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Resumo 
 

A esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa fatal, afectando de 

0.4 a 1.8/100,000 habitantes. Caracteriza-se pela degeneração dos neurónios motores (NM), mas 

também afeta a microglia. Contudo, a contribuição desta célula na doença não está esclarecida. 

Pretendeu-se: (i) explorar os processos de disfunção dos NM na ELA, nomeadamente a 

dinâmica mitocondrial (fusão/fissão) e transporte axonal (anterógrado/retrógrado), assim como 

mecanismos de morte celular; (ii) avaliar a contribuição da microglia pelo uso de culturas mistas de 

NM-microglia; iii) implementar o modelo de culturas organotípicas de medula espinhal (ME) de 

ratinhos transgénicos para ELA, para avaliar efeitos neuroprotectores pelo ácido glico-ursodeoxicólico 

(AGUDC).  

Utilizaram-se: (i) células NSC-34, uma linha celular de NM, transfectada com superóxido 

dismutase humana (hSOD1) normal (WT) ou com mutação G93A; (ii) células N9, uma linha celular 

microglial, em cultura mista com NSC-34 (hSOD1WT ou hSOD1G93A); (iii) culturas organotípicas de 

segmentos lombares de ME de murganhos com 7 dias (SJL-wt) ou transgénicos, contendo a SOD1 

humana mutada (TgSOD1-G93A), incubados ou não com AGUDC aos 10 dias-in-vitro (DIV). 

Utilizaram-se técnicas de imunocitoquímica, citometria de fluxo e ensaio fluorimétrico/colorimétrico 

para o ATP e óxido nítrico (NO), respectivamente. 

A viabilidade das células NSC-34/hSOD1G93A e da marcação para a βIII-tubulina diminuiu com 

a diferenciação. A apoptose (estádios iniciais) e a libertação de NO (P<0.01) e ATP (P<0.05) 

aumentou. Verificou-se disfunção da dinâmica mitocondrial por maior fissão (P<0.05) e menor fusão 

(P<0.01), diminuindo o transporte axonal retrógrado aos 7 DIV (P<0.01). Nas culturas mistas, a 

microglia aumentou a produção de NO e diminuiu a de ATP (P<0.05). As culturas organotípicas de 

ME foram implementadas e os ensaios com AGUDC sugerem recuperação da viabilidade celular sem 

alteração nos níveis de NO e ATP. 

 Uma melhor compreensão da falência celular na ELA e da eficácia do AGUDC podem abrir 

novas possibilidades terapêuticas para a doença. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Palavras-chave: Degeneração dos neurónios motores, desregulação da dinâmica mitocondrial, 

disfunção do transporte axonal, apoptose, efeitos neuroprotetores do AGUDC. 
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Abstract 
 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an incidence 

rate of 0.4-1.8/100,000 habitants. It is characterized by motoneuron (MN) degeneration, but also 

affects microglia. However, microglia contribution to ALS is not clarified. 

We aimed to: (i) explore the processes leading to MN dysfunction in ALS, namely 

mitochondrial dynamics (fusion/fission) and axonal transport (anterograde/retrograde) changes, 

together with cell death mechanisms; (ii) evaluate the role of microglia in the disease by using mixed 

cultures of mutated MN-microglia; (iii) implement the organotypic culture model from spinal cord (SC) 

of ALS-transgenic mice to evaluate if the neuroprotective glycoursodeoxycholic acid (GUDCA) would 

have benefits. 

We used as ALS models: (i) NSC-34 cells, a hybrid cell line of neuroblastoma and MN 

obtained from mouse SC, transfected with human superoxide dismutase 1 (hSOD1) wild type (WT) or 

with a G93A mutation; (ii) microglial N9 cell line in mixed culture with NSC-34, either with hSOD1WT 

or hSOD1G93A; (iii) lumbar segments of SC from 7-days SJL WT or TgSOD1-G93A (mice), plus or 

minus GUDCA at 11 days-in-vitro (DIV). Immunostaining assays, flow cytometry and 

fluorimetric/colorimetric assays for ATP and nitric oxide (NO), respectively, were used.  

NSC-34/hSOD1G93A cells lose βIII-tubulin and viability along the 7 DIV differentiation, 

evidencing early apoptotic features, particularly at 4 DIV, and release of NO (P<0.01) and ATP 

(P<0.05) at 7 DIV. Alterations in mitochondrial dynamics involved increased fission (P<0.05) and 

decreased fusion (P<0.01), decreasing retrograde axonal transport at 7 DIV (P<0.01). In mixed 

cultures, microglia contributed to NO generation while decreasing ATP production (P<0.05). We were 

successful in implementing organotypic cultures from lumbar SC of ALS mice and assays with 

GUDCA suggest benefits in recovering cell viability without changing NO and ATP. 

Better understanding about MN and microglia failure in ALS and GUDCA efficacy may open 

new therapeutic strategies to the disease. 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Motoneuron degeneration, mitochondrial dynamics deregulation, axonal transport 

impairment, apoptosis, GUDCA neuroprotection. 
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I. Introduction 

 
 

1. Amyotrophic lateral sclerosis (ALS): basic concepts 

 

Amyotrophic lateral sclerosis (ALS) was initially described by French Jean-Marie Charcot, 

considered “the father of neurology” that in 1896 related the progressive weakness, muscle atrophy, 

fasciculation and  muscle spasticity with lesions in both white and gray matter of the central nervous 

system (CNS) (Goetz, 2000). Etymologically, ALS means stiffening (Sclerosis) that begins in nerve 

cells from one specific side (Lateral) due to skeletal muscle atrophy (Amyotrophic) (Gowing et al., 

2008). ALS is described as an adult-onset neurodegenerative progressive disease, which selectively 

affects lower motoneurons (MN) from the ventral horn of spinal cord (SC) (Mitchell and Borasio, 2007) 

and brainstem, and upper MN from the motor cortex (D'Ambrosi et al., 2009) (Figure I.1). By affecting 

MN, this disease causes muscle weakness and fasciculation (twitching muscles) and hyper reflexivity 

of facial muscles (bulbar onset) or limbs (spinal onset), but also largely spares cognitive ability, 

sensation and autonomic nervous function (Redler and Dokholyan, 2012). In this pathology, injury in 

lower MN causes loss of movements in the limbs, neck and body, causing problems of ambulation. On 

the other hand, injury in upper MN causes difficulty in chewing, talking, swallowing and other quotidian 

actions. Interestingly, the first symptoms usually appear at a focal site and later spread along 

contiguous anatomic paths (Redler and Dokholyan, 2012). 

In a more advanced state of the disease, the progressive neuromuscular communication 

failure may culminate in respiratory failure, leading to death (Ferraiuolo et al., 2011). The average 

survival symptom onset is approximately 1 to 3 years after diagnosis (Gowing et al., 2008); however, 

there is a small percentage of patients that have a slower disease progression (Wood-Allum and 

Shaw, 2010). 

ALS is the most common adult-onset MN disorder (Redler and Dokholyan, 2012). The 

worldwide incidence of ALS is 1 to 2 per 100,000 individuals (Ferraiuolo et al., 2011) and has no racial 

or ethnic prevalence. According to Professor Mamede de Carvalho (a reference in the study of ALS 

disease in Portugal, and responsible for consultation in Centro Hospitalar Lisboa-Norte - Hospital de 

Santa Maria), despite the absence of epidemiological studies of ALS in Portugal, it is estimated that 
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there are 400-500 Portuguese patients with such disease. Worldwide, men seem to be more affected 

than women, but this may be simply justified by the lack of attendance of female patients in the 

hospital still occurring in many regions, inclusive in statistical studies (Das et al., 2012).   

 

Figure I.1 – Amyotrophic lateral sclerosis (ALS) selectively affects lower motor neurons (MN) from the 

ventral horn of the spinal cord and brainstem and upper MN from the motor cortex. ALS is characterized by 

weakness, fasciculation and hyperreflexivity of the muscles. Injury in upper MN causes difficulty in chewing, 

talking, swallowing and other actions. Injury in lower MN causes loss of movements in the limbs, neck and body, 

leading to ambulation problems. The disease is characterized by a progressive neuromuscular communication 

failure that culminates in respiratory failure, leading to death.  

 

1.1 The onset: Several hypotheses and no consensus 

 

Despite the huge importance of the correct diagnosis and subsequent therapeutic strategies, 

there is still no consensus if ALS begins with dysfunction in the upper or lower MN. According to 

several authors, there are four types of ALS, taking into account the location where the disorder 

begins (Gordon et al., 2006; Kiernan et al., 2011). They are: (I) limb-onset ALS, with first symptoms in 

the limbs from both upper and lower motoneurons (UMN and LMN); (II) bulbar-onset ALS, presenting 

dysfunction in swallowing with speech and limbs features developing later in the disease; (III) the 

rarest form of primary lateral sclerosis, with the exclusive involvement of UMN and (IV) progressive 

muscular atrophy, with the exclusive involvement of LMN. 
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More recently, some researchers developed the “dying-forward” and “dying-back” hypothesis. 

In the “dying-forward” hypothesis, ALS is seen as a disorder of corticomotor neurons, which connect 

with anterior horn cells monosynaptically, mediating anterograde degeneration of anterior horn cells, 

via glutamate excitotoxicity (Kiernan et al., 2011). In the “dying-back” hypothesis, ALS starts at level of 

neuromuscular junction (NMJ) or within the muscle cells. This last hypothesis proposes that the cause 

is a deficiency of a motor neurotrophic hormone normally released by postsynaptic cells and 

transported by retrograde transport from the presynaptic axon to the soma where it exerts its effects 

(Kiernan et al., 2011).  

Furthermore, recent studies show the involvement of spinocerebellar and sensory pathways 

and neuronal groups within the substantia nigra and the hippocampal dentate granule layer 

(Ferraiuolo et al., 2011).  

 
 

1.2 Genetics and features of the disease 

 

ALS is referred to as a multifactorial disease, apparently having environmental, occupational and 

toxicological components (Das et al., 2012), as well as evidence of a complex interaction between 

genetic and molecular pathways. Surprisingly, there are authors suggesting that lifetime of intensive 

sport or physical activity seems to be a risk factor for ALS (Kiernan et al., 2011).   

It is known that ALS may be sporadic (sALS) in about 90-95% of cases, or genetic/familial (fALS) 

in about 5-10% of cases. However, fALS and sALS are clinically and neuropathologically similar 

(Gowing et al., 2008) and the only clinical feature that distinguishes fALS from sALS is a lower mean 

age of onset in the former (Andersen and Al-Chalabi, 2011).  

fALS can occur more commonly by an autosomal dominant (Ince et al., 2011), but also by an 

autosomal recessive or X-linked inheritance and is a polygenetic disease with a variable penetrance 

(Andersen and Al-Chalabi, 2011). 

The most commonly affected gene is SOD1. In 1991, Brown and his group (Massachusetts 

General Hospital) found that fALS is sometimes linked to chromosome 21q22 (20% of cases of fALS), 

namely due to an autosomal dominant missense mutation in the SOD1 gene (that encodes cytosolic 

Cu/Zn superoxide dismutase 1), which is a mitochondrial and cytoplasmic enzyme, essential for the 

anti-oxidant defenses of the organism, since it is responsible for the detoxification of free radicals 

produced in the mitochondria, namely superoxide anion.  

In recent years, there are described more than 160 mutations in the SOD1 gene (Sabatelli et al., 

2013). It is important to mention that the ability of mutant Superoxide Dismutase 1 (mSOD1) to cause 

neurodegeneration is not linked to a loss of dismutase function (Redler and Dokholyan, 2012). More 

than affecting the activity of the enzyme, mSOD1 seems to induce a gain of toxic function (Yang et al., 

2010) probably related to protein misfolding (Costa et al., 2010), what explains that the knockout 

mouse SOD1 does not present symptoms of ALS (Reaume et al., 1996). Additionally, conformational 

instability and misfolding of the SOD1 peptide result in formation of intracellular aggregates, that inhibit 

normal proteosomic function, disrupting axonal transport systems and vital cellular functions (Kiernan 

et al., 2011). Recent studies showed that in fALS patients and in vitro mSOD1, protein instability and 
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the increase of aggregation rate are correlated with the decrease of survival time (Byström et al., 

2010; Wang et al., 2008). 

Another gene that can be mutated in ALS patients is the TARDBP gene (which encodes TAR 

DNA-binding protein 43 protein, known as TDP-43), a major constituent of the ubiquitinated protein 

inclusions found in surviving MN in most forms of ALS (Ferraiuolo et al., 2011). TDP-43 is responsible 

for 4% of fALS cases and 1.5% of sALS cases (Mackenzie et al., 2011) and, under physiological 

conditions, it functions as an RNA/DNA binding protein, being involved in alternative splicing, 

transcriptional regulation, mRNA stabilization and microRNA processing (Ince et al., 2011). 

Is also described FUS (Fused in Sarcoma), another mutated gene in ALS. FUS is situated in 

chromosome 16, and encodes a RNA/DNA-binding protein implicated in transcriptional regulation, 

alternative splicing, microRNA processing and mRNA transport (Ferraiuolo et al., 2011). The FUS 

gene is mutated in 4% of fALS cases and in less than 1% of the sALS patients (Mackenzie et al., 

2010). The inheritance seems to be autosomal dominant (Vance et al., 2009), but mutations have 

been reported in a large family originating from the Cape Verde islands showing autosomal recessive 

inheritance of ALS (Kwiatkowski et al., 2009).  

 

1.3 Molecular biology of motoneuron disease  

 

Several cellular pathways have been shown to be dysregulated in tissues of patients and cell 

models of ALS, which lead to MN damage and death. The sequence of pathogenic events is unclear 

and most of them are intimately correlated (Costa et al., 2010), forming a complex network that 

contributes to exacerbate the disease. Atrophy and death of MN, altered RNA processing, 

mitochondrial dysfunction, glutamate mediated excitotoxicity, protein aggregate formation, 

endoplasmic reticulum stress, axonal transport dysfunction, oxidative stress and neuroinflammation 

are some of the pathophysiological phenomena known as biomarkers of ALS (Figure I.2). 

Mitochondrial function, axonal transport, glutamate homeostasis, oxidative stress and apoptosis will be 

further discussed in more detail in subsequent sections (1.3.1-1.3.6) due to their relevance for the 

present thesis. In fact, many of the events can be caused for and consequence of each other and they 

create a vicious cycle that results in motor axon disruption of neuronal equilibrium, denervation and 

ultimately MN degeneration in ALS (Ferraiuolo et al., 2011).  

 

Once this pathology is known as a MN disease, it is important to understand why these MN are 

selectively vulnerable in ALS. First of all, MN are large cells with large axonal compartment and large 

terminal arbors, which require an exigent metabolic capacity and a robust cytoskeleton and axonal 

transport efficiency (Ferraiuolo et al., 2011). Moreover, MN have are highly dependent from a normal 

mitochondrial function, which is the main source of reactive oxygen species (ROS) that can lead to 

oxidative stress if dysfunctional. These neurons have particular sensitivity to excitotoxicity and 

dysregulation of intracellular calcium homeostasis since they have a high expression of calcium-

permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, which lack the 

GluR2 subunit (Williams et al., 1997). They also evidence reduced expression of calcium-buffering 
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proteins and high dependence of synaptic glutamate re-uptake transport mechanisms. Other reasons 

are the reduced capacity for heat shock response and chaperone activity that MN seems to have, 

leading to defective correction of protein folding, increasing sensitivity to endoplasmic reticulum stress 

(Saxena et al., 2009) and mitochondria features that predispose the cells to oxidative damage and 

calcium overload (Panov et al., 2011). Ultimately, this defective protein folding associated with the 

high expression of particular proteins (e.g. SOD1), and consequently, a high vulnerability to toxicity of 

mutant proteins (Ferraiuolo et al., 2011) contribute to the accumulation of protein aggregates and 

death of MN.  

In patients carrying mSOD1, it may occurs the upregulation of genes promoting the MN survival 

during the disease process, principally those encoding phosphatidylinositol 3-kinase and phosphatase 

and tensin homolog-protein kinase B pathway (Kirby et al., 2011). The understanding of the properties 

of the neurons that make them more or less resistant to the occurrence of ALS is very important to find 

strategies to increase defense mechanisms and promote new therapies. 
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Figure I.2 – Cellular pathways that are compromised in motor neurons (MN) in amyotrophic lateral 

sclerosis (ALS), leading to neurodegeneration. ALS is a multifactorial disease with a sequence of pathological 

events that remains to be fully elucidated. Accumulation of extracellular glutamate is one of the features in the 

pathophysiology of ALS, leading to excitotoxicity. Moreover, dysregulation of RNA processing and the increase of 

oxidative stress promote the aberrant protein folding of several proteins, including superoxide dismutase-1 

(SOD1), which will form aggregates leading to neurodegeneration. In addition, it leads to proteasome impairment 

and endoplasmic reticulum (ER) stress, that ultimately triggers the activation of autophagy or apoptotic cascades. 

Dysregulation of calcium homeostasis and mitochondrial impairment are also involved in MN degeneration in 

ALS, and can also determine the activation of apoptosis. Dysfunction of axonal transport associated with 

mitochondrial impairment contributes to the energetic depletion of MN. Adapted from Ferraiuolo et al. (2011). 

   

 

 

    1.3.1 Mitochondrial dysfunction  

 

 Mitochondria play a central role in the intracellular production of energy, calcium homeostasis and 

control of apoptosis. The malfunction of this organelle confers pleiotropic effects to the cells, especially 

to neurons with an elevated susceptibility to aging and stress (Shi et al., 2010a). Mitochondria 

dysfunction, by swelling and vacuolization, seems to be implicated in ALS (Martin et al., 2007). Hence, 

the study of the mechanisms underlying these phenomena may contribute to a better knowledge of 

the disease. In fact, mitochondria failure was indicated to include the disruption of calcium 

homeostasis and inadequate levels of ATP (Browne et al., 2006), as well as the production of ROS in 

skeletal muscle biopsies from ALS patients and in mice models carrying the G93A human SOD1 

mutation (mSOD1G93A mice). Moreover, the vacuoles are found to be aggregated in the intermembrane 

space of mitochondria, increasing adhesion to the outer membrane, which leads to selective 

dysfunction of the organelle and impedes the influx of proteins. These features will lead to a 

compromise in energy metabolism that will contribute to the dysfunction of MN (Ferraiuolo et al., 
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2011), together with the activation of caspases, that can trigger apoptotic cell death. In these mSOD1 

mice models, calcium buffering is also deficient in mitochondria and enhances the susceptibility of MN 

to the calcium homeostasis deregulation, that can be associated with glutamate-mediated 

excitotoxicity and with the activation of pro-oxidant and apoptotic factors such as nitric oxide synthase 

(NOS), phospholipases and endonucleases. It is important to notice that calcium-buffering ability is 

particularly deleterious to neurons and skeletal muscle, whose operation requires frequent influx of 

calcium to generate action potentials (Redler and Dokholyan, 2012). 

