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Few Shot Learning for Post-Earthquake Urban

Damage Detection

Abstract

Among natural disasters, earthquakes are recorded to have the highest rates in hu-
man loss in the past 20 years. Their unexpected nature has severe consequences on
both human lives and material infrastructure and demands urgent action. For effec-
tive emergency relief, it is necessary to gain awareness about the level of damage in the
affected areas. The use of remotely sensed imagery is popular in damage assessment
applications, however it requires a considerable amount of labeled data, which are
not always easy to obtain. Taking into consideration the recent developments in the
fields of Machine Learning and Computer Vision, this thesis investigates and employs
several Few-Shot Learning (FSL) strategies in order to address data insufficiency and
imbalance in post-earthquake urban damage classification. The contribution of this
work is double: we manage to prove that oversampling is the most suitable data bal-
ancing method for training Deep Convolutional Neural Networks (CNN) when com-
pared to cost-sensitive learning and undersampling, and to demonstrate the feasibility
of Prototypical Networks in a damage classification problem.
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1 Introduction

1.1 Context and Motivation

Earthquakes are events of episodic nature, that can have a grave impact on human
life and cause immense property loss. UNDRR & CRED (2019) report on the cost of
disasters for the period 2000-2019 declares earthquakes as the deadliest type of dis-
aster for the first two decades of the 21st century and highlights their potential of
massive damage to infrastructure. As they are unpredictable, both in terms of time
and magnitude, responding appropriately is often critical to minimize the number of
casualties. The success of emergency response operations relies in the efficient orga-
nizational management and the rapid reaction. A mandatory precondition to fulfill
these requirements is to gain Situational Awareness: to know what has happened,
when and where. This study intends to apply Machine Learning techniques on Very
High Resolution (VHR) satellite imagery to detect earthquake-caused damage in the
urban environment.

To identify the locations that require immediate relief, remotely sensed data are com-
mon to use, because they can provide an overview of a large region at once, and ac-
quiring them does not pose the same risks as collecting ground-truth data (Gupta et
al., 2019). In the context of emergency mapping, remotely sensed data usually refer to
imagery acquired via satellite, Unmanned Aerial Vehicles (UAVs) or other aerial plat-
forms (Lollino et al., 2015). As the availability of this kind of data and the processing
power of modern computational systems have been constantly increasing, the possi-
bility of automating the identification and assessment of post-disaster damage is also
being explored (Kakooei and Baleghi, 2017). For this reason, methods encountered
in the field of Computer Vision are employed, aiming to minimize the time overhead
and the error that is introduced by the human factor (Xu et al., 2019).

The recent studies have proved that Machine Learning algorithms outperform tradi-
tional Remote Sensing techniques in assessing earthquake damage (Weber and Kané,
2019). The methodology to be followed by this study is based on Few-Shot Learning
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Chapter 1. Introduction

(FSL), which is a type of Machine Learning problems, where the available data for the
target classification task contain only a limited number of examples with supervised
information (Wang et al., 2019). Since a destructive seismic event is rarely to happen,
but the need of reacting quickly in such case is continuous, FSL is competent when it
comes to extracting knowledge from a narrow amount of data and thus, the required
effort for data gathering is also reduced. However, a FSL problem is not easy to solve.
The lack of data requires a different approach than other Machine Learning problems,
which rely on having a plethora of samples to train the model. The suggested solu-
tions may vary in terms of algorithm, model parameters and data handling (Wang et
al., 2019).

One of the main obstacles to overcome in the identification of earthquake damage is
the small number of training samples (Ji, Liu, and Buchroithner, 2018). Machine Learn-
ing approaches have been employed to locate and measure post-earthquake urban
damage, confirming the relevance of this field for such kind of applications. However,
related research papers that have incorporated FSL for locating ravaged buildings, fo-
cus on binary classification (destroyed/non-destroyed), rather than further dividing
buildings into different wreckage levels. Multi-class categorization, though, can em-
phasize or even create class imbalances within the data. The present study seeks to fill
this gap, by leveraging FSL to tackle data deficiency for certain classes in a multi-class
problem.

1.2 Objectives and Research Questions

There are several means of dealing with data deficiency and imbalance. Applications
that track disaster-related damage with ML can benefit from the existence of pre-event
data, but on some occasions, they may be impossible to acquire. For this reason, we
examine how efficient can be a model that is based only on post-event data. The pur-
pose of this study is to implement and evaluate the effect of different FSL approaches
on an imbalanced dataset.

The Research Questions for which we seek to meet an answer are the following:

• How can the supervised classification of a highly imbalanced dataset be elabo-
rated, where the instances of one class are multiple times higher than the other
classes?

2



Chapter 1. Introduction

• In cases of imbalanced datasets, to what extent are the representatives of the
majority and minority classes successfully detected?

• If overlaid with a map, is the visual interpretation of the predictions indicative
of the severity of damage suffered by the region?

The answers will be achieved by accomplishing the following objectives’ skeleton:

• Review the existing literature and gather applied practices in similar applica-
tions.

• Assess the relevant methods and implement the architectures that suit the needs
of the thesis.

• Measure the performance and the training time of the implemented approaches
and provide quantitative and qualitative evaluations.

1.3 Thesis Structure

This document presents our research in six Chapters. Chapter 1 introduces the reader
to the topic, provides the motivation and contextual background of the work and lists
the objectives and research questions to fulfill. Chapter 2 reviews related studies, tries
to identify the major variables that affect the research approach and analyzes the the-
oretical background that is necessary to follow the present study. Chapter 3 explains
the data and the methodological workflow of the thesis. Chapter 4 presents and dis-
cusses the results of the study and Chapter 5 summarizes the the main conclusions
drawn.

3



2 Literature Review

2.1 Remote Sensing in Emergency Mapping

Boccardo and Tonolo (2015) have elaborated a systematic review concerning the role
of Remote Sensing in post disaster damage mapping. Based on their paper, satellite
data are overall preferred to material acquired by other platforms, as they provide an
overview of large regions, even if they cannot be easily accessed. They also state that
optical imagery is favored for damage estimation, as it permits finer spatial resolution
and is semantically richer, which is crucial in operational conditions. The existence of
pre-event data is mentioned to add up to the quality of collapsed building detection.
The authors also name some limitations of optical satellite imagery, such as off-nadir
acquisition angles causing low spatial resolution, spectral and geometric resolution
correlation and short stopover time frames, and propose the use of emerging tech-
nologies, such as object detection, as part of the solution.

According to Cooner, Shao, and Campbell (2016), Machine Learning algorithms seem
to gain popularity in damage assessment applications, due to outperforming tradi-
tional methods for change detection and image classification and due to being capa-
ble of handling non-linear datasets. The authors compared RF, ANN and RBFNN
algorithms on panchromatic and multispectral VHR imagery obtained by the satel-
lites WordView-1 and QuickBird-2. The study concluded that ANN demonstrates the
lowest Error of Omission and the shortest training time, while the model could be
produced only with panchromatic imagery.

