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Abstract 

This paper studies the effects of monetary policy in the aggregate Euro Area. Contrary to 

traditional money shock analysis, this paper uses a vector autoregressive model and estimates 

the structural shocks through an external instrument identification approach, employing high-

frequency financial data as instrument. The model inhibits economic as well as financial 

variables and uses the movement of Eurozone overnight index swaps around monetary policy 

meetings as proxy for unexpected monetary policy shocks. The results show, that a 

contractionary monetary policy shock behaves contrary to theory, indicating a bias in high-

frequency identification. Apart from the application of high-frequency identification, this paper 

contributes to the literature by using Python for the estimation and identification of the model. 
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1. Introduction 

„Within our mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe 

me, it will be enough.“ After ECB President Mario Draghi made this statement during the 

Global Investment Conference on the 26th of July, 2012, financial markets rallied. The three 

words “whatever it takes” marked a historical turning point for the euro-zone. Back then, 

Europe was in the depth of the sovereign debt crisis: Several euro-zone countries, among them 

Greece, Spain, Ireland and Portugal, accumulated debt, uncertain if they were able to repay it; 

rating companies downgraded the countries’ government bonds, yields were inversed resulting 

in high interest rates and the survival of the euro as a currency was threatened. In the hours 

following Draghi’s “whatever it takes” speech, Spanish and Italian bond yields sharply fell: 

The Spanish 2-year bond dropped by 74 basis points while Italy’s 2-year bond even dropped 

by 89 basis points. The Euro strengthened against the dollar and European stock markets 

jumped (Financial Times, 2012). 

 The “whatever it takes” speech and its immediate effects on financial markets underline 

the power of central bank’s monetary policy communication and the importance of the tool of 

forward guidance, that was introduced one year later. Forward guidance refers to the central 

bank’s communication to the public about its future monetary policy course and its outlook and 

perceptions about the economy’s development. It mitigates monetary policy surprises and thus 

market volatility following monetary policy announcements. It puts emphasis on the link 

between monetary policy and financial markets and the need to accurately measure monetary 

policy effects, also in context of financial markets. Measuring monetary policy has become 

difficult, especially since the use of unconventional monetary policy actions. Prior popular 

econometric approaches such as vector autoregressive models (VAR) with recursive 

identification schemes show up limitations in their application and also impose strong economic 
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restrictions. Due to the simultaneous change of financial variables, VAR analysis is also limited 

in estimating the effects of monetary policy on financial markets.  

Precisely for this reason, this paper employs a standard monetary VAR with a mix of 

financial and economic variables and uses high-frequency data in an external instrument 

approach to identify unexpected monetary policy shocks. The goal of this paper is to provide 

further evidence of the effects of monetary policy in the Euro Area as this field needs to be 

further researched. Moreover, through the use of high-frequency data, this paper aims to 

estimate a more accurate response to monetary policy in the Euro Area and to infer results that 

are more closer to reality. 

This paper is structured as follows: In chapter 2, a review of the strand of literature 

investigating monetary policy transmission and the literature focussing on high-frequency 

methodologies and external instrument identification is given. Chapter 3 outlines the empirical 

framework used and explains the procedure with its underlying assumptions. A discussion 

about the data used for the estimation is in chapter 4 and the results and robustness checks are 

presented in chapter 5 and 6.  

2. Literature Review 

Monetary policy is an important tool to stabilize a country’s economy, provide liquidity and 

foster economic growth. Recent years brought attention to central bank’s actions all around the 

world and emphasised its impact. As this paper deals with measuring monetary policy effects 

(2.1) offers an introduction to traditional monetary policy analysis and discusses its limitations. 

In (2.2) a relatively new approach to analyse monetary policy effects is presented and (2.3) 

focusses on the transmission mechanisms in the Euro Area.  

2.1 Traditional Monetary Policy Analysis 

Monetary policy not only affects the economy but also bases its policy decisions on the state of 

the economy. There is an intrinsic link between monetary policy, financial markets and 
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economic activity – a simultaneity problem which needs to be solved in order to interpret the 

effects of monetary policy. Since the publication of Sims (1980) in which he presents VAR 

models as solution and alternative approach for empirical macroeconomics, VAR analysis 

became a popular econometric approach to measure the effects of monetary policy shocks and 

analyse how monetary policy affects macroeconomic variables. However, VAR analysis serves 

to study the transmission mechanisms of monetary policy rather than serving evidence-based 

recommendations for ideal monetary policy decisions. Identification of the structural 

innovations is an important step in the VAR based approach and empirical literature shows 

discrepancies in inference and how policy shocks affect the economy due to different 

identification schemes and the inherent restrictions/assumptions.  

In the following influential papers using VAR analysis and their findings of different 

channels of monetary transmission are presented. The empirical research on monetary policy 

transmission is huge – especially on the U.S. economy – and paints a picture on the response 

of economic variables of different sectors to a monetary policy shock. Influential papers in 

traditional money shock analysis, such as Bernanke and Blinder (1992) use structural VAR 

analysis, to analyse how a monetary policy shock transmits to banks activities and finds that a 

tight shock to the federal funds rate, hence an increase, has an impact on the selling-off bank 

securities in the short-run and the decline of loans in the long-run. Evidently bank loans are an 

important component in monetary policy transmission. Christiano, Eichenbaum & Evans 

(1996) examine the transmission effects on economic activity and show that a contractionary 

monetary policy leads to a decline of real GDP, retail sales, corporate profits and non-corporate 

profits and an increase in unemployment. In a different paper, Eichenbaum and Evans (1995) 

investigate the effects of U.S. monetary policy on exchange rates and find that that a tightening 

of monetary policy leads to an appreciation of the U.S. nominal and real exchange rates.  

These papers are only a small excerpt of the widely researched field of monetary 

transmission mechanisms. Nevertheless, a general consensus on the qualitative effect of 
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monetary policy on the economy prevails. However, empirical results also show anomalies 

from basic concepts of monetary policy such as the price puzzle which refers to a phenomenon 

in empirical analysis in which an increase in the federal funds rate has led to an increase in 

inflation. Moreover, traditional VAR analysis shows estimations limits regarding the link 

between the target rate and other market interest rates and asset prices as these change 

simultaneously and also react to other factors (Rigobon & Sack, 2002).  

Thus the VAR approach arouses criticisms and the assumptions of different identification 

schemes are questionable. Additionally, Rudebusch (1998) highlights four weaknesses of the 

VAR approach: 1) The linear specification and the fixed time component as VARs do not 

incorporate the change of strategy of a central bank. 2) As it assumes that the economy can be 

summarized by only a few variables, important factors for decision-making are excluded, and 

omitted variable bias can arise. 3) Misspecifications arise due to the use of revised data to which 

the central bank does not have access at the time of formulating the policy decisions. 4) 

Spurious results could arise due to too many lags in interest rate equations. Cochrane and 

Piazzesi (2002) also agree and state three problems of VAR analysis which are quite similar to 

Rudebusch: The omitted variable bias problem, the orthogonalization problem and the time-

varying parameter problem. They argue that these problems can be solved by employing high-

frequency identification in VAR analysis.  

In conclusion, prior literature on monetary policy transmission reveals that it is challenging 

to model the complex relationships within an economy. VAR analysis served as a strong tool 

but empirical puzzles are evidence for its limitations. Thus, in the next chapter, high-frequency 

identification is presented as an alternative approach for measuring monetary policy effects. 

2.2 High Frequency Identification in Monetary Policy Analysis 

Besides the limitation of VAR analysis, the events of the global financial crisis gave rise to the 

close investigation of the relationship of target rates, interest rates and asset prices. The effect 

between monetary policy actions and asset prices is more immediate and direct. Therefore, asset 
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prices are important in understanding monetary policy transmission. The general consensus is 

that the target rate affects market interest rates which then further affect the economy. Thus, an 

increase in the federal funds rate leads to an increase of other market interest rates and the fall 

of bond prices (Kuttner, 2000).  

However, empirical studies such as Kuttner (2000) find that the relationship between the 

target rate and other interest rates is not statistically significant due to the anticipation of target 

rate changes of forward-looking financial market participants. Hence, the relationship between 

target rates and other interest rates and asset prices must be evaluated only by the surprise 

component of monetary policy. Kuttner is considered a pioneer in the estimation of monetary 

policy effects on interest rates through high frequency data, in this case fed funds futures 

contracts. Since then literature using financial market data to analyse monetary policy shocks 

has increased. Fed funds futures data are used as a proxy for market expectations and thus, the 

effects of unexpected monetary policy actions or surprises can be independently measured 

(Kuttner, 2000). High-frequency data is collected by an event-study approach meaning the data 

is collected around the periods of policy changes, e.g. the day of FOMC policy announcements. 

Henceforth, the changes in data is only driven by the policy shock (Rigobon & Sack, 2002). 

Faust, Swanson, and Wright (2004) develop this approach further by using high-frequency data 

for structural identification of a standard monetary policy VAR and find that contractionary 

monetary policy results in a stronger decline of GDP. Contrary to the estimation results of 

Christiano, Eichenbaum, and Evans (1998), the price puzzle does not appear. Bernanke and 

Kuttner (2004) investigate the relationship of monetary policy and stock prices and find that a 

contractionary monetary policy shock leads to a decline in stock prices. Even though in recent 

years the analysis of monetary policy and its reaction to financial markets became more popular, 

there is still little evidence about the effects on corporate bond spreads. In standard economic 

models a tightening of monetary policy leads to a tightening of financial conditions and thus, 

an increase in the corporate bond spread. Furthermore, Gürkaynak and Sack (2004) make use 
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of an event-study approach with high-frequency data and evaluate the effects of monetary 

policy on asset prices via a two-factor model, which emphasizes the importance of forward 

guidance. Forward guidance was especially important during the financial crisis when interest 

rates were already at the zero lower bound, it was the only way how central banks could 

influence financial markets. Gertler and Karadi (2013) use high-frequency data along with an 

external instrument approach to identify a mixed VAR of financial and economic variables. 

They confirm that high-frequency identification yields results consistent with economic theory; 

a contractionary monetary policy shock leads to a decline in economic activity and a tightening 

of financial conditions. 

In conclusion, the emergence of high-frequency data in applied monetary policy analysis as 

well as recent papers suggest, that limitations of traditional VAR analysis can be dissolved. 

Therefore, this paper’s approach builds on the approach used in Gertler & Karadi (2013).  

2.3 Monetary Transmission in the Euro Area 

The previous sections showed that monetary policy has been a focus of macroeconomic 

research –  especially the U.S. economy has been thoroughly studied. In contrast, there is some 

uncertainty when it comes to measuring monetary policy in the Euro Area as it is a complex 

construct of different national institutions with heterogenous domestic data. There are still 

various aspects of monetary policy and transmission, which need further investigative research. 

Angeloni et al. (2003) summarize facts about monetary transmission mechanisms in the Euro 

Area and find, that also in the Euro Area a tightening of monetary policy leads to a decline of 

output and inflation in all countries. Especially investment changes influence the fall in output 

in the Euro Area, rather than a change in consumption behaviour. Additionally, the Monetary 

Transmission Networks confirm that the interest rate channel is the most important channel in 

the Euro Area and empirical evidence confirms the existence of a credit channel (European 

Central Bank, 2011). Furthermore, general patterns in transmission mechanisms apply not only 

for the Euro Area as a whole but also to the country-level. Nevertheless, selected transmission 
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mechanisms can have stronger or weaker effects depending on the individual country. Recent 

literature has focussed on the transmission effects of unconventional monetary policy such as 

the effects of the asset purchase programme of the ECB or the impact of interest rates at the 

zero lower bound. Elbourne, Ji, and Duijndam (2018) investigate the effects of unconventional 

expansionary monetary policy and find, that the effects on output and inflation are relatively 

small: output increases slightly while the effects on inflation are statistically insignificant. 

