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ABSTRACT

Forecasting stock returns forecasting is a crucially important topic in the study of finance,
econometrics, and academic studies, and involves an in-depth study on time series. This
thesis aims to examine the most representative companies on the Sdo Paulo Stock Exchange,
and based on that data, predict the behavior of future stock returns using several different

forecasting methods.

In time series analysis, ARIMA models are used in many situations and usually present good
results; nevertheless, to determine which model best suits the data, others must be tested.
When considering the high volatility of the data and factoring in the economic situation of
the country that is being analyzed, other techniques must be considered, especially the

ARCH family ones.

Those techniques are primarily used to predict data involving Stock Markets worldwide. An
accurate prediction can bring advantages for the companies who make those predictions
and benefit the stakeholders directly since it provides enough information to make better

decisions towards the future.
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1. INTRODUCTION

1.1 CONTEXT

The study of time series has been developed in many areas such as physics, engineering,
anthropology, among others. Nevertheless, in recent years, the attention of many
researchers in the field is focused on the study of financial time series. The reasons for this
phenomenon can be easily understood if one considers the global scenario for the past
several years, with a massive economic crisis in big markets such as the US and Europe. In
this framework, the in-depth study of economic/financial time series, especially those

involving modeling and statistical analysis applied to economics, becomes paramount.

Since understanding and predicting future conditions are crucial, traditional forecasting
techniques have been used to predict stock market returns. Such linear techniques, called
ARIMA, usually produce good results for other fields. However, for financial time series, they
must be studied carefully because, in most cases, they are not the best models to
understand the past to predict the future. In the forecasting field, financial markets can be
considered as a special case, due to volatility, which happens because financial markets do
not follow a pattern, and usually, present large variability over time for many different
reasons. Hence the main reason for the development of other methods such as ARCH
models and its derivations, this family of models imputed as heteroscedastic models for
modeling time series to predict the future behavior of the returns. Heteroscedasticity in
statistical terms can be defined as a statistical phenomenon in which observations exhibit

different variances over time, and it fits perfectly in financial time series behavior.

Although volatility is in financial market data, the linear models are also going to be tested,
since some companies might present a more stable time series and the heteroscedastic
models might not produce better results for those. After carefully studying the behavior of
each time series and based on the results of each the models, the best will be chosen, and

the predictions will be made.



1.2 BACKGROUND

Stock price forecasting is a popular and important topic in financial and academic studies
(Yue & Uc, 2012), due to the number of factors that can influence the behavior of the series
over time. High volatility is one of the main characteristics of this type of time series, and

this phenomenon might occur due to several reasons:

e Market factors

e Economic environment

e Political scenario

e Crisis (financial mostly)

e War

Due to the factors enumerated above, forecast data involving financial markets is a tough
task, and although several methods might be used for this purpose, not all of them are going

to show effective results.

For data with less volatility, studies usually consider ARIMA, this approach was introduced by
Box and Jenkins, and develops a systematic class of models called autoregressive integrated
moving average (ARIMA) models to handle time-correlated modeling and forecasting
(Shumway & Stoffer, 2011). In several fields, this method is good enough to describe
phenomena and make good predictions as well. Nevertheless, for this study, other methods
must be tested, for the reasons already mentioned, and also to have other approaches to
compare results. Although financial markets are mostly predicted by other models, ARIMA
might have some validity, and good results can come from this class of models, especially if

the data does not present high volatility, which is not usual, but possible.

A problem in the analysis of financial time series is to forecast the volatility of future returns.
Models such as ARCH and GARCH and stochastic volatility models have been developed to

handle these problems (Shumway & Stoffer, 2011).
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Both ARCH and GARCH models that were proposed by Engle (1982) and Bollerslev (1986),
can capture volatility simultaneously (AL-Najjar, 2016). Therefore, they are the most

recommendable for the forecasting of this particular type of time series.

The specific objectives and relevance of the study will be discussed in the next session.

1.3 OBJECTIVES AND STUDY RELEVANCE

The main goal of the study is to identify the best methods to make predictions in the stock
market. In terms of the models, a salient point is that different models can be applied
depending on the company business since variability directly depends on the stability of the
market to which the company belongs to. Considering the general steps to develop the

predictions, the diagram below describes the steps briefly:

Subject Financial Markets

Objecti
Jective Develop Accurate Predictions

Work Flow

Plot the Data

!

Detect Trend, Seasonality and
Outliers

Choose the best model and
order of the model

l

Forecast

Figure 1.1 - Process

The diagram process is the general procedure to make decisions about the model. Some
decisions must be taken in each step. For instance, in the first step, a plot of the time series
allows us to see if the series is stationary, and it detects trend or seasonality as well. In the

case of ARIMA models, the data must be detrended before developing the model. All this
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information can be identified in the plots, and later it will be helpful to determine the order

of the model.

The main question to be answered with this thesis is: Which one of the forecasting methods

produces better results in the financial time series context?

In order to achieve this objective, some questions, such as the time frame, need to be
decided beforehand. Given the 2008 global crisis, the best choice is to skip this period, since
it might have a substantial influence on the time series. In this scenario, the idea is to start
with weekly data from 2010, and study the behavior of the time series until 2016, then

based on that, perform the predictions for five years.

With regard to exploratory data analysis, in financial time series, it is particularly complex to
determine if a certain value is considered as an outlier due to the volatility. The same applies

to seasonality and trend.

