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ABSTRACT 

Forecasting stock returns forecasting is a crucially important topic in the study of finance, 

econometrics, and academic studies, and involves an in-depth study on time series. This 

thesis aims to examine the most representative companies on the São Paulo Stock Exchange, 

and based on that data, predict the behavior of future stock returns using several different 

forecasting methods. 

In time series analysis, ARIMA models are used in many situations and usually present good 

results; nevertheless, to determine which model best suits the data, others must be tested. 

When considering the high volatility of the data and factoring in the economic situation of 

the country that is being analyzed, other techniques must be considered, especially the 

ARCH family ones. 

Those techniques are primarily used to predict data involving Stock Markets worldwide. An 

accurate prediction can bring advantages for the companies who make those predictions 

and benefit the stakeholders directly since it provides enough information to make better 

decisions towards the future. 
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1. INTRODUCTION 

 

1.1 CONTEXT 

The study of time series has been developed in many areas such as physics, engineering, 

anthropology, among others. Nevertheless, in recent years, the attention of many 

researchers in the field is focused on the study of financial time series. The reasons for this 

phenomenon can be easily understood if one considers the global scenario for the past 

several years, with a massive economic crisis in big markets such as the US and Europe. In 

this framework, the in-depth study of economic/financial time series, especially those 

involving modeling and statistical analysis applied to economics, becomes paramount. 

Since understanding and predicting future conditions are crucial, traditional forecasting 

techniques have been used to predict stock market returns. Such linear techniques, called 

ARIMA, usually produce good results for other fields. However, for financial time series, they 

must be studied carefully because, in most cases, they are not the best models to 

understand the past to predict the future. In the forecasting field, financial markets can be 

considered as a special case, due to volatility, which happens because financial markets do 

not follow a pattern, and usually, present large variability over time for many different 

reasons. Hence the main reason for the development of other methods such as ARCH 

models and its derivations, this family of models imputed as heteroscedastic models for 

modeling time series to predict the future behavior of the returns. Heteroscedasticity in 

statistical terms can be defined as a statistical phenomenon in which observations exhibit 

different variances over time, and it fits perfectly in financial time series behavior. 

Although volatility is in financial market data, the linear models are also going to be tested, 

since some companies might present a more stable time series and the heteroscedastic 

models might not produce better results for those. After carefully studying the behavior of 

each time series and based on the results of each the models, the best will be chosen, and 

the predictions will be made. 
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1.2 BACKGROUND 

Stock price forecasting is a popular and important topic in financial and academic studies 

(Yue & Uc, 2012), due to the number of factors that can influence the behavior of the series 

over time. High volatility is one of the main characteristics of this type of time series, and 

this phenomenon might occur due to several reasons: 

• Market factors 

• Economic environment 

• Political scenario 

• Crisis (financial mostly) 

• War 

Due to the factors enumerated above, forecast data involving financial markets is a tough 

task, and although several methods might be used for this purpose, not all of them are going 

to show effective results. 

For data with less volatility, studies usually consider ARIMA, this approach was introduced by 

Box and Jenkins, and develops a systematic class of models called autoregressive integrated 

moving average (ARIMA) models to handle time-correlated modeling and forecasting 

(Shumway & Stoffer, 2011). In several fields, this method is good enough to describe 

phenomena and make good predictions as well. Nevertheless, for this study, other methods 

must be tested, for the reasons already mentioned, and also to have other approaches to 

compare results. Although financial markets are mostly predicted by other models, ARIMA 

might have some validity, and good results can come from this class of models, especially if 

the data does not present high volatility, which is not usual, but possible. 

A problem in the analysis of financial time series is to forecast the volatility of future returns. 

Models such as ARCH and GARCH and stochastic volatility models have been developed to 

handle these problems (Shumway & Stoffer, 2011). 
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Both ARCH and GARCH models that were proposed by Engle (1982) and Bollerslev (1986), 

can capture volatility simultaneously (AL-Najjar, 2016). Therefore, they are the most 

recommendable for the forecasting of this particular type of time series. 

The specific objectives and relevance of the study will be discussed in the next session. 

       

1.3  OBJECTIVES AND STUDY RELEVANCE 

The main goal of the study is to identify the best methods to make predictions in the stock 

market. In terms of the models, a salient point is that different models can be applied 

depending on the company business since variability directly depends on the stability of the 

market to which the company belongs to. Considering the general steps to develop the 

predictions, the diagram below describes the steps briefly: 

Subject

Objective

Work Flow

Detect Trend, Seasonality and

Outliers

Choose the best model and 

order of the model

Forecast

Financial Markets

Develop Accurate Predictions

Plot the Data

 

Figure 1.1 - Process 

The diagram process is the general procedure to make decisions about the model. Some 

decisions must be taken in each step. For instance, in the first step, a plot of the time series 

allows us to see if the series is stationary, and it detects trend or seasonality as well. In the 

case of ARIMA models, the data must be detrended before developing the model. All this 



12 
 

information can be identified in the plots, and later it will be helpful to determine the order 

of the model. 

The main question to be answered with this thesis is: Which one of the forecasting methods 

produces better results in the financial time series context? 

In order to achieve this objective, some questions, such as the time frame, need to be 

decided beforehand. Given the 2008 global crisis, the best choice is to skip this period, since 

it might have a substantial influence on the time series. In this scenario, the idea is to start 

with weekly data from 2010, and study the behavior of the time series until 2016, then 

based on that, perform the predictions for five years. 