However, when studying the country-level effects, they find large differences across 

countries, e.g. output effects in crisis countries are smaller. Corsetti, Duarte, and Mann (2018) 

pick up this topic and study the heterogeneity of the transmission mechanism within the Euro 

Area. Following Gertler and Karadi (2013) and Gürkaynak and Sack (2004), they employ a 

dynamic factor model with external instrument identification to investigate the monetary policy 

shocks in the Euro Area. Their results for the Euro Area consequently show, that a 

contractionary monetary policy shock does not have a significant impact on the harmonized 

index of consumer prices (HICP) but leads to a significant fall in consumer prices, which is in 

line with theory. Moreover, GDP and consumption fall as well as imports, exports and 

investments – whereas these time series react stronger. Furthermore, the contractionary 

monetary policy shock causes government spending to increase and unemployment to rise 

while wages fall. Corsetti, Duarte, and Mann (2018) also investigate the housing market and 

confirm the economic theory that tight monetary policy leads to more expensive mortgages and 

thus to less demand for houses, which consequently leads to a fall in real estate prices. 

Jarociński and Karadi (2018) investigate the effects of US as well as Euro Area monetary policy 

with high frequency data as identification method among other identification schemes. They 

confirm that a contractionary monetary policy shock in standard theory leads to a fall in the 

Euro Stoxx50 Index. 

The most recent paper contributing to the strand of literature on external instruments is 

Altavilla et al. (2019), who measure the effects of Euro Area monetary policy on different 
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classes of asset prices by using a FAVAR model. Through their event study database, they are 

able to extract three different factors of policy surprises – Target, Timing and Forward 

Guidance and evaluate the reaction of asset prices to these different kind of surprises. 

This paper aims to provide insights in the transmission mechanisms of monetary policy 

in the Euro Area. It contributes to the strand of literature, which focusses on employing new 

econometric approaches such as the use of high-frequency financial data and VAR analysis 

with instruments such as in Gertler and Karadi (2013). Also, it is inspired by Altavilla et al. 

(2019) concluding note to further research the effects of monetary policy in the Euro Area. 

Additionally, this paper’s contribution lies in the use of Python. Prior authors have used Matlab, 

which is a prominent software in economics. However, Python is becoming the most popular 

programming language and convinces through its generic and transparent code. In contrast to 

Matlab, it is a free software and the corresponding jupyter notebooks can be used as an open 

source, which facilitates the spread of knowledge. This paper’s jupyter notebooks aim to set a 

base for further macroeconometric analysis in Python. 

3. Empirical Framework 

The methodology of this paper focusses on using traditional VAR analysis combined with an 

external instrument identification scheme to analyse the effects of monetary policy. The high-

frequency instrument is used with the objective to separate unexpected monetary policy shocks 

from expected monetary policy shocks due to market expectations.  

The structural VAR usually follows the general set-up 

𝐴𝑌𝑡 = ∑ 𝐶𝑗𝑌𝑡−𝑗 + ϵ𝑡

𝑝

𝑗=1

 , 

where ϵ𝑡 are the structural shocks. By multiplying each side with 𝐴−1, we obtain the reduced 

form VAR: 
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𝑌𝑡 = ∑ 𝐵𝑗𝑌𝑡−𝑗 + 𝑢𝑡

𝑝

𝑗=1

 , 

where 𝑢𝑡 are the reduced form residuals and 𝐵𝑗 = 𝐴−1𝐶𝑗. The reduced form VAR can be 

estimated from the data via ordinary least squares, whereas the structural shocks are 

unobserved. However, we assume that there is a linear relationship between the structural 

shocks and the VAR innovations as is shown in:  

𝑢𝑡 = 𝐻ϵ𝑡 , 

with 𝐻 = 𝐴−1, thus ϵt = 𝐻−1𝑢𝑡. Moreover, we assume that the structural model is invertible 

and stationary and that the structural shocks are serially and mutually uncorrelated such that: 

(1) 𝐸[ϵ𝑡]  =  0 

(2) Σϵϵ = 𝐸[𝜖𝑡𝜖𝑡
′]  =  𝐼  

(3) 𝐸[ ϵ𝑡ϵ𝑠]   = 0, for 𝑡 ≠  𝑠 

(4) 𝐸[ 𝑢𝑡𝑢𝑡
′]   = 𝐻Σϵϵ𝐻′ = 𝐻𝐻′. 

As the objective is to find the effect of monetary policy shocks and analyse the impulse response 

functions we need to recover the matrix 𝐻. However, the assumptions from the structural shocks 

only provide (𝑁 + 1)𝑁/2 moment conditions, thus we need further restrictions to recover 𝐻. 

These will be provided by using an external instrument identification scheme. 

3.1 Identification via External Instruments 

Contrary to microeconometrics, in which instrumental variables are used to mitigate omitted 

variable bias, an external instrument in macroeconomics is used outside of the VAR and serves 

as a proxy for the target shock, as ϵ𝑡 is unknown. This approach was pioneered by Stock & 

Watson (2012), Mertens & Ravn (2013), and further developed by Gertler & Karadi (2013). 

However, literature shows that there a several strategies incorporating external instruments as 

an identification scheme; the basic set-up will be explained in the following: 
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Let 𝜖𝑡
(1) be the policy structural shock and 𝜖𝑡

(2) be a non-policy structural shock. For a 

variable 𝑧𝑡 to be a valid instrument for the policy shock it has to obey the following two 

conditions: 

(1) 𝐸[ 𝑧𝑡𝜖𝑡
(1)]   = α ≠ 0 ⇒ relevance criterium 

(2) 𝐸[ 𝑧𝑡𝜖𝑡
(2)]   = 0 ⇒ exogeneity criterium 

The relevance criterium says that the target shock is correlated with the instrument, while the 

exogeneity criterium states that the instrument is uncorrelated with all other structural shocks. 

Set in context, the instrument is only correlated with the policy shock and uncorrelated with the 

non-policy shocks. The choice of an instrument can follow several approaches. This paper will 

focus on the high-frequency approach. 

The objective is to find the effect of the monetary policy shock, thus we partition the 

structural shocks such that 𝜖𝑡 = (𝜖𝑡
(1)′, 𝜖𝑡

(2)′)′, where 𝜖𝑡
(1) refers to the target shock and 𝜖𝑡

(2) to 

all other (non-policy) structural shocks. We then further partition 𝐻 in such a way that,  

𝐻 = (𝐻(1), 𝐻(2)), with the objective to estimate 𝐻(1)- the matrix, which responds to the target 

shocks – in order to recover the impulse response functions. By further partitioning the matrix 

𝐻, we obtain 

(
𝑢𝑡

(1)

𝑢𝑡
(2)) = (𝐻(1,1) 𝐻(1,2)

𝐻(2,1) 𝐻(2,2)) (
𝜖𝑡

(1)

𝜖𝑡
(2)), 

⇒ 𝑢𝑡
(1) = 𝐻(1,1)𝜖𝑡

(1) + 𝐻(1,2)𝜖𝑡
(2) 

⇒ 𝑢𝑡
(2) = 𝐻(2,1)𝜖𝑡

(1) + 𝐻(2,2)𝜖𝑡
(2) 

with the objective to identify the first column 𝐻(1) = (𝐻(1,1), 𝐻(2,1)). By taking the instrument 

conditions and the partitioned matrix, we obtain 𝐸[𝑧𝑡𝑢𝑡
(1)]  = 𝑧𝑡(𝐻(1,1)𝜖(1) + 𝐻(1,2)𝜖(2)) and 
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𝐸[𝑧𝑡𝑢𝑡
(2)]  = 𝑧𝑡(𝐻(2,1)𝜖(1) + 𝐻(2,2)𝜖(2)), which simplifies to: 𝐸[𝑧𝑡𝑢𝑡

(1)] = α𝐻(1,1) and 

𝐸[𝑧𝑡𝑢𝑡
(2)] = 𝛼𝐻(2,1). Together, the equations yield: 

𝐻(2,1)𝐻(1,1)−1 = 𝐸[ 𝑧𝑡𝑢𝑡
(1)]

−1
𝐸[ 𝑧𝑡𝑢𝑡

(2)], 

which can be then estimated from the data by first estimating the reduced VAR and then using 

the two-stage-least-square approach (2SLS). In the first stage 𝑢𝑡
(1) is regressed on 𝑧𝑡 and in the 

second stage, the non-policy residuals are regressed on the predicted value of the policy 

residuals (from stage 1), which yields a consistent estimator 𝐸[ 𝑧𝑡𝑢𝑡
(1)]

−1
𝐸[ 𝑧𝑡𝑢𝑡

(2)], which 

equals to 𝐻(2,1)𝐻(1,1)−1. Hence, the fitted value of the regression of the instrument helps to 

identify the structural shocks. Via the variance-covariance matrix the relevant columns of 

matrix 𝐻 can be estimated (Appendix A) (Jentsch & Lunsford, 2016; Lakdawala, 2016; 

Lunsford, 2016). Once 𝐻(1) is estimated, we can proceed with computing the IRFs. As we only 

have one policy shock, this econometric framework is sufficient to identify the coefficients up 

to sign and scale (Dias, Daniel A. & Duarte, 2019). Mertens and Ravn (2013) provide an 

extended identification strategy in case of more than one target shock – a detailed explanation 

would push the limits of this thesis. 

3.2 Instrumental Variable 

The following section gives an overview on how high-frequency data can be collected and used 

as an instrument. Firstly, different methods from previous papers are presented before the 

method of this paper is thoroughly described.  

Following the event-study methodology of Gürkaynak & Sack (2004) and based on the 

instrument approach of Gertler & Karadi (2013), high-frequency data is collected around the 

FOMC policy announcements and used as an instrument for VAR identification in the latter 

case. By selecting a narrow time window of 30 minutes, monetary policy surprises can be 

isolated and the changes in high-frequency data circulating the FOMC meetings can serve as a 
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proxy for the monetary policy shock. However, the ECB communicates its policy decisions in 

a different manner. The governing council is the decision-making body of the ECB and meets 

every two weeks in the ECB headquarters in Frankfurt Germany. Within the fortnightly 

meetings, the governing council discusses the economic and monetary developments within the 

Euro Area and assesses possible risks to price stability. Based on this analysis it forms its 

monetary policy decisions. The monetary policy decisions are announced every six weeks and 

are published at 13:45 CET as a summarized list of the changes without any underlying 

explanations. The president of the ECB explains these decisions in the press conference, which 

follows at 14:30 CET and lasts about an hour. The president announces the monetary policy 

decisions followed by explaining the reasons, which motivated the governing council to come 

to the specific monetary policy decisions and also gives insights into the further economic 

developments expected by the ECB. Afterwards, journalists have the opportunity to ask the 

president questions within a Q&A session (ECB, n.d.-a)(ECB, n.d.-b).  

Therefore, high-frequency data for the Euro Area can be either collected in separate 

windows following Altavilla et al. (2019), who collect data from several classes of assets in 

their monetary policy event-study database around the so-called policy decision window, the 

press conference release window and when not distinguishing between them, the whole 

monetary policy decision window. They use a time frame of 10 minutes prior to the event and 

10 minutes afterwards to compute changes in the intraday data, e.g. overnight index swaps and 

German bond rate changes at different maturities. Corsetti, Duarte & Mann (2018) do not 

distinguish between the two release windows and choose to observe a 6-hour window from 

13:00 to 19:00 CET, as these times correspond to the closing of the stock exchange market in 

London and Tokyo. Through this technique they construct an external intraday series and 

overcome the problem of missing data. Hafemann & Tillmann (2017) use changes in the 10-

year German government bond on meeting days; An increase in the German bond, hence a 

positive surprise, is associated with a tightening of monetary policy.  
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All in all, the high-frequency literature focussing on the economy in the Euro Area 

experiments with several instruments, while the research conducted for the U.S. economy, 

usually uses fed funds futures to identify unexpected monetary policy shocks. Lloyd (2018) 

contributes to this topic with his research on the usefulness of OIS rates as instruments: He 

comes to the conclusion that among others, the 1-24-month Eurozone OIS rates can be used as 

a measure for market expectations and thus are an applicable instrument for monetary policy 

analysis.  