After the decisions involving the time frame and those involving the exploratory analysis, the
determinations concerning the model need to be made. In the case of financial markets,
each series needs to be carefully analyzed, since the same model is probably not going to be
suitable for all the time series under study. The first approach will be the ARIMA, but in all
cases, the heteroscedastic models (ARCH) are going to be tested since they are the most
recommendable for the purpose of the study. Although practical experiences show that
heteroscedastic models might be more appropriate, the results will be analyzed and

compared.

The table below summarizes all the points exposed so far:

Question to be defined Answer
Time Frame Weekly data from 2010 to 2016.
Trend, Seasonality and Outliers Each case will be individually analyzed due to the data peculiarities.
Best Model for the data Several models (sucg as ARIMA & ARCH) will be tested.

Table 1.1 - Summary of the Questions

The relevance of the study is associated with the quality of the predictions since

contributions about what theoretical model better fits data from a financial market might

12



help investors make better decisions; furthermore, they and might help the companies as

well since companies often invest in other companies to make profits.

13



2. LITERATURE REVIEW

Box and Jenkins published the ARIMA models in 1976, and this was undoubtedly the start of
a new framework regarding forecasting. The method is popularly known as the Box-Jenkins
(BJ) methodology but technically coined the ARIMA methodology. The emphasis of these
methods is not on constructing single-equation or simultaneous-equation models, but on
analyzing the probabilistic or stochastic properties of economics time series on their own
under the philosophy, let the data speak for themselves (Gujarati, 2003). The ARIMA models
were not developed based on economic theory, which is usually based on simultaneous-

equations models. Therefore the model is sometimes called an atheoretic model.

Abundant research has been undertaken in numerous disciplines or subjects that involve
ARIMA methodology to forecast the future value(s) of a given variable (Afeef, Mustafa,
Ihsan, Anjum, Zada, 2018). Currently, many studies use the ARIMA methodology to predict
variables, and apropos of the financial framework, it is even more useful. The study proves
ARIMA to be a very robust model, although way more effective in the short term, which
seems to be a consensus for this type of models. From the findings of the study, it has been
construed that ARIMA has a very good capacity to forecast future values in the short run. Of
course, the long-term prediction using lagged values of a variable will only make little sense,
however (Afeef, Mustafa, lhsan, Anjum, Zada, 2018). In relation to the financial market
framework, where predictions in many situations must be more focused on the short term,

the models are highly effective and have proven validity.

Although those models are eminently effective and used in other fields besides finance, it
makes a strong assumption that the future data values are linearly dependent on the current
and past data values (Blylksahin & Ertekin, 2019). The fact that it makes such assumptions
might be good for some problems, but in practical terms might not help in other situations,
where the assumptions are violated. In this specific case, the authors point to the fact that
even though it is an outstandingly robust model, it does have limitations, and for some

specific situations, other models might be considered for forecasting.

With respect to financial time series features, ARIMA models will not always be the best to

make predictions. In this context, many other works in the literature use the ARCH/GARCH

14



class of models to address issues with which ARIMA models are not capable of dealing with.
Essentially, ARCH models estimate volatility as a function of past volatility shown in the time

series.

The ARCH regression model has a variety of characteristics that make it attractive for
econometric applications. Econometric forecasters have found that their ability to predict
the future varies from one period to another. McNees suggests that “the inherent
uncertainty or randomness associated with different forecast periods seems to vary widely
over time.” He also documents that “large and small errors tend to cluster together (in
contiguous time periods).” This analysis immediately suggests the usefulness of the ARCH
family, where the underlying forecast variance may change over time and is predicted by the
past forecast errors. The results presented by McNees also show some serial correlation
during the episodes of large variance (Engle, n.d.). Engle’s work had a high relevance in the
field of finance, making room for a new branch inside econometrics. In the study mentioned,

Engle studied inflation in the United Kingdom.

This is where the so-called autoregressive conditional heteroscedasticity (ARCH) model
originally developed by Engle comes in handy. As the name suggests, heteroscedasticity, or
unequal variance, may have an autoregressive structure in that heteroscedasticity observed
over different periods may be autocorrelated (Gujarati, 2003). Thus, a study by Engle (1982)
proposed to model time-varying conditional variance through applying the Autoregressive
Conditional Heteroscedasticity process (ARCH), which is expected to mainly capture the

dynamic behavior of conditional variance using lagged disturbance (AL-Najjar, 2016).

In many studies, ARCH methods seem to outperform the other methods applied;
nevertheless, it depends on the market and the characteristics of the time series to which
the model is being applied. A study made to forecast the returns of the Dhaka Stock
Exchange achieved good results with this method. The results of the in-sample statistical
performance show that both the ARCH family models are selected as the best performing
model jointly for DSE20 index returns, where for DSE general index return series, the ARCH

model outperforms other models (Masukujjaman, 2013).

In opposition to the ARIMA models, ARCH models were developed based on classical

regression assumptions.
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Given the model introduced by Engel, Bollerslev introduced the Generalized ARCH model
called the GARCH model. In this model, the conditional variance depends not only on the
disturbance term of the previous period but also on the conditional variance of the previous
period (Abounoori & Tour, 2019). GARCH (1,1) is the most widely used model. Akgiray (1989)
is the first researcher who used the GARCH model to forecast volatility, and he
demonstrated that GARCH produces better forecasts than most of the other forecasting
methods such as Random Walk (RW), Historical Mean (HM), Moving Average (MA), and
exponential smoothing (ES) when applied to monthly US stock market data (Miles &
Huberman, 1994); (Chtourou, 2015).