Li et al. (2020a) did an extensive survey about object detection in optical Remote Sens-
ing images. As stated in the paper, Deep Learning algorithms are currently the pre-
dominant approach for visual recognition tasks, including object detection related to
the fields of Computer Vision and Earth Observation. Although in Computer Vision
the employed methods can be region proposal-based or regression-based, Earth Ob-
servation applications favor the first approach (Li et al., 2020a). The study also pro-
posed a new benchmark dataset, characterized by low inter-class and high intra-class

4



Chapter 2. Literature Review

variability and tested it with different combinations of backbone and object predic-
tion architectures, stating that deeper backbone networks, such as ResNet-101 and
Hourglass-104, demonstrate higher overall accuracy.

2.2 Deep Learning for Urban Damage Assessment

Ji, Liu, and Buchroithner (2018) applied a CNN architecture called SqueezeNet on
single-temporal post-earthquake VHR QuickBird imagery. The study divided the
buildings in the city of Port-au-Prince after Haiti 2010 incident in two categories: col-
lapsed and non-collapsed. As the non-collapsed buildings outnumbered the com-
pletely destroyed ones, the researchers used three different data balancing methods,
namely random oversampling, random undersampling and cost-sensitive to improve
the accuracy.

Ji et al. (2020) have shown the potential of pre-trained CNN models for post-earthquake
damage identification. Two models were compared, one trained from scratch and
one pre-trained on the benchmark dataset ImageNet, with the accuracy results favor-
ing greatly the latter. Both models were fed with labeled bi-temporal VHR imagery
and were responsible for binary classification of the buildings: collapsed and non-
collapsed. The study also points out the risk of overfitting when the data are limited
and makes use of data augmentation to figuratively expand the dataset.

Li et al. (2019) have also derived similar results when comparing a fine-tuned pre-
trained model with one trained from scratch, for identifying post-hurricane structural
damage. In contrast with Ji et al. (2020), this study used single post-event aerial im-
agery for classifying the damage in two different levels: damaged and debris.

Xu et al. (2019) did a comparative study of four different models using the Haiti 2010
dataset. Three of the models were built using both pre- and post-disaster labeled im-
ages and one was built using single post-earthquake data. The study tested the gen-
eralization ability of the best performing model and found it more competent as the
number of earthquake incidents that are included in the training increases. The reason
is the low variability that characterizes each individual incident dataset, a fact that can
lead to overfitting (Xu et al., 2019).

The need for a common framework for building damage assessment after different
kinds of natural disasters (earthquakes, floods, hurricanes, wildfires, volcanic erup-
tions, etc.) has been highlighted by Gupta et al. (2019). The study discusses the need

5



Chapter 2. Literature Review

for having a benchmark dataset that is compliant with the requirements of ML algo-
rithms, counting in the rarity of occurrences of a large-scale natural disaster and hence
the relevant data shortage. The study’s main contribution is a dataset that consists of
bi-temporal VHR labeled satellite imagery from various disaster incidents.

Weber and Kané (2019) have exploited the aforementioned dataset (xBD) to estimate
post-disaster building damage. The pre- and post-disaster images were input to a
backbone based on Mask R-CNN and then the buildings-features were classified ac-
cording to the damage level using semantic segmentation.

The transferability of pre-trained CNN models to new disaster occasions was also
examined by Vetrivel et al. (2018). The study integrated 3D point cloud data on top
of vertical and oblique aerial photography. Among the models that were employed,
the authors recommend the use of a pre-trained CNN as a feature extractor with no
further weight tuning, because it can achieve Overall Accuracy of the same levels,
without being as costly in terms of data and computation. However, the inclusion of
site-specific samples can impact positively the model’s performance (Vetrivel et al.,
2018).

Li et al. (2020b), taking into consideration the amount of time that labeled data needs
to be produced, have employed an unsupervised domain adaptation model based on
unlabeled post-hurricane imagery. The model, despite its complexity, as it consists
of several Generative Adversarial Networks (GANs), a classifier and a self-attention
module, was evaluated by the authors as successful with regards to the transfer learn-
ing tasks that were assigned to it.

2.3 Comparative Analysis

The aforementioned studies concern related applications, where post-disaster urban
damage is tracked with Machine Learning. The approaches vary greatly with regards
to the methods employed. The input imagery and the number of the predicted classes
are parameters that affect the design of the learning pipeline. Table 2.1 summarizes
the six parameters that were encountered in the literature and were evaluated as fun-
damental for the creation of the predictive model.

Different incident types affect urban structures differently (Gupta et al., 2019). How-
ever, we assume that earthquake and wind induced damages are comparable, because
they impact on the structural materials in a similar way, causing lateral damage to the
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Chapter 2. Literature Review

constructions (Taher, 2010; Fannela and Munshi, 1998). For this reason, hurricane-
related studies are also included in the literature review.

The most common incident among earthquake-related studies is the Haiti 2010 earth-
quake and has often been the unique data source of the analysis (Cooner, Shao, and
Campbell, 2016; Ji, Liu, and Buchroithner, 2018; Ji et al., 2020). Given that the models
built on very specific data have a poor generalization ability (Xu et al., 2019), newer
studies are incorporating more earthquake incidents (Vetrivel et al., 2018; Xu et al.,
2019) or do not distinguish between the damage cause, especially the ones utilizing
the dedicated xBD dataset (Gupta et al., 2019; Weber and Kané, 2019).

The preferred imagery type in the relevant Machine Learning applications is of VHR,
acquired either by satellite (usually WorldView and QuickBird) or by aerial platforms.
Additional data sources, such as 3D point cloud features (Vetrivel et al., 2018), can be
used collaterally, but the basis for the learning process remains optical imagery, which
is also meaningful to human vision.

To overcome possible data shortage and accelerate the creation of a competent predic-
tive model, a plethora of approaches have been put to use. Pre-trained models can
transfer knowledge and save time and computational resources (Vetrivel et al., 2018;
Ji et al., 2020). Data augmentation is necessary for small datasets (Li et al., 2019) and
data balancing for non-linear datasets (Ji, Liu, and Buchroithner, 2018). Unsupervised
classification is also gaining popularity (Li et al., 2020a), as it minimizes the effort for
labeling the training data. All the aforementioned strategies are possible solutions of
a FSL problem.

FSL has already been introduced as a means of dealing with emergency situations
(Choi and Lee, 2019; Balamurugan and Zakhor, 2019; Liu et al., 2019). However, the
related studies do not address post-disaster emergency mapping explicitly, but rather
focus on video surveillance (Liu et al., 2019), tweet classification (Choi and Lee, 2019)
or indoors safety (Balamurugan and Zakhor, 2019).

2.4 Few Shot Learning

The efforts to systematize FSL as a distinct branch of Machine Learning are very recent.
The proposed definitions for FSL converge to it being a family of methods for solving
Machine Learning problems that are characterized by a small quantity of available
labeled data. Since the human brain is capable of learning only from a few examples,

8
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FSL can be seen as a way for Artificial Intelligence to approximate human learning
even more (Wang et al., 2019).

According to the taxonomy proposed by Kadam and Vaidya (2020), the coping strate-
gies can be divided in two categories: data-bound and learning-bound. Data-bound
strategies focus on attaining more data, so that the sample is big enough to leverage
standard Deep Learning network architectures. This can be achieved by transforming
the existing data, by creating artificial new data or by incorporating similar datasets.
Data augmentation is the most common example of a data-bound strategy.