Therefore, I will use the changes in the 1-year OIS rate as an instrument for monetary 

policy shocks. Due to restricted data availability on Thomas Reuter’s Eikon I will use the EA-

MPD database from Altavilla et al. (2019) for the instrument data collection. The dataset 

includes Eurozone OIS rates at different maturities and several other asset prices in the three 

different time windows mentioned above. I will use the 1-year OIS rate of the monetary event 

window in which the change in the median quote from 13.25-13:35 and from 15:40-15:50 is 

collected, hence before the press release and after the press conference. 

In the following, the validity of the changes in the 1-year-OIS rate around ECB 

monetary decision days is shown with two illustrative examples. Figure 1 shows the 

instrument’s minutely development on the 12th September, 2019. This date is out of the sample 

range, however it serves as an example for the minutely development of the Eurozone OIS rate 

on meeting days. From noon onwards the OIS rate gradually increases. At 13:45 the monetary 

policy decisions are released; Mario Draghi announced a huge stimulus package including a 

cut of the deposit facility rate by 10 basis points and the revival of the asset purchase programme 

(APP) for an unlimited amount of time. Although, markets expected a rate cut and even saw 

the relaunch of the APP as very likely due to earlier comments of ECB representatives, the OIS 

rate displayed a negative surprise component due to the new information of an unlimited time 

frame for the APP and thus shifted slightly downwards, which is associated with a loosening 

of monetary policy. During the press conference, Mario Draghi announced that the ECB expects 
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from now to leave the key interest rates at their current level. Moreover, he alerted governments 

and stressed the importance of fiscal policy to avert a new crisis: With fiscal policy in place, 

the monetary policy stance would not need to be that expansionary. During the introductory 

statement, the OIS rate slightly drops but then increases again with the Q&A session (ECB, 

2019; Financial Times, 2019a, 2019b; Szalay, 2019). The movement of the Eurozone OIS rate 

emphasises the importance of the subsequent press conference and the direct reaction of 

financial market participants to the ECB’s economic outlooks. 

 

Figure 1: Minutely change in 1-year OIS rate on 12th September, 2019.  

 The EA-MPD dataset includes all dates of ECB governing council meetings: In total 

there are 264 monetary policy announcements from 7th January, 1999 til 6th June, 2019. 

Hereinafter, a monthly VAR will be estimated, thus the instrument time series will be 

transformed into a monthly series, by cumulating the changes within a given month. 

Figure 2 shows the development of the monthly instrument time series. The time series 

fluctuates around zero but displays some large positive and also negative spikes associated with 

huge surprise components. The largest spikes are found in the early years of the ECB, around 

2001, and then during the financial crisis and the subsequent years. The recent years til 2017 

do not show any large fluctuations at all. One of the large spikes occurred in August 2001, the 
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1-year OIS rate changed with a value of -16.7. In that month, the ECB announced to cut all 

three interest rates by 0.25 basis points as inflationary pressures seemed to ease. The 

corresponding significant change, mirrors the market’s surprise. 

This short descriptive analysis of the instrument emphasises its close relationship to the 

target rate and illustrates the volatility of financial markets.  

 

Figure 2: Monthly change in the 1-year Eurozone OIS rate. 

4. Data and Estimation  

This chapter describes the data used for the baseline VAR and it explains all relevant steps in 

the estimation as basis for the discussion of the results in chapter 5.  

4.1 The baseline VAR 

The baseline VAR includes 5 monthly time-series, which will be a mix of financial and 

macroeconomic variables over the sample period, from 01:1999 to 06:2019. The start date of 

the sample corresponds to the introduction of the Euro – and henceforth the start of the ECB’s 

monetary activities and influence in the Euro Area – and dates up to this year. The sample 

includes the financial crisis in 2008 and the subsequent introduction of unconventional 

monetary policy, such as the APP in 2015, and the current zero lower bound phase. The data is 

obtained from the ECB Statistical Warehouse, Bloomberg, FRED and Thomas Reuters Eikon. 
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As a measure of output and price level, the log of industrial production and the log of 

the harmonized index of consumer prices (HICP) are included in the baseline VAR. The 

industrial production index excludes construction and is seasonally and working day adjusted. 

For the HICP, the overall index is used, seasonally and working day adjusted. For both indices 

the reference year is 2015. As financial variables, the Euro Stoxx50 Index and a corporate bond 

spread are included to incorporate financial market conditions and credit risk. The Euro 

Stoxx50 Index is a weighted blue-chip index and incorporates 50 stocks from 11 Eurozone 

countries. As BBB corporate bond spread, the Euro High Yield Option-Adjusted Spread is used 

analogously to (Jarociński & Karadi, 2018). Additionally, the 1-year German Government Bill 

Index serves as the policy indicator. Both units are in percent. 

The baseline VAR is estimated in levels via ordinary least squares with two lags 

according to the minimum value of -31.62, of the Bayes information criterion (BIC) in the lag 

length test. According to Dolado & Lütkepohl (1996), estimating a VAR with an order of 

integration equal to 𝐼(1) with a number of lags 𝑑 ≥  2 still provides asymptotically normal t-

ratios, thus inference can be made when estimating a VAR in levels; inference on impulse 

response functions also remains valid if the VAR has a lag length greater than one (Luetkepohl, 

2011). Additionally, the autocorrelation function of the residuals will be consulted to confirm 

the choice of lag length. All autocorrelation plots (Figure 5), which are reported with 95% 

confidence bands, lie within the confidence bands indicating that there is no serial 

autocorrelation within the residuals. Except for the corporate bond spread which shows one 

significant spike at lag five. However, in accordance with the BIC, an optimal lag length of two 

is confirmed, as all other information criteria, such as the AIC, FPE and HQIC, recommend a 

lag length of 2 as well. Moreover, the rest of the variables do not exhibit any serial 

autocorrelation and a higher order would only inflate the coefficients. 

Prior literature in the proxy SVAR method emphasises the importance of a fitting 

instrument and policy indicator choice. Gertler & Karadi (2013) try several different 
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combinations of policy indicator and instrument within a regression exercise while Hafemann 

& Tillmann (2017) use an event-study-regression to study this issue. However, within the 

monthly VAR both use the first stage F-statistic to confirm the adequacy of the instrument as 

proxy for the policy indicator. Stock, Wright, & Yogo (2002) recommend a high threshold for 

the first-stage F-statistic, with a value higher than 10, to reject a weak instrument problem and 

assure reliable inference. After estimating the reduced VAR, 2SLS estimation is performed with 

the reduced VAR residuals and the instrument. In the first stage regression of the policy 

residuals on a constant and the instrument, I obtain a F-statistic with the value of 33.08 (Figure 

6), which is quite above the threshold of 10 and thus assures the adequacy of the instrument. 

With an accurate instrument choice, the estimation continues by calculating the 2SLS estimator 

𝛽𝐼𝑉 , and identifying the matrix 𝐻(1) to further estimate the impulse response functions with 

90% bootstrapping confidence bands (Appendix A). 

5. Results 

The impulse response functions span over a horizon of 40 periods. Figure 3 shows the impulse 

response functions for a 100 basis points contractionary monetary policy shock. This shock 

leads the 1-year German Government Bond to increase for two periods until it is 1.35 

percentage points above its previous value, that is, relative to the situation when there was no 

policy shock. After that, the response of the government bond decreases and starts to slowly 

decay towards zero. After 25 periods the response reaches zero and the response turns negative 

for the subsequent periods. However, the response is only significant for the first twelve 

periods. Notably, the results suffer from the price puzzle: a statistically significant increase of 

the price level. However, the output puzzle does not appear: industrial production has a negative 

response in the initial period and drops by 0.01% against its initial value. The response increases 

until it turns positive, decays towards zero and turns negative again after 14 periods; however 

it is insignificant for almost all periods. Contrary to theory that a monetary tightening leads to 
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a decline of stock indices, the Euro Stoxx50 Index has a positive reaction to a tightening of 

monetary policy and increases up to 0.17%. The response gets smaller after two periods and 

goes towards zero (until period 15), and then turns negative; but is only significant in the short-

run (first 5 periods). Moreover, the BBB corporate bond spread initially decreases with a 

tightening of monetary policy indicating improving financial conditions. The response to the 

monetary policy shock turns positive after 7 periods and then slowly decays to zero; but the 

impulse response function is only significant in the short-run (till period 4) and again in the 

medium-run (period 10-30).  

 

Figure 3: Impulse response to a monetary policy shock. 

In comparison to the findings of other papers that applied high frequency identification, this 

paper’s results slightly differ. Corsetti, Duarte and Mann (2018)’s results do not show the prize 

puzzle due to the adoption of the high-frequency identification and a dynamic factor model, 

which incorporates information about several price indices in the economy. As the price puzzle 
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is a common problem in VAR analysis, this result might suggest that using solely the HICP as 

indicator for inflation in the model is not enough to model the price dynamics in the economy 

correctly. Moreover, the results for the stock index and the corporate bond spread do not align 

with economic theory but are consistent with the results of Jarociński and Karadi (2018), who 

find as well that stock prices increase and corporate bond spreads decrease following a 

tightening monetary policy shock with standard high-frequency identification. Jarociński and 

Karadi (2018) delve deeper into the cause of a positive response of the stock prices and conclude 

that a positive co-movement of monetary policy and stock prices are due to a central bank 

information shock, which biases the results of standard high-frequency identification which in 

turn should indicate a negative co-movement according to theory.  

These central bank information shocks are transmitted through central banks’ 

announcements, in which private information of the central bank and their beliefs of the 

development of the economy are revealed to the public; a positive central bank information 

shock is associated with good news about the economy. Hence, it would translate into a 

situation in which the central bank tightens monetary policy but would communicate a positive 

perception of the economic outlook in order to counteract the effects of a monetary policy 

tightening on the economy. The positive co-movement of monetary policy and stock prices 

would also result in improving financial conditions, consistent with a decline of the corporate 

bond spread. Although Altavilla et al. (2019) obtain results about the stock prices according to 

standard economic theory, they re-estimate their variables in a small exercise finding evidence 

of information shocks, so called Delphic surprises. Thus, this paper’s results could be 

decomposed further to confirm the theory of different macroeconomic effects of so-called 

Delphic (information shock) and Odyssean (monetary policy) surprises.  

Furthermore, it should be noticed, that the model is estimating the response of the aggregate 

Euro Area. However, heterogeneity issues within the member countries could also lead to 

results not complying to standard economic theory, as the transmission channel with weaker 



 22 

member countries could be partially broken. Hafemann and Tillmann (2017) attribute the 

different responses of stock prices on the country-level to an impaired monetary policy 

transmission in structurally aggrieved countries. 

6. Robustness Checks 

To confirm the structural validity of the results, several robustness checks are carried out. All 

results are reported with 90% bootstrapping confidence bands. 

6.1 Cholesky Identification 

As alternative identification scheme, the Cholesky identification is used to compare the results. 

The Cholesky ordering is the following: Log of industrial production, log of HICP, the policy 

indicator, and then followed by the log of the Euro Stoxx50 Index and last, the BBB corporate 

bond spread. This ordering assumes that the stock index and the corporate bond spread react 

contemporaneously to monetary policy, while inflation and output only react within a period. 