The GARCH model family is a series of models designed to explain the regularity of
fluctuations in time series, and they prove to be of really good ability when describing the
volatility of financial data, adding a wide range of theoretical and practical value (Lin, 2018).
In this particular paper, the model was used to predict the stock market in China. It achieved
the best performance among several models. The author also points to the fact that those
models are usually more effective when used to predict financial time series in developed
countries, nevertheless the methodology worked perfectly, even given the features of the

Chinese market and the characteristics of the time series in this case.
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3. THEORETICAL FRAMEWORK

Initially, it is important to define time series, to understand the concept, and by
consequence, the further application of the models, better. A time series can be defined as a
collection of random variables indexed according to the order they are obtained in time. The
primary objective of time series analysis is to develop mathematical models that provide
plausible descriptions for sample data (Shumway & Stoffer, 2011). In the context of time
series analysis, several techniques might be used to understand how the data behaved over
time and to make predictions. In this work, a few models will be tested and studied in
further detail, particularly the ARIMA and ARCH/GARCH models, with a special emphasis on
the ARIMA models.

When dealing with time series analysis, some important steps must be followed. One of the
first and most critical aspects, predominantly, is to plot the data on a graph at the outset. In
this way, some features regarding the time series can be observed, and the researcher can
understand more about the kind of data under deliberation. From the plot of the data, the
existence of some kind of trend in the data can be detected, which means that the data
must be observed, and downward or upward movements over time must be discerned.
Another important aspect is the presence of the seasonality in the data, which means some
repeating patterns over time. This facet is particularly important for a variety of forecasting
methods since some of them are not able to deal with seasonality, and it must be removed
before the forecasting procedure. Outliers are other issues that must be analyzed in a time
series. The occurrence of outliers is particularly important in regression models and can even
alter the efficiency of the model. The variance must also be analyzed to understand if the
data varies over time, or if the variance is constant, which might sometimes be hard to

identify when only considering the plot of the data.

The normality of the data must be tested before modeling, since this is not necessarily
possible by just looking at the histogram, another way of testing, is to apply the Jarque-Bera
test, which is a normality test. This test first computes the skewness and kurtosis measures
of the OLS residuals and uses the following test statistic:

5 53+ (K—3)°
JB=mn- 24
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Where n is equal to the sample size, S the skewness coefficient, and K the kurtosis
coefficient. For a normally distributed variable, S = 0 and K = 3. Therefore, the JB test of
normality is a test if the joint hypothesis that S and K are 0 and 3, respectively. In that case,
the value of the JB statistic is expected to be 0. Under the null hypothesis that residuals
again are normally distributed, Jarque and Bera showed the JB test asymptotically follows
the chi-square distribution with two df in the given equation. Applications of the test will be

seen in the data analysis section.

3.1. ACF AND PACF

Another important concept before defining the models themselves is to make a definition of

the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF).
The ACF is defined as:

y(s.t)

)= =D
U= Garao

The ACF measures the linear predictability of the series at time t, say x,, using only the value
x . (Shumway & Stoffer, 2011).

The partial autocorrelation function gives the partial correlation of a stationary time series
with its own lagged values, regressed the values of the time series at all shorter legs. It
contrasts with the autocorrelation function, which does not control for other lags.

In general, a partial correlation is a conditional correlation. It is a correlation between two
variables under the assumption that we know and consider the values of some other set of

:JI."1, Xa

variables if considering a regression where, , and 3 are predictor variables. In this

scenario, the partial correlation between ¥ and #*3 is the correlation between variables

determined considering how both are related to *1 and %2,

It can be mathematically denoted as:

Covariance (v, x3|x %)

\.-"Tf’m'a' ance(ylxy, x5 )\Wariance(xs|x, x5)

To determine the order of the models being considered, the ACF and the PACF must be
analyzed together.

18



3.2. STATIONARITY

Stationarity is another concept that is crucial while modeling data. A stationary time series
must have a constant mean and variance over time. Broadly speaking, a stochastic process is
said to be stationary if its mean and variance are constant over time and the value of the
covariance between the two periods only depends on the lag between the two time periods
and not the actual time at which the covariance is computed (Gujarati, 2003). Broadly
speaking, a time series is said to be stationary if there is no systematic change in mean (no
trend) over time, if there is no systematic change in variance and if period variations have

been removed (Aljandali & Tatahi, 2018).

One important point to be noted is that before executing any time series analysis the time
series data is supposed to be stationary. There are different test for stationary diagnosis, like
Augmented Dickey Fuller test. If data is stationary then we can proceed, on the other hand if
it is not, then we difference it and make stationary. ARMA model of the differenced series is

called ARIMA model (Prasad & Choubey, 2018).

In order to determine stationarity in a time series, a few procedures can be undertaken. One
of them is a test denominated as the Augmented Dickey-Fuller ADF test. The test consists in

estimating the following equation:
AY, = Y, + p,

The number of lagged difference terms to include is often determined empirically. The idea
is to include enough terms so that the error term in the equation above is serially
uncorrelated. Details in the application and the assumption for the test can be seen when

they are applied in the time series.

3.3. ARIMA MODELS

In the context of this research, the ARIMA models will be the ones most analyzed. It is,
therefore, imperative to understand them well. These models, also known as the Box-
Jenkins methodology, encompass autoregressive and integrate with moving average

methods. Thus, the origin of the term ARIMA (Autoregressive Integrated Moving Average).
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The models were introduced in 1976 and are based on the estimation of the dependent
variable y as a function of the lag of the y variable itself, indicated by p autoregressive terms,
g terms representing the past errors. As most economic/financial time series are not
stationary, the application of the ARIMA models (p,d,q) demands the transformation of the
variables. The ACF and the PACF must be analyzed in conjunction to determine the orders of
the model, where the goal is to minimize the AIC, which is a method of measuring the

quality of the model.