With regard to exploratory data analysis, in financial time series, it is particularly complex to 

determine if a certain value is considered as an outlier due to the volatility. The same applies 

to seasonality and trend. 

After the decisions involving the time frame and those involving the exploratory analysis, the 

determinations concerning the model need to be made.  In the case of financial markets, 

each series needs to be carefully analyzed, since the same model is probably not going to be 

suitable for all the time series under study. The first approach will be the ARIMA, but in all 

cases, the heteroscedastic models (ARCH) are going to be tested since they are the most 

recommendable for the purpose of the study. Although practical experiences show that 

heteroscedastic models might be more appropriate, the results will be analyzed and 

compared. 

The table below summarizes all the points exposed so far: 

Time Frame Weekly data from 2010 to 2016.

Trend, Seasonality and Outliers Each case will be individually analyzed due to the data peculiarities.

Best Model for the data Several models (sucg as ARIMA & ARCH) will be tested.

Question to be defined Answer

 

Table 1.1 - Summary of the Questions 

The relevance of the study is associated with the quality of the predictions since 

contributions about what theoretical model better fits data from a financial market might 
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help investors make better decisions; furthermore, they and might help the companies as 

well since companies often invest in other companies to make profits. 
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2. LITERATURE REVIEW 

Box and Jenkins published the ARIMA models in 1976, and this was undoubtedly the start of 

a new framework regarding forecasting. The method is popularly known as the Box-Jenkins 

(BJ) methodology but technically coined the ARIMA methodology. The emphasis of these 

methods is not on constructing single-equation or simultaneous-equation models, but on 

analyzing the probabilistic or stochastic properties of economics time series on their own 

under the philosophy, let the data speak for themselves (Gujarati, 2003). The ARIMA models 

were not developed based on economic theory, which is usually based on simultaneous-

equations models. Therefore the model is sometimes called an atheoretic model. 

Abundant research has been undertaken in numerous disciplines or subjects that involve 

ARIMA methodology to forecast the future value(s) of a given variable (Afeef, Mustafa, 

Ihsan, Anjum, Zada, 2018). Currently, many studies use the ARIMA methodology to predict 

variables, and apropos of the financial framework, it is even more useful. The study proves 

ARIMA to be a very robust model, although way more effective in the short term, which 

seems to be a consensus for this type of models. From the findings of the study, it has been 

construed that ARIMA has a very good capacity to forecast future values in the short run. Of 

course, the long-term prediction using lagged values of a variable will only make little sense, 

however (Afeef, Mustafa, Ihsan, Anjum, Zada, 2018). In relation to the financial market 

framework, where predictions in many situations must be more focused on the short term, 

the models are highly effective and have proven validity.  

Although those models are eminently effective and used in other fields besides finance, it 

makes a strong assumption that the future data values are linearly dependent on the current 

and past data values (Büyükşahin & Ertekin, 2019). The fact that it makes such assumptions 

might be good for some problems, but in practical terms might not help in other situations, 

where the assumptions are violated. In this specific case, the authors point to the fact that 

even though it is an outstandingly robust model, it does have limitations, and for some 

specific situations, other models might be considered for forecasting. 

With respect to financial time series features, ARIMA models will not always be the best to 

make predictions. In this context, many other works in the literature use the ARCH/GARCH 



15 
 

class of models to address issues with which ARIMA models are not capable of dealing with. 

Essentially, ARCH models estimate volatility as a function of past volatility shown in the time 

series. 

The ARCH regression model has a variety of characteristics that make it attractive for 

econometric applications. Econometric forecasters have found that their ability to predict 

the future varies from one period to another. McNees suggests that “the inherent 

uncertainty or randomness associated with different forecast periods seems to vary widely 

over time.” He also documents that “large and small errors tend to cluster together (in 

contiguous time periods).” This analysis immediately suggests the usefulness of the ARCH 

family, where the underlying forecast variance may change over time and is predicted by the 

past forecast errors. The results presented by McNees also show some serial correlation 

during the episodes of large variance (Engle, n.d.). Engle´s work had a high relevance in the 

field of finance, making room for a new branch inside econometrics. In the study mentioned, 

Engle studied inflation in the United Kingdom. 

This is where the so-called autoregressive conditional heteroscedasticity (ARCH) model 

originally developed by Engle comes in handy. As the name suggests, heteroscedasticity, or 

unequal variance, may have an autoregressive structure in that heteroscedasticity observed 

over different periods may be autocorrelated (Gujarati, 2003). Thus, a study by Engle (1982) 

proposed to model time-varying conditional variance through applying the Autoregressive 

Conditional Heteroscedasticity process (ARCH), which is expected to mainly capture the 

dynamic behavior of conditional variance using lagged disturbance (AL-Najjar, 2016). 

In many studies, ARCH methods seem to outperform the other methods applied; 

nevertheless, it depends on the market and the characteristics of the time series to which 

the model is being applied. A study made to forecast the returns of the Dhaka Stock 

Exchange achieved good results with this method. The results of the in-sample statistical 

performance show that both the ARCH family models are selected as the best performing 

model jointly for DSE20 index returns, where for DSE general index return series, the ARCH 

model outperforms other models (Masukujjaman, 2013). 