Figure 7 shows the impulse response functions for the Cholesky identification. Strikingly, the 

results obtained via the Cholesky identification not only display the price puzzle but also the 

output puzzle underlining the more accurate measuring of monetary policy effects through 

high-frequency identification. Industrial production has a positive reaction over the whole time 

horizon but is only significant for the first ten periods. The reaction of consumer prices to a 

monetary policy shock is also positive but quickly decays to zero. The impulse response is only 

significant until period 4. The curve for the Euro Stoxx50 Index behaves similar to the external 

instrument case but the effect of a tightening of monetary policy is stronger: While in the 

external instrument case the 1% shock to monetary policy led the Euro Stoxx50 Index initially 

to increase by 0.12% from its previous value, the Cholesky case shows an increase of 0.46% in 

the initial period. Moreover, the response is positive at all times and does not reach zero in the 

entire time horizon; the response is significant for 20 periods. Also, the effect on the corporate 

bond spread is similar to the external instrument case but again stronger in the initial period.  
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6.2 The Post-2008 Sample 

To investigate the effects of unconventional monetary policy the sample is split and only the 

period after the financial crisis will be analysed: from 10:2008 till the end of the sample in 

06:2019. October 2008 is marked as the beginning of the crisis sample as the ECB sharply cut 

their interest rates by 50 bp that month, in coordination with the FED as the effects of the 

financial crisis intensified. The VAR is estimated with only one lag according to the Bayesian 

information criterion. In the crisis sample, the first stage regression F-test has a value of 7.99, 

indicating a weak-instrument problem. However, the impulse response functions in Figure 8 do 

not show any puzzles. The HICP decreases with a 1% monetary policy shock but the response 

is insignificant; industrial production also has a negative reaction with a monetary policy 

tightening but the response is only significant for the first two periods. However, the response 

for the Euro Stoxx50 Index and the BBB Corporate Bond spread still not obey to economic 

theory: The Euro Stoxx50 Index reacts positively but then the response get constantly smaller 

and goes to zero. The impulse response mirroring the financial conditions behaves similar to 

the external instrument case, the reactions are only prolonged. 

6.3 Alternative Instrument 

The robustness of the results is also verified by employing an alternative instrument, the 

Eurozone overnight index swap, but with a shorter maturity of six months. According to the 

first stage F-statistic, which has a value of 29.3, the 6-month OIS rate is also an adequate 

instrument. The impulse response functions with the 6-month rate do not differ greatly from 

the ones with the 1-year rate, underlining the validity of the method.  

7. Conclusion 

In using a vector autoregressive model with external instrument identification through high-

frequency data, this paper analysed the effects of monetary policy shocks on economic activity 

and financial markets in the aggregate Euro Area. This approach not only makes it feasible to 
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jointly analyse economic as well as financial variables but also to evaluate unexpected monetary 

policy shocks separately and incorporate market expectations. The findings show that monetary 

policy is transmitted through all channels under consideration – real economic activity, the 

credit channel and stock markets. Moreover, the results confirm that monetary policy analysis 

through high-frequency identification shows more accurate and precise effects of monetary 

policy shocks on economic activity. However, the findings also suggest that the effects of 

monetary policy on financial markets need to be decomposed further and separating expected 

from unexpected monetary policy shocks is not enough to fully grasp the effects on financial 

markets. In alignment with Jarociński & Karadi (2018), the findings emphasise that high-

frequency identification can be biased and that monetary policy shocks to financial markets 

should be further separated, e.g. into shocks to the central bank’s policy instrument and shocks 

to their communication.  

However, the results also need to be evaluated within the limits of this paper. For one 

thing the data used for the instrument was based on the EA-MPD database due to license 

restrictions with other financial databases. Therefore, the robustness of the instrument could 

only be analysed by using a shorter maturity. A different financial intraday time series could 

lead to different results. On the other hand, the VAR only included five variables which aimed 

at modelling economic as well as financial markets activity. A model including more variables 

might be able to capture the transmission mechanisms more accurately. 

The findings as well as the limitations offer new directions of research, which could be 

especially interesting for the unconventional monetary policy phase. Additionally, this paper 

used Python as programming language and if further research would also resort to more open 

software packages, a benchmark library for empirical macroeconomics could be built in Python. 
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Appendix A: Estimation & Impulse Response Function 

A.1 Estimation 

The estimation and identification of the structural VAR follows the following procedure: First 

the reduced form VAR is estimated trough the data. Then the two-stage least square approach 

is used to yield a result for 𝐻(2,1)𝐻(1,1)−1. From this the relevant columns of matrix 𝐻 can be 

identified.  

In the first stage of the 2SLS approach, the policy residuals 𝑢𝑡
(1) are regressed on the 

instrument 𝑧𝑡, such that 𝑢𝑡
(1) = γ𝑧𝑡 + η𝑡, the fitted value of 𝑢̂𝑡

(1) is then used in the second stage 

in which the non-policy residuals are regressed on the policy residuals, 𝑢𝑡
(2) = β2𝑆𝐿𝑆 𝑢̂𝑡

(1) + 𝑣𝑡. 

The two-stage-least-square approach then yields then a consistent estimator  

β2𝑆𝐿𝑆 = 𝐸[ 𝑧𝑡𝑢𝑡
(1)]

−1
𝐸[ 𝑧𝑡𝑢𝑡

(2)], which in turn yields an estimate of the relationship 

𝐻(2,1)𝐻(1,1)−1. Additionally, the first stage F-statistic provides a weak instrument test. 

Following Stock & Watson a F-statistic > 10 rejects the presence of a weak instrument. 

With the aid of the reduced VAR variance-covariance matrix, 

 𝐸[ 𝑢𝑡𝑢𝑡
′ ]  =  Σ =  [Σ11 Σ12

Σ21 Σ22
], the relevant columns of the matrix 𝐻 can be estimated. From 

the structural VAR assumptions we know that 𝐸[ 𝑢𝑡𝑢𝑡
′ ]   = 𝐻Σϵϵ𝐻′ = 𝐻𝐻′. Hence, we can 

express the columns of Σ by expressions of the matrix 𝐻: 

Σ11  = 𝐸[ 𝑢𝑡
(1)𝑢𝑡

(1)′]   = (𝐻(1,1)ϵ(1) + 𝐻(1,2)ϵ(2)) ∗  (𝐻(1,1)ϵ(1) + 𝐻(1,2)ϵ(2))′ 

= 𝐻(1,1)𝐻(1,1)′ + 𝐻(1,2)𝐻(1,2)′,         (1) 

Σ21 = 𝐻(2,1)𝐻(1,1)′ + 𝐻(2,2)𝐻(1,2)′,        (2) 

Σ22 = 𝐻(2,1)𝐻(2,1)′ + 𝐻(2,2)𝐻(2,2)′,        (3) 

From (1) we know that 

𝐻(1,1)2  =  Σ11  −  𝐻(1,2)𝐻(1,2)′ and thus 𝐻(1,1)  =  √Σ11  − 𝐻(1,2)𝐻(1,2)′ . 
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From (1) to (3) we obtain an expression 

𝑄 = Σ22 − 𝐻(2,1)𝐻(1,1)−1 ∗ Σ21
′ − Σ21 ∗ 𝐻(2,1)𝐻(1,1)−1′ + 𝐻(2,1)𝐻(1,1)−1 ∗ Σ11 ∗ 𝐻(2,1)𝐻(1,1)−1′, 

which can be estimated from the data. Then an expression for 𝐻(1,2)𝐻(1,2) can be estimated: 

𝐻(1,2)𝐻(1,2) = (Σ21 − 𝐻(2,1)𝐻(1,1)−1 ∗ Σ11
′ ) ∗ 𝑄−1 ∗ (Σ21 − 𝐻(2,1)𝐻(1,1)−1 ∗ Σ11), 

And finally 𝐻(1,1)2 = Σ11 − 𝐻(1,2)𝐻(1,2)′
 can also be estimated.  

Now the relevant matrix 𝐻(1) is identified and can be used for the impulse response analysis. 

A.2 Impulse Response Functions 

The structural model is given by 

𝑌𝑡 = ∑ 𝐵𝑗𝑌𝑡−𝑗

𝑝

𝑗=1

+ 𝐻ϵ𝑡. 

The impulse refers to the change in the innovations of the model. By inverting the VAR into a 

moving average representation, the impulse response can be studied. 

The model can be rewritten in lag notation to 𝐵(𝐿)𝑌𝑡 = 𝐻ϵ𝑡, where 𝐵(𝐿) = 𝐼 − 𝐵1𝐿 − ⋯ −

𝐵𝑝𝐿𝑝 . And it can be turned into the moving average representation: 

𝑌𝑡 = ∑ 𝜑𝑗𝑢𝑡−𝑗

∞

𝑗=1

, 

where 𝜑𝑗 = 𝜑(𝐿) =  𝐵(𝐿)−1. The impulse response to a monetary policy shock is then given 

by ∂Yt
∂𝜖1

= 𝐵(𝐿)−1𝐻. The coefficient matrix, can directly be estimated via the reduced form. The 

matrix 𝐻 was identified previously. 

A.3 Recursive Residual-Based Wild Bootstrapping  

The wild bootstrapping algorithm was chosen for this estimation as Gertler & Karadi (2013) 

and Mertens & Ravn (2013) also use it for their proxy SVAR inference. For the bootstrapping 

procedure a random variable is needed with mean zero and variance 1. In proxy SVAR literature 

the Rademacher distribution is used commonly, where the draws are either 1 or -1, with a 
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probability of 0.5. The residuals and the instrument are multiplied with the Rademacher 

distribution to obtain 𝑢∗, 𝑍∗. The regressors are left at their sample value, however, the response 

variable is resampled based on 𝑢∗, 𝑍∗. Thus a new 𝑌∗ is produced. From the new bootstrap 

sample, the reduced residuals are estimated and structural residuals identified as in the usual 

proxy SVAR procedure. This algorithm is repeated several times, in this case a 1000 times. 

Then the confidence intervals can be computed, which are robust against conditional 

heteroskedacity and allow better inference under this design.  
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Appendix B: Data Sources 

Variable Adj. Source 

1-year German Government 

Bill  

-  Bloomberg (GDBR1 Index)   

Harmonized Index of 

Consumer Prices – Overall 

Index 

Seasonally 

adjusted and 

working day 

adjusted 

ECB Statistical Warehouse  

(Series-Key: 

ICP.M.U2.Y.000000.3.INX) 

Industrial Production Index: 

Total excluding construction 

Seasonally 

adjusted and 

working day 

adjusted 

ECB Statistical Warehouse  

(Series-Key: 

STS.M.I8.Y.PROD.NS0020.4.000) 

ICE BofAML Euro High 

Yield Index Option-Adjusted 

Spread 

Not seasonally 

adjusted 

FRED (BAMLHE00EHYIOAS) 

Euro Stoxx50 Index -  Bloomberg (SX5E Index)                                   

1-year Overnight Index Swap  -  EAMPD-Database (Altavilla et al., 

2019), based on EUREON1Y= from 

Thomas Reuters Eikon 
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Appendix C: Figures 

 

Figure 4: Results of lag length test. 

 

Figure 5: Residual autocorrelation plots. 



 34 

 

Figure 6:First stage regression results. 
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Figure 7: Impulse response to a monetary policy shock with Cholesky identification. 
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Figure 8: Impulse response for the crisis sample from (10:2008 – 06:2019). 
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Figure 9: Impulse response for alternative instrument. 

 

Appendix D: Python Jupyter Notebook 



1. Data Transformation

December 30, 2019

*this jupyter notebook was created specifically for the pdf version presented in the appendix
of the work project document, not all tables and graphics are displayed.