 

 On the other hand, although most SOD1 is localized in the cytosol, a fraction of mutant SOD1 

(mSOD1) is associated with the mitochondria (Vande Velde et al., 2008) and its accumulation seems 

to exacerbate mitochondrial damage (Ferraiuolo et al., 2011). However, the mechanism that leads to 

this event is still a matter of debate, although  there are some theories: (i) mSOD1 allows the release 

of cytochrome c, activating the apoptotic cascade and opening the pores of the outer membrane of 

mitochondria  (Pasinelli and Brown, 2006); (ii) abnormal interaction of misfolded proteins and 

oligomers with other mitochondrial proteins can promote mitochondrial damage and apoptosis 

following associating with Bcl-2, a pro-survival factor (Redler and Dokholyan, 2012); (iii) aggregation of 

mSOD1 in the outer membrane can result in the disruption of translocation machinery, limiting the 

input of functional proteins into the organelle (Pasinelli and Brown, 2006); (iv) misfolded and 

aggregated mSOD1 also accumulate on the cytoplasmic face of the outer mitochondrial membrane 

and bind directly to the voltage-dependent anion channel, depolarizing the membrane and disrupting 

the normal functioning of complexes I and IV of the electron transport chain (Costa et al., 2010; Liu et 

al., 2009). 

Other events that deserve our attention are mitochondrial fusion and fission (Figure I.3 B). 

Mitochondria are actively transported and they can have defined subcellular distributions that can 

change as necessary. Indeed, this organelle keeps their shape, size, morphology, distribution and 

physiological function through fusion and fission processes (Shi et al., 2010a). An imbalance of these 

two opposing events results in excessive mitochondrial fragmentation or elongation (Chan, 2012). 

Moreover, it is believed that mitochondrial morphology, metabolic function, membrane potential, 

axonal transport, fission and fusion are highly inter-dependent (Shi et al., 2010a). The main 

constituents of the fusion machinery in mammalian cells are Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2) and 

Optic atrophy 1 (OPA1) (Figure I.3 C). Mfn1 and Mfn2, localized in the mitochondrial outer membrane, 

belong to GTPase family and their depletion leads to loss of mitochondria fusion, high fragmentation, 

no mitochondrial tubules and decreased cellular respiration (Chen et al., 2005). Moreover, in humans, 

mutations in Mfn2 cause Charcot-Marie-Tooth neuropathy type 2A (Zuchner et al., 2004), a disease of 

the group of peripheral neuropathies with symptoms such as distal muscle weakness and atrophy, 

less severe sensory loss, and depressed tendon reflexes (Ranieri et al., 2013). OPA1 is a dynamin 

family GTPase and localizes within the mitochondrial intermembrane space and mutations cause the 

most common form of hereditary optic atrophy (Alexander et al., 2000).  

Dynamin-related protein 1 and fission 1 (Drp1 and Fis1, respectively) are the components of 

mitochondrial fission machinery in mammals. Dominant-negative mutants of Drp1 inhibit mitochondrial 
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division and result in highly interconnected mitochondrial tubules (Smirnova et al., 2001). 

Overexpression of Fis1 leads to mitochondrial fragmentation, release of cytochrome c and, therefore, 

apoptosis (James et al., 2003). It is highly suggestive that mitochondrial fusion and fission may be 

influenced in the presence of mSOD1, causing disturbances at the level of mitochondrial dynamics, 

which are linked to disorders such as the Alzheimer’s disease (Shi et al., 2010a). 

 

1.3.2 Glutamate mediated excitotoxicity 

 

 Glutamate is the major excitatory neurotransmitter (NT) in the CNS and its signal is ended by its 

removal from the synaptic cleft by transporters such as EAAT2 (Excitatory amino-acid transporter 2), 

which is mainly expressed by astrocytes (Maragakis et al., 2004). 

There are three groups of glutamate receptors in postsynaptic neurons essential to the physiological 

neurotransmission. These receptors can be divided into metabotropic and ionotropic. Metabotropic 

receptors are G protein-coupled and operate through signal transduction cascades. Ionotropic 

receptors act as ion channels and are divided into three groups: N-methyl-D-aspartate (NMDA), α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and Kainate receptors. NMDA receptors 

are stimulated by calcium and sodium symport entry, and non-NMDA receptors (generic designation 

for AMPA/Kainate receptors) are traditionally seen as mainly permeable to monovalent ions such as 

Na
+
 and K

+
 (Agrawal and Fehlings, 1997). The calcium permeability of AMPA receptors is broadly 

determined by the GluR2 subunit, responsible to making the receptor impermeable to calcium, which 

is extremely important in preventing glutamate excitotoxicity (Ferraiuolo et al., 2011).    

 Excitotoxicity is a neuronal injury which can then result from the excessive activation of glutamate 

receptors, AMPA and NMDA, and may be caused by increased levels of glutamate in the synaptic 

cleft or by the increased sensitivity of the postsynaptic neurons to this NT, leading, in both situations, 

to an increase in intracellular calcium (Ferraiuolo et al., 2011). Disruption of intracellular calcium 

homeostasis, with secondary activation of proteolytic enzyme systems and generation of ROS, 

disruption of mitochondrial function, production of ATP, promotion of transcription factors of pro-

apoptotic genes or suppression of anti-apoptotic genes are key components of excitotoxicity 

(Ferraiuolo et al., 2011) that leads to neuronal death.  

 In fALS and sALS patients, as well as in mutant SOD1 mice models, there are decreased levels of 

functional EAAT2 protein and increased circulating glutamate in the cerebrospinal fluid (CSF) 

(Howland et al., 2002). Although the precise mechanism(s) by which EAAT2 is down-regulated in ALS 

are not yet understood, it is known that this gene deletion induces progressive neurodegeneration, 

while its overexpression was shown to delay symptom onset in ALS mouse models (Rothstein et al., 

2005). EAAT2 is indirectly affected when other associated processes suffer from some dysfunction, 

suggesting that excitotoxicity may be a secondary event in ALS pathogenesis. Indeed, when caspase-

3 is activated, it results in a truncated or inactive version of EAAT2. Oxidative damage to the C-

terminus of EAAT2 diminishes its ability to transport glutamate (Redler and Dokholyan, 2012). In 

addition, prolonged hyperstimulation by glutamate induces cell death by allowing persistent calcium 
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influx through the AMPA receptors, which are specifically abundant in MN (Van Den Bosch et al., 

2000). 

 It is noteworthy to mention that blocking the excitotoxic effects of extracellular glutamate is the only 

strategy approved by U.S. Food and Drug Administration (FDA) that has shown to be able to slow the 

ALS progression. This is the case of riluzole, a benzothiazole derivative, that has several effects, 

including the inhibition of the excitotoxic stress in neurons by slowing glutamate release (due to the 

inactivation of voltage-dependent Na
+
 channels on glutamatergic nerve terminals), as well as the 

activation of a G-protein dependent signal transduction process. Moreover, riluzole seems to be able 

to block some of the postsynaptic effects of glutamate by non-competitive inhibition of NMDA and 

AMPA receptors (Van Den Bosch et al., 2006; Vucic et al., 2013), which showed to cause an increase 

in patient survival but only for few months. 

 

   1.3.3 Axonal transport dysfunction 

 

Axon is a long and slender projection of the neuron that conducts electrical impulses and all the 

molecules that need to be transported (Shi et al., 2010b). Since the genetic material and the majority 

of the protein synthesis machinery are localized to the cell body, it is necessary to exist a way to 

transport all materials (generically known as cargo) from the cell body to the axon terminal, and from 

axon terminal to cell body. The microtubules serve as rails, along the entire axon and secretory 

vesicles are transported to sites of release through the action of microtubule-based motor proteins. In 

neurons, these transport processes are collectively known as axonal transport (Siegel et al., 2006). 

Growth and maintenance of neuronal processes requires timely, efficient delivery of material to 

axonal and dendritic domains. For this, there are the anterograde and retrograde transports. The first 

occurs from cellular body to axon, mediated by kinesin molecular motor protein and the second occurs 

from axon to cellular body, mediated by dynein molecular motor protein (Ferraiuolo et al., 2011).  

However, sometimes the axonal transport does not work properly. In ALS, this dysfunction is 

described mainly due to the formation of neurofilament aggregates, which causes disruption of axonal 

transport that combined with mitochondrial dysfunction causes energetic depletion of distal axonal 

compartment of MN, thus leading to degeneration (Ikenaka et al., 2012) (Figure I.3 A). The disruption 

can occur at anterograde or retrograde level, or simultaneously in both as a consequence of 

decreased mobility of motor proteins or decreased binding of cargos to these motor proteins. The 

three main cargos indicated as biomarkers of MN degeneration by accumulation in distal axon 

compartment are neurofilaments, mitochondria and autophagosomes. The neurofilaments set the 

diameter of the axons, and its aggregation (by phosphorylation or stoichiometric imbalance) is 

pathological. Kinesin or dynein dysfunction leads to accumulation of neurofilamentous swellings 

(spheroids), as in the KIF5A and in the dynactin-1 mutant mice (Ikenaka et al., 2012; King et al., 

2011), which are two models used in the study of axonal transport dysfunction since they have 

mutations commonly linked to the dysfunction of anterograde and retrograde transport, respectively. 
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The disruption of the anterograde and retrograde transport (Hirokawa et al., 2010), leads to  

mitochondrial accumulation in a certain region of the cell, leading to energy depletion elsewhere, 

which can result in cell death (Ikenaka et al., 2012). 

Finally, it is known that the lysosome-autophagosome pathway is responsible by recycling 

intracellular compounds; therefore, its dysfunction may also cause neurodegeneration. Since this 

cargo is transported bi-directionally along microtubules, alterations in both types of transport will cause 

the accumulation of autophagosomes (Ikenaka et al., 2012). 

A deficiency of motor proteins associated with axonal transport can occur due to chronic exposure 

to neurotoxins, such as acrylamide, which has been described as being able to directly inhibit the 

function of kinesin, therefore the anterograde transport (Sickles et al., 2002). Thus, for example, 

mutation with loss of function in KIF5A (kinesin subunit) causes a deficiency in binding of Kinesin I to 

microtubules, leading to failure of anterograde transport (Ikenaka et al., 2012). 

There is also evidence that mutations in SOD1 such as A4V, G85R and G93A, promotes SOD1 

interaction with the complex dynein-dynactin in cell cultures and in affected tissues of ALS mice (Shi et 

al., 2010b). The same authors suggest that mSOD1 and dynein interaction play a key role in the 

formation of large inclusions containing mSOD1. In the mSOD1 mice model, the impairment of axonal 

transport occurs at an early stage of the disease. The mechanisms behind the dysfunction in this 

model are still unknown, but appear to derive from an increase in tumor necrosis factors (TNFs), which 

is observed in mSOD1 mice, leading to the disruption of kinesin function, by a mechanism that 

involves the activation of p38 MAPK pathway, which has  been observed in models of ALS(Shi et al., 

2010b). 
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Figure I.3 – Axonal transport and mitochondrial impairment in amyotrophic lateral sclerosis (ALS). 

(a) Kinesin and dynein dysfunction lead to the accumulation of neurofilaments, which causes impairment of 

axonal transport. Combined with mitochondrial dysfunction by accumulation of mSOD1 and consequent decrease 

in the influx of proteins, the transport axonal causes the energetic depletion of the cell, leading to 

neurodegeneration. In ALS, abnormal activation of protein kinases may cause aberrant patterns of kinesin/dynein 

phosphorylation, leading to its inhibition (Morfini et al., 2013). (b) It is not yet well established the influence of 

mutated Superoxide Dismutase 1 (mSOD1) in these events although it is proposed the existence of imbalance 

between fusion and fission events, resulting in mitochondrial fragmentation or elongation contributing to the 

energetic depletion of the cell. (c) Mitofusin 2 (Mnf2) and Optic Atrophy 1 (Opa1) are proteins responsible by 

mitochondrial fusion and Dynamin related protein 1 (Drp1) by the mitochondrial fission. 

 

 

1.3.4 Oxidative stress 

 

Although the production of ROS is a normal physiological event of human metabolism and have 

important biological functions, slight imbalances can cause oxidative stress. According to Packer and 

Cadenas (2007), oxidative stress consists in a disturbance of redox signaling and control that 

recognizes the occurrence of compartmentalized cellular redox circuits whereby ROS and reactive 

nitrogen species (RNS) levels tend to increase. These species include hydrogen peroxide, superoxide 

and hydroxyl radicals, peroxynitrite (Costa et al., 2010) and nitric oxide (NO), among others. ROS and 

RNS are involved in several cellular functions (Dodson et al., 2013). Although, in normal conditions 

these species play important functions, they can cause severe damage when at higher levels.   

Oxidative stress is also a common feature in ALS and causes structural damage and changes in 

redox-sensitive signaling. Moreover, the role of oxidative stress in ALS aroused great interest because 
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mutations in SOD1, which encodes a major antioxidant protein, account for 20% of fALS cases (Silva 

et al., 2011).  There is also a large body of evidence of oxidative stress in sALS and fALS, as indicated 

by the increase of 3-nitrotyrosine levels, considered a marker of oxidative stress resultant from the 

elevation of peroxynitrites (Costa et al., 2010). 

Several studies showed that oxidative stress interacts with other pathophysiological processes that 

contribute to MN disease, including excitotoxicity (Rao and Weiss, 2004), mitochondrial dysfunction 

(Duffy et al., 2011), protein aggregation (Wood et al., 2003), stress of ER (Kanekura et al., 2009) and 

changes in signaling from microglia and astrocytes (Blackburn et al., 2009; Sargsyan et al., 2005). 

Therefore, an effective reduction of oxidative stress may improve some aspects of the 

pathophysiology of MN degeneration.  However, therapeutics directed to the regulation of the 

oxidative stress have not been yet effective in humans, although  samples of CSF, serum and urine of 

ALS patients evidence markers of free radical damage (Mitsumoto et al., 2008). In addition, 

postmortem tissue from sALS and mSOD1-related fALS cases also present elevated levels of 

oxidative damage to proteins, lipids and DNA (Ferraiuolo et al., 2011). Some mRNA species appear to 

have increased susceptibility to oxidation, such as those involved in the mitochondrial electron 

transport chain, protein biosynthesis, folding and degradation pathways, myelination, cytoskeleton 

proteins, and the tricarboxylic acid cycle and glycolysis pathways (Chang et al., 2008). Also mSOD1 

seems to be particularly susceptible to oxidative translation modification.  

In cellular models of mutant TAR DNA-binding protein 43 (TDP-43)-related ALS, the presence of 

this mutant protein has shown to induce oxidative stress in MN cell lines (Duan et al., 2010). Finally, in 

other nerve cells, namely microglia, mSOD1 seems to increase NADPH oxidase (NOX)-mediated 

superoxide production, resulting in prolongation of ROS production (Harraz et al., 2008). It was 

observed an increase in NOX2 expression in mSOD1 mice and in CNS of ALS patients. It seems that 

in mSOD1 models, as well as in CNS of ALS patients, there is a dysregulation of the erythroid 2-

related factor 2 (NRF-2), which is the main regulator of the antioxidant response (Sarlette et al., 2008). 

It is import to note that the CNS is extremely sensitive to oxidative stress, since it has a reduced 

expression of antioxidant enzymes, high levels of easily oxidized substrates and high production of 

ROS by neurochemical reactions (Carri et al., 2003). 

 

1.3.5 Endoplasmic reticulum stress 

 

Intracellular inclusions related to accumulation of misfolded or unfolded proteins in aggregates are 

hallmarks of several neurodegenerative diseases, including ALS (Vijayalakshmi et al., 2011). 

These events, together with oxidative stress and loss of calcium homeostasis (Rao et al., 2004a; 

Rao et al., 2004b), induce the ER stress. ER is an organelle responsible for maintaining cellular 

calcium homeostasis and synthesize/regulate the synthesis and the folding of proteins. For this, ER 

has resident chaperones that recognize aberrant proteins and correct their folding. This is crucial, 

since non-functional proteins can cause suppression of general translation and ER-associated protein 

degradation (Ferraiuolo et al., 2011). Initially, this mechanism is cytoprotective but a prolonged 

activation can lead to apoptosis (Yamagishi et al., 2007). According to some studies, the protein 
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disulphide isomerase (PDI), an unfolded-protein response (UPR) chaperone existing in ER, is 

activated in mSOD1 mice, where it co-localizes with mSOD1 inclusions, and in samples from sALS 

patients (Atkin et al., 2006; Atkin et al., 2008). It is suggested that ER stress is involved in the early 

stages of MN injury, once PDI and other UPR-induced proteins are up regulated before the disease 

onset in mSOD1 rodents (Atkin et al., 2008). Up-regulated markers of ER stress, such as PDI, are 

also present in the CSF and SC of postmortem samples of ALS patients (Atkin et al., 2008; Sasaki, 

2010). 

Interestingly, the exposure of NSC-34 cells, an hybrid cell line produced by fusion of 

neuroblastoma with mouse MN-enriched primary SC cells and primary spinal MN, to CSF from ALS 

patients led to ER stress, including expression of ER fragmentation, UPR markers and activation of 

caspase-12 (Vijayalakshmi et al., 2011). However, it was not possible to identify the CSF constituents 

that are responsible for such changes.  

UPR activation seems to be cytoprotective, at least in the initial phases of cellular stress. 

Nevertheless, an increase in survival lacking a key UPR transcription factor accompanied by 

increased activation of ER-associated protein degradation, enhanced autophagy and decreased 

mSOD1 aggregation were observed in the mSOD1 mice model (Hetz et al., 2009).  

 

1.3.6 Cell death 

 

Apoptosis is described as the process of programmed cell death which involves a number of 

morphological changes such as decrease in cell volume, nucleus fragmentation, chromatin 

condensation and formation of small apoptotic bodies that are absorbed by the adjacent cells (Figure 

I.4 A). The main purpose is to eliminate the damaged cell without compromising the neighboring cells 

and this cell fate can be derived from two different situations: (i) lack of activation of survival signals 

(trophic factors); (ii) induction by specific signals (Alberts et al., 2008). 

Programmed cell death has been one of the key areas of research in ALS in recent years 

(Muyderman et al., 2009). Therefore, there is well-known evidence that events very similar to 

apoptotic mechanisms are involved in the degeneration of MN (Martin, 1999; Sathasivam and Shaw, 

2005). Moreover, similar events have been detected well before the onset of symptoms in the 

hSOD1G93A mice (Kong and Xu, 1998). Furthermore, there is a massive transient increase in 

mitochondrial vacuoles at the onset of symptoms (Bendotti et al., 2001; Kong and Xu, 1998), 

indicating a direct link between mitochondrial viability and MN degeneration in this disease (Takeuchi 

et al., 2002). To corroborate these studies, overexpression of Bcl-2, an anti-apoptotic protein, 

extended the survival rate of mSOD1 mice, with partial rescue of MN damage (Pasinelli et al., 2004; 

Vukosavic et al., 2000).   