We must first introduce the AR (Autoregressive) and MA (Moving Average) terms of the

equation to understand the models better.

3.3.1. AR Models

Autoregressive models are based on the idea that the current value of the series, X,, can be

explained as a function of the past values. This can be defined by the equation:

Where X, is the observation in time t, @, is the parameter of the model AR, p is the order of

the model, and = represents the error that cannot be explained by the model.

3.3.2. MA Models

As an alternative to the autoregressive representation in which the X, on the left-hand side

of the equation is assumed to be combined linearly, the moving average model of order g,

abbreviated as MA(q), assumes that white noise w, on the right-hand side of the defining

equation is combined linearly to form the observed data (Shumway & Stoffer, 2011). This

can be represented as:

Xt =S (Dt + elmt_l + ez(l)t_z + e + eq(l)t_q

Where there are g lags in the MA, and 6, 6,, ..., Elq are the parameters.

20



3.3.3. ARMA Models

Together, the two previous models form the ARMA model. They can be mathematically be

represented as:
Xt = (Dlxt_l + ¢)pXt_p + at - elat_l — er(t_q
It is important to mention that these models are not suitable to model non-linear

relationships. Nevertheless, they are very important to the understanding of stationary time

series and autoregressive models.

The model already discussed is the integration of the AR and MA models proposed by Box

and Jenkins.

The table below presents the order of the events when modeling using ARIMA models:

STEP ACTION
Examine the series for stationary. Analyze ACP and PACF and perform the unit-root test
If it is not stationary, difference it one or more times to make it stationary
Identify if the series is AR, MA or ARIMA
Estimate the model

Analyze the residuals
Forecast using the model

ol |lW[IN|F

Table 3.1 - Course of Action for ARIMA models

With regard to the points in the table, it is salient to mention that the ACF and the PACF
must be analyzed to estimate the orders of the model. The table below shows the

theoretical patterns for ACF and PACF:

THEORETICAL PATTERNS OF ACF AND PACF
Type of Model Typical pattern of ACF Typical pattern of the PACF
AR (p) Decays exponentially or with damped sine wave pattern or both | Significant spikes through lags p
MA (q) Significant spikes through lags g Declines exponentially
ARMA (p,q) Exponential decay Exponential decay

Table 3.2 - Theoretical Patterns of ACF and PACF

Another important detail involves the residuals of the model. The residuals from the
tentative model are examined to find out if they are white noise. If they are, the tentative
model is probably a good approximation to the underlying stochastic process. If they are not,
the process is started all over again. Therefore, the Box-Jenkins method is iterative (Gujarati,

2003).

21



As mentioned previously, one of the methods to evaluate the model is the Akaike
Information, which can be written mathematically as:

2K RSS
In AIC = (—) + In (—)
N n

Where k is the number of regressors, n is the number of observations and RSS the Residual
Sum of Squares, which is a measure of the discrepancy between the data and the estimation

model.

The intention when comparing two or more models is to consider the model with the lowest
AIC. The model penalizes the error in the variance by a term proportional to the number of

parameters.

Finally, analyzing the residual requires a specific test, which is called the Ljung-box test. In
the context of the model, the residuals must be independent of each other. The p-value of
the test will show whether the residuals are independent or not. The null hypothesis for this

test is that the residuals are not correlated.

The Ljung-Box test statistic can be defined as:

J\" P
. p(h)
0 —T(T+2J;T_h %

Where T is the sample size, Jo"':is the sample correlation at lag h and N is the number of lags

being tested.

Considering that the out-of-sample forecast will be performed, other measures might be
helpful to evaluate the predictive power of the model. In this scenario worth to present the

Root Mean-square error (RMSE).

The RMSE is a frequently used measure of the difference between the observed and the
predicted values, and it is highly efficient to measure the accuracy of the model. Although

the threshold might be difficult to define, it is a measure that researchers must consider.

Can be defined as:
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I3 (Observed — Predicted)?
RMSE= |==&
] ! m

Where N is the number of observations and predicted and actual are the values of the

model.

3.4. ARCH/GARCH MODELS

The ARCH family modes emerged in the context of high volatility. It is normally used in the
context of financial time series due to its characteristics, such as high variance and volatility.
ARCH, in this case, stands for autoregressive conditional heteroscedasticity. As the name
suggests, heteroscedasticity, or unequal variance, may have an autoregressive structure in
that heteroscedasticity observed over different periods may be uncorrelated (Gujarati,

2003). In essence, the ARCH model is a model for volatility in a time series.

In order to make it possible to use the ARCH model, a test must be performed to make sure
that the time series present the necessary features that justify the use of the

heteroscedastic models. If the time series has mean 0, the ARCH model can be written as:

13 e
Where g,:
.

= | 2
O = ,\‘Iau Toay v
The ARCH(1,0) model for the variance of the model y, is that conditional on y,._,, the

variance at the time t is:

Var(yely.—y) = of = ap+ oyl

The analysis of the ACF and the PACF must be done to understand the orders of the model,

and the model can be tested after this step.