In opposition to the ARIMA models, ARCH models were developed based on classical 

regression assumptions.  
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Given the model introduced by Engel, Bollerslev introduced the Generalized ARCH model 

called the GARCH model. In this model, the conditional variance depends not only on the 

disturbance term of the previous period but also on the conditional variance of the previous 

period (Abounoori & Tour, 2019). GARCH (1,1) is the most widely used model. Akgiray (1989) 

is the first researcher who used the GARCH model to forecast volatility, and he 

demonstrated that GARCH produces better forecasts than most of the other forecasting 

methods such as Random Walk (RW), Historical Mean (HM), Moving Average (MA), and 

exponential smoothing (ES) when applied to monthly US stock market data (Miles & 

Huberman, 1994); (Chtourou, 2015). 

The GARCH model family is a series of models designed to explain the regularity of 

fluctuations in time series, and they prove to be of really good ability when describing the 

volatility of financial data, adding a wide range of theoretical and practical value (Lin, 2018). 

In this particular paper, the model was used to predict the stock market in China. It achieved 

the best performance among several models. The author also points to the fact that those 

models are usually more effective when used to predict financial time series in developed 

countries, nevertheless the methodology worked perfectly, even given the features of the 

Chinese market and the characteristics of the time series in this case. 
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3. THEORETICAL FRAMEWORK 

Initially, it is important to define time series, to understand the concept, and by 

consequence, the further application of the models, better. A time series can be defined as a 

collection of random variables indexed according to the order they are obtained in time. The 

primary objective of time series analysis is to develop mathematical models that provide 

plausible descriptions for sample data (Shumway & Stoffer, 2011). In the context of time 

series analysis, several techniques might be used to understand how the data behaved over 

time and to make predictions. In this work, a few models will be tested and studied in 

further detail, particularly the ARIMA and ARCH/GARCH models, with a special emphasis on 

the ARIMA models. 

When dealing with time series analysis, some important steps must be followed. One of the 

first and most critical aspects, predominantly, is to plot the data on a graph at the outset. In 

this way, some features regarding the time series can be observed, and the researcher can 

understand more about the kind of data under deliberation. From the plot of the data, the 

existence of some kind of trend in the data can be detected, which means that the data 

must be observed, and downward or upward movements over time must be discerned. 

Another important aspect is the presence of the seasonality in the data, which means some 

repeating patterns over time. This facet is particularly important for a variety of forecasting 

methods since some of them are not able to deal with seasonality, and it must be removed 

before the forecasting procedure. Outliers are other issues that must be analyzed in a time 

series. The occurrence of outliers is particularly important in regression models and can even 

alter the efficiency of the model. The variance must also be analyzed to understand if the 

data varies over time, or if the variance is constant, which might sometimes be hard to 

identify when only considering the plot of the data. 

The normality of the data must be tested before modeling, since this is not necessarily 

possible by just looking at the histogram, another way of testing, is to apply the Jarque-Bera 

test, which is a normality test. This test first computes the skewness and kurtosis measures 

of the OLS residuals and uses the following test statistic: 
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Where n is equal to the sample size, S the skewness coefficient, and K the kurtosis 

coefficient. For a normally distributed variable, S = 0 and K = 3. Therefore, the JB test of 

normality is a test if the joint hypothesis that S and K are 0 and 3, respectively. In that case, 

the value of the JB statistic is expected to be 0. Under the null hypothesis that residuals 

again are normally distributed, Jarque and Bera showed the JB test asymptotically follows 

the chi-square distribution with two df in the given equation. Applications of the test will be 

seen in the data analysis section. 

 

3.1.  ACF AND PACF 

Another important concept before defining the models themselves is to make a definition of 

the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF). 

The ACF is defined as: 

 

The ACF measures the linear predictability of the series at time t, say  , using only the value 

 (Shumway & Stoffer, 2011). 

The partial autocorrelation function gives the partial correlation of a stationary time series 

with its own lagged values, regressed the values of the time series at all shorter legs. It 

contrasts with the autocorrelation function, which does not control for other lags. 

In general, a partial correlation is a conditional correlation. It is a correlation between two 

variables under the assumption that we know and consider the values of some other set of 

variables if considering a regression where, , , and  are predictor variables. In this 

scenario, the partial correlation between  and  is the correlation between variables 

determined considering how both are related to  and .  

It can be mathematically denoted as: 

 

To determine the order of the models being considered, the ACF and the PACF must be 

analyzed together. 
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3.2.  STATIONARITY 

Stationarity is another concept that is crucial while modeling data. A stationary time series 

must have a constant mean and variance over time. Broadly speaking, a stochastic process is 

said to be stationary if its mean and variance are constant over time and the value of the 

covariance between the two periods only depends on the lag between the two time periods 

and not the actual time at which the covariance is computed (Gujarati, 2003). Broadly 

speaking, a time series is said to be stationary if there is no systematic change in mean (no 

trend) over time, if there is no systematic change in variance and if period variations have 

been removed (Aljandali & Tatahi, 2018). 

One important point to be noted is that before executing any time series analysis the time 

series data is supposed to be stationary. There are different test for stationary diagnosis, like 

Augmented Dickey Fuller test. If data is stationary then we can proceed, on the other hand if 

it is not, then we difference it and make stationary. ARMA model of the differenced series is 

called ARIMA model (Prasad & Choubey, 2018).  