Interestingly, recent evidence has shown that at least two different SOD1 mutations interact with 

Derlin-1, a key component of the cellular machinery responsible for eliminating proteins that do not 

fold correctly in the ER, triggering ER stress and apoptosis signal regulating kinase-1 induced cell 

death (Nishitoh et al., 2008).   
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Although not a mechanism of death broadly described in ALS, necrosis is also a cell death pathway 

(Figure I.4 B). However, unlike apoptosis, is not programmed and results in cellular injury. In this 

case, the cells swell to break, releasing intracellular components, what can cause inflammation 

(Alberts et al., 2008). The SOD1G93A mice model is the one that has features of both apoptosis and 

necrosis, with ‘‘necrotic-like’’ and ‘‘apoptotic-like’’ processes dominating in different cell types and/or 

disease stages (Martin et al., 1998; Martin et al., 2007). 

Finally, autophagy (Figure I.4 C) is a catabolic fundamental process of degradation for 

macromolecules and organelles, crucial for cell and tissue homeostasis (Birgisdottir et al., 2013) and 

lysosome-dependent (Klionsky, 2007; Levine and Klionsky, 2004). Thus, this is an essential process 

for cell survival (Kim et al., 2013). The impairment of this mechanism is implicated in chronic 

neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease and Parkinson’s 

disease (Meredith et al., 2002; Nixon, 2007; Nixon et al., 2005; Ravikumar et al., 2004). Although the 

boosting of autophagy seems to retard the progression of the disease by promoting the removal of 

misfolded proteins it is still unclear whether autophagy activation would be beneficial or detrimental in 

ALS (Song et al., 2012). Mutations that disrupt autophagy (as CHMP2B mutation) are found in some 

ALS cases, supporting the hypothesis of autophagy with a protective role in ALS (Cox et al., 2010; 

Parkinson et al., 2006). By other hand, post-mortem studies and work in animal models have shown 

that the number of autophagosomes is increased in SC affected by ALS (Morimoto et al., 2007; 

Sasaki, 2011). Moreover, whether the accumulation of autophagosomes signifies decreased or 

increased autophagic flux has yet to be established. Furthermore, reported that treatment with lithium 

known to activate autophagy exacerbates ALS progression in mice models (Pizzasegola et al., 2009). 

Trials using rapamycin as an autophagy inducer, also revealed disease progression in ALS mice 

(Zhang et al., 2011). Controversially, other groups have reported the opposite effects with lithium and 

rapamycin in the same model (Fornai et al., 2008; Wang et al., 2012).   
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Figure I.4 – Mechanisms of cell death in amyotrophic lateral sclerosis (ALS). (a) Changes in the levels of the 

Bcl-2 family members of oncoproteins result in a predisposition to apoptosis, with an increase of the activation of 

caspase-1 and -3 and the affected motor neurons exhibit morphological features reminiscent of apoptosis. (b) 

Necrosis or necrosis-like, is observed in the mutant superoxide dismutase-1 (mSOD1G93A) models but it is not 

broadly described in ALS, although this process can trigger inflammatory features as described in ALS. (c) 

Autophagic activation is not well established as beneficial or detrimental in the context of the disease. 

 

1.4. ALS is a non-cell autonomous disease: the role of glial cells  

 

In spite of some reports defending that neuron-specific expression of mSOD1 is enough to induce 

ALS in transgenic mice (Jaarsma et al., 2008), there is ample evidence that death of the MN is non-

cell autonomous and depends on the contribution of the surrounding, glial cells such as astrocytes, 

oligodendrocytes, Schwann cells and microglia. Moreover, glial cells not only react to neuronal lesion, 

but also  have a key role in the pathogenesis of the disease and are targets of hallmark cellular 

processes (Ince et al., 2011) (Figure I.5).  

Gliosis, a nonspecific reactive change of glial cells in response to damage to the CNS, is an early 

pathologic characteristic of ALS in both SC and brain (King et al., 2011). In fact, activation of microglia, 

astrocytes and appearance of lymphocytes is reported in the SC of SOD1 transgenic mice (Beers et 

al., 2006; Kawamata et al., 1992; Liu et al., 2009; Xiao et al., 2007). Furthermore, studies with 

chimeric mice, where the expression of mutation G93A in SOD1 was selectively induced on MN, 

astrocytes or microglia, have demonstrated that mSOD1G93A-overexpressing neurons surrounded by 

healthy glia remained relatively intact; in contrast, healthy MN presented signs of injury when 

surrounded by mutant SOD1G93A - overexpressing glia (Clement et al., 2003). One of the theories that 

accompany the study of this disease is that the onset is marked by protein aggregates in MN and the 

progression and duration are determined by the crosstalk of neighboring cells (Philips and 

Robberecht, 2011). Curiously, studies of Ilieva and collaborators (2009) have demonstrated that 

mSOD1 expression in MN determines the initial timing of disease onset and early progression in some 

cases, but does not have a significant contribution to later disease progression, Therefore, astrocytes 

and microglia seem to play a crucial role for disease progression after its onset. In addition, mSOD1 
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gene excision from microglia and selective reduction in astrocytes significantly slowed disease 

progression (Boillee et al., 2006; Yamanaka et al., 2008). 

 

Figure I.5 – Motoneurons in amyotrophic lateral sclerosis (ALS) and the Influence of non-neuronal 

neighbors. Homeostatic conditions of the motor neurons are ensured by non-neuronal cells, such as astrocytes, 

microglia and oligodendrocytes/Schwann cells. In the symptomatic stages of ALS, there is an amplification of the 

initial damage that culminates in disease progression and spread. Astrocytes have shown to decrease the release 

of neurotrophic factors and to disturb the glutamate metabolism due to the decrease of the excitatory amino-acid 

transporter EAAT2. Consequently, the imbalance of Ca
2+ 

will promote the reticular and mitochondrial stress, 

together with the ubiquitous superoxide dismutase-1 (SOD1) aggregates. After activation, microglia migrates to 

the injury and release toxic factors such as nitric oxide (NO) and tumor necrosis factor alpha (TNF-α), potentially 

triggering neuroinflammation. Moreover, myelin production by oligodendrocytes or Schwann cells is lost and the 

axon length decrease. The interruption of the connection to muscle and axonal transport are also indicated. 

Adapted from Boillée et al. (2006). 
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1.4.1. Oligodendrocytes and Schwann cells 

 

Oligodendrocytes in CNS and Schwann cells in the peripheral nervous system are glial cells of 

ectodermal origin responsible for the formation and maintenance of myelin sheath in axons, thus 

catalyzing the electrical impulse conduction (Siegel et al., 2006). Schwann cells are closely associated 

with MN axons, and participate in axonal development and regeneration. Until now, there are a few 

reports suggesting that these glial cells have a role on ALS pathogenesis. However, loss of compact 

myelin and lamellae detachment, indicators of myelin abnormalities, were observed in SC of pre-

symptomatic SOD1 transgenic rats and aggravated at symptomatic stages (Lasiene and Yamanaka, 

2011). Moreover, more pronounced marks of morphological myelin degeneration were observed in 

fully symptomatic stages of mSOD1 rats (Niebroj-Dobosz et al., 2007). 

In what concerns Schwann cells, there is still some controversy. Interestingly, and in opposite to 

what happens in other non-neuronal cells, the elimination of mSOD1G37R specifically in Schwann 

cells, not only failed to slow disease progression, but also promoted a substantial acceleration of the 

late phase of the disease (Lobsiger et al., 2009). The underlying mechanism suggests a protective 

role to mSOD1 which is possibly due to the dismutation activity that can ameliorate some oxidative 

damage within the cells (Ilieva et al., 2009). However, recently, Wang and colleagues (2012) found 

that knockdown of mSOD1 in Schwann cells of mSODG85R transgenic mice delayed disease onset 

and extended survival indicating that mSOD1G85R expression is neurotoxic.  

 

  1.4.2 Astrocytes 

 

Astrocytes, also known collectively as astroglia, consist in star-shaped glial cells (Siegel et al., 

2006). They are the most abundant cells of the CNS and have an important role in the support of 

neurons, regulation/reuptake of neurotransmitters and ion concentrations in the extracellular space, 

neurovascular coupling, and maintenance of a normal blood brain barrier (BBB) and in the tripartite 

synapse (Fellin, 2009; Perea et al., 2009; Volterra and Meldolesi, 2005).  

Pathological studies have reported that the death of MN in ALS is accompanied by astrogliosis, 

characterized by up-regulation of glial fibrillary acidic protein (GFAP) in dorsal and ventral grey matter 

and in antero-lateral white matter (Ince et al., 2011). It has been also indicated that the development of 

astrogliosis in some models occurs in pre-symptomatic phases, although it varies depending on the 

mutation (Vargas et al., 2008).  

Astrocytes are essential for the removal of glutamate from the synaptic cleft, mainly through 

EAAT2, which has reduced levels in sALS and fALS patients (Van Damme et al., 2007). In addition, 

astrocytes expressing mSOD1 have shown to be more toxic than normal reactive astrocytes (Hovden 

et al., 2013; Pehar et al., 2004) and to release an insufficient amount of neurotrophic factors crucial to 

the neuronal balance, such as glial-derived factor, brain derived neurotrophic factor, cilliary 

neurotrophic factor and vascular endothelial growth factor (Dewil et al., 2007; Ekestern, 2004). 

Moreover, astrocytes have demonstrated a disturbance of glutamate metabolism in chick SC astroglial 



Introduction 

 

18 
 

cultures, probably due to the up-regulation of metabotropic glutamate receptors (Anneser et al., 2004), 

which can be the cause of the excitotoxicity in these models.   

Also, astrocytes respond to toxic factors  in the CSF of ALS patients by undergoing morphological 

transformation from flat to process bearing and elevated expression of GFAP, as well as S100A6 and 

S100B proteins (Shobha et al., 2010). Recently, a subpopulation of astrocytes from SC of 

symptomatic mSOD1G93A rats has revealed a unique pattern of astrocytic markers, aberrant 

phenotypic features and an increased proliferation rate (Diaz-Amarilla et al., 2011) that may represent 

an unknown astrocytic phenotype associated with later stages of ALS progression. 

 

 

1.4.3 Microglia 

In 1932, Pio del Rio-Hortega introduced the concept of microglia, the lower glial cells, as a defined 

cellular element of the CNS. The postulate of del Rio-Hortega states the following: 1) Microglia 

penetrates the brain during early development; 2) When they invade the brain, cells have amoeboid 

morphology and have a mesodermal origin; 3) Microglia uses vessels and white matter tracts as 

guiding structures for migration and enter all brain regions; 4) Here, they transform into a branched, 

ramified morphological phenotype in the more mature brain (known today as the resting phenotype); 

5) In the mature brain, they are found almost always dispersed; 6) Each cell seems to have a defined 

territory; 7) In pathological situation, these cells undergo a transformation; 8) Cell that suffers this 

transformation acquire amoeboid morphology similar to the one observed early in development; 9) 

These cells have the capacity to migrate, proliferate and phagocytize.  

Surprisingly, all of these 9 statements are perfectly valid today (Kettenmann et al., 2011). The 

consensus is general: Microglial cells are the resident macrophages of the CNS (Evans et al., 2013), 

derived from progenitors that have migrated from the periphery and are from 

mesodermal/mesenchymal origin (Chan et al., 2007). Moreover, although microglia are a variety of 

macrophage, their appearance are absolutely different (Kettenmann et al., 2011).  

In rodents, microglia differentiate from a primitive macrophage population produced by the yolk sac 

(Alliot et al., 1999; Ginhoux et al., 2010). Then, in colonization of the brain, its recruitment and 

differentiation are suggested to occurring in hematopoietic waves during the embryonic and postnatal 

periods (about 10 days in rodents and in the early part of the second trimester in human) (Chan et al., 

2007). In the adult animals there is very little exchange between blood and brain parenchyma. 

However, it was reported that after BBB damage, a subpopulation of monocytes can enter the brain 

and transform into microglia (Mildner et al., 2007). Moreover, in healthy conditions of intact brain, the 

microglial cells exist as a stable population and may derive from two different sources: one, is derived 

from progenitors that are of myeloid/mesenchymal origin, but not necessarily monocytes; and the 

second population which represents a developmental and transitory form of fetal macrophage (Rezaie 

et al., 2005). 
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In ALS, the injury by the accumulated debris, excessive aberrant protein and neurodegeneration 

(Harry, 2013), triggers activation of resident microglia into a phagocytic phenotype trough a strictly 

regulated process. After this activation, microglia migrates to the local of lesion. Here, microglia act as 

the first and main form of active immune defense in the CNS. For example, when activated, microglia 

is scavenging the CNS for damaged neurons, infectious agents and others threats (Gehrmann et al., 

1995).  

Due to the interest of microglial cells in the ALS context, this topic will be further explored in the 

next chapter. 

 

1.5 Neuroinflammation: The Breaking Point 

Another hallmark of ALS is the neuroinflammation (Figure I.6), which involves glial activation and 

infiltration of peripheral immune cells (Papadimitriou et al., 2010).   

In spite of the main goal of neuroinflammation to constraint the damage that can have different 

origins, activated microglia are capable to release cytotoxic substances such as H2O2 and NO. These 

compounds can damage neighbor cells and lead to neuronal death. Over activated microglia can also 

secrete proteases that catabolize specific proteins that cause cellular damage, such as TNF-α, while 

cytokines such as IL-1 promote demyelination of neurons. Moreover, microglia can harm neurons 

through NMDA receptor-mediated processes by secreting glutamate and aspartate. The purpose of 

these cytotoxic secretions is to destroy the infected neurons and eliminate the threat, but  it can also 

cause serious collateral damage (Gehrmann et al., 1995), leading to further neuronal dysfunction and 

death, originating  a vicious cycle known as neuroinflammation. 

By other side, neurons produce several inhibitory signals, as a CD200 (that provides an inhibitory 

signal for macrophage lineage in several tissues) and CX3CL1 or fractalkine (a chemokine that attract 

microglia and T cells) that can revert the response of microglia and prevent their neurotoxic activation 

(Cardona et al., 2006; Hoek et al., 2000; Lewis et al., 2012). Evans and colleagues (2013) verified that 

by inducing the knockout of fractalkine receptor (CX3CR1) there was dysregulated microglial 

responses. 

Similar to what occurs in the ER stress response, the neuroinflammatory process seems to be both 

protective and harmful during neurodegeneration (Liao et al., 2012). Several studies reported the 

presence of pro-inflammatory cytokines in the CSF of ALS patients (Kuhle et al., 2009) and the lack of 

CD4 in mSOD1 mice (Beers et al., 2008), which aggravate neurodegeneration and reinforces  that the 

inflammatory reactions have an impact on the ALS neurodegeneration (Moser et al., 2013). 
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Figure I.6 – Neuroinflammation in amyotrophic lateral sclerosis (ALS): neuroprotection vs. neurotoxicity. 

In order to combat the threat, microglia release cytotoxic substances, such as tumor necrosis factor-α  (TNF-α), 

hydrogen peroxide (H2O2), interleukin-1 (IL-1), nitric oxide (NO) and other causative factors that accelerate 

neurodegeneration. With the increase in neurodegeneration, more microglia is activated and more cytotoxic 

substances are released. On the other hand, neurons release CD200 and CX3CL1 that may revert microglia 

reactivity, thus reducing neurotoxicity.  

2. Microglia: Neuroprotective or contributors for neurodegeneration in ALS?  

As we have seen about neuroinflammation, it is not clear if microglia play a neuroprotective (Boillée 

et al., 2006; Weydt et al., 2004) or neurotoxic role (Lalancette-Hebert et al., 2007; Simard and Rivest, 

2007; Zhao et al., 2010) in ALS disease. From one point of view, microglia are neuroprotective, 

functioning as a sensor that controls the surrounding environment and acts directly on the injury, thus 

playing a role in primary immune CNS response. For the other side, microglia send signals to their 

neighbor cells, which can exacerbate the response to injury, increase neuroinflammation and 

consequently neurodegeneration. Therefore, it is not consensual if microglia is an ally or an enemy in 

the fight against ALS pathology. Moreover, after neuroinflammation, microglia have a regenerative 

effect on neural tissue. These cells secrete anti-inflammatory cytokines and recruit neurons and 

astrocytes in the affected region. Without the support of microglial cells, remapping and regrowth of 

the affected areas would be an extremely slow process (Gehrmann et al., 1995; Ritter et al., 2006). 
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2.1 The different phenotypes 

One of the main features of microglial cells is their plasticity, which is a crucial strategy for the 

proper functioning of the immune defense of the nervous system (Gehrmann et al., 1995). Microglia 

can change their structure based on its current location and function (Figure I.7 A). The different 

phenotypes experienced by microglia are defined based on morphological, molecular, and functional 

characteristics (Colton and Wilcock, 2010). In physiologic conditions, microglial cells have long 

branching processes and a small cellular body (Kettenmann et al., 2011), a condition known as a 

“resting state”, where the cell body of ramified microglia remains relatively static. Nevertheless, their 

branches are constantly moving and surveying the environment, thus contributing to the maintenance 

of the homeostasis, through cross-talk with astrocytes and neurons (Evans et al., 2013; Philips and 

Robberecht, 2011). In the resting state, branches have a huge sensitivity to slight changes in 

physiological conditions. It is still a matter of debate which is the primary cause that induces the 

transformation for "resting" phenotype, although in cell culture studies, astrocyte conditioned medium 

increased ramification of cultured blood monocytes (Sievers et al., 1994). Combining astrocyte 

conditioned medium with ATP or adenosine yield a phenotype with more extensive ramification, 

indicating that purines are not the only ramification-inducing factors of microglia (Wollmer et al., 2001). 

Other candidates are cytokines released from astrocytes, such as transforming growth factor-β (TGF-

β), macrophage colony-stimulating factor (M-CSF) and granulocyte macrophage colony stimulating 

factor (GM-CSF) (Schilling et al., 2001). Activation of chloride channels also seems to be necessary 

for this morphological transformation (Kettenmann et al., 2011). 

