>
<td>low_edu</td>
<td>% Persons with low educational attainment, by age group Y25-64:From 25 to 64 years Percentage of persons aged 25 to 64 with an education level ISCED (International Standard Classification of Education) of 2 or less. The ISCED levels 0-2 are: pre-primary, primary and lower secondary education.</td>
</tr>
<tr>
<td>educ_exp</td>
<td>Expenditure on education as % of GDP or public expenditure Total public expenditure on education as % of GDP, for all levels of education combined</td>
</tr>
<tr>
<td>unempl_edu</td>
<td>Unemployment rates by sex, age and highest level of education attained (%) SEX Total From 15 to 64 AGE years All ISCED ISCED97 1997 levels early</td>
</tr>
<tr>
<td>SEX</td>
<td>Total Population</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>WSTATUS</td>
<td>Percentage</td>
</tr>
<tr>
<td>UNIT</td>
<td>Per capita</td>
</tr>
</tbody>
</table>

DEMOGRAPHY

- Population density (inhabitants per km²)
- Inactive population by sex, age and nationality (1,000)
- Temporary employees by sex, age and highest level of education attained (1,000)
- Tax rate

GOVERNMENT

- Police officers

GOVERNMENT

- Crimes recorded by the police
 - Number: Numb
 - Source

GOVERNMENT

- Social protection expenditure
 - Total expenditure
 - Main results

GOVERNMENT

- Expenditure: main results [spr_exp_sum]
- Euro per inhabitant

GOVERNMENT

- House price index - deflated - 1 year % change
- AVR
- Households - availability of
<table>
<thead>
<tr>
<th>computers</th>
<th>Households having access to, via one of its members, a Personal computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIC_IS</td>
<td>Total</td>
</tr>
</tbody>
</table>

Elisabet Adeva
28th February, Germany
Formula

Outliers

\[
\begin{array}{cccc}
32 & 10.008904 & 3.7151 \times 10^{-19} & 7.6160 \times 10^{-17} \\
28 & 6.412700 & 1.1377 \times 10^{-09} & 2.3323 \times 10^{-07} \\
33 & 3.762235 & 2.2521 \times 10^{-04} & 4.6168 \times 10^{-02} \\
\end{array}
\]
outlierTest(fit)

rstudent unadjusted p-value Bonferonni p

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>10.008904</td>
<td>3.7151e-19</td>
<td>7.6160e-17</td>
</tr>
<tr>
<td>28</td>
<td>6.412700</td>
<td>1.1377e-09</td>
<td>2.3323e-07</td>
</tr>
<tr>
<td>33</td>
<td>3.762235</td>
<td>2.2521e-04</td>
<td>4.6168e-02</td>
</tr>
</tbody>
</table>

ncvTest(fit)

Non-constant Variance Score Test
Variance formula: ~ fitted.values

Chisquare = 285.9831 Df = 1 p = 3.731008e-64

Non-normality

Non-normality
Non-constant Error Variance

lag Autocorrelation D-W Statistic p-value
1 0.1851067 1.62722 0.018
Alternative hypothesis: rho != 0

sis of Variance Table

<table>
<thead>
<tr>
<th>Response</th>
<th>p_</th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>deb_00_10</td>
<td>1</td>
<td>1</td>
<td>50816722</td>
<td>50816722</td>
<td>29.5311</td>
<td>1.691e-07 ***</td>
</tr>
<tr>
<td>deb_t00_10</td>
<td>1</td>
<td>1</td>
<td>37322835</td>
<td>37322835</td>
<td>21.6894</td>
<td>6.048e-06 ***</td>
</tr>
<tr>
<td>deb_d00_10</td>
<td>1</td>
<td>1</td>
<td>1819293</td>
<td>1819293</td>
<td>1.0572</td>
<td>0.30517</td>
</tr>
<tr>
<td>gdp_00_10</td>
<td>1</td>
<td>1</td>
<td>2858217</td>
<td>2858217</td>
<td>1.6610</td>
<td>0.19905</td>
</tr>
<tr>
<td>consump_00_10</td>
<td>1</td>
<td>1</td>
<td>7620895</td>
<td>7620895</td>
<td>4.4287</td>
<td>0.03667 *</td>
</tr>
<tr>
<td>consum_00_10</td>
<td>1</td>
<td>1</td>
<td>4635338</td>
<td>4635338</td>
<td>2.6937</td>
<td>0.10242</td>
</tr>
<tr>
<td>lab_prod_00_10</td>
<td>1</td>
<td>1</td>
<td>6559157</td>
<td>6559157</td>
<td>3.8117</td>
<td>0.05238</td>
</tr>
<tr>
<td>lab_00_10</td>
<td>1</td>
<td>1</td>
<td>10676684</td>
<td>10676684</td>
<td>6.2045</td>
<td>0.01361 *</td>
</tr>
<tr>
<td>prc_hicp_00_10</td>
<td>1</td>
<td>1</td>
<td>704404</td>
<td>704404</td>
<td>0.4093</td>
<td>0.52308</td>
</tr>
<tr>
<td>share_00_10</td>
<td>1</td>
<td>1</td>
<td>13069021</td>
<td>13069021</td>
<td>7.5948</td>
<td>0.00643 **</td>
</tr>
<tr>
<td>invest_00_10</td>
<td>1</td>
<td>1</td>
<td>6851704</td>
<td>6851704</td>
<td>3.9817</td>
<td>0.04744 *</td>
</tr>
<tr>
<td>infl_00_10</td>
<td>1</td>
<td>1</td>
<td>1101244</td>
<td>1101244</td>
<td>0.6400</td>
<td>0.42473</td>
</tr>
<tr>
<td>tax_00_10</td>
<td>1</td>
<td>1</td>
<td>80791</td>
<td>80791</td>
<td>0.0470</td>
<td>0.82869</td>
</tr>
<tr>
<td>gov_00_10</td>
<td>1</td>
<td>1</td>
<td>4071335</td>
<td>4071335</td>
<td>2.3660</td>
<td>0.12569</td>
</tr>
<tr>
<td>gov1_00_10</td>
<td>1</td>
<td>1</td>
<td>1357018</td>
<td>1357018</td>
<td>0.7886</td>
<td>0.37566</td>
</tr>
<tr>
<td>gov2_00_10</td>
<td>1</td>
<td>1</td>
<td>140233</td>
<td>140233</td>
<td>0.0815</td>
<td>0.77560</td>
</tr>
<tr>
<td>Residuals</td>
<td>188</td>
<td>188</td>
<td>323508140</td>
<td>1720788</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

layout(matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
plot(fit)
Formula1

rstudent unadjusted p-value Bonferonni p
32 8.631152 1.1298e-12 1.4349e-10
22 3.909882 2.0888e-04 2.6527e-02
ANALYSIS AND SIMULATION OF SOCIAL UNREST IN EUROPE
Towards understanding social unrest in Europe

Elisabet Adeva Romero

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
ANALYSIS AND SIMULATION OF SOCIAL UNREST IN EUROPE
Towards understanding social unrest in Europe

Elisabet Adeva Romero
Masters Program in Geospatial Technologies