ARCH models have had several variations since they were first developed. These variants

include the GARCH models, which are the generalized autoregressive conditional
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heteroscedasticity models. The most popular version of the model is GARCH (1,1), and it can

be mathematically written as:

or = g+ me + fosy

GARCH models were only presented as variations of the ARCH. In the framework of this
study, those models will not be used.
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4. METHODOLOGY

As previously described, the main objective of the study is to undertake an in-depth probe
into time series analysis, to understand the past, and predict the future. In works of this

nature, the following steps are taken to achieve better results, in general:

e Problem Definition

e Information Gathering

e Exploratory Data Analysis

e Choice of the Best Model

e Evaluation of the results

Problem Definition

The problem definition is the first point, and it is essential to define all the steps of the study.
The question for this study is relevant to the stock market and financial fields. It is also a
conundrum that other researchers are trying to understand better. Furthermore, the
problem definition also helps to delimitate the questions dealt with in the research, which

should not exceed the limits proposed in the first place.

Information Gathering

Due to legal issues and transparency, all data involving financial markets have to be
published. In this scenario, all information needed to develop this study can be found on the
S3o Paulo Stock Exchange website, and in many other internet tools devoted to studying this

field.
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Exploratory Data Analysis

A solid exploratory data analysis must be done to make the right choices involving the
model. In the framework of this study, some steps must be considered and followed, as

detailed below:
e Plot the original series (returns)
e Perform histogram to try to detect some patterns in the data
e Perform ACF and PACF

e Perform all the necessary tests to make sure the modeling will present the best

results

Regarding to the first step, it is necessary to plot the initial series to try to distinguish some
important characteristics about the time series, such as trend, seasonality, and outliers. In
the event of the identification of one of these aspects, we must treat them properly;
otherwise, ARIMA models are not going to fit the data well. Other vital information we need
to discern based on this first plot is the stationarity of the series. The latter being a

requirement to develop some forecasting models.

In the case of the histogram, it is important to see how data is distributed and to assist in

detecting the outliers in the data more easily.

The ACF and the ACF will allow us to understand if the data is stationary, and also give us
some insights about the order of the models. This condition works for both homoscedastic

and heteroscedastic models.

Choice of the best model

After performing the exploratory analysis, different models must be tested. In the context of
this study, the ARIMA and ARCH family models will be tested. The best model for prediction

will be chosen based on the conclusions of this scrutiny.
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The criteria will be established based on the behavior of the time series since the presence
of high volatility makes it indispensable to determine which model has more predictive

power.

Evaluation of the results

The evaluation will be made considering the output for each model. ARIMA and
heteroscedastic models must be tested when considering a financial time series. The
efficiency of each type of model will be determined by the features of the time series, which
reflect the way the market behaved in the period studied. In this scenario, both models are
relevant for the study, and the results might lead to several implications that will help gain

more meaningful insights into the phenomena under study.
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5. RESULTS AND DISCUSSION

5.1 DATA ANALYSIS

The results of all the techniques used to forecast the data chosen for this work will be
presented in this chapter. First of all, it is important to present a detailed exploratory data
analysis. Later on, the results of the modeling using ARIMA and ARCH models will be
presented, as well as the conclusion about which model better fits the data, and

consequently, which one of them should be used to predict the assets with more accuracy.

The theoretical framework of all methods was presented in the methodology section, as well
as in the chapter involving the whole conceptual background of all the techniques. The

process will be conducted in the exact same way for all the companies.

5.2 EXPLORATORY DATA ANALYSIS

In terms of the exploratory data analysis, the companies will be evaluated separately.
Although the same process was used for each of the companies, not all graphics will be
chosen, since the most important element is to understand the features of the data. The
figure below shows the statistics for the company Ambev, and based on the graphic and also
taking the statistics into consideration, the conclusion is that the dispersion of the data is not
considered high since the standard deviation does not present a high value. The data
possibly have some outliers, which can be seen easily, especially in the right tail of the
distribution. Regarding the possibility of having a normal distribution, the conclusion is that
the distribution is not normal; in order to reach this conclusion, the results of the Jarque-
Bera test and also the probability must be evaluated. High values in the Jarque-Bera test
combined with a low value of probability (in this scenario, the probability is to have a normal

distribution), makes this conclusion very clear.
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I Series: LOG_RETURN
Sample 1/01/2010 30/12/2016
Observations 365

50

40+ - Mean 0.002647
Median 0.001208

30 Maximum 0.110604
Minimum -0.085614

20 | Std. Dev. 0.028481
Skewness 0.214772

10 Kurtosis 3.526632
Jarque-Bera  7.023952
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Figure 5.1 - Ambev Histogram
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Figure 5.2 - Ambev Log Return

With respect to the log return plot, the conclusion is that the data has no trend and no
seasonality. The augmented Dickey-Fuller test should be performed to determine
stationarity. In this test, the null hypothesis is that there is a unit root, meaning that the

series is not stationary. The alternative hypothesis is that there is no unit root, and in this

case the series is stationary.

Augumented Dickey Fuller test
t-statistic Prob

Test Statistic -19.66589 0.0000
Test Critical Values
1% -3.448111
5% -2.869263
10% -2.570952

Figure 5.3 - Ambev Unit - Root test
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Based on the outputs, we can conclude that the series is stationary since the value of the t-

statistic is lower than the critical values. In this case, we reject the null hypothesis of having a

unit root.