Wang et al. (2019) further divides the learning-bound methods depending on how the
error rate of the learning process is minimized, into model- and algorithm-based. The
model-based approaches aim to narrow down the hypothesis space, so that new un-
labeled data can be identified based on similarity. This is also called metric-learning
(Kadam and Vaidya, 2020). Algorithm-based approaches make use of knowledge ac-
quired by similar learning problems and adjust it accordingly. Pre-trained models are
relevant examples that were encountered in the literature.

2.5 Data Balancing

As concluded in the previous Sections, data augmentation is common practice when it
comes to datasets that do not contain enough labeled examples to train a Deep Learn-
ing model. Although state-of-the-art CNN architectures can achieve very high lev-
els of accuracy, they are usually benchmarked with datasets that contain a massive
amount of distinct class instances, such as ImageNet (Mikołajczyk and Grochowski,
2018). However, in real-life scenarios, a plethora of labeled image data is not always
the case and furthermore, the number of representatives for every class can be highly
imbalanced. Hence, data augmentation and data balancing modules are common in
ML applications.

According to Branco, Torgo, and Ribeiro (2015), Data Balancing approaches can be cat-
egorized as following: 1) Data Pre-Processing, 2) Special-purpose Learning Methods,
3) Prediction Post-processing and 4) Hybrid. Data Pre-Processing methods involve so-
lutions that transform the data distribution in the pre-processing stage and their main
advantage is that they can be integrated to any existing architecture.

The Data Pre-Processing methods can be further divided into resampling, active learn-
ing and weighting the data space (Branco, Torgo, and Ribeiro, 2015). In resampling, the
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training examples are modified so that the classes’ representatives are proportionate.
Oversampling and undersampling are typical resampling strategies. Taking the con-
cept of resampling one step further, active learning methods are able to choose which
samples are more valuable for the learning process and use the rest to improve the
performance. Weighting the data space methods, also known as cost-sensitive learn-
ing (Fernández et al., 2018), manipulate the misclassification costs so that the error is
minimized. Cost-sensitive learning can also be part of the post-processing stage.

2.5.1 Resampling

Oversampling equalizes the classes by creating new, artificial examples for the minor-
ity or non-majority classes. On the other hand, undersampling balances the dataset
by randomly eliminating examples of the majority or non-minority classes (Branco,
Torgo, and Ribeiro, 2015). Both methods are uncomplicated and easy to implement,
yet their simplicity can hold certain drawbacks. Undersampling may exclude very
informative data, while oversampling may lead to overfitting (Fernández et al., 2018).
Nevertheless, the relatively low computational overhead is also an asset for solving
problems of strict time constraints.

2.5.2 Balance class weights

Cost-sensitive learning in the stage of pre-processing aims to modify the training set
usually by weighting the classes according to a cost matrix. The cost matrix can ei-
ther be provided by an expert or derived by estimations made on the training data.
The importance of the majority and minority objects is tuned based on this matrix, so
the heuristic approach that creates the matrix is decisive for the classification results
(Fernández et al., 2018).

For the purposes of this study, the weight wi of class i is normalized based on Equation
2.1:

wi =
|S|

m× |Si|
(2.1)

where m is the number of classes, |S| is the number of examples in the dataset and
|Si| is the number of representatives for this specific class. This formula follows the
Sklearn API documentation for computing balanced class weights.
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2.6 Convolutional Neural Networks

The term Deep Learning refers to ANN architectures with long chains of computational
stages (Schmidhuber, 2014). One of the most widely used deep neural networks is
the Convolutional Neural Network (CNN), which has been particularly successful
in Computer Vision tasks (Albawi, Mohammed, and Al-Zawi, 2018), such as object
detection and image classification.

A typical CNN architecture is principally composed of three types of layers: convo-
lutional, pooling and fully-connected. Simply put, a CNN architecture is a stack that
has been formed from the aforementioned layers (O’Shea and Nash, 2015), as can be
observed in the example of Figure 2.1.

FIGURE 2.1: CNN architecture example (Convolutional Neural Network
Tutorial).

• A convolutional layer applies a filter to the input image, in order to create a
map that contains the features of interest. This is achieved by calculating the dot
product between the input pixel subset and a matrix of weights and applying to
it an activation function via the Rectified Linear unit (ReLu) (O’Shea and Nash,
2015).

• In pooling layers, the value of the feature map at a certain point is replaced with
a summary statistic of its neighborhood (Goodfellow, Bengio, and Courville,
2016). This can be considered as a form of downscaling, since the input reso-
lution is reduced, preserving only those characteristics that matter to the classi-
fication process (Albawi, Mohammed, and Al-Zawi, 2018).

• Fully-connected layers operate similarly to ANN nodes. Each node in a fully-
connected layer is directly connected to every node in the two adjacent layers
(Albawi, Mohammed, and Al-Zawi, 2018). Their responsibility is to produce
class scores from the activations, to be used for classification (O’Shea and Nash,
2015).
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In our case, the intention is to transform RGB vertical building images to a 4-level
scale of damage. As such, subregions of the input image pervade the alternating con-
volution and pooling layers until the feature map of the input image is finalized. This
is the feature extracting block of the CNN (Kim, 2017). The feature map is supposed
to preserve only these imagery properties that are beneficial to our classification. The
fully-connected layers at the end of the chain are responsible for calculating the prob-
ability of belonging to each of the 4 output classes.

2.6.1 ResNet

ResNet was introduced by He et al. (2016) as a proposal to minimize the momentum
in error decrease induced by the several layers of backpropagation in deeper architec-
tures. This problem has been alleviated with the introduction of a new layer, called the
Residual Block. The number of layers (depth) in a ResNet is usually mentioned together
with the name of the architecture. Examples of commonly used ResNet variants are
ResNet36, ResNet50 and ResNet101.

By definition, a residual is the error in the result of a mathematical operation. In the
context of neural networks, this means that if the residual is added to the prediction,
the resulted value matches the actual.

Figure 2.2 illustrates the functionality of a Residual Block. Variable x stands for the
prediction. If x is off by a margin from the actual value, function F(x) will be triggered
to produce the residual of the operation and correct the prediction to meet the true
value. If x is already equal to the true value, F(x) will produce 0. The identity function
just copies x.

FIGURE 2.2: A residual block (He et al., 2016).
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If we suppose H(x) as the underlying mapping function to be learned by the block,
we explicitly let these layers approximate a residual function F(x) := H(x)− x. Math-
ematically, the functionality of the residual block is described by equation 2.2:

y = F(x, {Wi}) + x (2.2)

where x and y are the input and output vectors respectively of the referred layers and
function F(x, {Wi}) represents the residual mapping to be fit.

2.7 Prototypical Networks

While deep networks like ResNet described previously can be predictive powerhouses
when there are plenty of training data, opting for a deep architecture when the data
are not enough may not be the most reasonable option. Among the state-of-the-art
FSL-specific algorithms, Prototypical Networks have been proved to detect even new
classes, that are not part of the training data.

Prototypical Networks combine elements from the fields of Meta-learning and Metric
learning. Meta-learning is the subfield of ML that leverages experience acquired by
similar tasks to accelerate the learning process of new tasks. For this reason, meta-
learning is also referred to as learning to learn (Vanschoren, 2018). In Prototypical Net-
works, this is achieved by measuring distances between features, hence learning the
metric space. The basic idea is to create a prototype (i.e. a vector mean) of each class
and categorize the input feature based on the distance between the two. This distance
is actually the "metric" in metric learning.

