
A Work Project presented as part of the requirements for the Award of a Master Degree in

Economics from the NOVA – School of Business and Economics.

Empirical Analysis of the Impact of Monetary

Policy in the Euro Area

How do monetary policy shocks affect financial markets and economic activity in the

Euro Area?

Nazeerah Balogun, 33095

A Project carried out on the Master in Economics program, under the supervision of:

Luis Catela Nunes

03.01.2020

 2

Abstract

This paper studies the effects of monetary policy in the aggregate Euro Area. Contrary to

traditional money shock analysis, this paper uses a vector autoregressive model and estimates

the structural shocks through an external instrument identification approach, employing high-

frequency financial data as instrument. The model inhibits economic as well as financial

variables and uses the movement of Eurozone overnight index swaps around monetary policy

meetings as proxy for unexpected monetary policy shocks. The results show, that a

contractionary monetary policy shock behaves contrary to theory, indicating a bias in high-

frequency identification. Apart from the application of high-frequency identification, this paper

contributes to the literature by using Python for the estimation and identification of the model.

JEL Classification: E44, E52

Keywords: Proxy SVAR, high-frequency identification, monetary policy, Euro Area

This work used infrastructure and resources funded by Fundação para a Ciência e a Tecnologia

(UID/ECO/00124/2013, UID/ECO/00124/2019 and Social Sciences DataLab, Project 22209),

POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences DataLab, Project 22209)

and POR Norte (Social Sciences DataLab, Project 22209).

 3

1. Introduction

„Within our mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe

me, it will be enough.“ After ECB President Mario Draghi made this statement during the

Global Investment Conference on the 26th of July, 2012, financial markets rallied. The three

words “whatever it takes” marked a historical turning point for the euro-zone. Back then,

Europe was in the depth of the sovereign debt crisis: Several euro-zone countries, among them

Greece, Spain, Ireland and Portugal, accumulated debt, uncertain if they were able to repay it;

rating companies downgraded the countries’ government bonds, yields were inversed resulting

in high interest rates and the survival of the euro as a currency was threatened. In the hours

following Draghi’s “whatever it takes” speech, Spanish and Italian bond yields sharply fell:

The Spanish 2-year bond dropped by 74 basis points while Italy’s 2-year bond even dropped

by 89 basis points. The Euro strengthened against the dollar and European stock markets

jumped (Financial Times, 2012).

 The “whatever it takes” speech and its immediate effects on financial markets underline

the power of central bank’s monetary policy communication and the importance of the tool of

forward guidance, that was introduced one year later. Forward guidance refers to the central

bank’s communication to the public about its future monetary policy course and its outlook and

perceptions about the economy’s development. It mitigates monetary policy surprises and thus

market volatility following monetary policy announcements. It puts emphasis on the link

between monetary policy and financial markets and the need to accurately measure monetary

policy effects, also in context of financial markets. Measuring monetary policy has become

difficult, especially since the use of unconventional monetary policy actions. Prior popular

econometric approaches such as vector autoregressive models (VAR) with recursive

identification schemes show up limitations in their application and also impose strong economic

 4

restrictions. Due to the simultaneous change of financial variables, VAR analysis is also limited

in estimating the effects of monetary policy on financial markets.

Precisely for this reason, this paper employs a standard monetary VAR with a mix of

financial and economic variables and uses high-frequency data in an external instrument

approach to identify unexpected monetary policy shocks. The goal of this paper is to provide

further evidence of the effects of monetary policy in the Euro Area as this field needs to be

further researched. Moreover, through the use of high-frequency data, this paper aims to

estimate a more accurate response to monetary policy in the Euro Area and to infer results that

are more closer to reality.

This paper is structured as follows: In chapter 2, a review of the strand of literature

investigating monetary policy transmission and the literature focussing on high-frequency

methodologies and external instrument identification is given. Chapter 3 outlines the empirical

framework used and explains the procedure with its underlying assumptions. A discussion

about the data used for the estimation is in chapter 4 and the results and robustness checks are

presented in chapter 5 and 6.