 In case of disturbance of nervous system homeostasis, microglial cells change their 

phenotype to an activated stage, which can be divided into M1 and M2 phenotypes (Gordon, 2003; 

Henkel et al., 2009). Classical activation of microglia consists in the change to the M1 phenotype, 

which is mainly neurotoxic, characterized by the release of pro-inflammatory cytokines, such as TNF-

α, IL-1β and interleukin-12 (IL-12), chemokines, proteases and redox species like NO (Durafourt et al., 

2012; Henkel et al., 2009; Kraft and Harry, 2011; Nakajima et al., 2003; Nayak et al., 2010); and the 

alternative activation consist in the change to the M2 phenotype,  which is mainly neuroprotective and 

is associated with resolution of tissue homeostasis (Hovden et al., 2013), aiming the repair of damage 

tissues. The production and release of anti-inflammatory cytokines like IL-4, IL-13, IL-10 and 

transforming growth factor-beta (TGF-β) is the predominant induction signal (Colton, 2009; Glezer et 

al., 2007; Ledeboer et al., 2000; Suzuki et al., 2005).  

During their activation, microglia undergo through some morphological alterations, such as the 

thickening and retraction of branches, uptake of major histocompatibility complex (MHC) class I/II 

proteins, secretion of cytotoxic factors and secretion of recruitment molecules and pro-inflammatory 

signaling molecules.  

There are several factors that may activate microglia: cell necrosis factors, glutamate receptor 

agonists, lipopolysaccharide (LPS), pro-inflammatory cytokines, and changes in extracellular 

potassium (a marker of cellular disruption). Pro-inflammatory mediators including monocyte 

chemoattractant protein 1 and IL-8 are present in the CSF of patients with ALS (Mantovani et al., 

2009).  



Introduction 

 

22 
 

When activated, microglia can be found in the motor cortex and SC of ALS patients and the 

intensity of this activation seems to be related with the severity of upper MN injury. In addition, it is 

often associated with infiltration of T lymphocytes (Lasiene and Yamanaka, 2011; Philips and 

Robberecht, 2011). 

According to Beers and colleagues (2011), until the end-stage of ALS microglia presents a 

neuroprotective role, whereupon levels of pro-inflammatory cytokine IL-1β and TNF-α increase, and 

levels of NADPH oxidase are increased. Thus, in mSOD1 mice model, during initial stages of ALS, 

microglia has an M2 phenotype that supports neuronal survival. Nevertheless, with the advance of the 

disease course, microglial activation became skewed towards an M1 phenotype (Lewis et al., 2012).   

There is also another phenotype with anti-inflammatory profile, known as acquired deactivation, 

that consists in an phenotype with distinct gene profile from alternative activation but which also down-

regulates the response of innate immune system. Since this state is anti-inflammatory, it inhibits the 

production of pro-inflammatory cytokines and increase the production of anti-inflammatory cytokines 

(Colton, 2009).   

Finally, it was discovered the dystrophic or senescent microglia, which has an abnormal 

cytoplasmic structure, such as disbranched, atrophic, fragmented or unusually tortuous processes, 

with spheroidal or bulbous swellings (Streit, 2006). An hallmark of this phenotype is the fragmentation 

of the cytoplasm in microglia, a process called cytorrhexis (Streit and Xue, 2009), which illustrates the 

loss of microglia functionality The incidence of this form of microglia increases with the aging and have 

been reported in neurodegenerative diseases such as Alzheimer’s disease or schizophrenia, 

indicating microglial deterioration in these diseases (Streit, 2006).  

 

2.2 The migration to the injured tissue 

 

The migration is a crucial event for the microglial cells to travel to the lesion sites and is triggered 

by the gradient formed by several chemotactic agent, such as purines, neuregulin 1 (NRG1), 

complement components, and chemokines such as Chemokine (C-C motif) ligand (CCL2) which is 

exclusively expressed in damaged neurons (Figure I.7 B).  Adenosine-5'-triphosphate and adenosine 

diphosphate (ATP and ADP, respectively) have been widely studied as a chemoattractants of 

microglial cells since that these nucleotides can diffuse rapidly and was been shown that they can 

induce membrane ruffling and attract microglia (Calvo and Bennett, 2012). This process involves the 

G protein-coupled receptor P2Y12 (Honda et al., 2001), which when are knocked out in mice seems to 

decrease the ability of microglia to migrate to the site of injury (Haynes et al., 2006). 

 

2.3 Phagocytosis  

 

Phagocytosis is a form of endocytosis involving the vesicular internalization of solid particles, such 

as pathological agents or cell debris (Napoli and Neumann, 2009) and is also a process undertaken by 

microglia, as they derived from myeloid lineage and share various similarities with peripheral 

macrophages (Figure I.7 B).  
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Phagocytosis in the CNS is initiated by the release of “find-me” signals, which recruits microglia to 

the site of injury. Upon recognition of cell-surface signals on target cells, microglia initiates the uptake 

and subsequent responses (Neher et al., 2012). Though phagocytic process, microglia is able to 

engulf the debris, such as damaged or apoptotic cells, namely neurons, DNA fragments or plaques, 

and secrete either pro- or anti-inflammatory cytokines, depending on the type of receptor that has 

been stimulated. As described by Napoli and Neumann (2009), the uptake of apoptotic cells occurs 

with production of anti-inflammatory cytokines like TGF-β thus restraining inflammation. However, 

microglia can recognize pathogens-associated molecular patterns (PAMPs) of pathogenic agents by 

toll like receptors (TLRs) pathway, leading to a release of pro-inflammatory cytokines, such as tumor 

necrosis factor-α (TNF-α) or  NOS-2 (Napoli and Neumann, 2009). Interestingly, phagocytosis is 

impaired in dysfunctional situations. Moreover, this phagocytic microglia interacts with astrocytes and 

neural cells to constrain the damage as quickly as possible, avoiding harmful effects to healthy cells 

(Aloisi, 2001; Gehrmann et al., 1995). 
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Figure I.7 – Microglial cells experiment different phenotypes, depending of the surrounding environment 

and neuronal injury. (a) In basal conditions, microglia acquires a resting/vigilant phenotype, with long branches 

in constant movement to monitor the environment. It is believed that this phenotype is induced by adenosine 

triphosphate (ATP), transforming growth factor-β (TGF-β), macrophage colony-stimulating factor (M-CSF) and 

granulocyte macrophage colony stimulating factor (GM-CSF), but this is still a matter of debate. In case of injury, 

microglial cells change their phenotype to an activated stage. M1 phenotype (classic activation) is mainly 

neurotoxic and is characterized by the release of pro-inflammatory cytokines and reactive oxygen species (ROS). 

M2 phenotype (alternative activation) is mainly neuroprotective and is associated with the achievement of tissue 

homeostasis. M2 microglia release anti-inflammatory cytokines such as IL-4, IL-13, IL-10 and TGF-β. (b) 

Microglial cells acquire amoeboid morphology. They response to the gradient formed by chemotactic agents, such 

as neuregulin 1 (NRG1) and chemokine (C-C motif) ligand (CCL2), expressed by injured MN, and migrate 

towards the site of lesion. After arrival at the lesion site, microglia engulf the debris upon recognition of cell-

surface signals and secrete pro- and anti-inflammatory cytokines, depending on the type of receptor that has 

been stimulated. The uptake of apoptotic cells occurs with the production of anti-inflammatory cytokines, such as 

TGF-β, thus restraining inflammation. In case of pathogenic agents, microglia recognizes its pathogen-associated 
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molecular patterns (PAMPs) by toll-like receptors (TLRs), leading to the release of pro-inflammatory cytokines, 

such as tumor necrosis factor-α (TNF-α), and activation of nitric oxide synthase-2 (NOS2). 

2.4 The role of microglia in ALS  

 

The activation of microglia and the infiltration of lymphocytes indicate an inflammatory event in the 

CNS pathology of ALS (Carpentier et al., 2008). As previously described, one of the most accepted 

hypotheses is based on the formation of protein aggregates as a first dysfunctional cellular process of 

ALS that mediates the other ones. Then, microglia, astrocytes and the innate system including 

monocytes, macrophages and natural killer cells respond as a first line of defense. It is believed that, 

this response is triggered by mSOD1. Then, the adaptive immune system is activated. Throughout the 

progression of the disease, CD4
+
CD25

+
 regulatory T cells (Treg, secreting anti-inflammatory 

cytokines) and other neuroprotective cells decrease (Kipnis et al., 2004), M2 microglia phenotype 

switch to M1 microglia phenotype and the number of CD8+(a receptor predominantly expressed on 

the surface of cytotoxic T cells) increase (Hovden et al., 2013). In ALS, the activation of microglial cells 

was shown by the discovery of the signal transducer and activator of transcription-3 (STAT3) in post 

mortem samples of ALS patients (Shibata et al., 2009). STAT3 is a signal transducer and activator of 

transcription that mediates cellular responses to IL-6 family members, in the development, 

differentiation, immunity, metabolism and cancer (Grivennikov and Karin, 2010). 

Moreover, Meissner and colleagues (2010) concluded that IL-1β is an important pro-inflammatory 

cytokine released by microglia in mSOD1G93A mice that activate M1 phenotype, accelerating the 

progression of the disease (Meissner et al., 2010). In addition, these events can be reversed by 

administration of the IL-1 receptor antagonist. The mSOD1 protein can also act as a powerful activator 

of microglia. Indeed, the presence of this mutant protein reduces the expression of neurotrophic 

factors such as IGF-1 and BNDF produced by microglia, which will have a deleterious role in ALS MN 

(Evans et al., 2013). Using in vivo models, microglial proliferation and activation was shown to occur at 

earlier disease stages and to increase with ALS progression (Moisse and Strong, 2006). However, 

recently, the elimination of mSOD1 from microglia revealed to not change the onset but to slow 

disease progression by  50% (Ferraiuolo et al., 2011).These findings suggest that the onset and the 

progression of the disease have different features, which opens new horizons for target driven  

therapies.  

 

     3. Different models for the study of neurodegeneration in ALS  

 

The study of human neurodegenerative diseases evidences the impossibility to study the cellular 

and molecular pathological events in real time or safely and repeatedly remove tissue for analyze 

(Turner et al., 2013). The existence of different experimental models in ALS may is considered a 

useful tool for providing knowledge at both cellular and molecular levels, to thereby develop more 

effective therapies.  

In this chapter, we will just focus on the experimental models that will be used in the studies that 

comprise the present Thesis, namely MN-like monocultures, SC organotypic cultures and transgenic 
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SOD1 animal models. However, there are much more models used in ALS research, such as worms, 

flies, fish, mice, rats (Muyderman et al., 2009) and diverse cell types (Cashman et al., 1992). 

 

 

3.1 Cell models 

 

3.1.1 NSC-34 cells 

 

NSC-34 cell line, a hybrid cell line, is a fusion of MN-enriched embryonic day 12-14 of SC cells with 

aminopterin-sensitive mouse neuroblastoma (Cashman et al., 1992). NSC-34 cells, are considered a 

model of ALS when transfected with human SOD1 containing the mutation in G93A, revealing some 

features of MN degeneration, such as mitochondrial dysfunction (Raimondi et al., 2006) and Golgi 

apparatus fragmentation (Gomes et al., 2008). This cell line is used to dissect the complexity of 

mechanisms that involve mSOD1 toxicity (Atkin et al., 2006; Cozzolino et al., 2008; Rizzardini et al., 

2005). 

The establishment of a cell line of immortalized neurons in culture is a major challenge and due to 

its intrinsic properties, such as their null capacity to proliferate when they are completely differentiated. 

Thus, the use of a hybrid cell line of neuroblastoma (with high proliferative capacity due to the 

presence of the gene N-myc, an oncogene involved in cell proliferation) together with SC MN solved 

the  problem (Cashman et al., 1992) Morphological and physiological properties of such cells reveal 

the suitability of the model when it is considered properties as  acetylcholine synthesis, storage and 

release; extension of processes; generation of an action potential; formation of contacts with cultured 

myotubes and expression of neurofilament proteins among others (Cashman et al., 1992; Tovar et al., 

2009). 

When accessing the viability of NSC-34 after exposure to a selection of neurotoxic chemicals, it 

was observed that the cells respond to all of them (Durham et al., 1993). The similarity in the 

production of the action potential to several ion channel blockers between this cell line and that of 

primary MN in culture, corroborate NSC-34 cells as an effective model for studying neurotoxicity in 

ALS. Most important is that NSC-34 cells adhere specifically to the leucine-arginine-glutamate motif of 

S-laminin, what shows that these hybrid cells uniquely express MN phenotypic features. This property 

was not revealed by most neural cell lines (Hunter et al., 1991). However, NSC-34 cells are not 

suitable to evaluate the effect of agents on the synaptic transmission (Durham et al., 1993). 

It has been recently established in our lab that NSC-34/hSOD1G93A cells reveal features of 

mitochondrial dysfunction, energy impairment, oxidative stress, as well as apoptosis and 

inflammatory-related processes. All of these events are common processes in the transgenic mice 

model and in ALS patients. Studies in our laboratory have also shown that this model may be used to 

evaluate the therapeutic efficacy of compounds, such as the glycoursodeoxycholic acid (GUDCA), a 

bile acid-glycine conjugate. Based on the overall aspects mentioned,  we decided to implement in our 

laboratory a model of mixed cultures to analyze the interaction between MN-like cells (NSC-34) and 

N9 (a microglial cell line), as will be discussed below. 
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3.1.2 Organotypic culture cells 

 
The major problem of the most in vitro models is the difficulty to mimic what actually occurs in the 

organism. Although primary cultures and mixed cultures give valuable information on the cell function 

and interconnectivity, cellular processes should not be considered isolated, but rather integrated in a 

system that involves cell cross-talk and signals from the entire neighborhood. The neurons coexist in a 

complex network where the surrounding cells shape the biochemical, electrophysiological and 

morphological features between themselves and the remaining cells around (Tovar et al., 2009). 

Therefore, the organotypic cultures are a closer model to in vivo, since we do not isolate one cell type 

in particular but, instead, we preserve the tissue structure when culturing the entire SC slice. 

According to Tovar and colleagues (2009), these sections can be cultured for 3 months, keeping up 

the metabolic capacity of MN, such as choline acetyltransferase and acetylcholinesterase activities 

(Delfs et al., 1989). Moreover, the use of SC cultured slices have benefits over animal models, such 

as the easy access and precise control of the extracellular environment, which makes the model 

powerful to screen the efficacy of potential medicines (Su et al., 2011). 

 

3.2 Animal models 

 

Mice are widely used as an animal model in biological sciences, since they react to a disease 

induction or treatment as humans. In general, the closer the organism is to the man in the evolutionary 

tree, the better will be the model. However, careful is still necessary, since even non-human primates 

are not entirely predictive for human outcomes in drug development studies (Kari et al., 2007). In 

general, a model is robust when the disease (spontaneous or induced) has similarity with the human 

disease and this similarity is significant in the context of the study. Rodents are largely used as a study 

model in neurodegenerative diseases because rodents and humans use the same neurotransmitters, 

receptors, proteins for synaptic vesicle release and recycling and similar signaling mechanisms. 

The recent discovery of ALS-associated mutations in the DNA-binding protein 43 (TDP-43) gene 

lead to the generation of alternative animal models of ALS, since these mutations are associated with 

both sALS and fALS (Xu et al., 2011). Nevertheless, mutants of human SOD1 mice are still the most 

common model to investigate disease pathogenesis (Tovar et al., 2009). The success of mice 

expressing mutant proteins associated with fALS (such as mSOD1) has become a powerful tool to 

study mechanisms of MN loss, particularly with different forms of SOD1 (Van Den Bosch, 2011). A 

huge advance in the ALS research was the discovery that about 20% of fALS cases were due to 

mSOD1 (Rosen, 1993). This discovery spurred the creation of a transgenic mice expressing human 

mSOD1. It was in 1994 that Gurney and colleagues developed the first transgenic mice expressing 

human protein with the G93A mutation, and this was the first obtained lab model based on a known 

cause of ALS (Gurney et al., 1994). This transgenic mouse overexpressing mSOD1G93A was obtained 

by genetic engineering, inserting multiple copies of human genomic SOD1 into the mouse genome. 

Moreover, these mice show symptoms similar to humans such as the progressive hind limb weakness 

that culminate in paralysis and ultimately death, as a result of MN injury (Van Den Bosch, 2011). 
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Besides these first transgenic mice, several other models that overexpress human SOD1 were 

created, but with other mutations (G37R, G85R, G86R, D90A). Interestingly, these new mice have 

demonstrated identical phenotype as the mSOD1G93A (Bruijn et al., 1997; Jonsson et al., 2006; Ripps 

et al., 1995; Wong et al., 1995) but comparatively are not so often used. Indeed it was in the mSOD1 

model that most studies evidenced the non-cell autonomous neurodegeneration (Boillée et al., 2006), 

excitotoxicity (Corona et al., 2007), apoptosis (Hervias et al., 2006), protein aggregation (Wood et al., 

2003), axonal dysfunction (Sasaki et al., 2005), mitochondria failure (Cassina et al., 2008) and both 

endoplasmic reticulum (Nishitoh et al., 2008) and oxidative stress (Harraz et al., 2008). 

The mSOD1 mouse model was also widely used to access new therapies, and minocycline is a 

good example of this. This drug was shown to inhibit microglial activation, a property also evidenced 

by other studies using two distinct mSOD1 mouse models developed in the same year (Kriz et al., 

2002; Van Den Bosch et al., 2002; Zhu et al., 2002). 

In spite that mSOD1 mice and rats are accepted as optimal models to evaluate selective MN death, 

they have been also disappointing once no effective drugs in rodents revealed to be effective in 

clinical trials with humans (Van Den Bosch, 2011). 

 

4. Therapeutic strategies: Yesterday, today and tomorrow 

 
From the nearly two decades, knowledge about ALS has evolved considerably. Now, we know 

more about genetic causes in fALS cases, although not so much about sALS (Venkova-Hristova et al., 

2012). So far, researchers in the ALS field have joined efforts to find an effective therapeutic agent for 

the disease. However, to date, the only FDA approved drug is riluzole (Kiernan et al., 2011).  

A challenge is still to distinguish which therapies are delaying the onset of the disease versus 

prolonging the compensatory pre-clinical period, in which the disease process is progressing in the 

absence of clinical signs of motor dysfunction. For example in mSOD1 mice, it is reported that several 

anomalies are present before the onset of clinical symptoms (Ferraiuolo et al., 2011), such as 

behavioral motor changes (Bories et al., 2007; van Zundert et al., 2008), MN electrophysiological 

dysfunction (Mead et al., 2011), mitochondrial swelling and vacuolization (Bendotti et al., 2001) and 

transcriptome changes in an attempt to increase MN energy provision (Ferraiuolo et al., 2007).  