Hereinafter, we will present the theory behind Prototypical Networks, as introduced
by Snell, Twitter, and Zemel (2017).

1. Let us suppose a set of N labeled examples S = (x1, y1), ..., (xN , yN), where each
xi ∈ RD is the D-dimensional feature vector of an example and yi ∈ 1, ..., K is the
corresponding label. Sk denotes the set of examples labeled with class k.

2. Training episodes are formed by randomly selecting a subset of classes from S,
then choosing a subset of examples within each class to act as the support set
and a subset of the remainder to serve as query points.
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3. An M-dimensional representation ck ∈ RM is computed for every class. This is
the prototype. The classes’ prototypes are calculated with the help of an embed-
ding function fφ : RD → RM, where φ represents the learnable parameters. The
result is the mean vector of the embedded support points of the specific class:

ck =
1
|Sk| ∑

( xi ,yi)∈Sk

fφ( xi) (2.3)

4. Assuming a distance function d : RM × RM → [ 0,+∞) and a query point x,
a distribution based on a softmax over distances from the class prototypes in
the embedding space is produced. As such, the probability of a query point
belonging to a specific class is calculated as following:

pφ( y = k|x) =
exp(−d( fφ( x) ck) )

∑k′ exp(−d( fφ( x) , ck′) )
(2.4)

5. Consequently, the learning process aims to minimize the negative log-probability
J(φ) = −logpφ( y = k|x) of the true class k through Stochastic Gradient Descent
(SGD).

A graphical representation of the above procedure is provided in Figure 2.3, where
class prototypes c1, c2, c3 are computed and then their distance to query point x in the
metric space is calculated.

FIGURE 2.3: Prototypical Network functionality (Snell, Twitter, and
Zemel, 2017).
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2.8 Performance Metrics

The result image classification in Remote Sensing applications is usually evaluated
with Overall Accuracy, which represents the fraction of correctly classified instances
or pixels in a map (Waldner et al., 2019). However, Overall Accuracy is by definition
biased against the minority/non-majority classes and relying entirely on this metric
can lead to ambiguous conclusions (Branco, Torgo, and Ribeiro, 2015). For this rea-
son, for the evaluation of the elaborated models we have incorporated Precision, Recall
and F-score metrics. In order to clarify the definitions of these metrics, we suppose a
confusion matrix for a binary classification problem (see Table 2.2).

Predicted
Positive Negative

A
ct

ua
l Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

TABLE 2.2: Generic Confusion Matrix for binary classification.

Based on Table 2.2, the relevant formulas for calculating the metrics are as following
(Branco, Torgo, and Ribeiro, 2015):

• Precision represents the positive predictive value:

PPvalue =
TP

TP + FP
(2.5)

• Recall or Sensitivity represents the True Positive rate:

TPrate =
TP

TN + FN
(2.6)

• F-score is a combination of precision and recall. It ranges between 0 (worst) and
1 (best) and is defined accordingly:

F =
2 · Recall · Precision
Recall + Precision

(2.7)

For a multi-class classification problem, the confusion matrix is obtained in a similar
fashion, but the concepts of True Positive, True Negative, False Positive and False Negative
are modified to correspond to the nature of a multi-class classification problem and
hence these values are not global, but differ depending on the class they are calculated
for.
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Predicted
c0...ck−1 ck ck+1...cn

A
ct

ua
l c0...ck−1 TN FP TN

ck FN TP FN
ck+1...cn TN FP TN

TABLE 2.3: Confusion Matrix for class k in an n-class classification
problem.

For optimizing the model’s weights during training, the categorical crossentropy loss
function was employed. This metric gives an estimation of how distinguishable differ-
ent discrete probability distributions are from each other and is calculated according
to 2.8:

loss = −
m

∑
i=1

yi · logŷi (2.8)

where ŷi is the i-th class in the model output, yi is the corresponding label and m is the
total number of classes.
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3 Data and Methodology

3.1 Dataset

The data used use for the needs of this research project has been proposed by Gupta et
al. (2019) and can be found at https://xview2.org/. This dataset is based on Maxar/
DigitalGlobe’s Open Data program and consists of imagery that has been acquired
with WorldView and GeoEye satellites. The mean technical specifications of the xBD
imagery, as declared in the dataset’s metadata, are presented in Table 3.1.

Sensor Resolution 0.66 m
GSD 2.65 m

Off-nadir angle 28.4 degrees
Sun azimuth angle 143.6 degrees

Image Width 1024 pixels
Image Height 1024 pixels

TABLE 3.1: xBD image metadata

The complete xBD dataset refers to multiple disaster categories: volcanic eruption,
hurricane, earthquake, fire, flood, monsoon, tornado and tsunami. The dataset is com-
posed by three different file types: 1) VHR satellite imagery (pan-sharpened), 2) JSON
files with metadata and labels about the buildings of the region and 3) Building poly-
gons. All three categories contain both pre-and post-disaster data.

The present research is primarily concerned with earthquake-related urban damage,
so, for the creation of the predictive models, the earthquake incidents were initially
isolated. This led to the collection of 386 images in total, all of which refer to Mexico
City 2017 earthquake. As this amount of data is insufficient to train a deep network,
data from hurricane incidents were also incorporated and the total amount of images
increased to 4432. All images are of the same standard dimensions (1024x1024 pixels)
and spatial resolution, thus the pre-processing effort is minimized.
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3.1.1 Exploratory Data Analysis

Before designing the methodology to be followed, it is necessary to get familiar with
the dataset. The total of 4432 images can be split in two, based on the temporality:
pre- and post-event. As mentioned before, the VHR images come with respective
labels for the buildings represented within their extent. However, the images referring
prior to the disaster, have plain building labels, while the post-disaster building labels
are further classified into four levels of damage: 1) No damage, 2) Minor damage, 3)
Major damage and 4) Destroyed. An example of the imagery overlaid with the building
annotation is provided in Figure 3.1.

FIGURE 3.1: Top left: Pre-disaster pansharpened image, Bottom left:
Pre-disaster image with building annotations, Top right: Post-disaster
pansharpened image, Bottom right: Post-disaster image with damaged
building annotations. Green stands for No damage, blue stands for Mi-

nor damage and red stands for Major damage.

The number of instances for each class is summarized in in Table 3.2.
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Class Number of Instances

No damage 108.157
Minor damage 25.586
Major damage 21.017

Destroyed 5.681

TABLE 3.2: Number of examples per class.

The disaster incidents referred to by the VHR imagery eventually collected from xBD,
are presented in Figure 3.2.

FIGURE 3.2: The disaster incidents in our dataset.

3.2 Methodology

The aim of this thesis is to implement and compare different FSL approaches. For
this purpose, four models were developed. In Figure 3.3, we provide an overview
of the workflow, from the stage pre-processing the labeled satellite imagery to the
stage of producing maps with damage predictions. Given the theoretical fundamen-
tals clarified in Chapter 2, the elaborated methodology is targeted to tackle models
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for imbalanced datasets. The following Sections describe in detail the methodological
components.

FIGURE 3.3: Methodology overview.