2. Literature Review

Monetary policy is an important tool to stabilize a country’s economy, provide liquidity and

foster economic growth. Recent years brought attention to central bank’s actions all around the

world and emphasised its impact. As this paper deals with measuring monetary policy effects

(2.1) offers an introduction to traditional monetary policy analysis and discusses its limitations.

In (2.2) a relatively new approach to analyse monetary policy effects is presented and (2.3)

focusses on the transmission mechanisms in the Euro Area.

2.1 Traditional Monetary Policy Analysis

Monetary policy not only affects the economy but also bases its policy decisions on the state of

the economy. There is an intrinsic link between monetary policy, financial markets and

 5

economic activity – a simultaneity problem which needs to be solved in order to interpret the

effects of monetary policy. Since the publication of Sims (1980) in which he presents VAR

models as solution and alternative approach for empirical macroeconomics, VAR analysis

became a popular econometric approach to measure the effects of monetary policy shocks and

analyse how monetary policy affects macroeconomic variables. However, VAR analysis serves

to study the transmission mechanisms of monetary policy rather than serving evidence-based

recommendations for ideal monetary policy decisions. Identification of the structural

innovations is an important step in the VAR based approach and empirical literature shows

discrepancies in inference and how policy shocks affect the economy due to different

identification schemes and the inherent restrictions/assumptions.

In the following influential papers using VAR analysis and their findings of different

channels of monetary transmission are presented. The empirical research on monetary policy

transmission is huge – especially on the U.S. economy – and paints a picture on the response

of economic variables of different sectors to a monetary policy shock. Influential papers in

traditional money shock analysis, such as Bernanke and Blinder (1992) use structural VAR

analysis, to analyse how a monetary policy shock transmits to banks activities and finds that a

tight shock to the federal funds rate, hence an increase, has an impact on the selling-off bank

securities in the short-run and the decline of loans in the long-run. Evidently bank loans are an

important component in monetary policy transmission. Christiano, Eichenbaum & Evans

(1996) examine the transmission effects on economic activity and show that a contractionary

monetary policy leads to a decline of real GDP, retail sales, corporate profits and non-corporate

profits and an increase in unemployment. In a different paper, Eichenbaum and Evans (1995)

investigate the effects of U.S. monetary policy on exchange rates and find that that a tightening

of monetary policy leads to an appreciation of the U.S. nominal and real exchange rates.

These papers are only a small excerpt of the widely researched field of monetary

transmission mechanisms. Nevertheless, a general consensus on the qualitative effect of

 6

monetary policy on the economy prevails. However, empirical results also show anomalies

from basic concepts of monetary policy such as the price puzzle which refers to a phenomenon

in empirical analysis in which an increase in the federal funds rate has led to an increase in

inflation. Moreover, traditional VAR analysis shows estimations limits regarding the link

between the target rate and other market interest rates and asset prices as these change

simultaneously and also react to other factors (Rigobon & Sack, 2002).

Thus the VAR approach arouses criticisms and the assumptions of different identification

schemes are questionable. Additionally, Rudebusch (1998) highlights four weaknesses of the

VAR approach: 1) The linear specification and the fixed time component as VARs do not

incorporate the change of strategy of a central bank. 2) As it assumes that the economy can be

summarized by only a few variables, important factors for decision-making are excluded, and

omitted variable bias can arise. 3) Misspecifications arise due to the use of revised data to which

the central bank does not have access at the time of formulating the policy decisions. 4)

Spurious results could arise due to too many lags in interest rate equations. Cochrane and

Piazzesi (2002) also agree and state three problems of VAR analysis which are quite similar to

Rudebusch: The omitted variable bias problem, the orthogonalization problem and the time-

varying parameter problem. They argue that these problems can be solved by employing high-

frequency identification in VAR analysis.

In conclusion, prior literature on monetary policy transmission reveals that it is challenging

to model the complex relationships within an economy. VAR analysis served as a strong tool

but empirical puzzles are evidence for its limitations. Thus, in the next chapter, high-frequency

identification is presented as an alternative approach for measuring monetary policy effects.