In order to determine stationarity in a time series, a few procedures can be undertaken. One 

of them is a test denominated as the Augmented Dickey-Fuller ADF test. The test consists in 

estimating the following equation:  

 

The number of lagged difference terms to include is often determined empirically. The idea 

is to include enough terms so that the error term in the equation above is serially 

uncorrelated. Details in the application and the assumption for the test can be seen when 

they are applied in the time series. 

 

3.3.  ARIMA MODELS 

In the context of this research, the ARIMA models will be the ones most analyzed. It is, 

therefore, imperative to understand them well. These models, also known as the Box-

Jenkins methodology, encompass autoregressive and integrate with moving average 

methods. Thus, the origin of the term ARIMA (Autoregressive Integrated Moving Average). 
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The models were introduced in 1976 and are based on the estimation of the dependent 

variable y as a function of the lag of the y variable itself, indicated by p autoregressive terms, 

q terms representing the past errors. As most economic/financial time series are not 

stationary, the application of the ARIMA models (p,d,q) demands the transformation of the 

variables. The ACF and the PACF must be analyzed in conjunction to determine the orders of 

the model, where the goal is to minimize the AIC, which is a method of measuring the 

quality of the model.  

We must first introduce the AR (Autoregressive) and MA (Moving Average) terms of the 

equation to understand the models better. 

 

3.3.1. AR Models 

Autoregressive models are based on the idea that the current value of the series, , can be 

explained as a function of the past values. This can be defined by the equation: 

𝑋𝑡 =  Φ1𝑋𝑡−1 + Φ2𝑋𝑡−2 + ⋯+ Φ𝑝𝑋𝑡−𝑝 + 𝜀𝑡  
 

Where  is the observation in time t,  is the parameter of the model AR,  is the order of 

the model, and  represents the error that cannot be explained by the model. 

 

3.3.2. MA Models 

As an alternative to the autoregressive representation in which the  on the left-hand side 

of the equation is assumed to be combined linearly, the moving average model of order q, 

abbreviated as MA(q), assumes that white noise  on the right-hand side of the defining 

equation is combined linearly to form the observed data (Shumway & Stoffer, 2011). This 

can be represented as: 

𝑋𝑡 =  ω𝑡 + θ1ω𝑡−1 + θ2ω𝑡−2 + ⋯+ θ𝑞ω𝑡−𝑞    
 

Where there are q lags in the MA, and , , … ,  are the parameters. 
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3.3.3. ARMA Models 

Together, the two previous models form the ARMA model. They can be mathematically be 

represented as: 

𝑋𝑡 =  Φ1𝑋𝑡−1 + Φ𝑝𝑋𝑡−𝑝 + 𝛼𝑡 −  θ1α𝑡−1 −⋯−  θ𝑞α𝑡−𝑞       
 

It is important to mention that these models are not suitable to model non-linear 

relationships. Nevertheless, they are very important to the understanding of stationary time 

series and autoregressive models. 

The model already discussed is the integration of the AR and MA models proposed by Box 

and Jenkins. 

The table below presents the order of the events when modeling using ARIMA models: 

STEP ACTION

1 Examine the series for stationary. Analyze ACP and PACF and perform the unit-root test

2 If it is not stationary, difference it one or more times to make it stationary

3 Identify if the series is AR, MA or ARIMA

4 Estimate the model

5 Analyze the residuals

6 Forecast using the model  

Table 3.1 - Course of Action for ARIMA models 

With regard to the points in the table, it is salient to mention that the ACF and the PACF 

must be analyzed to estimate the orders of the model. The table below shows the 

theoretical patterns for ACF and PACF: 

Type of Model Typical pattern of ACF Typical pattern of the PACF

AR (p) Decays exponentially or with damped sine wave pattern or both Significant spikes through lags p

MA (q ) Significant spikes through lags q Declines exponentially

ARMA (p,q ) Exponential decay Exponential decay

THEORETICAL PATTERNS OF ACF AND PACF

 

Table 3.2 - Theoretical Patterns of ACF and PACF 

Another important detail involves the residuals of the model. The residuals from the 

tentative model are examined to find out if they are white noise. If they are, the tentative 

model is probably a good approximation to the underlying stochastic process. If they are not, 

the process is started all over again. Therefore, the Box-Jenkins method is iterative (Gujarati, 

2003). 
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As mentioned previously, one of the methods to evaluate the model is the Akaike 

Information, which can be written mathematically as: 

ln𝐴𝐼𝐶 =   
2𝐾

𝑁
 + ln  

𝑅𝑆𝑆

𝑛
   

 

Where k is the number of regressors, n is the number of observations and RSS the Residual 

Sum of Squares, which is a measure of the discrepancy between the data and the estimation 

model. 

The intention when comparing two or more models is to consider the model with the lowest 

AIC. The model penalizes the error in the variance by a term proportional to the number of 

parameters. 

Finally, analyzing the residual requires a specific test, which is called the Ljung-box test. In 

the context of the model, the residuals must be independent of each other. The p-value of 

the test will show whether the residuals are independent or not. The null hypothesis for this 

test is that the residuals are not correlated. 

The Ljung-Box test statistic can be defined as: 

 

Where T is the sample size, is the sample correlation at lag h and N is the number of lags 

being tested. 

Considering that the out-of-sample forecast will be performed, other measures might be 

helpful to evaluate the predictive power of the model. In this scenario worth to present the 

Root Mean-square error (RMSE). 

The RMSE is a frequently used measure of the difference between the observed and the 

predicted values, and it is highly efficient to measure the accuracy of the model. Although 

the threshold might be difficult to define, it is a measure that researchers must consider. 