The table below shows the summary of the results for the other companies analyzed in the

study:
Companies
Petrobras Itau S/A Itau/Unibanco Vale
Features
Dispersion Small Standard deviation Small Standard deviation Small Standard deviation Small Standard deviation
Normality Data is not normally distributed | Data is not normally distributed | Data is not normally distributed | Data is not normally distributed

Trend/Seasonality

No trend or seasonality

No trend or seasonality

No trend or seasonality

No trend or seasonality

ADF Test (Stationarity)

Stationary series

Stationary series

Stationary series

Stationary series

Table 5.1 - Summary of the results

5.3 ArRIMA MODELS

One approach, advocated in the landmark work of Box and Jenkins, develops a systematic
class of models called autoregressive integrated moving average (ARIMA) models to handle
time-correlated modeling and forecasting (Shumway & Stoffer, 2011); considering these
models, one of the first steps is to plot the time series and try to identify outliers, trend and
seasonality. The returns were calculated in the original database in log return format to
anticipate problems with stationarity, due to the high volatility of the data. The adoption of
this method is an attempt to stabilize the variance and will not necessarily make the series
stationary. Although the stationarity was already confirmed in each one of the cases by the

augmented Dickey-Fuller test.

In pertinence to the figures, all the time series are stationary, which allows developing the
ARIMA models. The models will be developed considering the optimization of the Akaike
Information Criteria; in other words, the models of the lowest AIC will be chosen to make

the forecasting.

The first step, proposed by Box & Jenkins, is based on identification procedures. The process

involves choosing the right orders of the ARIMA model (p,d,q), and this process is made
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considering the ACF and the PACF for each case. This analysis can help to define the orders

of the model.

With regard to the ACF and PACF for the company Ambev:

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
i i 1 -0.0.. -0.0.. 0.390.. 0.53..
i i 2 -0.0.. -0.0.. 0.708.. 0.70...
ay Y 3 0.01.. 0.01.. 0.811.. 0.84..
i [ i ) 4 -0.0.. -0.0.. 3.004.. 0.55..
i i 5 0.05.. 0.05.. 4.089.. 0.53..
i i 6 0.03.. 0.03.. 4.682.. 0.58...
N i 7 0.02.. 0.02.. 4.854.. 0.67..
K K 8 -0.0.. -0.0.. 4.971.. 0.76...
i il 9 0.06.. 0.07.. 6.508.. 0.68...
i i 10 -0.0.. -0.0.. 6.542.. 0.76...

Figure 5.4 - Ambev ACF and PACF

Defining the order of the models based only on the plots of the ACF and PACF might be

tricky, that is why several models must be tested and compared, and based on the outputs

of this analysis, the best model will be chosen. The table below shows a comparison

between several models for the company under study in this step:

Model Selection Criteria Table
Dependent Variable: LOG_RETURM
Diate: 221117 Time: 17:13
Sample: 10172010 30122016
Included observations: 365

Model LogL AlC BIC HQ
(2 3)00) 785389062 -4.265146 -4190353 -4235422
(2.2)00) TB3.436000 -4.259923 -4195820 4234451
(4.3)00) 787.034241 -4.263201 -4167039 -4224085
(4.2)00) 784323837 -4.253829 -4168352 -4.219859
(4. 1)0,0) 783.598447 -4.255334 -413830541 -4225610
(4,0)00) 782936103 -4.257184 -4193076 -4.231707
(3400} 786972686 -4.2062864 -41166702 -4224648
(3,3)(0,0) 785389207 -4.259667 -4174190 -4225897
(3,2)(00) 785388023 -4265145 -4190352 -4.235421
(31)0,0) 783.401738 -4.280736 -4195628 -4234258
(3,0p0,0) 781.852206 -4.256724 -4203301 -4.235403
(2.4)00) 784294407 -4.253668 -4163191 -4.219693

Figure 5.5 - Ambev Model Comparison

Based on the AIC, the ARMA (2,3) model is the best one, since the AIC presents the lowest

values for this model. Considering the ARMA (2,3) model:
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Dependent Variable: LOG_RETURM

Method: ARMA Maximum Likelihood (BFGS)

Date: 221117 Time: 16:10

Sample: 8/01/2010 30/12/2016

Included observations: 365

Convergence achieved after 102 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefiicient Std. Error t-Statistic Prob.
Cc 0.002650 0.001440 1.840332 0.0665
AR(1) -1.935385 0.021360  -90.60847 0.0000
AR(2) -0.941223 0.021937  -42.00485 0.0000
MA(T) 1.931799 0.904016 2136909 0.0333
MA(Z) 0874134 0.782056 1117738 0.2644
WMA(3) -0.063092 0151017 -0.417780 0.6764
SIGMASQ 0.000734 0.000899 0872011 0.3838
R-squared 0.031181 Mean dependentvar 0.002647
Adjusted R-squared 0.014944 3.D. dependentvar 0.028481
S.E. of regression 0.028267 Akaike info criterion -4.265146
Sum squared resid 0.286055 Schwarz criterion -4.190353
Log likelihood 785.3891 Hannan-Quinn criter. -4.235422
F-statistic 1.920360 Durbin-Watson stat 1.998939
ProbiF-statistic) 0.076673
Inverted AR Roots -97-07i -97+.07i
Inverted MA Roots .06 -1.00-07i  -1.00+.07i

Figure 5.6 - Ambev ARMA Model

Although it is considered the best model based on the AIC, after further analysis, we can see
that not all coefficients are statistically different from 0, and this conclusion can be reached

by calculating the ratio between each coefficient and the standard error.

In terms of the residuals, the table below shows that they are white noise, which is a positive
point in the model since it shows that there is no information in the residuals that might be

helpful for the model:
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Figure 5.7 — Residuals Ambev ACF and PACF

Another important factor to be considered is the independence of the residuals, which is
measured by the Ljung-Box test, and taking into account the high p-value for this test, the

conclusion is that the residuals are independent of each other:
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Ljung-Box Test

p-value

0,5841

Table 5.2 - Ambev Ljung-Box test

Regarding the forecast for this model:
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Figure 5.8 - Ambev ARMA Forecast

As expected, for the stationary model, the forecast will eventually converge to the mean and

stay at this level for the remaining periods. In the plot above, before the forecast converges

to the mean, some predictions are made.