2.2 High Frequency Identification in Monetary Policy Analysis

Besides the limitation of VAR analysis, the events of the global financial crisis gave rise to the

close investigation of the relationship of target rates, interest rates and asset prices. The effect

between monetary policy actions and asset prices is more immediate and direct. Therefore, asset

 7

prices are important in understanding monetary policy transmission. The general consensus is

that the target rate affects market interest rates which then further affect the economy. Thus, an

increase in the federal funds rate leads to an increase of other market interest rates and the fall

of bond prices (Kuttner, 2000).

However, empirical studies such as Kuttner (2000) find that the relationship between the

target rate and other interest rates is not statistically significant due to the anticipation of target

rate changes of forward-looking financial market participants. Hence, the relationship between

target rates and other interest rates and asset prices must be evaluated only by the surprise

component of monetary policy. Kuttner is considered a pioneer in the estimation of monetary

policy effects on interest rates through high frequency data, in this case fed funds futures

contracts. Since then literature using financial market data to analyse monetary policy shocks

has increased. Fed funds futures data are used as a proxy for market expectations and thus, the

effects of unexpected monetary policy actions or surprises can be independently measured

(Kuttner, 2000). High-frequency data is collected by an event-study approach meaning the data

is collected around the periods of policy changes, e.g. the day of FOMC policy announcements.

Henceforth, the changes in data is only driven by the policy shock (Rigobon & Sack, 2002).

Faust, Swanson, and Wright (2004) develop this approach further by using high-frequency data

for structural identification of a standard monetary policy VAR and find that contractionary

monetary policy results in a stronger decline of GDP. Contrary to the estimation results of

Christiano, Eichenbaum, and Evans (1998), the price puzzle does not appear. Bernanke and

Kuttner (2004) investigate the relationship of monetary policy and stock prices and find that a

contractionary monetary policy shock leads to a decline in stock prices. Even though in recent

years the analysis of monetary policy and its reaction to financial markets became more popular,

there is still little evidence about the effects on corporate bond spreads. In standard economic

models a tightening of monetary policy leads to a tightening of financial conditions and thus,

an increase in the corporate bond spread. Furthermore, Gürkaynak and Sack (2004) make use

 8

of an event-study approach with high-frequency data and evaluate the effects of monetary

policy on asset prices via a two-factor model, which emphasizes the importance of forward

guidance. Forward guidance was especially important during the financial crisis when interest

rates were already at the zero lower bound, it was the only way how central banks could

influence financial markets. Gertler and Karadi (2013) use high-frequency data along with an

external instrument approach to identify a mixed VAR of financial and economic variables.

They confirm that high-frequency identification yields results consistent with economic theory;

a contractionary monetary policy shock leads to a decline in economic activity and a tightening

of financial conditions.

In conclusion, the emergence of high-frequency data in applied monetary policy analysis as

well as recent papers suggest, that limitations of traditional VAR analysis can be dissolved.

Therefore, this paper’s approach builds on the approach used in Gertler & Karadi (2013).

2.3 Monetary Transmission in the Euro Area

The previous sections showed that monetary policy has been a focus of macroeconomic

research – especially the U.S. economy has been thoroughly studied. In contrast, there is some

uncertainty when it comes to measuring monetary policy in the Euro Area as it is a complex

construct of different national institutions with heterogenous domestic data. There are still

various aspects of monetary policy and transmission, which need further investigative research.