Can be defined as: 
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Where N is the number of observations and predicted and actual are the values of the 

model. 

 

3.4.  ARCH/GARCH MODELS 

The ARCH family modes emerged in the context of high volatility. It is normally used in the 

context of financial time series due to its characteristics, such as high variance and volatility. 

ARCH, in this case, stands for autoregressive conditional heteroscedasticity. As the name 

suggests, heteroscedasticity, or unequal variance, may have an autoregressive structure in 

that heteroscedasticity observed over different periods may be uncorrelated (Gujarati, 

2003). In essence, the ARCH model is a model for volatility in a time series. 

In order to make it possible to use the ARCH model, a test must be performed to make sure 

that the time series present the necessary features that justify the use of the 

heteroscedastic models. If the time series has mean 0, the ARCH model can be written as: 

 

Where : 

 

The ARCH(1,0) model for the variance of the model is that conditional on , the 

variance at the time t is: 

 

The analysis of the ACF and the PACF must be done to understand the orders of the model, 

and the model can be tested after this step. 

ARCH models have had several variations since they were first developed. These variants 

include the GARCH models, which are the generalized autoregressive conditional 
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heteroscedasticity models. The most popular version of the model is GARCH (1,1), and it can 

be mathematically written as: 

 

GARCH models were only presented as variations of the ARCH. In the framework of this 

study, those models will not be used. 
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4. METHODOLOGY 

As previously described, the main objective of the study is to undertake an in-depth probe 

into time series analysis, to understand the past, and predict the future. In works of this 

nature, the following steps are taken to achieve better results, in general: 

• Problem Definition 

• Information Gathering 

• Exploratory Data Analysis 

• Choice of the Best Model 

• Evaluation of the results 

 

Problem Definition 

The problem definition is the first point, and it is essential to define all the steps of the study. 

The question for this study is relevant to the stock market and financial fields. It is also a  

conundrum that other researchers are trying to understand better. Furthermore, the 

problem definition also helps to delimitate the questions dealt with in the research, which 

should not exceed the limits proposed in the first place. 

 

Information Gathering 

Due to legal issues and transparency, all data involving financial markets have to be 

published. In this scenario, all information needed to develop this study can be found on the 

São Paulo Stock Exchange website, and in many other internet tools devoted to studying this 

field. 
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Exploratory Data Analysis 

A solid exploratory data analysis must be done to make the right choices involving the 

model. In the framework of this study, some steps must be considered and followed, as 

detailed below: 

• Plot the original series (returns) 

• Perform histogram to try to detect some patterns in the data 

• Perform ACF and PACF 

• Perform all the necessary tests to make sure the modeling will present the best 

results 

Regarding to the first step, it is necessary to plot the initial series to try to distinguish some 

important characteristics about the time series, such as trend, seasonality, and outliers. In 

the event of the identification of one of these aspects, we must treat them properly; 

otherwise, ARIMA models are not going to fit the data well. Other vital information we need 

to discern based on this first plot is the stationarity of the series. The latter being a 

requirement to develop some forecasting models. 

In the case of the histogram, it is important to see how data is distributed and to assist in 

detecting the outliers in the data more easily. 

The ACF and the ACF will allow us to understand if the data is stationary, and also give us 

some insights about the order of the models. This condition works for both homoscedastic 

and heteroscedastic models. 

 

Choice of the best model 

After performing the exploratory analysis, different models must be tested. In the context of 

this study, the ARIMA and ARCH family models will be tested. The best model for prediction 

will be chosen based on the conclusions of this scrutiny. 
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The criteria will be established based on the behavior of the time series since the presence 

of high volatility makes it indispensable to determine which model has more predictive 

power. 

Evaluation of the results 

The evaluation will be made considering the output for each model. ARIMA and 

heteroscedastic models must be tested when considering a financial time series. The 

efficiency of each type of model will be determined by the features of the time series, which 

reflect the way the market behaved in the period studied. In this scenario, both models are 

relevant for the study, and the results might lead to several implications that will help gain 

more meaningful insights into the phenomena under study. 
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5. RESULTS AND DISCUSSION 

5.1 DATA ANALYSIS 

The results of all the techniques used to forecast the data chosen for this work will be 

presented in this chapter. First of all, it is important to present a detailed exploratory data 

analysis. Later on, the results of the modeling using ARIMA and ARCH models will be 

presented, as well as the conclusion about which model better fits the data, and 

consequently, which one of them should be used to predict the assets with more accuracy. 

The theoretical framework of all methods was presented in the methodology section, as well 

as in the chapter involving the whole conceptual background of all the techniques. The 

process will be conducted in the exact same way for all the companies. 

 

5.2 EXPLORATORY DATA ANALYSIS 

In terms of the exploratory data analysis, the companies will be evaluated separately. 