The table below shows the summarized results for the other companies analyzed:

Companies
Petrobras Itau S/A Itau/Unibanco | Vale
Features
Order Best Model ARMA (3,3) ARMA (3,3) ARMA (4,4) ARMA (3,3)
AIC -2,742414 -3,591795 -3,526002 -2,537487
Residuals White noise White noise White noise White noise

Ljung-Box Test

Independent Residuals

Independent Residuals

Independent Residuals

Independent Residuals

Forecasting

Effective in the short term, but
eventually converges to the mean

and stay at this point for all periods

Effective in the short term, but
eventually converges to the mean
and stay at this point for all periods

Effective in the short term, but
eventually converges to the mean
and stay at this point for all periods

Effective in the short term, but
eventually converges to the mean
and stay at this point for all periods

Table 5.3 - Summary of the results
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5.3.1 Out-of-Sample Forecast

Considering the results presented so far, and to attest that the models described previously
are the best to make predictions, the out-of-sample forecast will be performed. Comparing
the fit out-of-sample allows us to evaluate features of model performance that are

important for practical applications.

In the previous section, important conclusion about the model were reached, such as the
ability of the ARMA models to make predictions in the short-term. Hence, the out-of-sample

forecasting should be done considering the short term, to produce better results.

The period used to make the predictions involves the weekly data of the year of 2017.

Regarding the company Ambev:

A A A AL

Data Out-of-Sample Forecast

Figure 5.9 - Out-of-sample forecast Ambev

As the graph shows, although the data tends to stay around the mean, it has the ability of
making predictions in the short-term. The modelling was made considering the best model
for the company, which is the ARMA (2,3) based on the AIC. For the same model, the RMSE

was calculated, as follows:

Company| Model RMSE
Ambev |ARMA (2,3) | 4,16745

Table 5.4 — RMSE Ambev model

The same procedure was adopted for all the other companies:
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Companies

Petrobras Itau S/A Itau/Unibanco Vale
Features
Model ARMA (3,3) ARMA (3,3) ARMA (4,4) ARMA (3,3)
RMSE 9,340332 5,595034 5,497613 10,21861

Make predictionsin the shortterm  [Make predictions in the shortterm | Make predictions in the short term  |Make predictions in the short term

Forecastin
s but with time converges to the mean | but with time converges to the mean | but with time converges to the mean | but with time converges to the mean

Table 5.5 - Summary of the results Out-of-sample forecast

In the table are summarized the values founded by company. Other models were compared

and those of the table are the best based on the RMSE.

5.4 ARCH MOoDELS

The ARCH (Autoregressive Conditionally Heteroscedastic), is a model for a variance of a time
series. The methodology was developed, especially to deal with the high volatility in

problems involving econometrics and finance.

The goal of this work is to understand which model produces better results considering
financial time series in the Brazilian stock market (Sdo Paulo Stock Exchange), and although
ARCH models are considered particularly attractive when dealing with financial time series,

they might not be the best ones in every case.

The ARCH/GARCH models will be performed for each of the companies to compare the
results, and after the full analysis, the results will be compared, considering the results of the

ARIMA modeling as well.

As the first step, the model should be run. By doing this procedure, we will be able to
analyze the residuals and identify if the ARCH family models might be suitable for the
analysis. We need to confirm the presence of heteroscedasticity in the data series before
processing to modeling, and this can be achieved by doing the ARCH effect test. Financial
assets price of stock index series or another high-frequency data will often appear in the
feature that a large fluctuation usually followed by another large fluctuation, and a small
fluctuation usually followed by another even smaller fluctuation, this is called the ARCH

effect (Lin, 2018).

Appertaining to the outputs of the analysis for the company Ambev:
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Variable Coefficient Std. Error t-Statistic Prob.

cC 0.002647 0.001491 1.775585 0.0766
R-squared 0.000000 Mean dependentvar 0.002647
Adjusted R-squared 0.000000 S.D.dependentvar 0.028481
S.E. ofregression 0.028481 Akaike info criterion -4.276435
Sum squared resid 0295261 Schwarz criterion -4 265751
Log likelihood 781.4495 Hannan-Quinn criter. -4.272189
Durbin-Watson stat 2.064213

Figure 5.10 - Ambev Regression Outputs

ARCH models are specifically designed to model and forecast conditional variances. The
variance of the dependent variable is modeled as a function of past values of the dependent

variable, in this case the dependent variable are the returns considered in the study.

The next step is to look at the residuals:
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Figure 5.11 - Ambev Residuals
Based on the residuals, the conclusion is that the volatility is constant, and there are no

periods without volatility. The ARCH test must be performed to validate the conclusions:

Heteroskedasticity Test: ARCH

F-statistic 1.273428 Prob. F(1,362) 0.2599
Obs*R-squared 1.275975 Prob. Chi-Square(1) 0.2586

Figure 5.12 - Ambev ARCH Test
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With regard to the test, the null hypothesis is that there is no ARCH effect, and the

alternative hypothesis is that there is an ARCH effect. In this case, the null hypothesis cannot

be rejected (since the p-value is above 5%), so there is no ARCH effect. If performing the

ARCH modeling and forecasting, in this case, the results will be poor:

Variable Coefficient Std. Error z-Statistic Prob.