3.2.1 Data preparation

In the context of this study, preprocessing includes the preparation of the data for
training and testing the models. Images of dimensions 1024x1024 are not only ex-
tensive for our available computational resources, but they also do contain multiple
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examples of possibly every class per image. Therefore, all building instances were
cropped, as in the example of Figure 3.4, and then mapped to the corresponding label
using a .csv file.

FIGURE 3.4: Isolation of labeled building instances.

The resulting dataset was further split into three parts: train, validation and test. Vali-
dation and test divisions were set to equal the 0.2 of the initial dataset. However, the
test division was forced to have equal number of representatives for each class, so that
the performance evaluation represents fairly the models’ predictability. The derived
number of examples per class is summarized in Table 3.3.

Train Validation Test

No damage 64.722 21.502 1.000
Minor damage 15.575 5.304 1.000
Major damage 13.116 4.370 1.000

Destroyed 3.487 1.125 1.000

TABLE 3.3: Number of examples per class in train, validation and test
subsets.

The subsequent analysis follows two distinct FSL paths: data-bound and learning-
bound. All architectures require 3-channel 128x128 images as input. To ensure that the
input images comply with the appropriate format, downscaling was enforced where
necessary.
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3.2.2 Data-bound FSL

As mentioned in Chapter 2, data-bound methods aim to extend the dataset, so that
traditional Deep Learning architectures can be leveraged. In this context, three models
were developed, with the baseline architecture being the same for all of them.

Baseline Architecture

This architecture is a reproduction of Gupta et al. (2019) baseline, which was released
for the complete xBD dataset. For the training procedure, batches of 64 images of di-
mensions 128x128x3, are fed to a Deep Neural Network that consists of two main com-
ponents: a shallow CNN and a ResNet50 model. The shallow CNN is composed of six
alternating layers of Convolutional and Pooling blocks. The ResNet50 block is initial-
ized with ImageNet weights. Finally, the outputs of the two chunks are concatenated
and fed to three adjacent fully-connected layers. The output of the last fully-connected
layer holds the predicted classes and is compared to the corresponding labels to even-
tually compute the performance metrics. The Convolutional and the fully-connected
layers are ReLu activated. A graphical interpretation of the network’s architecture can
be observed in Figure 3.5.

FIGURE 3.5: Deep Neural Network baseline architecture.

Model 1 - Balancing the class weights

The first model we implemented aims to smooth the difference among the classes by
balancing the training weights. The class weights are calculated with the Equation 2.1
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and the results are demonstrated in Table 3.4.

Class Weight

no-damage 0.37
minor-damage 1.56
major-damage 1.85

destroyed 6.95

TABLE 3.4: Input class weights for Model 1.

The methodological workflow of the approach is outlined in Figure 3.6. Before train-
ing the model, the train subset is subjected to Data Augmentation. New images are
produced from the initial ones, using vertical flip, dimension shift and rescale. After
the training process, the predictive model is used for the calculation of the perfor-
mance metrics.

FIGURE 3.6: Methodological Workflow of Architecture 1 - Balancing the
class weights.

The learning rate is initially tuned to 0.0001 and the decay is handled by an Adam
optimizer, with beta parameters set to β1 = 0.9 and β2 = 0.99.
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Model 2 - Undersampling

The second model considered for damage classification is depicted in Figure 3.7. The
primary difference is the way in which we try to overcome the data imbalance. Ex-
amples of the dataset presented in Table 3.3 are randomly selected so that each class
remains with the same number of representatives for the learning process. The un-
dersampling resulted in 4.600 examples per class, 0.3 of which create the validation set.
The undersampled train dataset underwent data augmentation, too.

FIGURE 3.7: Methodological Workflow of Architectures 2 and 3 - Re-
sampling. The resampling module can stand either for under- or over-

sampling.

Since the data are decreased for the creation of this model, the learning rate was also
decreased to 0,00001. The Adam optimizer parameters were kept the same (β1 = 0.9,
β2 = 0.99).

Model 3 - Oversampling

In the same manner as undersampling, but from the opposite perspective, oversam-
pling’s purpose is to even the classes by creating more examples of the non-majority
classes. In this case, the oversampling is handled by applying simple transformations,
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namely flipping and rotation, to the existing examples. The methodological work-
flow is again illustrated in Figure 3.7. The initial learning rate is 0.0001 and the Adam
optimizer parameters are set to β1 = 0.9 and β2 = 0.99.

3.2.3 Learning-bound FSL: Model 4 - Prototypical Networks

The last candidate follows a different FSL strategy. The model was implemented as can
be observed in the schematic of Figure 3.8. From the dataset of Table 3.3, 50 examples
of each class were selected to support the training process. This creates a 4-way (as the
total number of classes), 50-shot (as the number of examples per class) FSL approach.

FIGURE 3.8: Methodological Workflow and Network Architecture for
Model 4.

In accordance with the previous models, the query and support sets consist of 128x128x3
images. The network has two identical "legs": one for calculating the support set em-
beddings, namely the class prototypes, and one for calculating the query set embed-
dings. Each leg is constructed by eight alternating Convolutional and Pooling layers.
The Convolutional blocks are ReLu activated. Finally, the Euclidean distance between
the query embedding and every class prototype is calculated, in order to compute the
class prediction.

The learning rate was set to 0,001 and the decay was handled by an Adam optimizer
with beta parameters set to β1 = 0.9 and β2 = 0.99.
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3.3 Tools

The practical implementation of this study is based on open source software compo-
nents, because apart from being price-efficient, they enable the collaboration among
scientific communities around the world. We briefly present the basic tools we used
and the role they served for developing the thesis.

• QGIS is a GIS application that supports viewing, editing, and analyzing geospa-
tial data. QGIS 3.16 Hannover was used for quickly evaluating the retrieved data
or the produced information and for creating demonstrative maps of our work.

• Python is a high-level and general-purpose programming language, particularly
popular for developing Machine Learning applications. All models were de-
fined, trained and evaluated using Python scripts. The experiments were held
in a Python 3.7.8 environment.

• For creating the aforementioned scripts, we exploited the possibilities of several
Python libraries, but a special reference to Keras and Tensorflow needs to be
made, as they provided the main API for the elaboration of the analysis. Keras
is a model-level library that provides high-level building blocks for develop-
ing deep-learning models. Tensorflow is a symbolic tensor-manipulation frame-
work that supports differentiation programming. Keras 2.4.3 and Tensorflow
2.3.0 were installed in our working environment.

• Miniconda is a minimalist package management and environment management
system. For the creation and maintenance of our Python working environment,
Miniconda 4.9.1 was installed.

• CUDA is a parallel computing platform and application programming interface
model created by Nvidia. Aiming to take advantage of computing power of our
system’s GPU, CUDA 10.1 was configured accordingly.

All processes were run in a Linux Ubuntu 18.04 machine, equipped with Intel Core
i7-7700HQ @ 2.80GHz CPU, Nvidia GeForce GTX 1050 Ti GPU and 16 GB RAM.
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4 Results and Discussion

Following the methodological designs described in Chapter 3, this chapter presents
the results acquired by the experimental process and carries out a comparative anal-
ysis of the models’ training duration and their performance on unseen data. The se-
lected as best model is also tested against RGB pan-sharpened satellite images to infer
damage assessment maps.