Although the same process was used for each of the companies, not all graphics will be 

chosen, since the most important element is to understand the features of the data. The 

figure below shows the statistics for the company Ambev, and based on the graphic and also 

taking the statistics into consideration, the conclusion is that the dispersion of the data is not 

considered high since the standard deviation does not present a high value. The data 

possibly have some outliers, which can be seen easily, especially in the right tail of the 

distribution. Regarding the possibility of having a normal distribution, the conclusion is that 

the distribution is not normal; in order to reach this conclusion, the results of the Jarque-

Bera test and also the probability must be evaluated. High values in the Jarque-Bera test 

combined with a low value of probability (in this scenario, the probability is to have a normal 

distribution), makes this conclusion very clear. 
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Figure 5.1 - Ambev Histogram 
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Figure 5.2 - Ambev Log Return 

With respect to the log return plot, the conclusion is that the data has no trend and no 

seasonality. The augmented Dickey-Fuller test should be performed to determine 

stationarity. In this test, the null hypothesis is that there is a unit root, meaning that the 

series is not stationary. The alternative hypothesis is that there is no unit root, and in this 

case the series is stationary. 

t-statistic Prob

-19.66589 0.0000

1% -3.448111

5% -2.869263

10% -2.570952

Test Statistic

Test Critical Values

Augumented Dickey Fuller test

 

Figure 5.3 - Ambev Unit - Root test 
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Based on the outputs, we can conclude that the series is stationary since the value of the t-

statistic is lower than the critical values. In this case, we reject the null hypothesis of having a 

unit root. 

The table below shows the summary of the results for the other companies analyzed in the 

study: 

Petrobras Itau S/A Itau/Unibanco Vale

Features

Dispersion Small Standard deviation Small Standard deviation Small Standard deviation Small Standard deviation

Normality Data is not normally distributed Data is not normally distributed Data is not normally distributed Data is not normally distributed

Trend/Seasonality No trend or seasonality No trend or seasonality No trend or seasonality No trend or seasonality

ADF Test (Stationarity) Stationary series Stationary series Stationary series Stationary series

Companies

 

Table 5.1 - Summary of the results 

 

5.3 ARIMA MODELS  

One approach, advocated in the landmark work of Box and Jenkins, develops a systematic 

class of models called autoregressive integrated moving average (ARIMA) models to handle 

time-correlated modeling and forecasting (Shumway & Stoffer, 2011); considering these 

models, one of the first steps is to plot the time series and try to identify outliers, trend and 

seasonality. The returns were calculated in the original database in log return format to 

anticipate problems with stationarity, due to the high volatility of the data. The adoption of 

this method is an attempt to stabilize the variance and will not necessarily make the series 

stationary. Although the stationarity was already confirmed in each one of the cases by the 

augmented Dickey-Fuller test. 

In pertinence to the figures, all the time series are stationary, which allows developing the 

ARIMA models. The models will be developed considering the optimization of the Akaike 

Information Criteria; in other words, the models of the lowest AIC will be chosen to make 

the forecasting. 

The first step, proposed by Box & Jenkins, is based on identification procedures. The process 

involves choosing the right orders of the ARIMA model (p,d,q), and this process is made 
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considering the ACF and the PACF for each case. This analysis can help to define the orders 

of the model. 

With regard to the ACF and PACF for the company Ambev: 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.0... -0.0... 0.390... 0.53...

2 -0.0... -0.0... 0.708... 0.70...

3 0.01... 0.01... 0.811... 0.84...

4 -0.0... -0.0... 3.004... 0.55...

5 0.05... 0.05... 4.089... 0.53...

6 0.03... 0.03... 4.682... 0.58...

7 0.02... 0.02... 4.854... 0.67...

8 -0.0... -0.0... 4.971... 0.76...

9 0.06... 0.07... 6.508... 0.68...

10 -0.0... -0.0... 6.542... 0.76...

 

Figure 5.4 - Ambev ACF and PACF 

Defining the order of the models based only on the plots of the ACF and PACF might be 

tricky, that is why several models must be tested and compared, and based on the outputs 

of this analysis, the best model will be chosen. The table below shows a comparison 

between several models for the company under study in this step: 

 

Figure 5.5 - Ambev Model Comparison 

Based on the AIC, the ARMA (2,3) model is the best one, since the AIC presents the lowest 

values for this model. Considering the ARMA (2,3) model: 
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Figure 5.6 - Ambev ARMA Model 

Although it is considered the best model based on the AIC, after further analysis, we can see 

that not all coefficients are statistically different from 0, and this conclusion can be reached 

by calculating the ratio between each coefficient and the standard error. 

In terms of the residuals, the table below shows that they are white noise, which is a positive 

point in the model since it shows that there is no information in the residuals that might be 

helpful for the model: 

 

Figure 5.7 – Residuals Ambev ACF and PACF 

Another important factor to be considered is the independence of the residuals, which is 

measured by the Ljung-Box test, and taking into account the high p-value for this test, the 

conclusion is that the residuals are independent of each other: 
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p-value 0,5841

Ljung-Box Test

 

Table 5.2 - Ambev Ljung-Box test 

Regarding the forecast for this model: 

 

Figure 5.8 - Ambev ARMA Forecast 

As expected, for the stationary model, the forecast will eventually converge to the mean and 

stay at this level for the remaining periods. In the plot above, before the forecast converges 

to the mean, some predictions are made. 

The table below shows the summarized results for the other companies analyzed: 

Petrobras Itau S/A Itau/Unibanco Vale

Features

Order Best Model ARMA (3,3) ARMA (3,3) ARMA (4,4) ARMA (3,3)

AIC -2,742414 -3,591795 -3,526002 -2,537487

Residuals White noise White noise White noise White noise

Ljung-Box Test Independent Residuals Independent Residuals Independent Residuals Independent Residuals

Effective in the short term, but Effective in the short term, but Effective in the short term, but Effective in the short term, but

eventually converges to the mean eventually converges to the mean eventually converges to the mean eventually converges to the mean

and stay at this point for all periods and stay at this point for all periods and stay at this point for all periods and stay at this point for all periods

Companies

Forecasting

 

Table 5.3 - Summary of the results 
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5.3.1 Out-of-Sample Forecast 

Considering the results presented so far, and to attest that the models described previously 

are the best to make predictions, the out-of-sample forecast will be performed. Comparing 

the fit out-of-sample allows us to evaluate features of model performance that are 

important for practical applications. 