The progression of the disease constitutes a huge therapeutic problem. For example, patient 

groups are very small and often include individuals in different disease stages, making difficult to 

obtain strong conclusions from the clinical trials. Moreover, drugs that showed benefits in animals 

when administered pre-symptomatically or before ALS onset, failed in humans since that diagnosis is 

not confirmed before  symptom emergence (Hovden et al., 2013). The setbacks that occur during the 

clinical trials led to the conclusion of a combination therapy, as a better solution. However there is still 

not an effective combination due to the complexity of the disease. Furthermore, despite the immune 

system be considered a promising target, it is possible that the action of at one specific target may be 

beneficial in certain ALS phases, while  dangerous in others (Hovden et al., 2013).   

According to several researchers, a perfect combination cocktail may combine drugs that target 

protein aggregation, immune modulation and glutamate excitotoxicity (Hovden et al., 2013). In 

summary, research on ALS has been characterized by same success, but also frustration. 
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Nevertheless, we must emphasize that scientific progress has been continuous. We are probably 

closer to find new hallmarks for clinical success and to further carry that success to other 

neurodegenerative disorders (Venkova-Hristova et al., 2012).  

 
 4.1 Microglia as a therapeutic target in the future 

 

The complexity of the cross-talk between microglia and neurons and the role of microglia in the 

immune system and neuroinflammation suggests that microglia is a very promising target for the 

therapeutic advances against ALS progression.  

Indeed, studies with the transgenic mice with human mSOD1, have shown that diminishing the 

mutant levels of mSOD1 in microglia had little effect on the early disease phase but slowed later 

disease progression (Boillée et al., 2006). Furthermore, elimination of microglia using clodronate 

liposomes, which specifically target monocyte/macrophage system (such as microglia cells), and 

addition of new microglia significantly slowed disease progression and prolonged survival of the 

transgenic ALS mice after bone marrow transplantation (BMT). So, replacement of microglia by a 

healthier cell may ameliorate neural cell microenvironment; however the mechanisms and functional 

implications of this replacement need to be further investigated (Lee et al., 2012). Nevertheless, 

improvement by BMT may not be efficient enough since microglia are replaced by tissue-resident 

microglia rather than by bone marrow cells (BMCs) (Ohnishi et al., 2009).  

 

4.2 GUDCA: Beneficial effects in ALS 

 

So far, there is no successful drug for ALS treatment and search for novel therapeutic agents 

that can prevent or delay MN degeneration is of a great importance. In this context, we propose to 

study the efficacy of glycoursodeoxycholic acid (GUDCA), a conjugated species of ursodeoxycholic 

acid (UDCA) with glycine, on the prevention of neuronal degeneration in the cellular models of ALS 

since it showed ability to counteract neuronal death and synaptic changes in models of 

neurodegeneration, such as neonatal unconjugated bilirubin encephalopathy (Silva et al., 2012).  

Bile acids are acidic steroids synthesized in hepatocytes from cholesterol. Primary bile acids, 

the major constituents of bile, are produced in the liver and when secreted into the intestine, they can 

be metabolized into secondary bile acids where they play crucial roles such as solubilization of lipids 

(Amaral et al., 2009). Some bile acids are cytotoxic (Bayerdorffer et al., 1993), but others not, due to  

small changes in the chemical structure that are found between species (Hofmann and Roda, 1984). 

UDCA, for example, helps in the regulation of cholesterol levels and have several functions in the liver, 

such as maintenance of mitochondrial integrity, immune-modulation and anti-apoptotic role.  During 

the process of conjugation in the liver, UDCA can link with taurine or with glycine, originating 

tauroursodeoxycholic acid (TUDCA) or GUDCA, respectively. Once GUDCA is formed in larger 

amount (close to 80%) (Lazaridis et al., 2001), this conjugate is of major clinical relevance derived 

from the utilization of UDCA in several diseases (Brites, 2002). Thus, according to some authors, 
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GUDCA may play protective roles in several cells of CNS, such as neurons, astrocytes and microglia 

(Fernandes et al., 2007; Rodrigues et al., 2000; Silva et al., 2012; Vaz et al., 2010) and has shown 

anti-oxidant, anti-apoptotic and anti-inflammatory properties (Fernandes and Brites, 2009) (Figure I.8). 

In addition, the taurine-conjugated form of UDCA, tauroursodeoxycholic acid (TUDCA) has already 

proven beneficial effects in many neurodegenerative diseases, namely in Alzheimer’s disease, where 

it was able to inhibit apoptosis in an in vitro model of AD mutant neuroblastoma cells (Ramalho et al., 

2006; Ramalho et al., 2008). 

Thus, driven by the promising results obtained in prior and ongoing studies from our and other 

groups, we decided to examine the therapeutic potential of GUDCA in our model of mouse SC 

organotypic cultures as an anti-inflammatory compound. Min and colleagues (2012) have recently 

performed a clinical trial using UDCA in 80 ALS patients. Although without conclusive results, in 

general the patients were tolerant to oral administration and this pilot study may open a new 

application for UDCA and its conjugated species for ALS management. 

 

 

Figure I.8 – Glycoursodeoxycholic acid (GUDCA) may play a protective role in NSC-34/hSOD1G93A cells, 

by preventing motor neuron degeneration. GUDCA is the glycine conjugated form of ursodeoxycholic acid 

(UDCA), which is used for long as a therapy for liver cholestatic diseases. NSC-34/hSOD1G93A cell line was 

incubated with GUDCA (50 µM). Arrows in green: Protective effects of GUDCA in NSC-34/SOD1G93A cells 

obtained in our lab and involving the reduction of metalloproteinase activation, Superoxide Dismutase-1 (SOD1) 

accumulation, mitochondrial failure, cell death and Nitric Oxide (NO).  
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5. Aims 

 

The aims of this thesis are to better understand some of the main molecular hallmarks involved in 

motor neuron (MN) degeneration in ALS, as well as to explore the cross-talk between MN and 

microglia in ALS, by using three different experimental models: (i) pure MN cultures (NSC-34 cell line); 

(ii) mixed MN-microglial cultures (NSC-34/N9 cell lines); (iii) organotypical slices from mice spinal cord 

(SC). 

 

Therefore, the specific aims are: 

 

1. To explore the processes involved in MN-mitochondrial dysfunction along ALS progression, namely 

mitochondrial dynamics (fusion/fission) and axonal transport (anterograde/retrograde), together with 

cell death mechanisms. For this, NSC-34 cell line expressing either human SOD1 wt or mutated in 

G93A (NSC-34/hSOD1wt or NSC-34/hSOD1G93A, respectively) will be differentiated for 1-7 days (DIV) 

in order to select the mechanisms involved in MN mitochondrial dysfunction in ALS for each stage of 

SOD1 accumulation (prior or after SOD1 accumulation, respectively 1 or 4-7 DIV). NSC-34/hSOD1wt 

will be used as control. 

 

2. To evaluate the contribution of microglia to MN degeneration in mixed cultures of MN-microglia. For 

this we will produce and characterize a mixed culture of either NSC-34/hSOD1wt or NSC-

34/hSOD1G93A with N9 microglia and we will focus on the parameters that will be found altered in the 

NSC-34/hSOD1G93A monoculture. 

 

3. To set-up and characterize organotypic cultures obtained from SC of ALS-transgenic mice carrying 

the same human SOD1 mutation (TgSOD1-G93A mice). Here, we will test the potential 

neuroprotective benefits of glycoursodeoxycholic acid (GUDCA).  

 

Altogether, the final purpose of the project is to explore the mechanisms of MN degeneration in ALS 

and the role of microglia on them, to discover intervenient targets and drivers, while assessing 

modulatory effects by GUDCA. If we succeed, future research should test ways to design molecules 

that although having the benefits of GUDCA better achieve the brain parenchyma. 
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II. Materials and Methods 

 

1. Materials 

1.1 Chemicals 

 

Dulbecco’s modified Eagle’s medium-Ham’s F12 medium (DMEM-Ham´s F-12), DMEM high 

glucose w/o pyruvate, fetal bovine serum (FBS), Penicillin-Streptomycin, L-glutamine and nonessential 

amino acids(NEAA) were purchased from Biochrom AG (Berlin, Germany); RPMI-1640 medium, Poly-

D-lysine (PDL),  trypsin-EDTA solution (1X), ATP, Hoechst 33258 dye, bovine serum albumin (BSA), 

naphtylethylenediamine (C12H14N2) and sulfanilamide (C6H8N2O2S) were from Sigma-Aldrich (St. 

Louis, MO, USA); Geneticin 418 sulfate (G418), Glycoursodeoxycholic acid (GUDCA) (minimum 96% 

pure) were obtained from Calbiochem (Darmstadt, Germany or U.S. Canada); Triton X-100 and 6-

phosphate glucose dehydrogenase and hexokinase were obtained from Roche Diagnostics 

(Mannhein, Germany); Neurobasal medium, B-27 Supplement (50x), Hank’s balanced salt solution 

(HBSS) were acquired from GIBCO® (Grand Island, NY, USA). DPX mounting media for microscopy 

was obtained from BDH Prolabo (Poole, UK). Guava Nexin
®
 Reagent was purchased from Merck 

Millipore (Darmstadt, Germany).  

All the other chemicals were of analytical grade and were purchased either from Sigma-Aldrich or 

Merck. 

 

1.2 Antibodies used for immunostaining 

 

Table II.1 – Primary antibodies used and respective information. 

Primary Antibody Host Brand Dilution 

Dynein Mouse Milipore, Darmstadt, Germany 1:100 
Kinesin Mouse Chemicon 1:100 

Mitofusin 2 Rabbit AbCam, Cambridge, UK 1:50 
Drp1 Rabbit AbCam, Cambridge, UK 1:150 

βIII-tubulin Mouse Milipore 1:500 
Biotinylated tomato lectin 

Lycopersicon esculentum 
- Sigma-Aldrich, MO, USA 1:166 
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Table II.2 – Secondary antibodies used and respective information. 

Secondary Antibody Host Brand Dilution 

Alexa Fluor® 488 anti-rabbit Goat Invitrogen Corporation™ (Carlsbad, CA, USA) 1:1000 

Alexa Fluor® 488 anti-mouse Goat Invitrogen Corporation™ (Carlsbad, CA, USA) 1:1000 

Alexa Fluor® 594 anti-rabbit Goat Invitrogen Corporation™ (Carlsbad, CA, USA) 1:1000 

Alexa Fluor®  594 anti-mouse Goat Invitrogen Corporation™ (Carlsbad, CA, USA) 1:1000 

Avidin-FITC-conjugated  Sigma-Aldrich, MO, USA 1:50 

 

 

1.3 Equipment 

 

Fluorescence microscope (model AxioScope.A1) coupled with AxioCam HR camera and 

AxioScope HBO50 microscope were purchased from Carl Zeiss, Inc. (North America) and optical 

microscope with phase-contrast equipment (Olympus, model CK2-TR) were used for cell morphology 

evaluation.  

Microplate reader (PR 2100 Microplate Reader) was used for nitrites measurement and was 

obtained from Bio-Rad Laboratories (Hercules, CA, USA). GloMax®-Multi Detection System - 

Promega (Sunnyvale, CA, USA) was used to detect extracellular ATP. 

To ensure a stable environment to optimal cell growth (37°C and 5% CO2), cell cultures were 

maintained in HERAcell 150 incubators (Thermo Scientific, Waltham, MA, USA) and the work 

performed in sterile conditions in a Holten Lamin Air HVR 2460 (Allerod, Denmark). 

Eppendorf 580R (Eppendorf, Hamburg, Germany) and a Sigma 3K30 centrifuges were used for 

different experimental procedures. 

To slice tissue for organotypic cultures, was used McIlwain Tissue Chopper (Gomshall, Surrey, 

UK). In other procedures, were used surgical material (Fine Science Tools Heidelberg, Germany), and 

the Stereomicroscope Stemi DV 4 (Carl Zeiss, York, UK). For flow cytometry studies, we used the 

Guava easyCyte 5HT Base System Flow Cytometer (Merck-Millipore, Darmstadt, Germany). 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC0QFjAA&url=http%3A%2F%2Fwww.promega.com%2Fen%2Fproducts%2Finstruments%2Fmultimode-readers%2Fglomax_multi-detection-system%2F&ei=-G0oUqeHHpLy7AbB7oGYCQ&usg=AFQjCNE8-M3dpCGBODNRMj7fJnnwLaxAqw&bvm=bv.51773540,d.d2k
http://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC0QFjAA&url=http%3A%2F%2Fwww.promega.com%2Fen%2Fproducts%2Finstruments%2Fmultimode-readers%2Fglomax_multi-detection-system%2F&ei=-G0oUqeHHpLy7AbB7oGYCQ&usg=AFQjCNE8-M3dpCGBODNRMj7fJnnwLaxAqw&bvm=bv.51773540,d.d2k


Materials and Methods 

 

35 
 

2. Methods 

2.1 In vitro studies 

 

For in vitro studies, were used two cell lines: NSC-34 and N9. NSC-34 is a murine neuroblastoma 

and spinal cord hybrid cell line that has many of the unique morphological and physiological 

characteristics of motoneurons (Cashman et al., 1992), as mentioned in the introduction. N9 cell line 

was developed by immortalizing primary microglia cells obtained from CD1 mouse cortex (Righi et al., 

1989). 

 

2.1.1 NSC-34 cell line  

 

NSC-34 cell line transfected with human SOD1, either wild type or mutated in G93A (NSC-

34/hSOD1wt or NSC-34/hSOD1G93A, respectively), were a gift from Júlia Costa, Instituto de Tecnologia 

Química e Biológica (ITQB), Universidade Nova de Lisboa, Portugal. NSC-34/hSOD1wt were used as 

control condition. NSC-34 cells were grown in proliferation media (DMEM high glucose, w/o pyruvate, 

supplemented with 10% of fetal bovine serum (FBS) and 1% of Penicillin-Streptomycin) and selection 

was made with geneticin sulphate (G418) at 0.5 mg/ml. Medium was changed every 2 days. Culture 

plates were coated with PDL (50 μM) before plating the cells. Cells were seeded in 12-well culture 

plates at a concentration of 5x10
4
 cells/ml and maintained at 37ºC in a humidified atmosphere of 5% 

CO2.  

 

2.1.2 N9 cell line  

 

N9 cell line was a gift from Teresa Pais, Instituto de Medicina Molecular (IMM), Lisboa, Portugal. 

Cells were cultured in RPMI supplemented with FBS (10%), L-glutamine (1%) and Penicillin-

Streptomycin (1%), grown to confluence and splitted every 2 to 3 days. Cells were incubated in 12-

well culture plates with NSC-34 (mixed cultures) at a concentration of 2x10
4
 cells/ml and maintained at 

37ºC in a humidified atmosphere of 5% CO2.  

 

2.1.3 NSC-34 Pure Cultures  

 

Here, NSC-34/hSOD1wt and NSC-34/hSOD1G93A were plated in a 12-well culture plates with 

coverslips treated with PDL. Their differentiation was promoted at 48 hours (by incubation with 

differentiation medium). After 48 hours in proliferation media, differentiation was induced by changing 

medium for DMEM-F12 plus FBS (1%), non-essential amino acids (1%), Penicillin/Streptomycin (1%) 

and G148 (0.1%), and measurements were performed after 1, 4 or 7 days in vitro (DIV), as described 

in Figure II.1 and as usual in our lab. 
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Figure II.1 - Experimental procedure used for pure culture cells of NSC-34 cells. NSC-34 cells, transfected 

with human SOD1, wild type or mutated in G93A (NSC-34/hSOD1wt or NSC-34/hSOD1G93A) were grown in 

proliferation media during 48 h. After this, differentiation was induced by changing medium for DMEM-F12 with 

FBS (1%) and non-essential amino acids (1%). Cells were collected at 1, 4 and 7 DIV. These fixed cells are then 

used for immunocytochemical, cell viability assay by flow cytometry, and NO and ATP release measurement.  

 

 

2.1.4 NSC-34/N9 Mixed Cultures 

 

Here, NSC-34 cells were grown and differentiated as described for pure cultures. At 0 and 2 days 

in vitro (DIV), N9 cells were platted in mixed culture with NSC-34, as indicated in figure II.2. Then, 

cells were maintained at 37ºC in a humidified atmosphere of 5% CO2, and collected at 4 and 7 DIV.  

The main aim was to evaluate the effects of microglia in NSC-34/hSOD1wt or NSC-34/hSOD1G93A if 

added before (0 DIV) or during MN degeneration (2 DIV) for short and long periods (collected at 4 and 

7 DIV, respectively). 

Comprising the need for plating NSC-34 and N9 in accordance with its proportion in vivo, N9 cells 

were plated at a concentration of 2x10
4
 cells/ml and NSC-34 at 5x10

4
 cells/ml, as in our previous 

studies with mixed neuron-microglia cultures (Silva et al., 2011). With this experimental procedure, we 

can study neurons/microglia interaction to judge if (and when) microglia change their phenotype, if 

they are able to prevent the disease onset and if they can delay the disease or aggravate symptoms 

(neuroprotective vs. neurotoxic properties).    
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Figure II.2 - Experimental scheme of mixed culture cells with NSC-34 and N9 cell lines. NSC-34/hSOD1wt 

and NSC-34/hSOD1G93A cells were grown in proliferation media during 48h. After this, differentiation was induced 

by changing medium for DMEM-F12 with FBS and non-essential amino acids. Microglia (N9) was added at 0 and 

2 DIV and cells were fixed at 4 and 7 DIV. Cells were fixed and used for immunocytochemical assays and 

extracellular ATP and NO release measurement.  

 

 

2.2 Ex vivo studies 

2.2.1 Animals 

 

SJL (wt) and TgSOD1-G93A mice were purchased from international certified labs (Jackson Lab.) 

and were used to collect SC (sample tissue).  SJL females and TgSOD1-G93A males were used for 

breeding and their progeny (SOD1 transgenic mice), maintenance and handling took place at Instituto 

de Medicina Molecular animal house facilities according to European Community and Portuguese 

guidelines and bylaws.  

 

2.2.2 Organotypic cultures 

 

Organotypic slice cultures were adapted from the methods previously described (Guzman-Lenis 

et al., 2009). Briefly, 7-days SJL (Wt) or transgenic mice carrying the human protein mSOD1 

(TgSOD1-G93A mice), previously genotyped, were sacrificed by decapitation and their spinal cords 

were dissected using surgical equipment and a magnifying glass. After dissection, the lumbar segment 

of their spinal cord was extracted and cut into 350 μm transverse slices with a McIlwain tissue 

chopper. Samples were placed in high glucose (6 mg/ml) Hank’s balanced salt solution (HBSS) with 

1.5% Penicillin-Streptomycin, where, they were separated and carefully transferred onto culture plate 

inserts and placed into a 6-well plate containing 1.5 ml of Neurobasal medium with 1x B27, 2 mM 

glutamine, 6 mg/ml glucose and antibiotics (1,5% Penicillin-Streptomycin), and incubated at the air-

liquid interface, at 37ºC in 5% CO2. The medium was changed the following day and, replaced three 

times per week until 10 DIV. At 10 DIV, slices were incubated with 50 µM GUDCA from a 5 mM stock 

Collection of Samples

0 DIV      2 DIV           4 DIV                             7 DIV              

Addition of microglia cell line
(N9)

Undifferentiated
Cells (48h)
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solution (Silva et al., 2012). Incubations with Neurobasal were used as control. At 11 DIV, slices were 

collected and fixed in 3 ml of freshly prepared 4% (w/v) paraformaldehyde for 1 hour and rinsed in 

PBS (Ravikumar et al., 2012). The slices were then stored at 4° C, in PBS. Extracellular media was 

collected for ATP and NO measurements. (Figure II.3) 

 

Figure II.3 - Experimental scheme of organotypic cultures of 7-days SJL (Wt) and transgenic mice 

carrying a human protein mSOD1 (TgSOD1-G93A mice). The lumbar segment of spinal cord was incubated in 

a 6-well plate and cultured during 10 days. At 10 DIV, slices were incubated with 50 µM GUDCA during 24h. 