In [19]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: VAR Data

In [20]: #load raw data
data = pd.read_excel('VAR_data.xlsx').sort_values(by = 'Date', ascending = True)
data1 = data.set_index('Date')
data1.head()

Out[20]: Year Month IP excl. Construction HICP eurostoxx50 \
Date
1999-01-01 1999 1 89.5 74.08 3547.15
1999-02-01 1999 2 88.4 74.10 3484.24
1999-03-01 1999 3 88.6 74.25 3559.86
1999-04-01 1999 4 89.0 74.52 3757.87
1999-05-01 1999 5 89.2 74.50 3629.46

bbb_spread 1ygovbondindx
Date
1999-01-01 7.410476 2.883
1999-02-01 7.526190 3.016
1999-03-01 7.347826 2.871
1999-04-01 6.990909 2.616
1999-05-01 6.830000 2.667

In [21]: #create seperate dataframe for the dates
date = data1[['Year', 'Month']]
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In [22]: #load instrument data
instrument = pd.read_excel('EA_instrument.xlsx')
instrument1 = instrument.set_index('Date')
instrument1.head()

Out[22]: Year Month OIS_1Y
Date
1999-01-07 1999 1 -0.25
1999-01-21 1999 1 0.00
1999-02-18 1999 2 0.00
1999-03-04 1999 3 0.00
1999-03-18 1999 3 1.00

In [23]: #cumulate the changes in the 1-year OIS rate by month
instrument2 = instrument1.groupby(['Year', 'Month']).sum().reset_index()
instrument2['Days'] = np.ones((len(instrument2['Month'])))

In [24]: #create dataframe with datetime index
instrument2['Date'] = pd.to_datetime((instrument2.Year*10000+instrument2.Month*100+instrument2.Days).apply(str),format='%Y%m%d')
instrument3 = instrument2.drop(columns = ['Year', 'Month', 'Days']).set_index('Date')
instrument3.head()

Out[24]: OIS_1Y
Date
1999-01-01 -0.25
1999-02-01 0.00
1999-03-01 1.00
1999-04-01 -0.90
1999-05-01 0.70

In [25]: #seperate time series for transformation
ip = pd.DataFrame(data1['IP excl. Construction'])
hicp = pd.DataFrame(data1['HICP'])
stoxx = pd.DataFrame(data1['eurostoxx50'])
bbb_spread = pd.DataFrame(data1['bbb_spread'])
gov_bond = pd.DataFrame(data1['1ygovbondindx'])

In [26]: #transform time series with logs
log_ip = np.log(ip)
log_ip.rename(columns = {'IP excl. Construction': 'IP'}, inplace = True)
log_hicp = np.log(hicp)
log_stoxx = np.log(stoxx)

0.2 Part II: Visualise VAR Data

In [27]: plt.figure(figsize=(8,15))

plt.subplot(511)
plt.plot(log_ip)
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plt.title('Industrial Production excl. Construction')
plt.xlabel('Date')
plt.ylabel('Log of industrial production')
plt.grid()

plt.subplot(512)
plt.plot(log_hicp)
plt.title('Harmonized Index of Consumer Prices')
plt.xlabel('Date')
plt.ylabel('Log of hicp index')
plt.grid()

plt.subplot(513)
plt.plot(log_stoxx)
plt.title('Euro Stoxx50 Index')
plt.xlabel('Date')
plt.ylabel('Log of Euro Stoxx50 Index')
plt.grid()

plt.subplot(514)
plt.plot(bbb_spread)
plt.title('BBB Corporate Bond Spread')
plt.xlabel('Date')
plt.ylabel('%')
plt.grid()

plt.subplot(515)
plt.plot(gov_bond)
plt.title('1-year German Government Bond')
plt.xlabel('Date')
plt.ylabel('%')
plt.grid()

plt.tight_layout()
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0.3 Part III: Prepare VAR Data in Levels

In [28]: #join transformed time series in one dataframe
df = date.join([gov_bond,log_hicp, log_ip ], how = 'outer')
df2 = df.join([log_stoxx, bbb_spread], how = 'outer')

#join instrument
data_final = pd.merge(df2, instrument3, on = ['Date'], how = 'outer').dropna()
data_final.head() #final data for subsequent estimation

Out[28]: Year Month 1ygovbondindx HICP IP eurostoxx50 \
Date
1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_1Y
Date
1999-01-01 7.410476 -0.25
1999-02-01 7.526190 0.00
1999-03-01 7.347826 1.00
1999-04-01 6.990909 -0.90
1999-05-01 6.830000 0.70

0.4 Part IV: Example 1-year Eurozone OIS Rate

In [29]: #create plot of monthly OIS rate
import matplotlib.dates as mdates

plt.ioff()
fig, ax = plt.subplots(figsize=(15,7))
instrument3.plot(ax=ax)
ax.xaxis.set_major_locator(mdates.MonthLocator(interval = 8))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%m-%y'))

plt.title('Monthly Change 1-year Eurozone OIS Rate from 01:1999 - 06:2019')
plt.xlabel('Date')
plt.ylabel('1-year OIS rate change in basis points')
plt.xlim('1999','2019')
plt.ioff()
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In [30]: #read data
df = pd.read_excel('eureon1y_minutely.xlsx')

#select time range
df2 = df[(df['Date'] > '2019-09-12 09:00:00') & (df['Date'] < '2019-09-13 00:01:00')].set_index('Date')
df2.head()

Out[30]: Close(EUREON1Y=)
Date
2019-09-13 00:00:00 -0.548
2019-09-12 23:59:00 -0.548
2019-09-12 23:58:00 -0.548
2019-09-12 23:57:00 -0.548
2019-09-12 23:56:00 -0.548

In [31]: #create plot
plt.ioff()
fig, ax = plt.subplots(figsize=(15,7))

df2.plot(ax=ax)

plt.title('Minutely Change in 1-year OIS Rate on 12th September 2019')
plt.xlabel('Time')
plt.ylabel('1-year OIS rate change in basis points')
plt.xlim('2019-09-12 09:00:00', '2019-09-12 20:01:00')

ax.xaxis.set_major_locator(mdates.HourLocator(interval = 1))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H-%M'))
ax.axvline(x = '2019-09-12 13:45:00', color = 'black', linewidth = 0.5)
ax.axvspan('2019-09-12 14:30:00','2019-09-12 15:30:00', color = 'grey', alpha = 0.5)
plt.ioff()
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2. Baseline VAR Estimation and Identification

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Load Data

In [2]: #load data and set datetime as index
df = pd.read_excel('data_levels.xlsx')
df2 = df.set_index('Date')
df2.head()

Out[2]: Year Month 1ygovbondindx HICP IP eurostoxx50 \
Date
1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_1Y
Date
1999-01-01 7.410476 -0.25
1999-02-01 7.526190 0.00
1999-03-01 7.347826 1.00
1999-04-01 6.990909 -0.90
1999-05-01 6.830000 0.70

In [3]: #select variables for reduced var model
X = df2[['1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread']]
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0.2 Part II: Preliminary Tests

In [4]: #lag length test
import statsmodels.api as sm
from statsmodels.tsa.api import VAR

model = VAR(X)
model.select_order(12).summary()

Out[4]: <class 'statsmodels.iolib.table.SimpleTable'>

In [5]: from statsmodels.graphics.tsaplots import plot_acf

results = model.fit(2, trend = 'nc')
#compute residuals
residuals = results.resid

#recheck lag selection via autocorrelation function of residuals
plt.ioff()
plot_acf(residuals[['1ygovbondindx']], lags=40, title = 'Residual Autocorrelation 1-year German Government Bond')
plot_acf(residuals[['HICP']], lags=40, title = 'Residual Autocorrelation Harmonized Index of Consumer Prices')
plot_acf(residuals[['IP']], lags=40, title = 'Residual Autocorrelation Industrial Production')
plot_acf(residuals[['eurostoxx50']], lags=40, title = 'Residual Autocorrelation Euro Stoxx50 Index')
plot_acf(residuals[['bbb_spread']], lags=40, title = 'Residual Autocorrelation Corporate Bond Spread')
plt.ioff()

0.3 Part III: Estimation Reduced VAR

In [6]: #manual estimation of reduced var

#create dataframe with lags
XLAG = pd.DataFrame()
num_lags = 2 #number of lags according to BIC
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn dataframe into arrays
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficient
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
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#print beta coefficient results
col_names = list(X2.columns)
index = list(XLAG2.columns)
coefficient_matrix = pd.DataFrame(Bhat, index = index, columns = col_names)
coefficient_matrix

Out[6]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
1ygovbondindx-1 1.206220 0.001479 0.007181 0.059325 -1.882308
HICP-1 12.326375 1.143944 0.222482 0.041549 45.282049
IP-1 -0.772842 0.019828 0.688560 0.026600 -4.739764
eurostoxx50-1 0.183317 0.002299 0.013894 0.965809 -5.918025
bbb_spread-1 -0.018017 -0.000184 -0.003683 0.007399 0.988982
1ygovbondindx-2 -0.264382 -0.001726 -0.007373 -0.070943 2.165812
HICP-2 -13.176063 -0.153208 -0.213005 -0.190087 -40.974560
IP-2 1.290158 -0.008866 0.278898 0.145637 -0.506159
eurostoxx50-2 0.007398 -0.003173 0.000026 0.021246 6.508368
bbb_spread-2 0.014252 0.000206 0.002969 -0.006951 -0.090552

0.4 Part III: Two-Stage Least Square Regression

In [7]: date = list(X2.index)

#estimate errors from reduced form VAR
res = X3 - XLAG3@Bhat
u = pd.DataFrame((X3 - XLAG3@Bhat),index = date, columns = col_names) #create dataframe

#reduced error covariance matrix
#VAR.Sigma = (VAR.res'*VAR.res)/(VAR.T-VAR.n*VAR.p-1);
sigma = (u.T@u)/(num_obs - num_lags*num_vars - 1)

#partition errors
#policy residuals
res_p = u[['1ygovbondindx']]

#non-policy residuals
res_q = u[['HICP', 'IP','eurostoxx50', 'bbb_spread']]

#turn into array
u_p = np.array(res_p).reshape(len(X3),1)
u_q = np.array(res_q)

u.head() #show excerpt of residuals

Out[7]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
1999-03-01 -0.210170 0.000402 -0.004420 0.013827 0.038525
1999-04-01 -0.267440 0.001887 0.002309 0.069471 -0.525029
1999-05-01 0.021309 -0.002252 -0.000331 -0.012007 -0.393453
1999-06-01 0.169593 -0.001076 0.004220 0.040930 -0.226711
1999-07-01 -0.004069 -0.000314 0.004733 -0.049821 0.136371
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In [8]: sigma #show variance-covariance matrix

Out[8]: 1ygovbondindx HICP IP eurostoxx50 \
1ygovbondindx 0.026809 6.301566e-06 1.504118e-04 0.003799
HICP 0.000006 2.640349e-06 4.292477e-07 -0.000006
IP 0.000150 4.292477e-07 9.716275e-05 0.000057
eurostoxx50 0.003799 -5.905515e-06 5.695121e-05 0.003037
bbb_spread -0.034949 -1.407716e-04 -1.159073e-03 -0.013639

bbb_spread
1ygovbondindx -0.034949
HICP -0.000141
IP -0.001159
eurostoxx50 -0.013639
bbb_spread 0.498320

In [9]: #get instrument
instrument = df2[['OIS_1Y']].iloc[num_lags:,:] #adapt data range according to lag length
Z = np.array(instrument)

In [10]: #2SLS
#First Stage: OLS with policy residual and instrument
#policy residual = constant + instrument

b_p = inv(Z.T@Z)@Z.T@u_p # beta coefficient for Z

#find constant
N = len(u_p)
c = np.ones(N)
c0 = np.mean(u_p)-(b_p*np.mean(Z))

#calculate fitted values for policy residual
u_p_hat = c0 + b_p*Z

print('The first stage coefficients are',c0, 'and', b_p)

#Produce table of actual and fitted values of dependent variable
actual = pd.DataFrame(u_p).rename(columns = {0: 'actual'})
fitted = pd.DataFrame(u_p_hat).rename(columns = {0: 'fitted'})
t1 = actual.join(fitted)
t1.head() #show excerpt

The first stage coefficients are [[-0.00077337]] and [[0.01247968]]

Out[10]: actual fitted
0 -0.210170 0.011706
1 -0.267440 -0.012005
2 0.021309 0.007962
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3 0.169593 -0.007013
4 -0.004069 0.067865

In [11]: #f-test for weak instruments
k = 2
T = len(Z)