In the previous section, important conclusion about the model were reached, such as the 

ability of the ARMA models to make predictions in the short-term. Hence, the out-of-sample 

forecasting should be done considering the short term, to produce better results. 

The period used to make the predictions involves the weekly data of the year of 2017. 

Regarding the company Ambev: 

Data Out-of-Sample Forecast

 

Figure 5.9 - Out-of-sample forecast Ambev 

As the graph shows, although the data tends to stay around the mean, it has the ability of 

making predictions in the short-term. The modelling was made considering the best model 

for the company, which is the ARMA (2,3) based on the AIC. For the same model, the RMSE 

was calculated, as follows: 

Company Model RMSE

Ambev ARMA (2,3) 4,16745  

Table 5.4 – RMSE Ambev model 

The same procedure was adopted for all the other companies: 
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Petrobras Itau S/A Itau/Unibanco Vale

Features

Model ARMA (3,3) ARMA (3,3) ARMA (4,4) ARMA (3,3)

RMSE 9,340332 5,595034 5,497613 10,21861

Make predictions in the short term Make predictions in the short term Make predictions in the short term Make predictions in the short term

but with time converges to the mean but with time converges to the mean but with time converges to the mean but with time converges to the mean

Companies

Forecasting
 

Table 5.5 - Summary of the results Out-of-sample forecast 

In the table are summarized the values founded by company. Other models were compared 

and those of the table are the best based on the RMSE. 

5.4 ARCH MODELS 

The ARCH (Autoregressive Conditionally Heteroscedastic), is a model for a variance of a time 

series. The methodology was developed, especially to deal with the high volatility in 

problems involving econometrics and finance. 

The goal of this work is to understand which model produces better results considering 

financial time series in the Brazilian stock market (São Paulo Stock Exchange), and although 

ARCH models are considered particularly attractive when dealing with financial time series, 

they might not be the best ones in every case. 

The ARCH/GARCH models will be performed for each of the companies to compare the 

results, and after the full analysis, the results will be compared, considering the results of the 

ARIMA modeling as well. 

As the first step, the model should be run. By doing this procedure, we will be able to 

analyze the residuals and identify if the ARCH family models might be suitable for the 

analysis. We need to confirm the presence of heteroscedasticity in the data series before 

processing to modeling, and this can be achieved by doing the ARCH effect test. Financial 

assets price of stock index series or another high-frequency data will often appear in the 

feature that a large fluctuation usually followed by another large fluctuation, and a small 

fluctuation usually followed by another even smaller fluctuation, this is called the ARCH 

effect (Lin, 2018). 

Appertaining to the outputs of the analysis for the company Ambev: 
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Figure 5.10 - Ambev Regression Outputs 

ARCH models are specifically designed to model and forecast conditional variances. The 

variance of the dependent variable is modeled as a function of past values of the dependent 

variable, in this case the dependent variable are the returns considered in the study. 

The next step is to look at the residuals: 
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Figure 5.11 - Ambev Residuals 

Based on the residuals, the conclusion is that the volatility is constant, and there are no 

periods without volatility. The ARCH test must be performed to validate the conclusions: 

Heteroskedasticity Test: ARCH

F-statistic 1.273428     Prob. F(1,362) 0.2599

Obs*R-squared 1.275975     Prob. Chi-Square(1) 0.2586

 

Figure 5.12 - Ambev ARCH Test 
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With regard to the test, the null hypothesis is that there is no ARCH effect, and the 

alternative hypothesis is that there is an ARCH effect. In this case, the null hypothesis cannot 

be rejected (since the p-value is above 5%), so there is no ARCH effect. If performing the 

ARCH modeling and forecasting, in this case, the results will be poor: 

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.002494 0.001479 1.685569 0.0919

Variance Equation

C 0.000737 6.70E-05 10.99135 0.0000

RESID(-1)^2 0.091523 0.060293 1.517977 0.1290

R-squared -0.000029     Mean dependent var 0.002647

Adjusted R-squared -0.000029     S.D. dependent var 0.028481

S.E. of regression 0.028481     Akaike info criterion -4.271231

Sum squared resid 0.295270     Schwarz criterion -4.239177

Log likelihood 782.4996     Hannan-Quinn criter. -4.258492

Durbin-Watson stat 2.064153

 

Figure 5.13 - Ambev ARCH Outputs 
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Figure 5.14 - Ambev ARCH Forecast 

The results above were provided by the software considering an ARCH (1,0) model. 

The table below shows the summary of the results for the other companies: 

Petrobras Itau S/A Itau/Unibanco Vale

Test

ARCH Effect No No No No

Companies

 

Table 5.6 - Summary of the results 
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Since the time series regarding the companies do not present the ARCH effect, this 

technique proved to be not effective in the case of the Brazilian market for the period under 

study. 