Slices were fixed for later assay microscopy (immunohistochemistry) and extracellular ATP and NO release 

measurement. 

 

 

2.3 Evaluations 

2.3.1 Immunocytochemistry 

 

NSC-34 cells, either alone or in mixed culture with N9, were fixed with freshly prepared 4% (w/v) 

paraformaldehyde in PBS. For the immunostaining, cells were first permeabilized with 0.2% Triton X-

100, for 20 min, and then incubated with blocking solution (3% BSA in PBS) for 30 minutes. After, they 

were incubated overnight at 4 ºC with primary antibody, according to the specifications mentioned in 

Table II.1. The incubation with secondary antibody (Table II.2) was performed during 2 hours at room 

temperature. Cell nuclei were stained with Hoechst 33258 dye (1:1000, Sigma) (Falcão et al., 2005).  

Fluorescence was visualized using a fluorescence microscope (model AxioScope.A1) coupled 

with AxioCam HR (Zeiss). Ten random fields were acquired per sample, under 400x or 630x 

magnification.  The integrated density of the fluorescent-labeled cells was measured using ImageJ 

software (National Institutes of Health, USA). The integrated density is the area above the threshold 

for the mean density minus the background. 

 

10 DIV  11 DIV           
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37ºC, 5% CO2
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   2.3.2 Immunohistochemistry 

 

Slices of 7-days SJL Wt or TgSOD1-G93A mice were placed in blocking solution (2% FBS in 

TBS-Triton 10%), for 1h at 25ºC. Then, cells were incubated overnight at 4ºC with primary antibody. In 

the second day, after rinsing twice in TBS-Tween (0.05%), for 2x10 minutes at 25ºC, cells were 

incubated during 1 h at 25ºC with secondary antibody. After two more washes, slices were washed 

with PBS and incubated with DAPI stock 1 mg/ml for 5 minutes. After two washes for 10 minutes with 

TBS-Tween (0,05%), slices were dehydrated with ethanol. Cells were then mounted in DPX, on a 

microscope slide. 

Fluorescence was visualized using a fluorescence microscope (model AxioScope.A1) coupled 

with AxioCam HR (Zeiss). Overlapping fields were acquired (under 100x magnification) and merged in 

Photoshop Software Massachusetts, USA). Twelve fields were acquired per sample in two 

perpendicular axes, with the origin on the central canal of the spinal cord, under 100x magnification.  

2.3.3 Quantifying the release of Nitric Oxide 

 

Nitric oxide levels were indirectly quantified by measuring the concentration of nitrites (NO2) in the 

extracellular media of NSC-34, either alone or in mixed culture with N9 cells, as well as in organotypic 

culture extracellular media. Nitrites are a stable end product of NO.  

Cell supernatants free from cellular debris were mixed with Griess reagent [1% (w/v) 

sulphanilamide in 5% H3PO4 and 0.1% (w/v) N-1 naphtylethylenediamine, in a proportion of 1:1 (v/v)] 

in 96-well tissue culture plates for 10 minutes in the dark, at room temperature. The absorbance at 

540 nm was determined using a microplate reader (Bio-Rad Laboratories). A calibration curve was 

used for each assay. All samples were measured in duplicate and the mean value was used (Vaz et 

al., 2010). 

 

2.3.4 Quantification of extracellular ATP  
 

NSC-34, either alone or in mixed culture with N9 cells, as well as in organotypic culture 

extracellular media were treated on ice to prevent degradation of ATP. For the determination of 

extracellular ATP levels, the incubation media was collected and treated with 2 M of perchloric acid. 

Then, the pH value was neutralized with 4 M KOH solution. To remove cellular debris, the samples 

were centrifuged (Eppendorf, 5810R) during 5 min at 10,000 g and 4°C, between the different steps. 

ATP levels were determined by an enzymatic assay and fluorescence intensity was quantified using a 

GloMax®-Multi Detection System at λem 410-460 nm and λex 365 nm. A calibration curve of ATP was 

used for each assay (Vaz et al., 2010). 

 

2.3.5 Detection of Apoptosis/necrosis 

 

After incubation of NSC-34 in12-wells culture plates at 1, 4 and 7DIV, extracellular media was 

collected to 2 ml tubes and cells were detached by using a solution of tripsin 1x for 5 min of at 37ºC. 

http://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC0QFjAA&url=http%3A%2F%2Fwww.promega.com%2Fen%2Fproducts%2Finstruments%2Fmultimode-readers%2Fglomax_multi-detection-system%2F&ei=-G0oUqeHHpLy7AbB7oGYCQ&usg=AFQjCNE8-M3dpCGBODNRMj7fJnnwLaxAqw&bvm=bv.51773540,d.d2k
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After adding FBS (to stop the action of trypsin), cells were collected and centrifuged at 700 g during 5 

minutes (Eppendorf, 5810R). The supernatant was discharged and the pellet resuspended in 400 μL 

of 1% BSA in PBS. The samples were added to 96-wells plates with Nexin Reagent® (Anexin 

V/7AAD) and incubated at 20 min, protected from the light. After dilution with 50µl 1% BSA in PBS, 

samples were analyzed on a Guava easyCyte 5HT Base System Flow Cytometer (Merck-Millipore). 

5000 events per sample were counted. Three populations of cells can be distinguished in this assay: 

viable cells (annexin V-PE and 7-AAD negative), early-apoptotic cells (annexin V-PE positive and 7-

AAD negative) and late stages of apoptosis or dead cells (annexin V-PE and 7-AAD positive) (adapted 

from (Barateiro et al., 2012).       

 

2.4 Statistical Analysis  

 

Results of at least three different experiments were expressed as mean ± SEM for NSC-34 

cultures either isolated or in mixed culture with N9. Comparisons between the different parameters 

evaluated in wt and G93A NSC-34 cell line and in organotypic cultures from SC of TgSOD1-G93A or 

WT mice were made using two-tailed Student’s t-test for equal or unequal variance, as appropriate. 

Comparison of more than two groups in the parameters evaluated in mixed cultures with or without 

microglia was done by one-way ANOVA using GraphPad Prism 5 (GraphPad Software, San Diego, 

CA, USA) followed by multiple comparisons Bonferroni post-hoc correction. p<0.05 was considered 

statistically significant and p<0.01 very significant. 
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III. Results 

 

1. Isolated NSC-34 cells, a MN-like cell model  

1.1 Evaluation of  cellular viability of differentiated NSC-34 cells, transfected with 

mutant SOD1 as a model of motoneuron degeneration in ALS 

 

NSC-34 cell line is a hybrid cell line obtained by fusion of neuroblastoma cells with 

motoneuron (MN)-enriched from mice spinal cord cell preparations, and expresses many of the 

morphological and physiological properties of MN, such as extension of processes, formation of 

contacts with cultured myotubes, synthesis and storage of acetylcholine (ACh), support of action 

potentials and expression of neurofilament proteins (Cashman et al.,1992). In our model, we used 

NSC-34 cell line that had been transfected either with wild type human SOD1 (NSC-34/hSOD1wt) or 

mutated in G93A (NSC-34/hSOD1G93A) (Gomes et al., 2008). In recent work from our lab, 

accumulation of mutated SOD1 was shown to occur after 4 days of differentiation (DIV) in NSC-

34/hSOD1G93A cells, together with cell dysfunction (Vaz et al., 2013), which may represent the 

progression of MN degeneration in familiar ALS (fALS). Therefore, in our model, we considered three 

different time points after NSC-34 cell differentiation that could mimic three stages of MN degeneration 

in ALS: (i) 1 DIV – prior to SOD1 accumulation (onset); (ii) 4 DIV – during SOD1 accumulation 

(symptomatic) and (iii) 7 DIV – after SOD1 accumulation and cell damage. 

We first characterized NSC-34/hSOD1wt or NSC-34/hSOD1G93A in terms of their morphology 

and viability at different days of differentiation, in order to establish a timeline of MN degeneration that 

mimics ALS progression. As shown in Figure III.1, there is an increase in the number of neurites 

along NSC-34/hSOD1wt differentiation, as well as in their extension and ramification, together with a 

reduction in cell soma, which was observed through βIII-Tubulin immunostaining. We next analyzed 

cellular loss of viability, namely necrosis and apoptosis using flow cytometry. As indicated in Table 

III.1, there is almost no variation of total cellular viability after 1 DIV but within time, although not 

statistically significant, there is a decrease in cell viability for NSC-34/hSOD1G93A after 4 DIV (~15%) or 

after 7 DIV (~22%). Moreover, through the immunostaining for βIII-Tubulin, it was observed that within 

the time after differentiation, both cell lines (NSC-34/hSOD1wt or NSC-34/hSOD1G93A) have a 

decreased number of cells, and that the fluorescence intensity becomes weaker, indicating less βIII-
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Tubulin content (Figure III.1). This effect was even more pronounced in NSC-34/hSOD1G93A cells, 

especially after 4 and 7 DIV. 

Results of flow cytometry indicated that there is an increase in apoptosis in NSC-

34/hSOD1G93A cells after 4 and 7 DIV when compared to respective NSC-34/hSOD1wt (n.s.), as 

indicated in Table III.2 and in Figure III.2; by contrast we did not observed considerable cell death by 

necrosis. 

 

 

Figure III.1 – Differentiated NSC-34/hSOD1G93A cells have less βIII-Tubulin content, suggesting 

compromised cell viability. Cells were cultured as indicated in Methods. After fixation with paraformaldehyde, 

cells were stained with an antibody against βIII-Tubulin, followed by a fluorescent-labeled secondary antibody (in 

red). Scale bar represents 40 μm. 

 

 

Table III.1 - Percentage of viable cells in NSC-34 cultures decreases overtime. 

 

 

 

 

 

 

Results are expressed as % per total number of events. Results are mean ± SEM from at least three independent 

experiments. 

 

 

 

 

 

 

 

 

CX3CR1 

CX3CR1 

D

CX3CR1 

E

CX3CR1 

4 DIV 7 DIV

NSC-34/hSOD1wt

NSC-34/hSOD1G93A

1 DIV 4 DIV 7 DIV1 DIV

NSC-34/hSOD1wt

 
 

NSC-34/hSOD1 
wt 

NSC-34/hSOD1 
G93A 

Viable Cells (%) 

1 DIV  94.74 ± 1.27 95.36 ± 1.26 

4 DIV  88.63 ± 2.19 83.55 ± 2.80 

7 DIV  85.89 ± 1.15 75.55 ± 5.51 
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Table III.2 - Percentage of Early Apoptosis and Late Apoptosis/Necrosis in NSC-34 cultures 

shown a decrease in early apoptosis leads differentiation but almost no alteration in late 

apoptosis/necrosis. 

 

 

 

 

 

 

 

 

 

Results are mean ± SEM from at least three independent experiments and represent the absolute values of 

Figure III.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.2 – Differentiated NSC-34/hSOD1G93A cells have higher cell death levels, especially apoptosis 

after 4 and 7 days of differentiation. Cells were cultured as indicated in Methods and after differentiation they 

were trypsinized and labeled with Nexin Reagent®, for flow cytometry analysis. Results are expressed as fold vs. 

respective NSC-34/hSOD1wt condition and are mean ± SEM from three independent experiments. Corresponding 

absolute values are presented in Table III.2. Dotted line: Fold of respective NSC-34/hSOD1wt (control). 
*
p<0.05 

vs. respective control. 

 

1.2  Exploring mitochondrial dynamics/dysfunction in NSC-34/hSOD1G93A  

 

After having observe a decrease in the staining with βIII-Tubulin at 4-7 DIV and based on 

previous studies from our group demonstrating general loss of mitochondrial viability after 4 DIV (Vaz 

et al., 2013), we further explored the mechanisms underlying mitochondrial dysfunction that could be 

involved in MN degeneration in ALS.  

Dynamin-related protein 1 (Drp1) and Mitofusin 1 (Mfn1) are modulators of mitochondrial 

fission and fusion, respectively (Chapman et al., 2013; Peng et al., 2012; Peng et al., 2013), which 

makes these two processes very important for mitochondrial dynamic morphology and for the healthy 

cellular function (Cao et al., 2013). Peng and colleagues showed that in transgenic mice with the 

G93A human SOD1 mutation, Mfn1 and Drp1 suffer a significant increase in the anterior half of the 

 
 

NSC-34/hSOD1 
wt 

NSC-34/hSOD1 
G93A 

Early Apoptosis (%) 

1 DIV  1.90 ± 0.70 2.29 ± 1.00 

4 DIV  7.83 ± 1.71 13.87 ± 2.65 

7 DIV  10.81 ± 1.05 14.81 ± 2.18 

Late Apoptosis/Necrosis 
(%) 

1 DIV  2.43 ± 0.56 3.22 ± 1.26 

4 DIV  3.68 ± 0.78 3.75 ± 0.55 

7 DIV  5.47 ± 0.71 5.11 ± 0.86 
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lumbar spinal cord before the onset of ALS, suggesting that the balanced mitochondrial morphology 

becomes altered by fission and fusion in MNs in this ALS model (Peng et al., 2012). In order to 

examine mitochondrial dysfunction in NSC-34 cells, we quantified the content of these two proteins 

over at 1, 4 and 7 DIV, as previously, through an immunocytochemistry assay. As indicated in Table 

III.3 and Figure III.3 (A,C), the fluorescence intensity of Drp1 significantly decreased at 1 DIV and 

increased at 4 or 7 DIV in NSC-34/hSOD1G93A (p<0.01, vs. respective NSC-34/hSOD1wt), with the 

main peak at 4 DIV, indicating enhanced fission only after at time points where SOD1 accumulation 

and MN degeneration occurs. Regarding Mfn1 (Table III.3 and Figure III.3B,D), we also noticed an 

increase in the fluorescence intensity of NSC-34/hSOD1wt from 1 DIV to 4 DIV, suggesting an increase 

in fusion process of the healthy cells, whereas the levels of Mfn1 in NSC-34/hSOD1G93A remains 

practically constant during NSC-34 differentiation (p<0.01, vs. respective NSC-34/hSOD1wt). These 

results may suggest that in our model of MN degeneration, mitochondrial dysfunction occurs mainly 

through fission process instead of fusion.  

 We have also determined other hallmarks of mitochondrial dysfunction at 4 and 7 DIV, such 

as the release of ATP and NO to the extracellular medium. As indicated in Table III.4 and Figure III.4, 

there was an increase in the release of ATP in NSC-34/hSOD1G93A after 7 DIV together with a 

significant increase in NO release after 4 but specially after 7 DIV (p<0.05, p<0.01 vs. NSC-

34/hSOD1wt). The deregulation of the production/release of these molecules may indicate not only 

mitochondrial impairment at the level of the respiratory chain function (Ghiasi et al., 2012) but also 

oxidative stress, an important feature of ALS disease (Duffy et al., 2011). 

 

Table III.3 – Differentiated NSC-34/hSOD1G93A reveal mitochondrial dysfunction, involving 

fission and fusion processes.  

 

 

 

 

 

 

 

 

 

 

 

 

The integrated density of these proteins was measured using ImageJ Software and represents the area above the 

threshold for the mean density minus the background. Results are mean ± SEM from at least three independent 

experiments and represent the absolute values of Figure III.3. *p<0.05 vs. respective NSC-34/hSOD1wt. 

 
 

NSC-34/hSOD1 
WT 

NSC-34/hSOD1 
G93A 

Drp1 

1 DIV  70.33 ± 3.95 48.60 ± 6.10* 

4 DIV  33.23 ± 12.94 79.99 ± 20.67 

7 DIV  56.95 ± 22.25 68.68 ± 5.64 

Mfn1 

1 DIV  76.71 ± 44.46 35.15 ± 6.46 

4 DIV  121.54 ± 36.76 41.99 ± 12.13 

7 DIV  103.49 ± 20.60 42.83 ± 4.58* 
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Figure III.3 – Differentiated NSC-34/hSOD1G93A have mitochondrial dysfunction, which involves fission and 

fusion processes. Cells were cultured as indicated in Methods and after differentiation they were fixed and 

stained with antibody against Drp1 (A) or Mfn 1 (B). Integrated density of Drp1 (C) and Mfn1 (D) was measured 

as described in Methods. Results are expressed as fold vs. respective NSC-34/hSOD1wt condition and are mean 

± SEM from three independent experiments. Corresponding absolute values are shown in Table III.3. Dotted line: 

Fold of respective NSC-34/hSOD1wt (control). **p<0.01 and
 
p<0.05 vs. respective control. Scale bar represents 40 

μm.  
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Table III.4– Differentiated NSC-34/hSOD1G93A release increased levels of extracellular nitric 

oxide (NO) and Adenosine Triphosphate (ATP), thus reinforcing mitochondrial dysfunction.  

 

 

 

 

 

 

 

 

Cells were cultured as indicated in Methods. After differentiation, the extracellular contents in NO was measured 

by the Griess reaction and ATP were determined by an enzymatic assay. Data are expressed in μM and are 

mean ± SEM from at least three independent experiments. These results represent the absolute values shown in 

Figure III.4. **p<0.01 , *p<0.05 vs. respective NSC-34/hSOD1wt. 

 

 

Figure III.4 – Differentiated NSC-34/hSOD1G93A release increased of nitric oxide (NO) and Adenosine 

Triphosphate (ATP), thus reinforcing mitochondrial dysfunction. Cells were cultured as indicated in Methods 

and after differentiation NO contents was measured by Griess reaction (A) and ATP extracellular levels were 

determined by an enzymatic assay (B). Results are expressed as fold vs. respective NSC-34/hSOD1wt condition 

and are mean ± SEM from three independent experiments. Corresponding absolute values are presented in 

Table III.4. Dotted line: respective NSC-34/hSOD1wt (control). 
**
p<0.01, *p<0.05 vs. respective control. 