SSE = (u_p - c0 - b_p*Z).T@(u_p - c0 - b_p*Z) #sum of squared errors
SST = (u_p - np.mean(u_p)).T@(u_p - np.mean(u_p)) #total sum of squares

r_squared = 1 - (SSE/SST) #calculate R^2

F_test = (r_squared/(k-1))/((1-r_squared)/(T-k)) #F-test

print('R-squared:',r_squared)
print('F-test:',F_test)

R-squared: [[0.12969016]]
F-test: [[33.08156933]]

In [12]: #Second stage
#u_q = b * u_p_hat
b_iv = inv(u_p_hat.T@u_p_hat)@u_p_hat.T@u_q #coefficients
print(b_iv)

[[ 9.60695155e-04 -1.28505766e-02 1.18980757e-01 -1.18129020e+00]]

0.5 Part IV: Identification

In [13]: #turn reduced VAR variance-covariance matrix into array
sig = np.array(sigma)

#2SLS coefficient is estimate of H21iH11
h21ih11 = b_iv.T

#partitioning of the covariance matrix
sig11 = sig[0][0].reshape(1,1)
sig21 = sig[1:,0].reshape(-1,1)
sig22 = sig[1:,1:5]

#start by estimating Z
Q = sig22 - h21ih11@sig21.T - sig21@(h21ih11.T) + h21ih11*sig11*h21ih11.T

#next
h12h12 = (sig21 - h21ih11*sig11).T@inv(Q)@(sig21 - h21ih11*sig11)
h11h11 = sig11 - h12h12
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h11 = np.sqrt(h11h11)
print('h11 is',h11)
print('and h21 is', h21ih11*h11)

#find H1, obtained estimates for h11 and h21
H1 = np.vstack((h11, (h21ih11*h11)))

h11 is [[0.15584716]]
and h21 is [[ 1.49721613e-04]
[-2.00272589e-03]
[ 1.85428134e-02]
[-1.84100725e-01]]

0.6 Part V: Impulse Response Function

In [14]: #impulse response function
num_impulses = 40 #number of periods
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (H1.T/(H1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]
irs = irs
irf_proxy = pd.DataFrame(irs, columns = col_names) #turn irf into dataframe

In [15]: irf_proxy.head() #show beginning of irf table

Out[15]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
0 1.000000 0.001470 0.135193 0.097597 -1.454463
1 1.290790 0.003846 0.060131 0.160887 -3.896407
2 1.421694 0.005773 0.067443 0.148352 -4.646878
3 1.486044 0.006745 0.087355 0.144625 -4.284896
4 1.505833 0.007245 0.088019 0.146016 -3.803853

0.7 Part VI: Bootstrapping

In [16]: #function for estimating reduced VAR
def estimate(X):

X = pd.DataFrame(X)
XLAG = pd.DataFrame()
num_lags = 2

for i in range(1,num_lags+1):
XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
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X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
res = X3 - XLAG3@Bhat
return res, Bhat

In [17]: #function for identification
def proxysvar (residual, instrument):

sigma = (residual.T@residual)/(num_obs - num_lags*num_vars - 1)
pshock = residual[:,0].reshape(-1,1)
qshock = residual[:,1:,]
#first stage
b_fs = inv(instrument.T@instrument)@instrument.T@pshock
constant = np.ones(len(pshock))
constant = np.mean(pshock)-(b_fs*np.mean(instrument))
#fitted value
pshock_hat = constant + b_fs*instrument
#second stage
b_ss = inv(pshock_hat.T@pshock_hat)@pshock_hat.T@qshock
#2SLS coefficient is estimate of H21iH11
b21ib11 = b_ss.T
#Columns of the covariance matrix
sigma11 = sigma[0][0].reshape(1,1)
sigma21 = sigma[1:,0].reshape(-1,1)
sigma22 = sigma[1:,1:5]
#start by estimating Q
S = sigma22 - b21ib11@sigma21.T - sigma21@(b21ib11.T) + b21ib11*sigma11*b21ib11.T
#next
b12b12 = (sigma21 - b21ib11*sigma11).T@inv(S)@(sigma21 - b21ib11*sigma11)
b11b11 = sigma11 - b12b12
b11 = np.sqrt(b11b11)
#find H1, obtained estimates for h11 and h21
B1 = np.vstack((b11, b21ib11*b11))

return B1

In [18]: #function for impulse response
def impulse(Bhat, B1):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (B1.T/(B1[0]))
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for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irsb = irs[num_lags : num_lags + num_impulses,:]
irf_proxy = pd.DataFrame(irsb, columns = col_names)
return irsb

In [19]: #simulate new data and repeat in loop

jj = 0
nboot = 1000 #number of repetitions
imp = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb = (res*(rr@np.ones((1, num_vars)))).T #u*
Zb = np.vstack(((Z[0:num_lags,:]),(rr*np.ones((1,1))*Z))) #Z*
varsb = np.zeros((len(X), num_vars))
#initial condition
varsb[0:num_lags,:] = X[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars = (varsb[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb[j,:] = lvars.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb[:,j-num_lags].T

var_j = estimate(varsb) #obtain fitted value for u_star
H_j = proxysvar(var_j[0], Zb[num_lags:,:])
irf_j = impulse(var_j[1], H_j)
irf_x = np.array(irf_j)
imp[:,jj-1] = np.reshape(irf_x,(num_impulses*(num_vars),1)).flatten()

In [20]: #create confidence bands
imp = imp.reshape(num_impulses,num_vars,nboot)
imp = np.sort(imp,axis=2)#
impci = imp[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [21]: #plot impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_proxy.index

plt.subplot(511)
plt.plot(periods, irf_proxy['1ygovbondindx'], 'black', label = 'External Instrument')
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plt.plot(periods, impci[:,0,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,0,1], 'r', linestyle = 'dashed')
plt.xlabel('Periods')
plt.title('1-year German Government Bond', weight = 'bold')
plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_proxy['HICP'],color = 'black')
plt.plot(periods, impci[:,1,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,1,1], 'r', linestyle = 'dashed')
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(513)
plt.plot(irf_proxy['IP'], color = 'black')
plt.plot(periods, impci[:,2,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,2,1], 'r', linestyle = 'dashed')
plt.title('Industrial Production', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(514)
plt.plot(irf_proxy['eurostoxx50'],color = 'black')
plt.plot(periods, impci[:,3,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,3,1], 'r', linestyle = 'dashed')
plt.title('Euro Stoxx50', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(515)
plt.plot(irf_proxy['bbb_spread'], color = 'black')
plt.plot(periods, impci[:,4,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,4,1], 'r', linestyle = 'dashed')
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.tight_layout()

9



3. Robustness Check Cholesky Identification

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
from numpy import linalg as LA
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Load Data

In [2]: #load data and set datetime as index
df = pd.read_excel('data_levels.xlsx')
df.drop(columns = 'OIS_1Y', inplace = True) #no instrument needed
df2 = df.set_index('Date')

In [3]: #cholesky ordering
#log of industrial production, log of consumer prices, the 1-year government bond, eurostoxx and the corporate bond spread
X = df2[['IP','HICP','1ygovbondindx','eurostoxx50','bbb_spread']]
X.head()

Out[3]: IP HICP 1ygovbondindx eurostoxx50 bbb_spread
Date
1999-01-01 4.494239 4.305146 2.883 8.173900 7.410476
1999-02-01 4.481872 4.305416 3.016 8.156005 7.526190
1999-03-01 4.484132 4.307438 2.871 8.177476 7.347826
1999-04-01 4.488636 4.311068 2.616 8.231608 6.990909
1999-05-01 4.490881 4.310799 2.667 8.196839 6.830000

0.2 Part II: Reduced VAR

In [4]: #lag length test
model = VAR(X)
model.select_order(12).summary()
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Out[4]: <class 'statsmodels.iolib.table.SimpleTable'>

In [5]: #create dataframe for lags
XLAG = pd.DataFrame()
num_lags = 2
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn datafram into array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficent
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

#print beta coefficient results
col_names = list(X2.columns)
index = list(XLAG2.columns)
coefficient_matrix = pd.DataFrame(Bhat, index = index, columns = col_names)
coefficient_matrix

Out[5]: IP HICP 1ygovbondindx eurostoxx50 bbb_spread
IP-1 0.688560 0.019828 -0.772842 0.026600 -4.739764
HICP-1 0.222482 1.143944 12.326375 0.041549 45.282049
1ygovbondindx-1 0.007181 0.001479 1.206220 0.059325 -1.882308
eurostoxx50-1 0.013894 0.002299 0.183317 0.965809 -5.918025
bbb_spread-1 -0.003683 -0.000184 -0.018017 0.007399 0.988982
IP-2 0.278898 -0.008866 1.290158 0.145637 -0.506159
HICP-2 -0.213005 -0.153208 -13.176063 -0.190087 -40.974560
1ygovbondindx-2 -0.007373 -0.001726 -0.264382 -0.070943 2.165812
eurostoxx50-2 0.000026 -0.003173 0.007398 0.021246 6.508368
bbb_spread-2 0.002969 0.000206 0.014252 -0.006951 -0.090552

0.3 Part III: Cholesky Identification

In [6]: #estimate errors from reduced form VAR
res = X3 - XLAG3@Bhat
sigma = res.T@res/(num_obs - num_lags*num_vars - 1) #variance-covariance matrix
#cholesky transformation
A0 = LA.cholesky(sigma)
d = np.zeros(A0.shape)
np.fill_diagonal(d,np.diag(A0)) #scale diagonal
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A0 = inv(d)@A0
A0

Out[6]: array([[ 1. , 0. , 0. , 0. , 0. ],
[ 0.02680918, 1. , 0. , 0. , 0. ],
[ 0.09362299, 0.02129264, 1. , 0. , 0. ],
[ 0.11631999, -0.07631395, 0.46002446, 1. , 0. ],
[-0.18445229, -0.131 , -0.31630658, -0.27376288, 1. ]])

In [7]: ##impulse response function
num_impulses = 40 #number of periods
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (A0[:,2].reshape(-1,1).T)
for jj in range (1, num_impulses):

lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]

irf_chol = pd.DataFrame(irs, columns = col_names) #turn irf into dataframe

In [8]: irf_chol.head()

Out[8]: IP HICP 1ygovbondindx eurostoxx50 bbb_spread
0 0.000000 0.000000 1.000000 0.460024 -0.316307
1 0.014737 0.002594 1.296249 0.501281 -4.917565
2 0.036808 0.003985 1.499161 0.466188 -5.033820
3 0.041425 0.004135 1.580896 0.457615 -4.151676
4 0.045873 0.003665 1.614890 0.449456 -3.244012

0.4 Part IV: Cholesky Bootstrapping Confidence Bands

In [9]: #function for estimating reduced var
def estimate(X):

X = pd.DataFrame(X)
XLAG = pd.DataFrame()
num_lags = 2

for i in range(1,num_lags+1):
XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#turn into array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#calculate coefficients
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
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res = X3 - XLAG3@Bhat
return res, Bhat

In [10]: #function for identification
def cholsvar(sigma):

cholmatr = LA.cholesky(sigma)
d = np.zeros(cholmatr.shape)
np.fill_diagonal(d,np.diag(cholmatr))
cholmatr = inv(d)@cholmatr
return cholmatr

In [11]: #function for impulse response
def impulse(Bhat, cholmatr):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (cholmatr[:,2].reshape(-1,1).T)

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]
irfbs = pd.DataFrame(irs, columns = col_names)
return irfbs

In [12]: #bootstrapping
#simulate new data and repeat in loop

jj = 0
nboot = 1000 #number of repetitions
imp = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb = (res*(rr@np.ones((1, num_vars)))).T #u*
varsb = np.zeros((len(X), num_vars))
#initial condition
varsb[0:num_lags,:] = X[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars = (varsb[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb[j,:] = lvars.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb[:,j-num_lags].T

var_j = estimate(varsb) #obtain fitted value for u_star
res_j = var_j[0]