5.5 DISCUSSION 

Dealing with stock market data is always challenging in the sense that several factors might 

influence how the market behaves. The stock market is constantly changing with 

uncertainties. Rapid dissemination of information and fast capital flow will lead to 

fluctuations in the stock price, and the undulating price and the undulating price will affect 

the market in return (Lin, 2018). Considering similar studies in other markets, the ARCH 

models are prevalent and in general, are used more often than other methods, primarily due 

to the characteristics of the data such as high volatility. 

The literature supports the application of ARIMA and ARCH models to analyze and make 

predictions based on time series data. Specific characteristics of the data and even of the 

market being analyzed gives us some clue about which model might be more suitable. For 

financial markets in general, due to the characteristics of the time series, heteroscedastic 

models are very popular. 

The conclusions about the results will be presented next, but some discussion concerning 

the findings must be made. The first factor is that even though heteroscedastic models 

perform well when trying to predict financial markets, in the specific market applied in this 

research, they were not as effective as they usually are, at least taking into consideration the 

literature on the topic. 

Another important point is that even the ARIMA models efficacious for short-term 

predictions are not effective in the long-term. This aspect is another characteristic that the 

theory supports since these models tend to converge to the mean of the time series in the 

long-term and remain at that point for future periods. 

In summary, the research reached the goal of understanding which methods perform better 

in respect of the Brazilian scenario for the time frame studied. The results confirmed what 

the theory states. Heteroscedastic models are not necessarily the best as they usually are in 
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other markets. Besides, even though ARMA models do not provide the best predictions, are 

the ones under study who can provide better results, especially in the short-term. 
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6. CONCLUSIONS 

The conclusion is that in the framework of the Brazilian stock market, ARIMA models 

perform better. Even given the problems with long-term forecasting, modeling the data with 

the ARIMA approach produces better results. The best way to use this approach granted the 

limitations would be to predict short-term with ARIMA and evaluate the quality of the 

predictions in each period. 

The other approach that was considered to model the data was the ARCH approach. 

Nevertheless, the data does not present the features that are necessary to frame the 

analysis using this methodology. As the data analysis has shown, one of the key aspects to 

determine whether the ARCH model family might be suitable or not, namely, the ARCH 

effect is not present in any of the time series studied. Thus, in this case, this methodology 

will not produce good results considering the forecasting. Other time frames can be studied 

in the attempt to identify if the ARCH effect is present, and in this case, this mechanism can 

be used to produce forecasting for stock returns. 

During the period that the study focused on, the Brazilian market behaved very well, without 

any degree of oscillations. This fact can explain why simpler models such as ARIMA were 

more effective in the attempt to forecast stock returns. Usually, concerning other markets, 

ARCH models are more effective during the high oscillations in the market due to crises and 

several other events that might influence this process. In the framework of the Brazilian 

stock market, higher fluctuations during the period would change the results entirely. 
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7. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The study was conducted using the most popular techniques to make predictions in financial 

markets, specifically the ARIMA and ARCH/GARCH models. Nonetheless, several other 

techniques are also being used for this purpose nowadays. Even though financial time series 

is a distinctive case due to its features such as high volatility in some periods, or even 

constant depending on the market, other techniques might produce good results. 

Recently, data mining techniques and artificial intelligence techniques like decision trees, 

rough set approach, and artificial neural networks have been applied to this area (Al-

Radaideh, Assaf, & Alnagi, 2013), and presenting good results. A further study involving 

those time series might be to test a few AI techniques such as Neural Networks and compare 

them with traditional ones, to establish some comparisons on the outputs. In summation, 

more techniques can be analyzed and tested to produce even better results or to prove the 

traditional techniques as being the best to use in the financial field. 

Regardless of the chosen technique, it is important to mention that during the period 

studied the financial time series presented a regular behavior, which means that the results 

would be different if during the period the market was facing instability due to crisis or any 

other event. Hence, the conclusions of the study could have been different in this scenario. 
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9. ANNEXES 

Code Share Type Issued Shares Participation (%)

Total Issued Shares 45.500.926.042 100

ABEV3 AMBEV S/A ON 4.342.975.742 7,435

PETR4 PETROBRAS PN 4.124.795.738 5,752

ITSA4 ITAU/AS PN N1 3.860.753.592 3,525

ITUB4 ITAU UNIBANCO PN N1 3.119.093.161 11,153

VALE3 VALE ON N1 3.001.189.620 7,999

TOP 5 BRAZILIAN COMPANIES SÃO PAULO STOCK EXCHANGE

 

Table 9.1 - Top 5 Brazilian Companies São Paulo Stock Exchange 
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Figure 9.1 - Petrobras Log Return 
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Figure 9.2 - Itau S/A Log Return 
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Figure 9.3 - Itau Unibanco Log Return 
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Figure 9.4 - Vale Log Return 

 

 

Figure 9.5 - Petrobras ARMA Forecast 
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Figure 9.6 - Itau S/A ARMA Forecast 

 

 

 

Figure 9.7 - Itau Unibanco ARMA Forecast 
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Figure 9.8 - Vale ARMA Forecast 

 

 

Data Out-of-Sample Forecast

 

Figure 9.9 - Out-of-Sample Forecast Petrobras 
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Data Out-of-Sample Forecast

 

Figure 9.10 - Out-of-Sample Forecast Itau/SA 

 

Data Out-of-Sample Forecast

 

Figure 9.11 - Out-of-Sample Forecast Itau Unibanco 
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Data Out-of-Sample Forecast

 

Figure 9.12 - Out-of-Sample Forecast Vale 
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