 

1.3 Evaluation of Axonal transport dysfunction 

 

The immunostaining for βIII-Tubulin suggested that the axonal length of MN seemed to 

decrease along time of differentiation in NSC-34/hSOD1G93A cells (Figure III.1). This led us to deeper 

analyze the impairment of axonal transport, which is also referred as a hallmark of ALS (Ikenaka et al., 

2012). We focus on the quantification of the fluorescence of kinesin and dynein, which are the two 

main molecular motors in the axonal transport, respectively anterograde and retrograde (Siegel et al., 

2006). As indicated in Table III.5 and Figure III.5 (A,C), kinesin expression decreased in  NSC-

34/hSOD1G93A after 1 (p<0.01 vs. respective NSC-34/hSOD1wt) or 7 DIV, which is consistent with 

anterograde axonal transport dysfunction described in ALS (Kuzma-Kozakiewicz et al., 2013). The fact 
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NSC-34/hSOD1 WT NSC-34/hSOD1G93A 

Nitrites 

4 DIV 
 

 

1.18 ± 0.11 

 

1.82 ± 0.20* 

   

7 DIV 
 0.88 ± 0.05 2.50 ± 0.31** 

   

ATP 

4 DIV 

 25.51 ± 0.95 28.26 ± 1.52  

   

7 DIV 

 28.59 ± 0.80 
$
 37.15 ± 3.38 *

$
 

   

C C 

  NSC-34/hSOD1wt NSC-34/hSOD1G93A 

NO 
4 DIV 

 1.18 ± 0.11 1.82 ± 0.20* 

7 DIV 
 0.88 ± 0.05 2.50 ± 0.31** 

ATP 

4 DIV 
 25.51 ± 0.95 28.26 ± 1.52 

7 DIV 
 28.59 ± 0.80 37.15 ± 3.38* 
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that kinesin levels were hugely increased in NSC-34/hSOD1G93A after 4 DIV (n.s.) led us to the 

hypothesis that after early axonal dysfunction (1 DIV), MN activate some signaling mechanism in order 

to compensate the injury. However, this compensatory mechanism fails, justifying the decrease 

observed in NSC-34/hSOD1G93A after 7 DIV. In agreement, dynein levels were also decreased in 

NSC-34/hSOD1G93A after 1 and 7 DIV (p<0.05, p<0.01 vs. NSC-34/hSOD1wt) but not after 4 DIV, as 

we can see in Table III.5 and Figure III.5 B,D (p<0.05 vs. NSC-34/hSOD1wt).  

 

Table III.5 – Differentiated NSC-34/hSOD1G93A reveal axonal transport impairment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The integrated density of these proteins was measured using ImageJ Software and represent the area above the 

threshold for the mean density minus the background. Results are mean ± SEM from at least three independent 

experiments and represent the absolute values of Figure III.6. *p<0.05 vs. respective NSC-34/hSOD1wt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

NSC-34/hSOD1 
wt 

NSC-34/hSOD1 
G93A 

Kinesin 

1 DIV  196.09 ± 5.08 83.27 ± 20.98* 

4 DIV  117.49 ± 17.25 251.64 ± 76.79 

7 DIV  171.60 ± 22.09 154.47 ± 39.27 

Dynein 

1 DIV  178.31 ± 5.76 111.58 ± 21.09 

4 DIV  134.31 ± 10.41 164.58 ± 24.55 

7 DIV  163.04 ± 16.60 75.29 ± 11.88* 
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Figure III.5 – Differentiated NSC-34/hSOD1G93A have axonal transport impairment. Cells were cultured as 

indicated in Methods and after differentiation they were fixed and stained with antibody against Kinesin (A) or 

Dynein (B). Integrated density of Kinesin (C) and Dynein (D) was measured as described in Methods. Results are 

expressed as fold vs. respective NSC-34/hSOD1wt condition and are mean ± SEM from three independent 

experiments. Corresponding absolute values are presented in Table III.5. Dotted line: Fold of respective NSC-

34/hSOD1wt (control). **p<0.01,
 *
p<0.05 vs. respective control. Scale bar represents 40 μm.  

 

 

2. Mixed Cultures 

 

After analyzing the mitochondrial and axonal dysfunction in NSC-34-MN-like cells, we 

considered that it would be interesting to develop a model where cellular cross-talk with microglia was 

taken into account, since increasing evidence point microglia as key players for MN degeneration in 

ALS (Ferraiuolo et al., 2011).  For that we used N9 cells, which are a cell line obtained from CD1 mice 

cortex and that has proven to undergo microglial activation features such as migration, phagocytosis 

or inflammation-related features (Bruce-Keller et al., 2000; Fleisher-Berkovich et al., 2010). We used 

these N9 microglial cells in mixed culture with NSC-34, either with hSOD1wt or hSOD1G93A. 
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~ 70 cells βIII-Tubulin+ cells

~ 30 cells Lectin + cells

Ratio 70/30 = 2.33

 

2.1 Implementation and characterization of mixed cultures 

 

At this point of the work, we abolished the 1 DIV of NSC-34 condition since we have pointed 

more striking alterations after 4 and 7 DIV in NSC-34/hSOD1G9A in section 1 from Results. It was 

possible to produce cultures from NSC-34/hSOD1wt or NSC-34/hSOD1G93A after 4 and 7 DIV in mixed 

culture with N9 cells, added at 0 or 2 DIV, to evaluate what happens before (0 DIV) or after (2 DIV) 

MN damage occurs. In vivo, on average the amounts of microglia and MN are near the ratio of 1/3, so 

NSC-34 cells were cultured at 5x10
4 

cell/ml and N9 at 2x10
4
 cell/ml (Silva et al., 2011) and as 

represented in Figure III.6, our study model respects this ratio.  

 

 

 

 

 

Figure III.6 – Mixed cultures of NSC-34 cell line and microglial cells from N9 cell line at 4 DIV were 

successfully implemented and represent the ratio 3/1 as previously described (Silva et al, 2011). Cells 

were cultured as indicated in Methods. (A) After fixation with paraformaldehyde, cells were double-stained with 

mouse anti-βIII-tubulin for neurons and with rabbit anti-lectin for microglia followed by a fluorescent-labeled 

secondary antibody (neurons in red and microglia in green), and counterstained with Hoechst
®
 for the nuclei (in 

blue). Scale bar represents 40 μm.  

 

 

2.2 Evaluation of mitochondrial function in mixed cultures 

 

After the implementation of the mixed culture model, we analyzed the parameters found to be 

altered on the section 1 from Results. As presented in Table III.6 and Figure III.7, the presence of 

microglia in mixed cultures reduced NO and ATP release after 7 DIV (p<0.05 vs. respective NSC-

34/hSOD1G93A w/o microglia). Interestingly, microglia was more effective in reducing NO levels if 

added at the time of differentiation (0 DIV), but ATP release was only reduced if microglia was added 

after 2 DIV (p<0.05 vs. respective NSC-34/hSOD1G93A w/o microglia). These results suggest that 

microglia can have different signaling mechanisms that can be modulated by the factors 

produced/released by degenerating MN.  

 

It will be interesting to continue the study concerning mitochondrial function (staining against 

Drp1, Mfn1, Kinesin and Dynein) in mixed cultures, as well as cell death pathways. Our preliminary 
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results suggest that the presence of N9 cells added at 0 DIV decrease cell viability and increase early 

apoptosis in NSC-34/hSOD1G93A, either after 4 or 7 DIV (supplementary data S1). 

 

Table III.6 – Differentiated NSC-34/hSOD1G93A cells shown altered metabolic function, 

evidenced by the increase of production/release of nitric oxide (NO) and Adenosine 

Triphosphate (ATP), which are modulated by the presence of microglia in mixed cultures.  

 

 

 

 

 

 

 

 

 

 

 

Results are expressed in μM and are mean ± SEM from at least three independent experiments, representing the 

absolute values of Figure III.8. **p<0.01, *p<0.05 vs. respective NSC-34/hSOD1wt; 
#
p<0.05 vs. NSC-

34/hSOD1G93A w/o microglia; $$p<0.01 vs. respective 4 DIV. 

 

 

 

 
Figure III.7 – Differentiated NSC-34/hSOD1G93A cells have altered metabolic function, evidenced by 

increased production/release of nitric oxide (NO) and Adenosine Triphosphate (ATP), which are 

modulated by the presence of microglia in mixed cultures. Cells were cultured as indicated in Methods and 

after differentiation NO release was measured by Griess reaction (A) and ATP extracellular levels were 

determined by an enzymatic assay (B). Results are expressed as fold vs. respective NSC-34/hSOD1wt condition 

and are mean ± SEM from three independent experiments. Corresponding absolute values are presented in 

Table III.6. Dotted line: respective NSC-34/hSOD1wt (control). **p<0.01, *p<0.05 vs. respective NSC-34/hSOD1wt 

condition; #p<0.05, ##p<0.01 vs. NSC-34/hSOD1G93A w/o microglia; $$p<0.01 vs. respective 4 DIV. 
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 w/o N9 + N9 at 0 DIV + N9 at 2 DIV 

NO 

4 DIV 

NSC-34/hSOD1wt 1.18 ± 0.11  1.09 ± 0.19  1.08 ± 0.13 

NSC-34/hSOD1G93A 1.82 ± 0.20* 1.95 ± 0.21 2.21 ± 0.25 

7 DIV 

NSC-34/hSOD1wt 0.88 ± 0.05  1.10 ± 0.09 1.98 ± 0.33 

NSC-34/hSOD1G93A 2.50 ± 0.31** 1.74 ± 0.34 3.94 ± 0.12$$ 

ATP 

4 DIV 

NSC-34/hSOD1wt 25.51 ± 0.95 24.92 ± 1.07 25.49 ± 1.26 

NSC-34/hSOD1G93A 28.26 ± 1.52 26.25 ± 1.12 27.45 ± 2.09 

7 DIV 

NSC-34/hSOD1wt 28.59 ± 0.80 28.24 ± 1.54  28.47 ± 1.38 

NSC-34/hSOD1G93A 37.15 ± 3.38* 32.33 ± 2.83 28.90 ± 1.61
#
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Central Canal

Anterior Horn

Posterior Horn

3. Organotypic Cultures 

 

Organotypic cultures are a model that is biochemically and physiologically more similar to the 

in vivo tissue since it preserves interneuronal connections and key processes. Moreover, it is a 

powerful model to screen the efficacy of potential therapies (Su et al., 2011), as we wanted to do with 

GUDCA. Indeed, recent studies in our lab using MN cell line carrying mSOD1 have shown preventive 

effects by glycoursodeoxycholic acid (GUDCA) over MN dysfunction by reducing apoptosis, 

mitochondrial failure, as well as nitric oxide (NO) release and matrix metalloproteinase-9 activation. 

Interestingly, GUDCA also revealed ability to delay the intracellular accumulation of SOD1 in those 

cells (Vaz et al., 2013). This is not without precedent since GUDCA has already shown anti-oxidant, 

anti-apoptotic and anti-inflammatory properties (Fernandes and Brites, 2009). Therefore, we tried to 

set-up an organotypic slice culture model obtained from spinal cord (SC) of 7-days mice carrying the 

human SOD1 mutation (TgSOD1-G93A mice) to study the mechanisms involved in cellular 

degeneration and to test potential neuroprotective agents, such as GUDCA. Organotypic cultures from 

SC of 7-days SJL WT mice were used as controls. 

 

3.1 Implementation and characterization of SC organotypic cultures 

Here, we focused our attention on lumbar segments from SC, since it is considered one of the 

most affected neural tissues in ALS (Staats et al., 2013). We were able to implement the proposed 

model and after 11 days in culture we observed an intact and functional structure of the lumbar tissue 

where it was possible to identify posterior and anterior horn, as well as central canal, as schematically 

represented in Figure III.8 after histological analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.8 – Schematic representation of a transversal section of the lumbar spinal cord. Organotypic 

cultures were performed from 7-days SJL (Wt) mouse and maintained in culture as described in Methods. Original 

magnification 100 x. 
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 wt TgSOD1-G93A 

DAPI 

W/o GUDCA  25.97 ± 2.32 20.26 ± 4.19 

GUDCA (50 µM)  31.91 ± 7.78 27.82 ± 3.04 

3.2 Glycoursodeoxycholic acid is able to prevent cell demise that occurs in  TgSOD1-

G93A SC cultures 

We have just started the incubations of the SC organotypic cultures with GUDCA. As indicated 

in Figure III.9, preliminary results demonstrated decreased cell viability in cultures from TgSOD1-

G93A mice (p<0.05 vs. SJL WT). GUDCA did not affect extracellular ATP and NO levels in slices from 

TgSOD1-G93A (Table III.8 and Figure III.10) but, interestingly, although no yet significantly, 

prevented loss of cell viability. These preliminary results seems to be a starting point for the study of 

the mechanisms involved in cellular degeneration in the SC of ALS models and how they can be 

modulated by promising compounds such as GUDCA.  

Table III.7 – Preliminary data point that spinal cord cultures from transgenic mice have 

decreased viability which is suggested to be recovered by Glicoursodeoxycholic acid 

(GUDCA). 

 

 

 

Slices were stained with DAPI and the integrated density was measured using ImageJ Software and represent 

the area above the threshold for the mean density minus the background. Results are mean ± SEM from at least 

two independent experiments and represent the absolute values of Figure III.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.9 – Preliminary results suggest that GUDCA may prevent cell death in organotypical spinal cord 

cultures from TgSOD1-G93A. Lumbar spinal cord slices were cultured for 10 days and incubated with 50 µM 

GUDCA for 24 h, as indicated in Methods. After incubation, slices were fixed in paraformaldehyde and nuclei 

were stained with DAPI (A). Total number of cells was assessed by quantification of integrated density, 
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considering the area above the threshold for the mean density minus the background and are presented in fold 

versus respective Wt condition (B). Corresponding absolute values are presented in Table III.7. Dotted line: 

respective SJL Wt (control). 
* 
p<0.05 vs. respective control. 

Table III.8 – TgSOD1-G93A Spinal Cord slices do not differ from Wt ones in terms of Nitric 

Oxide (NO) and ATP release, even upon addition of Glycoursdeoxycholic acid (GUDCA). 

  

Results are expressed in μM and are mean ± SEM from at least three independent experiments, 

representing the absolute values of Figure III.11.  

 

Figure III.10 – TgSOD1-G93A Spinal Cord slices do not differ from Wt ones in terms of NO and ATP 

release even upon addition of Glycoursdeoxycholic acid (GUDCA). Lumbar spinal cord slices were cultured 

for 10 days and incubated with 50 µM GUDCA for 24 h, as indicated in Methods. After incubation, extracellular 

media was assessed for (A) NO production/release by Griess reaction and absorbance was measured in the 

microplate reader or (B) ATP release by an enzymatic assay and fluorescence intensity was quantified using a 

fluorimeter.  Results are mean ± SEM from at least two independent experiments. Dotted line: respective NSC-

34/hSOD1wt (control).  

 

 

 

 

 

0

1

2

WT TgSOD1-G93A

W/o GUDCA GUDCA 50 uM

E
x
tr

a
c
e
ll
u

la
r 

A
T

P
 (

m
M

)

(f
o

ld
 V

s
. 
R

e
s
p

e
c
ti

v
e
 W

T
)

0

1

2

WT TgSOD1-G93A

W/o GUDCA + GUDCA 50 uM

N
O

 (
µ

M
)

(f
o

ld
 V

s
. 
R

e
s
p

e
c
ti

v
e
 W

T
)

A B



Results 

 

54 
 

4. Supplementary Data: 

 

4.1 Cell viability of NSC-34 cell line seems to be less committed in the presence of 

N9 cell line. 

 

Once we analyzed the cell viability and the occurrence of cell death in pure culture of NSC-34, 

we also decided to analyze these events upon addition of microglia, but it was not yet possible to 

obtain statistical significance, so all the following results need confirmation. However, we can say that 

in general, seems to exist a tendency to increase cell viability and decrease early apoptosis and late 

apoptosis/necrosis in the presence of N9 cell line, both in NSC-34/hSOD1wt and NSC-34/hSOD1G93A 

(Table S.1). This corroborates the possibility of microglia having a neuroprotective role in the context 

of the disease ALS. NSC-34/hSOD1G93A at 4 DIV is an exception since that seems to occur a 

decrease in viability and an increase in late apoptosis/necrosis (Figure S.1).     

 

Table S.1 – The presence of N9 cells seems to compromise the viability of NSC-34/hSOD1G93A 

cell line 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results are mean ± SD from one experiment and represent the absolute values of Figure S.1. 

 

 

 

 

 

 

 

 w/o N9 + N9 at 0 DIV  

Viable Cells (%) 

4 DIV 

NSC-34/hSOD1 wt 
88.63 ± 8.76 95.90 ± 1.41 

 

NSC-34/hSOD1G93A 
83.55 ± 10.10 71.50 ± 6.51 

 

7 DIV 

NSC-34/hSOD1 wt 
85.89 ± 4.31 94.30 ± 2.12 

 

NSC-34/hSOD1G93A 
75.55 ± 22.04 91.05 ± 1.34 

 

Early Apoptosis (%) 

4 DIV 

NSC-34/hSOD1 wt 
7.83 ± 6.85  2.85 ± 1.06 

 

NSC-34/hSOD1G93A 
13.87 ± 9.19 7.85 ± 0.78 

 

7 DIV 

NSC-34/hSOD1 wt 
10.81 ± 4.20 4.10 ± 1.41 

 

NSC-34/hSOD1G93A 
14.81 ± 8.17 6.50 ± 0.99 

 

Late Apoptosis/ 
Necrosis (%) 

4 DIV 

NSC-34/hSOD1 wt 
3.68 ± 2.81 1.20 ± 0.28 

 

NSC-34/hSOD1G93A 
3.75 ± 1.91 20.55 ± 5.73 

 

7 DIV 

NSC-34/hSOD1 wt 
5.47 ± 2.47 1.00 ± 0.28  

 

NSC-34/hSOD1G93A 
5.11 ± 2.86 1.90 ± 0.28 
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Figure S.1 – Viability of NSC-34/hSOD1G93A cell line seems 

to be more compromised in the presence of N9 cells. Cells 

were cultured as indicated in Methods and after differentiation 

they were trypsinized and labeled with Nexin Reagent®, for 

flow cytometry analysis. Results are expressed as fold vs. 

respective NSC-34/hSOD1wt condition and are mean ± SEM 

from three independent experiments. Corresponding absolute 

values are presented in Table III.9 Dotted line: respective 

NSC-34/hSOD1wt (control).  
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IV. Discussion 

 

The impossibility to make real-time studies or to remove tissue samples repeatedly from the 

patients are limitations for the study of human neurodegenerative diseases (Turner et al., 2013). Thus, 

the use of in vitro, ex vivo and in vivo animal models is essential. Among the familial cases in ALS, 

approximately 20% are caused by dominantly inherited mutations in the Cu/Zn superoxide dismutase-

1 (SOD1) protein (Musaro, 2010), which provide a basis for many experimental in vitro and in vivo 

models including mutations in this enzyme.  