4



sigma_j = (res_j.T@res_j)/(num_obs-num_lags*num_vars-1)
A_j = cholsvar(sigma_j)

irf_j = impulse(var_j[1], A_j)
irf_x = np.array(irf_j)
imp[:,jj-1] = np.reshape(irf_x,(num_impulses*(num_vars),1)).flatten()

In [13]: #create confidence bands
imp = imp.reshape(num_impulses,num_vars,nboot)
imp = np.sort(imp,axis=2)#
impci = imp[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [14]: #plot impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_chol.index

plt.subplot(511)
plt.plot(irf_chol['IP'], color = 'black', label = 'Cholesky')
plt.plot(periods, impci[:,0,0], 'r',linestyle='dashed' )
plt.plot(periods, impci[:,0,1], 'r',linestyle='dashed')
plt.title('Industrial Production excl. Construction', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_chol['HICP'], color = 'black')
plt.plot(periods, impci[:,1,0], 'r', linestyle='dashed')
plt.plot(periods, impci[:,1,1], 'r', linestyle='dashed')
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(513)
plt.plot(periods, irf_chol['1ygovbondindx'], color = 'black')
plt.plot(periods, impci[:,2,0], 'r', linestyle='dashed')
plt.plot(periods, impci[:,2,1], 'r', linestyle='dashed')
plt.title('1-year German Government Bond', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(514)
plt.plot(irf_chol['eurostoxx50'], color = 'black')
plt.plot(periods, impci[:,3,0], 'r',linestyle='dashed')
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plt.plot(periods, impci[:,3,1], 'r',linestyle='dashed')
plt.title('Euro Stoxx 50 Index', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(515)
plt.plot(irf_chol['bbb_spread'], color = 'black')
plt.plot(periods, impci[:,4,0], 'r', linestyle='dashed')
plt.plot(periods, impci[:,4,1], 'r', linestyle='dashed')
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()
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4. Robustness Check Crisis Sample

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Data & Functions

In [2]: df = pd.read_excel('data_levels.xlsx')
df.head()

Out[2]: Date Year Month 1ygovbondindx HICP IP eurostoxx50 \
0 1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1 1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
2 1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
3 1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
4 1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_1Y
0 7.410476 -0.25
1 7.526190 0.00
2 7.347826 1.00
3 6.990909 -0.90
4 6.830000 0.70

In [3]: #time span
post_crisis = df[['Date','1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread', 'OIS_1Y']].loc[df['Date'] > '2008-09-01']

X_post = post_crisis[['Date','1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread']].set_index('Date')
X_post.head()
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Out[3]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
Date
2008-10-01 2.501 4.521354 4.629863 7.860092 17.016957
2008-11-01 1.999 4.517213 4.590057 7.795774 20.288571
2008-12-01 1.714 4.513384 4.552824 7.802871 22.780455
2009-01-01 1.161 4.514041 4.511958 7.712882 18.964091
2009-02-01 1.029 4.515574 4.489759 7.588946 19.948095

In [4]: #function for estimating reduced VAR
num_lags = 1

def estimate(X):
X = pd.DataFrame(X)
XLAG = pd.DataFrame()
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)
#change names to frames that we modify
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#Building arrays for using OLS
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#VAR - standard OLS
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
res = X3 - XLAG3@Bhat
return res, Bhat

In [5]: #function for identification
def proxysvar (residual, instrument):

sigma = (residual.T@residual)/(num_obs - num_lags*num_vars - 1)
pshock = residual[:,0].reshape(-1,1)
qshock = residual[:,1:,]
#first stage
b_fs = inv(instrument.T@instrument)@instrument.T@pshock
constant = np.ones(len(pshock))
constant = np.mean(pshock)-(b_fs*np.mean(instrument))
#fitted value
pshock_hat = constant + b_fs*instrument
#second stage
b_ss = inv(pshock_hat.T@pshock_hat)@pshock_hat.T@qshock
#2SLS coefficient is estimate of H21iH11
b21ib11 = b_ss.T
#Columns of the covariance matrix
sigma11 = sigma[0][0].reshape(1,1)
sigma21 = sigma[1:,0].reshape(-1,1)
sigma22 = sigma[1:,1:5]
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#start by estimating Q
S = sigma22 - b21ib11@sigma21.T - sigma21@(b21ib11.T) + b21ib11*sigma11*b21ib11.T
#next
b12b12 = (sigma21 - b21ib11*sigma11).T@inv(S)@(sigma21 - b21ib11*sigma11)
b11b11 = sigma11 - b12b12
b11 = np.sqrt(b11b11)
#find H1, obtained estimates for h11 and h21
B1 = np.vstack((b11, b21ib11*b11))

return B1

In [6]: #function for impulse response
def impulse(Bhat, B1):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (B1.T/(B1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irsb = irs[num_lags : num_lags + num_impulses,:]
irsb_proxy = pd.DataFrame(irsb, columns = col_names)
return irsb

0.2 Part II: Post-Crisis Sample

In [7]: model_post = VAR(X_post)
model_post.select_order(8).summary()

Out[7]: <class 'statsmodels.iolib.table.SimpleTable'>

In [8]: #dataframe for lags
XLAG = pd.DataFrame()
num_lags = 1
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X_post.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X_post.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn into array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficient
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Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

#Print coefficient results
col_names = list(X2.columns)
index = list(XLAG2.columns)
coefficient_matrix = pd.DataFrame(Bhat, index = index, columns = col_names)
coefficient_matrix

Out[8]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
1ygovbondindx-1 0.964851 -0.000513 0.001354 -0.015212 0.343410
HICP-1 0.581017 0.988323 0.113882 0.429521 -6.799611
IP-1 -0.498559 0.015777 0.853584 -0.251250 9.848345
eurostoxx50-1 -0.043502 -0.002177 0.019522 0.897664 -1.697296
bbb_spread-1 -0.008019 -0.000042 -0.000873 0.000664 0.896826

In [9]: #estimate errors
date_post = list(X2.index)
res_post = X3 - XLAG3@Bhat
u_post = pd.DataFrame((X3 - XLAG3@Bhat),index = date_post, columns = col_names)

#reduced error covariance matrix
sigma_post = (u_post.T@u_post)/(num_obs - num_lags*num_vars - 1)

#partition errors
#policy residuals
res_post_p = u_post[['1ygovbondindx']]

#non-policy residuals
res_post_q = u_post[['HICP', 'IP','eurostoxx50', 'bbb_spread']]

#turn into array
u_post_p = np.array(res_post_p).reshape(len(X3),1)
u_post_q = np.array(res_post_q)

u_post.head()

Out[9]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
2008-11-01 -0.254424 -0.005286 -0.018793 -0.011970 2.656319
2008-12-01 -0.049071 -0.004655 -0.016783 0.034831 2.641227
2009-01-01 -0.323134 0.000347 -0.023008 -0.075230 -2.959358
2009-02-01 0.023153 0.001235 -0.011227 -0.134813 1.891359
2009-03-01 -0.032945 -0.001320 -0.003693 0.014446 2.579796

In [10]: instrument_post = post_crisis[['OIS_1Y']].iloc[num_lags:,:] #adapt data range
Z_post = np.array(instrument_post)

In [11]: #2SlS
#first Stage: OLS with u_p and instrument
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b_post_p = inv(Z_post.T@Z_post)@Z_post.T@u_post_p # coefficient for Z

#find constant
N = len(u_post_p)
c = np.ones(N)
c0_post = np.mean(u_post_p)-(b_post_p*np.mean(Z_post))

#fitted values
u_post_p_hat = c0_post + b_post_p*Z_post

print('The first stage coefficients are',c0_post, 'and', b_post_p)

#Produce table of actual and fitted values of dependent variable
actual = pd.DataFrame(u_post_p).rename(columns = {0: 'actual'})
fitted = pd.DataFrame(u_post_p_hat).rename(columns = {0: 'fitted'})
t1 = actual.join(fitted)
t1.head()

The first stage coefficients are [[0.00014298]] and [[0.00791587]]

Out[11]: actual fitted
0 -0.254424 0.107799
1 -0.049071 0.037348
2 -0.323134 -0.008564
3 0.023153 -0.050519
4 -0.032945 -0.010148

In [12]: #f-test for weak instruments
k = 2
T = len(Z_post)

SSE = (u_post_p - c0_post - b_post_p*Z_post).T@(u_post_p - c0_post - b_post_p*Z_post)
SST = (u_post_p - np.mean(u_post_p)).T@(u_post_p - np.mean(u_post_p))

r_squared = 1 - (SSE/SST)

F_test = (r_squared/(k-1))/((1-r_squared)/(T-k))
print('R-squared:', r_squared)
print('F-test:',F_test)

R-squared: [[0.06888323]]
F-test: [[7.98974798]]

In [13]: #Second stage
#u_q = b * u_p_hat
b_iv_post = inv(u_post_p_hat.T@u_post_p_hat)@u_post_p_hat.T@u_post_q
print(b_iv_post)
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[[-0.00214137 -0.06687888 0.27507276 -0.50915359]]

In [14]: #Reduced VAR variance-covariance matrix
sig_post = np.array(sigma_post)

#2SLS coefficient is estimate of H21iH11
h21ih11 = b_iv_post.T

#Columns of the covariance matrix
sig11 = sig_post[0][0].reshape(1,1)
sig21 = sig_post[1:,0].reshape(-1,1)
sig22 = sig_post[1:,1:5]

#start by estimating Z
Q = sig22 - h21ih11@sig21.T - sig21@(h21ih11.T) + h21ih11*sig11*h21ih11.T

#next
h12h12 = (sig21 - h21ih11*sig11).T@inv(Q)@(sig21 - h21ih11*sig11)
h11h11 = sig11 - h12h12
h11 = np.sqrt(h11h11)
print('h11 is',h11)
print('and h21 is', h21ih11*h11)

#find H1, obtained estimates for h11 and h21
H1_post = np.vstack((h11, (h21ih11*h11)))

h11 is [[0.08906932]]
and h21 is [[-0.00019073]
[-0.00595686]
[ 0.02450055]
[-0.04534997]]

In [15]: #impulse response function
num_impulses = 40
irs_post = np.zeros([num_lags+num_impulses, num_vars])
irs_post[num_lags,:] = (H1_post.T/H1_post[0])

for jj in range (1, num_impulses):
lvars_post = irs_post[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs_post[(num_lags + jj),:] = lvars_post.flatten(1).T@Bhat

irs_post = irs_post[num_lags : num_lags + num_impulses,:]
irf_post = pd.DataFrame(irs_post, columns = col_names)

In [16]: irf_post.head()

Out[16]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
0 1.000000 -0.002141 -0.066879 0.275073 -0.509154
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1 0.989067 -0.004262 -0.050162 0.247256 -1.224178
2 0.975895 -0.005999 -0.036067 0.216867 -1.642915
3 0.959830 -0.007402 -0.024480 0.185223 -1.820779
4 0.940540 -0.008522 -0.015233 0.153429 -1.808437

In [17]: #bootstrapping
#simulate new data and make loop
jj = 0
nboot = 1000
imp_post = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb_post = (res_post*(rr@np.ones((1, num_vars)))).T #u*
Zb_post = np.vstack(((Z_post[0:num_lags,:]),(rr*np.ones((1,1))*Z_post))) #Z*
varsb_post = np.zeros((len(X_post), num_vars))
#initial condition
varsb_post[0:num_lags,:] = X_post[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars_post = (varsb_post[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb_post[j,:] = lvars_post.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb_post[:,j-num_lags].T

var_post = estimate(varsb_post) #obtain fitted value for u_star
H_post = proxysvar(var_post[0], Zb_post[num_lags:,:])
irf_b_post = impulse(var_post[1], H_post)
irf_bs_post = np.array(irf_b_post)
imp_post[:,jj-1] = np.reshape(irf_bs_post,(num_impulses*(num_vars),1)).flatten()