Angeloni et al. (2003) summarize facts about monetary transmission mechanisms in the Euro

Area and find, that also in the Euro Area a tightening of monetary policy leads to a decline of

output and inflation in all countries. Especially investment changes influence the fall in output

in the Euro Area, rather than a change in consumption behaviour. Additionally, the Monetary

Transmission Networks confirm that the interest rate channel is the most important channel in

the Euro Area and empirical evidence confirms the existence of a credit channel (European

Central Bank, 2011). Furthermore, general patterns in transmission mechanisms apply not only

for the Euro Area as a whole but also to the country-level. Nevertheless, selected transmission

 9

mechanisms can have stronger or weaker effects depending on the individual country. Recent

literature has focussed on the transmission effects of unconventional monetary policy such as

the effects of the asset purchase programme of the ECB or the impact of interest rates at the

zero lower bound. Elbourne, Ji, and Duijndam (2018) investigate the effects of unconventional

expansionary monetary policy and find, that the effects on output and inflation are relatively

small: output increases slightly while the effects on inflation are statistically insignificant.

However, when studying the country-level effects, they find large differences across

countries, e.g. output effects in crisis countries are smaller. Corsetti, Duarte, and Mann (2018)

pick up this topic and study the heterogeneity of the transmission mechanism within the Euro

Area. Following Gertler and Karadi (2013) and Gürkaynak and Sack (2004), they employ a

dynamic factor model with external instrument identification to investigate the monetary policy

shocks in the Euro Area. Their results for the Euro Area consequently show, that a

contractionary monetary policy shock does not have a significant impact on the harmonized

index of consumer prices (HICP) but leads to a significant fall in consumer prices, which is in

line with theory. Moreover, GDP and consumption fall as well as imports, exports and

investments – whereas these time series react stronger. Furthermore, the contractionary

monetary policy shock causes government spending to increase and unemployment to rise

while wages fall. Corsetti, Duarte, and Mann (2018) also investigate the housing market and

confirm the economic theory that tight monetary policy leads to more expensive mortgages and

thus to less demand for houses, which consequently leads to a fall in real estate prices.

Jarociński and Karadi (2018) investigate the effects of US as well as Euro Area monetary policy

with high frequency data as identification method among other identification schemes. They

confirm that a contractionary monetary policy shock in standard theory leads to a fall in the

Euro Stoxx50 Index.

The most recent paper contributing to the strand of literature on external instruments is

Altavilla et al. (2019), who measure the effects of Euro Area monetary policy on different

 10

classes of asset prices by using a FAVAR model. Through their event study database, they are

able to extract three different factors of policy surprises – Target, Timing and Forward

Guidance and evaluate the reaction of asset prices to these different kind of surprises.

This paper aims to provide insights in the transmission mechanisms of monetary policy

in the Euro Area. It contributes to the strand of literature, which focusses on employing new

econometric approaches such as the use of high-frequency financial data and VAR analysis

with instruments such as in Gertler and Karadi (2013). Also, it is inspired by Altavilla et al.

(2019) concluding note to further research the effects of monetary policy in the Euro Area.

Additionally, this paper’s contribution lies in the use of Python. Prior authors have used Matlab,

which is a prominent software in economics. However, Python is becoming the most popular

programming language and convinces through its generic and transparent code. In contrast to

Matlab, it is a free software and the corresponding jupyter notebooks can be used as an open

source, which facilitates the spread of knowledge. This paper’s jupyter notebooks aim to set a

base for further macroeconometric analysis in Python.

3. Empirical Framework

The methodology of this paper focusses on using traditional VAR analysis combined with an

external instrument identification scheme to analyse the effects of monetary policy. The high-

frequency instrument is used with the objective to separate unexpected monetary policy shocks

from expected monetary policy shocks due to market expectations.

The structural VAR usually follows the general set-up

𝐴𝑌𝑡 = ∑ 𝐶𝑗𝑌𝑡−𝑗 + ϵ𝑡

𝑝

𝑗=1

 ,

where ϵ𝑡 are the structural shocks. By multiplying each side with 𝐴−1, we obtain the reduced

form VAR:

 11

𝑌𝑡 = ∑ 𝐵𝑗𝑌𝑡−𝑗 + 𝑢𝑡

𝑝

𝑗=1

 ,

where 𝑢𝑡 are the reduced form residuals and 𝐵𝑗 = 𝐴−1𝐶𝑗. The reduced form VAR can be

estimated from the data via ordinary least squares, whereas the structural shocks are

unobserved. However, we assume that there is a linear relationship between the structural

shocks and the VAR innovations as is shown in:

𝑢𝑡 = 𝐻ϵ𝑡 ,

with 𝐻 = 𝐴−1, thus ϵt = 𝐻−1𝑢𝑡. Moreover, we assume that the structural model is invertible

and stationary and that the structural shocks are serially and mutually uncorrelated such that:

(1) 𝐸[ϵ𝑡] = 0

(2) Σϵϵ = 𝐸[𝜖𝑡𝜖𝑡
′] = 𝐼 

(3) 𝐸[ ϵ𝑡ϵ𝑠]   = 0, for 𝑡 ≠ 𝑠

(4) 𝐸[ 𝑢𝑡𝑢𝑡
′]   = 𝐻Σϵϵ𝐻′ = 𝐻𝐻′.

As the objective is to find the effect of monetary policy shocks and analyse the impulse response

functions we need to recover the matrix 𝐻. However, the assumptions from the structural shocks

only provide (𝑁 + 1)𝑁/2 moment conditions, thus we need further restrictions to recover 𝐻.

These will be provided by using an external instrument identification scheme.

3.1 Identification via External Instruments

Contrary to microeconometrics, in which instrumental variables are used to mitigate omitted

variable bias, an external instrument in macroeconomics is used outside of the VAR and serves

as a proxy for the target shock, as ϵ𝑡 is unknown. This approach was pioneered by Stock &

Watson (2012), Mertens & Ravn (2013), and further developed by Gertler & Karadi (2013).

However, literature shows that there a several strategies incorporating external instruments as

an identification scheme; the basic set-up will be explained in the following:

 12

Let 𝜖𝑡
(1) be the policy structural shock and 𝜖𝑡

(2) be a non-policy structural shock. For a

variable 𝑧𝑡 to be a valid instrument for the policy shock it has to obey the following two

conditions:

(1) 𝐸[ 𝑧𝑡𝜖𝑡
(1)]   = α ≠ 0 ⇒ relevance criterium

(2) 𝐸[ 𝑧𝑡𝜖𝑡
(2)]   = 0 ⇒ exogeneity criterium

The relevance criterium says that the target shock is correlated with the instrument, while the

exogeneity criterium states that the instrument is uncorrelated with all other structural shocks.

Set in context, the instrument is only correlated with the policy shock and uncorrelated with the

non-policy shocks. The choice of an instrument can follow several approaches. This paper will

focus on the high-frequency approach.

The objective is to find the effect of the monetary policy shock, thus we partition the

structural shocks such that 𝜖𝑡 = (𝜖𝑡
(1)′, 𝜖𝑡

(2)′)′, where 𝜖𝑡
(1) refers to the target shock and 𝜖𝑡

(2) to

all other (non-policy) structural shocks. We then further partition 𝐻 in such a way that,

𝐻 = (𝐻(1), 𝐻(2)), with the objective to estimate 𝐻(1)- the matrix, which responds to the target

shocks – in order to recover the impulse response functions. By further partitioning the matrix

𝐻, we obtain

(
𝑢𝑡

(1)

𝑢𝑡
(2)) = (𝐻(1,1) 𝐻(1,2)

𝐻(2,1) 𝐻(2,2)) (
𝜖𝑡

(1)

𝜖𝑡
(2)),

⇒ 𝑢𝑡
(1) = 𝐻(1,1)𝜖𝑡

(1) + 𝐻(1,2)𝜖𝑡
(2)

⇒ 𝑢𝑡
(2) = 𝐻(2,1)𝜖𝑡

(1) + 𝐻(2,2)𝜖𝑡
(2)

with the objective to identify the first column 𝐻(1) = (𝐻(1,1), 𝐻(2,1)). By taking the instrument

conditions and the partitioned matrix, we obtain 𝐸[𝑧𝑡𝑢𝑡
(1)]  = 𝑧𝑡(𝐻(1,1)𝜖(1) + 𝐻(1,2)𝜖(2)) and