This Thesis had as first aim the implementation and characterization of a mixed culture model. Until 

now, it is not clear what is the primary cause of motoneurons (MN) degeneration in ALS (Valori et al., 

2013). The MN-like cell line NSC-34 has been widely used for in vitro studies of ALS, once this cell 

line present many properties of MN, and also show morphological and physiological properties of 

them, like acetylcholine synthesis, storage and release; extension of processes; action potential 

generation; formation of contacts with cultured myotubes; expression of neurofilament proteins and 

association with neuromuscular synapse-specific basal lamina glycoproteins (Cashman et al., 1992; 

Tovar et al., 2009). Moreover, when transfected with human mutations of SOD1 (such as G93A 

mutation), these cells acquire some features reported in tissues of ALS patients and in transgenic 

mice models, such as mitochondrial dysfunction (Raimondi et al., 2006) and Golgi apparatus 

fragmentation (Gomes et al., 2008). Therefore, in the present study, we proposed to investigate the 

MN viability in general and the mitochondrial function and axonal transport in particular, in the context 

of the neuronal dysfunction in ALS progression. In addition, we aimed to analyze the interaction 

between microglia and MN in the context of the disease, in order to better understand the origin of the 

MN degeneration. In the last part of the study, we also tested potential neuroprotective agents in ALS 

models.  

As presented in the Results section, we initiated the work by the study of isolated cultures of NSC-

34. Recently, in our group it was demonstrated that NSC-34/hSOD1G93A cells presented accumulation 

of SOD1 after 4 days of differentiation (DIV), together with cell dysfunction (Vaz et al., 2013), which 

may represent the progression of MN degeneration in familiar ALS. Thus, here we considered three 

different time points after NSC-34 cell differentiation: (i) 1 DIV – prior to SOD1 accumulation (onset); 

(ii) 4 DIV – during SOD1 accumulation (symptomatic) and (iii) 7 DIV – after SOD1 accumulation and 

MN cell death. Immunostaining assays against βIII-Tubulin could give us an idea of the behavior of 

NSC-34/hSOD1wt cells (our control condition) in culture, over the time after differentiation and 

evidenced that after 1 day in vitro (DIV), they have few branches and reduced length. After 4 DIV, 
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these cells seemed to present a large number of complex synaptic connections between them, 

indicating the presence of MN-like cells. However, after 7 DIV, it was an apparent decrease in the 

number of connections, as well as a decrease in the number of cells, which may be related to the 

stress inherent of the culture. So we decided to examine the cell viability and cell death events of 

NSC-34/hSOD1G93A comparing with NSC-34/hSOD1wt in each time point of differentiation. This study, 

either by staining against βIII-Tubulin (part of microtubules) and by flow cytometry, revealed that 

mutated cells have compromised viability, although with a lower extent through time in culture after 

differentiation. Relatively to cell death, we observed preferentially apoptosis rather than necrosis in 

NSC-34/hSOD1G93A, which is in accordance with the fact of apoptosis is the most significant event of 

death described for ALS disease, according with the generality of authors (Ranganathan and Bowser, 

2010).  

After observing the occurrence of apoptosis and decreased cell viability in NSC-34/hSOD1G93A 

cells, and also because mitochondria plays a role in the apoptotic process, we decided to study more 

deeply the mitochondrial dysfunction. We have focus on fission and fusion processes since they are 

described to be implicated in neuronal injury and cell death (Barsoum et al., 2006; Liot et al., 2009; 

Yuan et al., 2007). For this purpose, NSC-34/hSOD1wt and NSC-34/hSOD1G93A cells were 

immunostained against Drp1 and Mfn1, two key proteins in the balance between mitochondrial fission 

and fusion, respectively. We observed decreased levels of Drp1 after 1 DIV in NSC-34/hSOD1G93A 

(p<0.01 vs. NSC-34/hSOD1wt) but also a significant increase after 4 DIV (p<0.05 vs. NSC-

34/hSOD1wt), indicating enhanced fusion only after at time points where SOD1 accumulation and MN 

degeneration occurs. The sudden increase in the expression of Drp1 from 1 to 4 DIV may be linked to 

increase in early apoptosis observed also at 4 DIV. In fact, it is described that the overexpression of 

Drp1 increases the vulnerability to mitochondrial fragmentation and neuronal cell death (Barsoum et 

al., 2006), but how the impairment of these pathways lead to neurodegeneration is still a matter of 

debate (Ranieri et al., 2013). By contrast, Mfn1 levels were decreased in NSC-34/hSOD1G93A during 

all time after differentiation (p<0.01 vs. NSC-34/hSOD1wt), suggesting that in our model of MN 

degeneration, mitochondrial dysfunction occurs through events of fission and fusion. According to 

Song and colleagues (2013), this fact can be explained because mitochondrial fusion and fission are 

not independent and impact each, so defects in the fusion may result from increased fission rates 

(Song et al., 2013).  

Since a balance between mitochondrial fusion and fission is required for mitochondrial 

homeostasis, we further explored mitochondrial injury. In fact, measurement of ATP and NO levels in 

the extracellular media reveled an increase of both molecules in NSC-34/hSOD1G93A (p<0.01, p<0.05 

vs. NSC-34/hSOD1wt) and from 4 to 7 DIV, indicating increased production of ROS that will probably 

exacerbate oxidative stress. On the other hand, the increased ATP release to the extracellular media 

will cause depletion of cell energy because ATP may be not available to be used in the function of 

molecular motors that move between the soma and the axons of neurons, necessary for carrying 

crucial cargos to cell metabolism and homeostasis, such as mitochondria, neurofilaments and 

autophagosomes (Ikenaka et al., 2012; Song et al., 2013). Moreover, the impaired mitochondrial 

activity and a consequent decrease in the intracellular availability of ATP will contribute to modify 
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calcium homeostasis and ROS production, which may then lead to increased apoptosis (Federico et 

al., 2012).   

Impaired mitochondrial dynamics has been proposed to trigger axonal degeneration and is 

consistent with the “dying back” hypothesis of neuronal projections as a primary event in ALS 

pathogenesis (Chan, 2006; Dadon-Nachum et al., 2011; Knott et al., 2008). Thus, it is described the 

occurrence of axonal transport dysfunction as a biomarker of disease ALS, associated at 

mitochondrial dysfunction and cell death (Song et al., 2013). In fact, we observed that cellular 

processes are diminished in -34/hSOD1G93A throughout the differentiation, which is consistent with 

studies of Song and colleagues (2013) that described a reduction in neurite length and branching in 

neurons with G93A mutation. After 7 DIV cells seem to lose the ability to communicate with each other 

by shortening the axons, which may be linked to dysfunction of the carriage along them, with 

consequent impossibility of transporting essential molecules throughout the cell. In our model, we 

observed that kinesin levels diminished from NSC-34/hSOD1wt to NSC-34/hSOD1G93A at 1 and 7 DIV, 

which is consistent with anterograde axonal transport dysfunction. The fact that kinesin levels were 

hugely increased in NSC-34/hSOD1G93A after 4 DIV suggests that once more there is a dysfunction 

detected by MN-like cells which triggers the activation of a defense mechanism that will be induced to 

produce more kinesin to the equilibrium. Regarding dynein, involved in retrograde transport, similar to 

what we have seen for kinesin, their expression levels were reduced in NSC-34/hSOD1G93A cells after 

1 and 7 DIV (p<0.05, p<0.01 vs. NSC-34/hSOD1wt, respectively). This result indicates that retrograde 

transport is also impaired in our model, which is consistent with literature that shows dysfunction of 

dynein in different models of ALS (Soo et al., 2011). Therefore, the dysfunction of the two types of 

transport does not appear to occur simultaneously at the same extent level. It appears that kinesin 

suffers a huge injury first but can be restored after some time, however the compromising of the level 

of dynein appears to occur less abruptly but the cells do not significantly recover after 4 DIV, 

remaining a deficit in the amount of this molecular motor at 7 DIV, which agrees with the study of 

axonal transport in mSOD1 mice model by Shi and colleagues (2010b), who describe the occurrence 

of a decreased speed of retrograde transport mediated by dynein in G93A in comparison with WT 

mice an early presymptomatic stage. Although Morfini and colleagues (2013) did not find the 

anterograde transport affected, there are several reports describing inhibition of both anterograde and 

retrograde axonal transport in mSOD1 mice (Bilsland et al., 2010; Perlson et al., 2009; Warita et al., 

1999). Indeed, kinesin and dynein are regulated by phosphorylation of specific subunits and an 

abnormal activation of protein kinases (such as p38 MAPK) are described in ALS (Bendotti et al., 

2004; Krieger et al., 2003; Sharma et al., 2010), so in 2009, Morfini and colleagues also published 

about the possibility of the pathogenic SOD1 in the activation of kinases.  

 

There is increasing evidence pointing microglia, considered the primary immune cells of the CNS, 

as key players for MN protection or instead to MN injury and consequent cell death (Boillée et al., 

2006). Therefore, after the evaluations of cell viability and mitochondrial dynamics performed in 

cultures of NSC-34, we next aimed to evaluate these parameters in mixed cultures with microglia. For 

that, we implemented and characterized a model of mixed cultures with NSC-34 and N9 (microglia cell 

http://www.ncbi.nlm.nih.gov/pubmed?term=Boill%C3%A9e%20S%5BAuthor%5D&cauthor=true&cauthor_uid=16741123
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line), in order to better understand the influence of microglia in these cellular processes and to assess 

whether their role is mainly neuroprotective or neurotoxic. In our model of mixed cultures we used 

healthy microglia and we evaluated if these cells were able to prevent, promote or restore MN 

neurodegeneration, and also to explore long term changes in microglia-MNs cross-talk. 

First, we implemented and characterized the mixed culture in our lab with these two types of 

cells and we confirmed that N9 cells were able to maintain their capacities when moved from their 

proliferative medium to NSC-34 differentiation medium. In fact, N9 cells may be maintained in a similar 

medium, with the basis of Dulbecco's Modified Eagle Medium/F12 (Guo et al., 2013). In addition, the 

ratio of cells grown initially is held for the 7 days of incubation. This last point is very important once 

the purpose of this study with mixed culture is to dissect the crosstalk between these two cell types, 

and so it is necessary to mimic as closely as possible the environment to which they are subject in 

vivo. Thus, we always kept in mind that the ratio NSC-34:N9 of 3/1 between MN and microglia should 

be respected in all mixed cultures (Silva et al., 2011).  

After successfully implementation and characterization of mixed cultures, we quantified NO and 

ATP in the extracellular media, as in the first part with isolated NSC-34 cells.  

We observed increased NO levels released by NSC-34/hSOD1G93A (p<0.01 vs. NSC-34/hSOD1wt). 

These findings are in accordance with studies in the cerebrospinal fluid (CSF) and human postmortem 

CNS tissue from ALS patients that present biochemical changes reflecting production of reactive 

oxygen species and consequent oxidative stress (Ferrante et al., 1997; Shaw et al., 1995; Smith et al., 

1998; Tohgi et al., 1999). In addition, mutated SOD1 has an incorrect folding, which impairs their 

antioxidant properties and favors the production of superoxide anion, and consequently peroxynitrite, 

ultimately causing tyrosine nitration (Barber and Shaw, 2010). In fact, a product of tyrosine nitration is 

3-nitrotyrosine, which is widely detected in the MNs of sporadic cases with ALS (Abe et al., 1997). 

Interestingly, when microglia were cultured with NSC-34/hSOD1G93A for longer time (2 or more DIV), 

extracellular NO levels were increased. These results suggest microglia activation, with consequent 

production and release of NO through an up-regulation of inducible nitric oxide synthase, such as the 

one found in  microglia co-cultured with neurons after exposure to lipopolysaccharide (LPS) (Zhao et 

al., 2004). When NSC-34/hSOD1G93A and microglia were maintained together until 7 DIV, it occurs a 

reduction of NO levels, suggesting a switch of microglia activation pattern. 

Regarding ATP, we observed higher extracellular ATP levels in NSC-34/hSOD1G93A, which 

may also promote activation microglia through purinergic receptors (D'Ambrosi et al., 2009), probably 

as an attempt to resolve the extension of the lesion. Moreover, our results showed that interaction 

between microglia and NSC-34/hSOD1G93A for longer time (7 DIV) also leads to reduction in 

extracellular ATP levels. Indeed, ATP acts as a neuron-to-microglia alarm signal, through cell surface 

P2 receptors widely distributed throughout the CNS. In ALS patients (Yiangou et al., 2006), as well as 

SOD1 G93A animals (Casanovas et al., 2008), an increased immunoreactivity for P2X was found in SC 

microglia. This probably occurs because ATP binds to P2X receptors present in microglia, reducing 

their presence in extracellular media. Another aspect that we should keep in mind is that ATP release to 

the extracellular media can also function as a way to attract microglial cells, acting as a 
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chemoattractant for these cells, which may constitute an attempt to reverse the lesion (Corriden and 

Insel, 2012). 

 

After the determinations with mixed cultures of NSC-34/N9, we proceeded to the implementation 

and optimization of organotypic cultures of lumbar segments of spinal cord (SC) from 7-days SJL (Wt) 

or TgSOD1-G93A mice. This type of cultures was chosen because they have benefits over animal 

models include the easy access and the precise control of the extracellular environment. Lumbar SC 

was here used once it is considered one of the most affected neural tissues in ALS (Chen et al., 

2010). Preliminary results with Wt and TgSOD1-G93A SC organotypic cultures did not evidence 

significant changes in NO release between both models, although a slight decrease in extracellular 

ATP of TgSOD1-G93A slices was noticed. SC from TgSOD1-G93A also exhibited a decreased in cell 

content. 

Organotypic cultures are also a powerful model to screen the efficacy of compounds with potential 

neuroprotective effects (Su et al., 2011), as we aimed to do with GUDCA, for which we had previously 

demonstrated their neuroprotective action in differentiated NSC-34/hSOD1G93A cells (Vaz et al., 2013), 

such as in reducing apoptosis, mitochondrial failure, as well as nitric oxide release and matrix 

metalloproteinase-9 activation. This was not without precedent since GUDCA were already shown 

anti-oxidant, anti-apoptotic and anti-inflammatory properties (Fernandes and Brites, 2009).  

In our model, cell dysfunction was slightly recovered by GUDCA when slices of SC were incubated 

with this compound, as well as the decrease of extracellular ATP. However these are still preliminary 

data which requires further confirmation.   

  

The main conclusions obtained in this Thesis are shown in Figure IV.1. In summary, mixed 

and organotypic cultures were implemented successfully. Regarding isolated NSC-34-MN-like, we 

observed impairment of mitochondrial dynamics and axonal transport, together with an increase of NO 

and ATP release, as well as apoptotic cell death. The presence of microglia cultured with NSC-

34/hSOD1G93A reduced NO and ATP release. Furthermore, we propose the possible protective 

properties of GUDCA, since the incubation with this compound recovered loss of cell viability and 

slightly reduced extracellular ATP levels in slices from TgSOD1-G93A. By uncovering different 

experimental models, our results contributed to the understanding of some molecular mechanisms 

involved in cellular failure during ALS progression, which is fundamental to develop new therapeutic 

strategies. 
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Figure IV.1 – Schematic representation of the major findings of this Master Thesis and the potential 

mechanisms that may be involved. (A) NSC-34 cells revealed mitochondrial dysfunction due to an imbalance 

between fusion and fission events. The Adenosine Triphosphate (ATP) efflux increased, which can be an alarm 

signal to microglia (N9 cell line), probably trough activation of the P2X7 receptor, promoting their migration to the 

lesion sites, where microglia can play a neuroprotective or neurotoxic role, depending on the extent of  

motoneuron (MN) damage. Nitric oxide (NO) release is also higher in mutated MN in comparison to normal 

conditions, causing oxidative stress. Moreover, the increase in the efflux of ATP is probably related with 

mitochondrial failure, thus justifying the altered content of molecular motors responsible for axonal transport, such 

as kinesin and dynein. All together, these events will contribute to an overall cell death, namely apoptosis, leading 

to the MN degeneration. (B) Organotypic spinal cord cultures showed that TgSOD1-G93A mice present higher 

levels of cellular degeneration, and preliminary data suggest that GUDCA have the ability to promote the 

prevention of cell death, confirming their anti-oxidant, anti-apoptotic and anti-inflammatory properties.  
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Future Perspectives  

 

This study provides an increase in our knowledge regarding the pathophysiological events in 

the context of ALS. However, there is still a long way to go. It will be important to study more deeply 

the dysfunction of axonal transport, in particular at level of neurite length and branching as MNs 

degenerate within time. In the context of the mitochondrial dysfunction, it will be important to direct our 

studies for the understanding of possible signaling mechanisms that are activated upon MN injury, 

which seemed to help in the attempt to return to mitochondrial homeostasis. Therefore, we hope very 

soon to proceed with the determinations we made in isolated NSC-34 cultures, now in mixed NSC-

34/N9 cultures. Furthermore, it will be interesting to study more deeply certain pathological events in 

organotypical cultures from lumbar SC, including mitochondrial dysfunction and axonal transport, as 

well as molecules involved in cellular cross-talk. In addition, further development in the study of 

neuroprotective effects of GUDCA would be very interesting, in view of the need to create new 

therapeutic strategies for ALS onset or progression, once riluzole, the only therapeutic agent approved 

by FDA, which inhibits the glutamate-mediated excitotoxic in neurons can only cause a modest 

improvement in the survival of the patients (Kiernan et al., 2011). Finally, the confirmation of these 

pathways using transgenic mice carrying G93A mSOD1 will be crucial to get a time point of each 

phase of the disease progression and to find biomarkers that allow identifying each of this phase.  

Currently, the biggest investment in ALS therapeutic strategies has been at the level of stem cells, 

with the aim of replacement the individual mutated cells by healthy ones to become less neurotoxic. In 

the same line of thought, (Forostyak et al., 2013) described the grafting of mesenchymal stroma cells 

as a way to improve motor and sensory function, modifying the host microenvironment following CNS 

injury. In fact, they have already achieved some positive results in clinical trials. There is still much that 

is unknown about the primary mechanisms involved in ALS onset and progression, although it is 

possible that the use of these stem cells combined with the administration of some neuroprotective 

compound (such as GUDCA) will become a common practice therapeutic, allowing rehabilitation of the 

patients at motor level.  

By uncovering different experimental models, our results provide a strong basis for the 

comprehension of the molecular events involved in cellular failure in ALS, which is fundamental to 

develop new therapeutic strategies. 
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