C 0.002494 0.001479 1.685569 0.0919

Variance Equation

C 0.000737 6.70E-05 10.99135 0.0000
RESID(-1)"2 0.091523 0.060293 1.517977 0.1290
R-squared -0.000029 Mean dependent var 0.002647
Adjusted R-squared -0.000029 S.D.dependentvar 0.028481
S.E. of regression 0.028481 Akaike info criterion -4.271231
Sum squared resid 0.295270 Schwarz criterion -4.239177
Log likelihood 782.4996 Hannan-Quinn criter. -4.258492
Durbin-Watson stat 2.064153

Figure 5.13 - Ambev ARCH Outputs
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Figure 5.14 - Ambev ARCH Forecast

The results above were provided by the software considering an ARCH (1,0) model.

The table below shows the summary of the results for the other companies:

Companies

Petrobras | Itau S/A | Itau/Unibanco | Vale

Test

ARCH Effect No | No | No | No

Table 5.6 - Summary of the results
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Since the time series regarding the companies do not present the ARCH effect, this
technique proved to be not effective in the case of the Brazilian market for the period under

study.

5.5 DIscussION

Dealing with stock market data is always challenging in the sense that several factors might
influence how the market behaves. The stock market is constantly changing with
uncertainties. Rapid dissemination of information and fast capital flow will lead to
fluctuations in the stock price, and the undulating price and the undulating price will affect
the market in return (Lin, 2018). Considering similar studies in other markets, the ARCH
models are prevalent and in general, are used more often than other methods, primarily due

to the characteristics of the data such as high volatility.

The literature supports the application of ARIMA and ARCH models to analyze and make
predictions based on time series data. Specific characteristics of the data and even of the
market being analyzed gives us some clue about which model might be more suitable. For
financial markets in general, due to the characteristics of the time series, heteroscedastic

models are very popular.

The conclusions about the results will be presented next, but some discussion concerning
the findings must be made. The first factor is that even though heteroscedastic models
perform well when trying to predict financial markets, in the specific market applied in this
research, they were not as effective as they usually are, at least taking into consideration the

literature on the topic.

Another important point is that even the ARIMA models efficacious for short-term
predictions are not effective in the long-term. This aspect is another characteristic that the
theory supports since these models tend to converge to the mean of the time series in the

long-term and remain at that point for future periods.

In summary, the research reached the goal of understanding which methods perform better
in respect of the Brazilian scenario for the time frame studied. The results confirmed what

the theory states. Heteroscedastic models are not necessarily the best as they usually are in
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other markets. Besides, even though ARMA models do not provide the best predictions, are

the ones under study who can provide better results, especially in the short-term.
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6. CONCLUSIONS

The conclusion is that in the framework of the Brazilian stock market, ARIMA models
perform better. Even given the problems with long-term forecasting, modeling the data with
the ARIMA approach produces better results. The best way to use this approach granted the
limitations would be to predict short-term with ARIMA and evaluate the quality of the

predictions in each period.

The other approach that was considered to model the data was the ARCH approach.
Nevertheless, the data does not present the features that are necessary to frame the
analysis using this methodology. As the data analysis has shown, one of the key aspects to
determine whether the ARCH model family might be suitable or not, namely, the ARCH
effect is not present in any of the time series studied. Thus, in this case, this methodology
will not produce good results considering the forecasting. Other time frames can be studied
in the attempt to identify if the ARCH effect is present, and in this case, this mechanism can

be used to produce forecasting for stock returns.

During the period that the study focused on, the Brazilian market behaved very well, without
any degree of oscillations. This fact can explain why simpler models such as ARIMA were
more effective in the attempt to forecast stock returns. Usually, concerning other markets,
ARCH models are more effective during the high oscillations in the market due to crises and
several other events that might influence this process. In the framework of the Brazilian

stock market, higher fluctuations during the period would change the results entirely.
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

The study was conducted using the most popular techniques to make predictions in financial
markets, specifically the ARIMA and ARCH/GARCH models. Nonetheless, several other
techniques are also being used for this purpose nowadays. Even though financial time series
is a distinctive case due to its features such as high volatility in some periods, or even

constant depending on the market, other techniques might produce good results.

Recently, data mining techniques and artificial intelligence techniques like decision trees,
rough set approach, and artificial neural networks have been applied to this area (Al-
Radaideh, Assaf, & Alnagi, 2013), and presenting good results. A further study involving
those time series might be to test a few Al techniques such as Neural Networks and compare
them with traditional ones, to establish some comparisons on the outputs. In summation,
more techniques can be analyzed and tested to produce even better results or to prove the

traditional techniques as being the best to use in the financial field.

Regardless of the chosen technique, it is important to mention that during the period
studied the financial time series presented a regular behavior, which means that the results
would be different if during the period the market was facing instability due to crisis or any

other event. Hence, the conclusions of the study could have been different in this scenario.
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9. ANNEXES

TOP 5 BRAZILIAN COMPANIES SAO PAULO STOCK EXCHANGE

Code Share Type |Issued Shares [Participation (%)

Total Issued Shares 45.500.926.042 100

ABEV3 AMBEV S/A ON 4.342.975.742 7,435

PETR4 PETROBRAS PN 4.124.795.738 5,752

ITSA4 ITAU/AS PN N1 | 3.860.753.592 3,525

ITUB4 ITAU UNIBANCO |[PN N1 | 3.119.093.161 11,153

VALE3 VALE ON N1 [ 3.001.189.620 7,999

Table 9.1 - Top 5 Brazilian Companies S3ao Paulo Stock Exchange
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Figure 9.10 - Out-of-Sample Forecast Itau/SA
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