 13

𝐸[𝑧𝑡𝑢𝑡
(2)]  = 𝑧𝑡(𝐻(2,1)𝜖(1) + 𝐻(2,2)𝜖(2)), which simplifies to: 𝐸[𝑧𝑡𝑢𝑡

(1)] = α𝐻(1,1) and

𝐸[𝑧𝑡𝑢𝑡
(2)] = 𝛼𝐻(2,1). Together, the equations yield:

𝐻(2,1)𝐻(1,1)−1 = 𝐸[ 𝑧𝑡𝑢𝑡
(1)]

−1
𝐸[ 𝑧𝑡𝑢𝑡

(2)],

which can be then estimated from the data by first estimating the reduced VAR and then using

the two-stage-least-square approach (2SLS). In the first stage 𝑢𝑡
(1) is regressed on 𝑧𝑡 and in the

second stage, the non-policy residuals are regressed on the predicted value of the policy

residuals (from stage 1), which yields a consistent estimator 𝐸[ 𝑧𝑡𝑢𝑡
(1)]

−1
𝐸[ 𝑧𝑡𝑢𝑡

(2)], which

equals to 𝐻(2,1)𝐻(1,1)−1. Hence, the fitted value of the regression of the instrument helps to

identify the structural shocks. Via the variance-covariance matrix the relevant columns of

matrix 𝐻 can be estimated (Appendix A) (Jentsch & Lunsford, 2016; Lakdawala, 2016;

Lunsford, 2016). Once 𝐻(1) is estimated, we can proceed with computing the IRFs. As we only

have one policy shock, this econometric framework is sufficient to identify the coefficients up

to sign and scale (Dias, Daniel A. & Duarte, 2019). Mertens and Ravn (2013) provide an

extended identification strategy in case of more than one target shock – a detailed explanation

would push the limits of this thesis.

3.2 Instrumental Variable

The following section gives an overview on how high-frequency data can be collected and used

as an instrument. Firstly, different methods from previous papers are presented before the

method of this paper is thoroughly described.

Following the event-study methodology of Gürkaynak & Sack (2004) and based on the

instrument approach of Gertler & Karadi (2013), high-frequency data is collected around the

FOMC policy announcements and used as an instrument for VAR identification in the latter

case. By selecting a narrow time window of 30 minutes, monetary policy surprises can be

isolated and the changes in high-frequency data circulating the FOMC meetings can serve as a

 14

proxy for the monetary policy shock. However, the ECB communicates its policy decisions in

a different manner. The governing council is the decision-making body of the ECB and meets

every two weeks in the ECB headquarters in Frankfurt Germany. Within the fortnightly

meetings, the governing council discusses the economic and monetary developments within the

Euro Area and assesses possible risks to price stability. Based on this analysis it forms its

monetary policy decisions. The monetary policy decisions are announced every six weeks and

are published at 13:45 CET as a summarized list of the changes without any underlying

explanations. The president of the ECB explains these decisions in the press conference, which

follows at 14:30 CET and lasts about an hour. The president announces the monetary policy

decisions followed by explaining the reasons, which motivated the governing council to come

to the specific monetary policy decisions and also gives insights into the further economic

developments expected by the ECB. Afterwards, journalists have the opportunity to ask the

president questions within a Q&A session (ECB, n.d.-a)(ECB, n.d.-b).

Therefore, high-frequency data for the Euro Area can be either collected in separate

windows following Altavilla et al. (2019), who collect data from several classes of assets in

their monetary policy event-study database around the so-called policy decision window, the

press conference release window and when not distinguishing between them, the whole

monetary policy decision window. They use a time frame of 10 minutes prior to the event and

10 minutes afterwards to compute changes in the intraday data, e.g. overnight index swaps and

German bond rate changes at different maturities. Corsetti, Duarte & Mann (2018) do not

distinguish between the two release windows and choose to observe a 6-hour window from

13:00 to 19:00 CET, as these times correspond to the closing of the stock exchange market in

London and Tokyo. Through this technique they construct an external intraday series and

overcome the problem of missing data. Hafemann & Tillmann (2017) use changes in the 10-

year German government bond on meeting days; An increase in the German bond, hence a

positive surprise, is associated with a tightening of monetary policy.