4.1 Learning process

All models were trained until the loss became less than 1% or for a maximum of 60
epochs. The overall accuracy and the loss for the train and validation datasets were
monitored throughout the learning process. The progress of these metrics as a function
of the epochs is presented subsequently in the form of diagrams.

Model 1 - Balancing the weights

Figure 4.1 presents the development of the accuracy and loss for the training and val-
idation dataset divisions. The values of the training and validation accuracy seem to
range between similar limits. The same behavior is also observed for loss, where the
two curves mostly overlap. While accuracy levels fluctuate greatly along the train-
ing process, the metric seems to steadily acquire higher values towards the end of the
training. In contrast with accuracy, loss drops very soon to low values and ranges
around 2 until the end of the training.

The best model for this architecture was obtained after epoch #57, when training and
validation accuracies reach their highest values (63%) and losses reach their lowest
(1.82 and 1.81 for training and validation respectively).
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FIGURE 4.1: Accuracy and loss over time for Model 1.

Model 2 - Undersampling

The evolution of the overall accuracy for the train and validation datasets can be ob-
served in Figure 4.2. The accuracy and the loss difference between the two datasets
is small. The accuracy reaches three times a lowest of 0.25, which means that these
instances of the model can detect only one single class. The highest recorded accuracy
is 0.53 and is reached for both datasets at epoch #55. Training and validation loss start
at around 7 and remain at that level until epoch #8, were they both drop below 2 and
stay at this level (1.5 - 2) until the end of the training.

Epoch #55 was singled out as the best model of the undersampling strategy, exhibiting
training and validation accuracy equal to 53%, training loss equal to 1.62 and valida-
tion loss equal to 1.48.

Model 3 - Oversampling

In Figure 4.3 we can inspect how accuracy and loss change over time while training
with the oversampled dataset. In contrast with the deep CNN trainings that were
analyzed previously, this architecture reaches the highest accuracy and the lowest loss
at epoch #40 and then completely collapses. After epoch #40, the overall accuracy for
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FIGURE 4.2: Accuracy and loss over time for Model 2.

both training and validation is equal to 0.25, indicating that the model attributes all
instances to only one class. Moreover, the loss cannot be computed anymore and the
function returns NaN.

Consequently, the model of epoch #40 was selected as the best, because it exhibits the
highest accuracy (74%) and lowest loss for training (0.95) and validation (0.88) subsets.

Model 4 - ProtoNet

As observed in Figure 4.4, the training accuracy curve has a remarkably different be-
havior than that of validation. Even though the training accuracy only increases with
the number of epochs, the validation accuracy remains practically stable after epoch
#20. This architecture reaches higher accuracy levels in the shortest time in compar-
ison with all previous architectures. The loss curves also differ slightly in this case,
as training loss, slowly but constantly, decreases, while validation loss stops declining
after epoch #20.

The best values for both validation accuracy and loss appear at epoch #21 (62% and
0.88 respectively), so this model is chosen as the best representative for ProtoNet ar-
chitecture.
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FIGURE 4.3: Accuracy and loss over time for Model 3.

FIGURE 4.4: Accuracy and loss over time for Model 4.
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4.1.1 Training time

The choice for the best representatives was based on the overall validation accuracy
of every model. A summary of the training time that was required to achieve the best
model of each architecture is provided in Table 4.1.

Model Architecture Epochs Training time/epoch(mean) Total training time

Balance weights 57 47 minutes 44 hours, 40 minutes
Undersampling 55 6,5 minutes 6 hours
Oversampling 40 2 hours, 13 minutes 88 hours, 40 minutes

ProtoNets 21 13,5 minutes 4 hours, 45 minutes

TABLE 4.1: Training time variables for the best produced model of each
architecture.

Models 1, 2 and 3 use the same baseline, so we can observe how the size of the train
dataset affects the time that is required to create one epoch and, eventually, to conclude
the learning process. This is expected, as one epoch has to iterate through all data,
and thus, more data will demand more time for the same network. In fact, the two
variables appear to be almost linearly related (see Figure 4.5). On the other hand, our
Prototypical Networks implementation depends a completely different architecture,
that apparently needs more time to train an equivalent amount of data.

FIGURE 4.5: Mean training time per epoch as the size of the dataset
varies.
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4.2 Performance Metrics

Based on the observations made on the learning procedure, four models were singled
out as exemplars of their corresponding architectures. This section analyzes the details
of every model’s performance and compares them, so that the most advantageous FSL
strategy for the stated problem is selected.

Model 1 - Balancing the weights

The confusion matrix for this approach is provided in Table 4.2. The model scored a
value of 0.34 for test accuracy, which is strikingly lower than the training and valida-
tion accuracy. This is due to train and validation subsets being extremely imbalanced,
while test subset has been designed to have an equal number of examples for every
class. As such, a model that favors the majority class but ignores the minority class
can still achieve high accuracy numbers, if not tested against a balanced dataset. As
seen in the confusion matrix, the minority class is not detected at all. Additionally,
class Minor damage is the most favored one, attracting examples from all other classes.
No damage and Major damage get less than 50% of their instances correctly classified.

Predicted
No damage Minor damage Major damage Destroyed

A
ct

ua
l No damage 297 639 64 0

Minor damage 253 695 52 0
Major damage 230 393 377 0

Destroyed 119 604 277 0

TABLE 4.2: Confusion matrix for Balance weights strategy.

Table 4.3 is derived from Table 4.2. All metrics for Destroyed are equal to 0, as no
examples of this class are detected. The model demonstrates a high recall value for
Minor damage, meaning that among the total instances of the class in the dataset, 69%
were correctly classified. Major damage precision is 0.49, indicating that almost half of
the predicted instances are correct predictions. All the other metrics achieved by the
model seem very low.

Model 2 - Undersampling

The test accuracy of Model 2 is 0.53, which the same as its training and validation
accuracy. The confusion matrix of this approach can be observed in Table 4.4 and the
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Precision Recall F-score

No damage 0.33 0.30 0.31
Minor damage 0.30 0.69 0.42
Major damage 0.49 0.38 0.43

Destroyed 0 0 0

TABLE 4.3: Performance metrics for Balance weights strategy.

calculated metrics in Table 4.5. The effect of balancing the dataset that was used for
training is immediately apparent, since all classses are detected by this model. Minor
damage is again the favored class, "stealing" instances especially from its neighboring
classes (No damage and Major damage).

Consequently, the precision for Minor damage is the lowest, since the total predictions
are many more than the relevant predictions. For the other three classes, precision
scores over 50%. On the other hand, recall achieves great values for Minor damage and
Destroyed, resulting in respectively high f-score values. Overall, Model 2 performs
much better than Model 1, but stills shows poor prediction capabilities for certain
classes.

Predicted
No damage Minor damage Major damage Destroyed

A
ct

ua
l No damage 228 652 36 84

Minor damage 108 793 30 69
Major damage 62 427 228 283

Destroyed 29 128 41 802

TABLE 4.4: Confusion matrix for Undersampling strategy.

Precision Recall F-score

No damage 0.53 0.23 0.32
Minor damage 0.40 0.79 0.53
Major damage 0.68 0.23 0.34

Destroyed 0.65 0.80 0.72

TABLE 4.5: Performance metrics for Undersampling strategy.