In [18]: #create confidence bands
imp_post = imp_post.reshape(num_impulses,num_vars,nboot)
imp_post = np.sort(imp_post,axis=2)#
impci_post = imp_post[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [19]: #impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_post.index

plt.subplot(511)
plt.plot(periods, irf_post['1ygovbondindx'], 'black', label = 'External Instrument')
plt.plot(periods, impci_post[:,0,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,0,1], 'r', linestyle = 'dashed')
plt.xlabel('Periods')
plt.title('1-year German Government Bond', weight = 'bold')
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plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_post['HICP'],color = 'black')
plt.plot(periods, impci_post[:,1,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,1,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.subplot(513)
plt.plot(irf_post['IP'], color = 'black')
plt.plot(periods, impci_post[:,2,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,2,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('Industrial Production', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.subplot(514)
plt.plot(irf_post['eurostoxx50'],color = 'black',label='External Instrument')
plt.plot(periods, impci_post[:,3,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,3,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('Euro Stoxx50 Index', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.subplot(515)
plt.plot(irf_post['bbb_spread'], color = 'black')
plt.plot(periods, impci_post[:,4,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,4,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.tight_layout()
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5. Robustness Check Alternative Instrument

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Data

In [2]: #load data and set datetime as index
df = pd.read_excel('data_levels.xlsx')
df.drop(columns = ['OIS_1Y'], inplace = True) #drop instrument of baseline VAR
df.head()

Out[2]: Date Year Month 1ygovbondindx HICP IP eurostoxx50 \
0 1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1 1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
2 1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
3 1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
4 1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread
0 7.410476
1 7.526190
2 7.347826
3 6.990909
4 6.830000

In [3]: #load alternative instrument
instrument = pd.read_excel('EA_alternative_instrument.xlsx')
instrument.head()
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Out[3]: Date Year Month OIS_6M
0 1999-01-07 1999 1 -5.25
1 1999-01-21 1999 1 1.00
2 1999-02-18 1999 2 0.00
3 1999-03-04 1999 3 0.00
4 1999-03-18 1999 3 -0.50

In [4]: #transform instrument to a monthly time series
instrument2 = instrument.groupby(['Year', 'Month']).sum().reset_index()
instrument2['Days'] = np.ones((len(instrument2['Month'])))
instrument2['Date'] = pd.to_datetime((instrument2.Year*10000+instrument2.Month*100+instrument2.Days).apply(str),format='%Y%m%d')
instrument3 = instrument2.drop(columns = ['Year', 'Month', 'Days']).set_index('Date')
instrument3.head()

Out[4]: OIS_6M
Date
1999-01-01 -4.25
1999-02-01 0.00
1999-03-01 -0.50
1999-04-01 0.10
1999-05-01 0.10

In [5]: #final dataframe
data_final = pd.merge(df, instrument3, on = ['Date'], how = 'outer').dropna()
data_final.head()

Out[5]: Date Year Month 1ygovbondindx HICP IP eurostoxx50 \
0 1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1 1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
2 1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
3 1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
4 1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_6M
0 7.410476 -4.25
1 7.526190 0.00
2 7.347826 -0.50
3 6.990909 0.10
4 6.830000 0.10

In [6]: #set variables for reduced VAR
X = data_final[['1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread']]

0.2 Part II: Estimation Reduced VAR

In [7]: #lag length test
model = VAR(X)
model.select_order(12).summary()
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Out[7]: <class 'statsmodels.iolib.table.SimpleTable'>

In [8]: #create dataframe with lags
XLAG = pd.DataFrame()
num_lags = 2 #number of lags
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)
#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn dataframe into an array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficient
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

0.3 Part III: Two-Stage-Least-Square Estimation

In [9]: col_names = list(X2.columns)
date = list(X2.index)

#estimated errors from reduced form
res = X3 - XLAG3@Bhat
u = pd.DataFrame((X3 - XLAG3@Bhat),index = date, columns = col_names)

#reduced error covariance matrix
sigma = (u.T@u)/(num_obs - num_lags*num_vars - 1)

#partition residuals
#policy residuals
res_p = u[['1ygovbondindx']]

#non-policy residuals
res_q = u[['HICP', 'IP','eurostoxx50', 'bbb_spread']]

#turn into array
u_p = np.array(res_p).reshape(len(X3),1)
u_q = np.array(res_q)

u.head() #show excerpt of residuals

Out[9]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
2 -0.210170 0.000402 -0.004420 0.013827 0.038525
3 -0.267440 0.001887 0.002309 0.069471 -0.525029
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4 0.021309 -0.002252 -0.000331 -0.012007 -0.393453
5 0.169593 -0.001076 0.004220 0.040930 -0.226711
6 -0.004069 -0.000314 0.004733 -0.049821 0.136371

In [10]: #get instrument
Z = data_final[['OIS_6M']].iloc[num_lags:,:] #adapt data range to number of lags
Z = np.array(Z)

In [11]: #2SLS
#first stage: OLS with policy shock and instrument

b_p = inv(Z.T@Z)@Z.T@u_p # coefficient for Z

#find constant
N = len(u_p)
c = np.ones(N)
c0 = np.mean(u_p)-(b_p*np.mean(Z))

#calculate fitted values for policy shock
u_p_hat = c0 + b_p*Z

print('The first stage coefficients are',c0, 'and', b_p) #results

The first stage coefficients are [[-0.00015531]] and [[0.01373348]]

In [12]: #F-test for weak instruments
k = 2
T = len(Z)

SSE = (u_p - c0 - b_p*Z).T@(u_p - c0 - b_p*Z) #sum of squared residuals
SST = (u_p - np.mean(u_p)).T@(u_p - np.mean(u_p)) #total sum of squares
r_squared = 1 - (SSE/SST) #r-squared

F_test = (r_squared/(k-1))/((1-r_squared)/(T-k)) #F-test
#results
print('R-squared:',r_squared)
print('F-test:', F_test)

R-squared: [[0.11659479]]
F-test: [[29.30030694]]

In [13]: #Second stage
#u_q = b * u_p_hat
b_iv = inv(u_p_hat.T@u_p_hat)@u_p_hat.T@u_q
print(b_iv)

[[ 1.52143309e-04 -1.81087293e-02 1.17240720e-01 -1.12700210e+00]]
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0.4 Part IV: Identification

In [14]: #Reduced VAR variance-covariance matrix
sig = np.array(sigma)

#2SLS coefficient is estimate of H21iH11
h21ih11 = b_iv.T

#Columns of the covariance matrix
sig11 = sig[0][0].reshape(1,1)
sig21 = sig[1:,0].reshape(-1,1)
sig22 = sig[1:,1:5]

#start by estimating Z
Q = sig22 - h21ih11@sig21.T - sig21@(h21ih11.T) + h21ih11*sig11*h21ih11.T

#next
h12h12 = (sig21 - h21ih11*sig11).T@inv(Q)@(sig21 - h21ih11*sig11)
h11h11 = sig11 - h12h12
h11 = np.sqrt(h11h11)
print('h11 is',h11)
print('and h21 is', h21ih11*h11)

#find H1, obtained estimates for h11 and h21
H1 = np.vstack((h11, (h21ih11*h11)))

h11 is [[0.15201587]]
and h21 is [[ 2.31281970e-05]
[-2.75281419e-03]
[ 1.78224497e-02]
[-1.71322202e-01]]

0.5 Part V: Impulse Response Function

In [15]: #impulse response function
num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (H1.T/(H1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]
irs = irs
irf_proxy = pd.DataFrame(irs, columns = col_names)

In [16]: irf_proxy.head()
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Out[16]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
0 1.000000 0.000152 -0.018109 0.117241 -1.127002
1 1.263888 0.001771 0.000525 0.163744 -3.598005
2 1.335849 0.002752 0.009558 0.143309 -3.794887
3 1.325633 0.002623 0.012525 0.128516 -2.980327
4 1.268788 0.002005 0.012455 0.116681 -2.091942

0.6 Part VI: Bootstrapping Confidence Bands

In [17]: #function for estimating reduced VAR
def estimate(X):

X = pd.DataFrame(X)
XLAG = pd.DataFrame()

for i in range(1,num_lags+1):
XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
res = X3 - XLAG3@Bhat
return res, Bhat

In [18]: #function for identification
def proxysvar (residual, instrument):

sigma = (residual.T@residual)/(num_obs - num_lags*num_vars - 1)
pshock = residual[:,0].reshape(-1,1)
qshock = residual[:,1:,]
#first stage
b_fs = inv(instrument.T@instrument)@instrument.T@pshock
constant = np.ones(len(pshock))
constant = np.mean(pshock)-(b_fs*np.mean(instrument))
#fitted value
pshock_hat = constant + b_fs*instrument
#second stage
b_ss = inv(pshock_hat.T@pshock_hat)@pshock_hat.T@qshock
#2SLS coefficient is estimate of H21iH11
b21ib11 = b_ss.T
#Columns of the covariance matrix
sigma11 = sigma[0][0].reshape(1,1)
sigma21 = sigma[1:,0].reshape(-1,1)
sigma22 = sigma[1:,1:5]
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#start by estimating Q
S = sigma22 - b21ib11@sigma21.T - sigma21@(b21ib11.T) + b21ib11*sigma11*b21ib11.T
#next
b12b12 = (sigma21 - b21ib11*sigma11).T@inv(S)@(sigma21 - b21ib11*sigma11)
b11b11 = sigma11 - b12b12
b11 = np.sqrt(b11b11)
#find H1, obtained estimates for h11 and h21
B1 = np.vstack((b11, b21ib11*b11))

return B1

In [19]: #function for impulse response
def impulse(Bhat, B1):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (B1.T/(B1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irsb = irs[num_lags : num_lags + num_impulses,:]
return irsb

In [20]: #bootstrapping
#simulate new data and make loop

jj = 0
nboot = 1000
imp = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb = (res*(rr@np.ones((1, num_vars)))).T #u*
Zb = np.vstack(((Z[0:num_lags,:]),(rr*np.ones((1,1))*Z))) #Z*
varsb = np.zeros((len(X), num_vars))
#initial condition
varsb[0:num_lags,:] = X[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars = (varsb[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb[j,:] = lvars.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb[:,j-num_lags].T

var_j = estimate(varsb) #obtain fitted value for u_star
H_j = proxysvar(var_j[0], Zb[num_lags:,:])
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irf_j = impulse(var_j[1], H_j)
irf_x = np.array(irf_j)
imp[:,jj-1] = np.reshape(irf_x,(num_impulses*(num_vars),1)).flatten()

In [21]: #create confidence bands
imp = imp.reshape(num_impulses,num_vars,nboot)
imp = np.sort(imp,axis=2)#
impci = imp[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [22]: #impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_proxy.index

plt.subplot(511)
plt.plot(periods, irf_proxy['1ygovbondindx'], 'black', label = 'External Instrument')
plt.plot(periods, impci[:,0,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,0,1], 'r', linestyle = 'dashed')
plt.xlabel('Periods')
plt.title('1-year German Government Bond', weight = 'bold')
plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_proxy['HICP'],color = 'black')
plt.plot(periods, impci[:,1,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,1,1], 'r', linestyle = 'dashed')
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(513)
plt.plot(irf_proxy['IP'], color = 'black')
plt.plot(periods, impci[:,2,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,2,1], 'r', linestyle = 'dashed')
plt.title('Industrial Production', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(514)
plt.plot(irf_proxy['eurostoxx50'],color = 'black')
plt.plot(periods, impci[:,3,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,3,1], 'r', linestyle = 'dashed')
plt.title('Euro Stoxx50 Index', weight = 'bold')
plt.xlabel('Periods')
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plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(515)
plt.plot(irf_proxy['bbb_spread'], color = 'black')
plt.plot(periods, impci[:,4,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,4,1], 'r', linestyle = 'dashed')
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.tight_layout()
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