Model 3 - Oversampling

In Tables 4.6 and 4.7 are listed the performance results of the CNN model that was
trained with the oversampled dataset. The test accuracy for Model 3 is 0.63, which,
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while much lower than the training and validation accuracies, is the highest test ac-
curacy observed so far. From the confusion matrix (Table 4.6), we can quickly assume
that this data-balancing strategy is better than the previous ones, because it allows
to detect more than half of the items that belong to the classes Minor damage, Major
damage and Destroyed. No damage, which is initially the majority class, is discredited,
something that is confirmed by its recall in Table 4.7. Minor damage mostly attracts the
misclassified No damage examples, something that lowers its precision, too. Neverthe-
less, all classes achieve their best performance so far.

Predicted
No damage Minor damage Major damage Destroyed

A
ct

ua
l No damage 456 412 33 99

Minor damage 196 595 114 95
Major damage 83 173 630 114

Destroyed 30 45 142 783

TABLE 4.6: Confusion matrix for Oversampling strategy.

Precision Recall F-score

No damage 0.60 0.46 0.52
Minor damage 0.49 0.59 0.53
Major damage 0.69 0.63 0.66

Destroyed 0.72 0.78 0.75

TABLE 4.7: Performance metrics for Model 3 (Oversampling strategy).

Model 4 - ProtoNet

The selected ProtoNet model scores 0.64 for test accuracy, which is even higher than
its validation accuracy (0.62). Table 4.8 represents the confusion matrix of Model 4. As
is evident, the model succeeds in identifying more than half of all classes’ representa-
tives. Examining more closely the confusion matrix, we can see that the vast majority
of the mismatches were assigned to the adjacent classes of the target class. For ex-
ample, 200 No damage polygons were classified as Minor damage, 89 as Major damage
and only 17 as Destroyed. Accordingly, Minor damage are much more likely to be clas-
sified as No damage or Major damage, rather than Destroyed. As this pattern is noticed
for all classes, we can conclude that the probability of misclassification is inversely
proportional to the distance from the target class prototype.
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Predicted
No damage Minor damage Major damage Destroyed

A
ct

ua
l No damage 694 200 89 17

Minor damage 347 523 106 24
Major damage 91 219 574 116

Destroyed 30 11 206 753

TABLE 4.8: Confusion matrix for ProtoNet model.

Table 4.9 is calculated using Table 4.8 and conveys an equally competent impression.
Precision, recall and f-score exhibit values higher than 50% for all classes, indicating a
robust model. Precision is higher than recall for all classes, except for No damage. This
can be interpreted as "stricter" classification criteria for Minor damage, Major damage
and Destroyed, since an instance is classified as such only when there are clear indica-
tions features that it indeed belongs to this class.

Precision Recall F-score

No damage 0.60 0.69 0.64
Minor damage 0.55 0.52 0.54
Major damage 0.59 0.57 0.58

Destroyed 0.83 0.75 0.79

TABLE 4.9: Performance metrics for ProtoNet model.

Comparison

To determine which of the above is the best performing model, a comparative bar
chart was plotted. In Figure 4.6, we can examine the precision, recall and f-score of ev-
ery model for each class separately, as well as the model’s average. Balancing weights
approach is immediately excluded, as it is unable to detect one class and has an over-
all performance that is the poorest of all candidates. Undersampling approach seems
relatively efficient in detecting Destroyed buildings, but the very low precision of No
damage andMinor damage and the low recall of No damage and Major damage, make a
questionable candidate for this type of problem. Oversampling and ProtoNet show
a comparably adequate overall performance. However, ProtoNet is much more com-
petent in detecting No damage buildings and is much faster to train. So, based on the
evaluation of the computed performance metrics on the testing dataset, ProtoNet is
more possible to fulfill the requirements of a structural damage classification prob-
lem.
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FIGURE 4.6: A comparative view of the performance metrics.
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4.3 Inference

To enrich our results with a practical context, three test cases were selected to visu-
alize the model inference in terms of mapping the assessed polygons. For each of
these examples, the predictions were collated with the polygon labels and the differ-
ence of these two images was calculated. Since the output classes represent a damage
gradient, we defined as misclassification difference from label the interval between the
prediction and the true class of every polygon, to quickly assess how far is the predic-
tion from the reality. For example, a No damage building that was falsely identified as
Minor damage, Major damage or Destroyed will have a misclassification difference of 1, 2
or 3 respectively. Misclassification difference equal to zero means that the prediction
was correct.

Dense urban area, hardly affected

The first test case that was put into action is taken from Mexico 2017 earthquake. It
represents a dense urban area that was merely affected by the incident, so almost all
polygons are expected to belong to class No damage (see Figure 4.7.b). As illustrated in
Figure 4.7.a, the model detects almost equally examples from all four classes.

Comparing Figures 4.7.a and 4.7.b, and consulting also 4.7.c, we can see a tendency
for missclassification, especially in the top left corner of the region (North-Northwest),
where the majority of the instances has been identified as Major damage or Destroyed.
In the rest of the image, most of the buildings are classified as No damage or Minor
damage, with sparse presence of Major damage buildings and even fewer Destroyed.
Likewise, the misclassification differences are higher towards the top and left of the
image. Overall, the general impression for the severity of damage for the whole area
can be misleading.

Urban area, severely affected

The second test case is a snapshot of tornado Joplin’s aftermath, in Joplin, Missouri,
USA. In contrast with the first test case, this area is highly affected. According to the
ground truth (see Figure 4.8.b), all building labels belong to Destroyed or Major damage
categories, except for four buildings in the lower right corner. Nevertheless, the model
classifies instances of all classes across the entire region (see Figure 4.8.a). Moving to
the bottom of the image, the structures tend to be classified more as Major damage
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FIGURE 4.7: Application of ProtoNet model on test case from Mexico
2017. Satellite image overlaid with: a. the predictions, b. the labels, c.

the difference between the two.

and Destroyed, eventually giving the broader look of a region severely attacked by the
natural disaster. In a similar fashion, the missclassification differences appeas to be
higher in the top half of the image (see Figure 4.8.c).

Coastal area, moderately affected

The last case considers a coastal line from Panama City, Florida, USA after hurricane
Michael stroke the area, and contains examples of all four classes (see Figure 4.9.b).
Again, we can observe a relatively high rate of missclassifications, as the model misses
half of the classified items. The two Destroyed buildings in the top section of the image
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FIGURE 4.8: Application of ProtoNet model on test case from tornado
Joplin. Satellite image overlaid with: a. the predictions, b. the labels, c.

the difference between the two.

were categorized as Major damage and Minor damage. The main dissonance between
the ground truth in Figure 4.9.b and the predictions in Figure 4.9.a are the three No
damage structures that were classified as Destroyed. Aside from these, the missclassified
instances have a distance of 1 or 2 from the correct class, meaning that they were
assigned to a neighboring class of the correct one.

As a closing remark for the intuitive interpretation gained by the visual mapping of
the predictions compared to ground truth, we can deduce that the tested model has
plenty of room for improvement, but is in the right track for tackling the problem
of post-earthquake urban damage assessment. The most confounding aspect of the
results is when No damage buildings are misinterpreted as Destroyed and vice versa,
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FIGURE 4.9: Application of ProtoNet model on test case from hurricane
Michael. Satellite image overlaid with: a. the predictions, b. the labels,

c. the difference between the two.

because in a real case scenario it could lead to consuming critical resources and time
for assisting the wrong locations. However, such missclassifications seem to be more
rare as the area of the polygon increases.

4.3.1 Limitations

While the obtained results from Model 4 seem encouraging, there are certain limita-
tions to the extent a 50-shot metric-learning approach on satellite imagery of this reso-
lution can reach. Randomly picking 50 representatives of each class to train a ProtoNet
model may have led to excluding important information carried by the data that were
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left out. Additionally, satellite imagery of higher resolution is usually private, and
thus, very difficult to acquire.

41



5 Conclusion

This thesis employed VHR pan-sharpened satellite imagery and Machine Learning in
order to identify the level of structural destruction induced by a catastrophic earth-
quake incident. Aiming to approximate a real case scenario, where the available la-
beled post-event data are limited and the pre-event data possibly nonexistent, the dif-
ferent explored possibilities tackle data insufficiency and imbalance by implementing
FSL strategies. The development of this work, which was defined by the objectives set
in Chapter 1, is summarized as following:

• Review the existing literature and gather applied practices in similar applications.

An in depth bibliographic research of the existing literature and state-of-the-art
was elaborated in order to gain understanding of how related problems are ap-
proached and to familiarize with the necessary theoretical background (Chap-
ter 2). The research showed that the apparent trend for urban damage assess-
ment with Remote Sensing is to use Deep Learning. The data shortage is mostly
addressed with data augmentation, but pre-trained models and un-supervised
learning have also been put to test. All these approaches are considered FSL,
proving the applicability of this Machine Learning family of strategies in rele-
vant problems.

• Assess the relevant methods and implement the architectures that suit the needs of the
thesis.

To select the appropriate methodological components, we took into considera-
tion the type of the input imagery (labeled satellite imagery of mean GSD 2.56
meters) and the intended number of output classes (4-level damage scale). Based
on the conclusions drawn by the literature review, we confronted the data short-
age in two distinct ways: 1) balancing and augmenting the dataset to make it
suitable for training a Deep Architecture and 2) metric few-shot learning with
Prototypical Networks.

42



Chapter 5. Conclusion

More data from hurricane incidents were incorporated in the analysis as a first
step of expanding the dataset with data from related problems. For a balanced
Deep CNN training, three different models were created: Model 1 with cost-
sensitive learning, Model 2 with undersampling and Model 3 with oversam-
pling. For Model 4, a 50-shot ProtoNet was trained. This process resulted in 4
models, each of them having been trained with a different dataset, in terms of
the total number of examples and the class proportions. Nevertheless, all models
were evaluated based on the same balanced set of completely unseen data.

• Measure the performance and the training time of the implemented approaches and pro-
vide quantitative and qualitative evaluations.

Throughout the learning process, the training and validation loss were moni-
tored to make sure that the model achieves the best possible performance with-
out overfitting. The choice for the best representative of every model relied on
its validation accuracy. The four model versions that were singled out, were
compared using precision, recall and f-score. A thorough comparison was elab-
orated, that included the metrics for each class separately as well as the metric
average, so that the best approach for solving our research problem could be
decided. Model 4, built upon Prototypical Networks, showed the best perfor-
mance, although Model 3 (data oversampling in the pre-processing stage) exhib-
ited almost equally good results. Consequently, Model 4 was used for creating
damage assessment maps, to provide an idea of the model’s practical applica-
bility. Model 4 was also proved the fastest to train, since by definition uses the
smallest training set, while Model 3 was proved the most time consuming (see
Table 4.1).

By fulfilling the above objectives, we reached the answers to our research questions,
also stated in Chapter 1:

• How can the supervised classification of a highly imbalanced dataset be elaborated, where
the instances of one class are multiple times higher than the other classes’?

The classification of an imbalanced dataset can be solved either by adjusting
the weight matrix, in a way trying to normalize the number of examples for
every class (cost-sensitive learning), or by selecting the same number of repre-
sentatives for each class to build the training set. The first method proved to be
inefficient in our case, while using a balanced dataset when training image clas-
sification models immediately added up to the overall performance. Undersam-
pling may cause loss of decisive information for the classification process, and
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thus it is not as considerable as oversampling for training a Deep CNN model.
However, for Prototypical Networks, randomly picking a few samples per class
proved to be enough for creating the most efficient model.

• In cases of imbalanced datasets, to what extent are the representatives of the majority
and minority classes successfully detected?

Taking a closer look, all four approaches have a different impact on each class. It
can be argued that such an eminently imbalanced dataset cannot fully support
the training of a multi-class predictive model with cost-sensitive learning, since
Model 1 is entirely unable to detect the minority class. Surprisingly, the major-
ity class is also overlooked by Model 1. As stated before, undersampling also
leads to dismissing valuable information and hence, the resulting Model 2 has
a limited predictive ability over certain classes, but performs very well for the
minority class. The majority class is again discredited. Oversampling seems to
be more competent for creating a Deep CNN-based predictive model, but has a
borderline performance for the majority class. Model 4 seems to achieve a robust
performance for all classes, being able to predict correctly more than half of their
instances.

• If overlaid with a map, is the visual interpretation of the predictions indicative of the
severity of damage suffered by the region?

The predictions of Model 4 were overlaid with the satellite imagery and com-
pared with the true polygon labels, to obtain a qualitative impression of how
close the output of the model is to the reality. Even though the model is in the
right direction for damage assessment, it would not be advisable to base on it
an estimation about how gravely was an area affected (Figures 4.7, 4.8, 4.9). Im-
provements must still be made, so that the possible misinterpretations between
No damage and Destroyed buildings are eliminated. This phenomenon seems less
frequent for polygons of larger area.

By accomplishing the objectives and research questions set at the beginning of the
study, we also managed to attain the main purpose of this study, which was to imple-
ment and evaluate the effect of different FSL methods on imbalanced post-earthquake
data. We proved that oversampling is a more efficient balancing method for training
Deep Convolutional Neural Networks (CNN) than cost-sensitive learning and under-
sampling, and we demonstrated the practical applicability of Prototypical Networks
in a damage classification problem.
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5.1 Future works

Since the obtained results seem encouraging, further research on this subject is recom-
mended. In Section 4.3.1, we saw that the main limitations are introduced by the reso-
lution of the satellite imagery and by randomly picking the samples to represent each
class. Although remotely sensed imagery of higher resolution is difficult to obtain,
we anticipate that a similar study with satellite or UAV imagery of higher resolution
should be pursued. Furthermore, instead of naively picking a few examples from the
available data, certain data sampling techniques, such as Near-Miss and Condensed
Nearest Neighbor Rule, can be employed to determine the most useful samples to
train a model. Furthermore, we strongly believe that Prototypical Networks in the
context of urban damage assessment deserve more exploration. The number of shots,
the prototyping function and the distance function are parameters to experiment with
and that could improve the existing results.
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A Source Code and Data

All scripts that were developed for data pre- and post-processing, as well as model
training and evaluation, can be found in the following repository:
https://github.com/EftyK/FSL_for_urban_damage.

The CNN baseline architecture for Models 1,2 and 3 can be found at:
https://github.com/DIUx-xView/xView2_baseline

The original xBD dataset can be found at:
https://xview2.org
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