 15

All in all, the high-frequency literature focussing on the economy in the Euro Area

experiments with several instruments, while the research conducted for the U.S. economy,

usually uses fed funds futures to identify unexpected monetary policy shocks. Lloyd (2018)

contributes to this topic with his research on the usefulness of OIS rates as instruments: He

comes to the conclusion that among others, the 1-24-month Eurozone OIS rates can be used as

a measure for market expectations and thus are an applicable instrument for monetary policy

analysis.

Therefore, I will use the changes in the 1-year OIS rate as an instrument for monetary

policy shocks. Due to restricted data availability on Thomas Reuter’s Eikon I will use the EA-

MPD database from Altavilla et al. (2019) for the instrument data collection. The dataset

includes Eurozone OIS rates at different maturities and several other asset prices in the three

different time windows mentioned above. I will use the 1-year OIS rate of the monetary event

window in which the change in the median quote from 13.25-13:35 and from 15:40-15:50 is

collected, hence before the press release and after the press conference.

In the following, the validity of the changes in the 1-year-OIS rate around ECB

monetary decision days is shown with two illustrative examples. Figure 1 shows the

instrument’s minutely development on the 12th September, 2019. This date is out of the sample

range, however it serves as an example for the minutely development of the Eurozone OIS rate

on meeting days. From noon onwards the OIS rate gradually increases. At 13:45 the monetary

policy decisions are released; Mario Draghi announced a huge stimulus package including a

cut of the deposit facility rate by 10 basis points and the revival of the asset purchase programme

(APP) for an unlimited amount of time. Although, markets expected a rate cut and even saw

the relaunch of the APP as very likely due to earlier comments of ECB representatives, the OIS

rate displayed a negative surprise component due to the new information of an unlimited time

frame for the APP and thus shifted slightly downwards, which is associated with a loosening

of monetary policy. During the press conference, Mario Draghi announced that the ECB expects

 16

from now to leave the key interest rates at their current level. Moreover, he alerted governments

and stressed the importance of fiscal policy to avert a new crisis: With fiscal policy in place,

the monetary policy stance would not need to be that expansionary. During the introductory

statement, the OIS rate slightly drops but then increases again with the Q&A session (ECB,

2019; Financial Times, 2019a, 2019b; Szalay, 2019). The movement of the Eurozone OIS rate

emphasises the importance of the subsequent press conference and the direct reaction of

financial market participants to the ECB’s economic outlooks.

Figure 1: Minutely change in 1-year OIS rate on 12th September, 2019.

 The EA-MPD dataset includes all dates of ECB governing council meetings: In total

there are 264 monetary policy announcements from 7th January, 1999 til 6th June, 2019.

Hereinafter, a monthly VAR will be estimated, thus the instrument time series will be

transformed into a monthly series, by cumulating the changes within a given month.

Figure 2 shows the development of the monthly instrument time series. The time series

fluctuates around zero but displays some large positive and also negative spikes associated with

huge surprise components. The largest spikes are found in the early years of the ECB, around

2001, and then during the financial crisis and the subsequent years. The recent years til 2017

do not show any large fluctuations at all. One of the large spikes occurred in August 2001, the

 17

1-year OIS rate changed with a value of -16.7. In that month, the ECB announced to cut all

three interest rates by 0.25 basis points as inflationary pressures seemed to ease. The

corresponding significant change, mirrors the market’s surprise.

This short descriptive analysis of the instrument emphasises its close relationship to the

target rate and illustrates the volatility of financial markets.

Figure 2: Monthly change in the 1-year Eurozone OIS rate.

4. Data and Estimation

This chapter describes the data used for the baseline VAR and it explains all relevant steps in

the estimation as basis for the discussion of the results in chapter 5.

4.1 The baseline VAR

The baseline VAR includes 5 monthly time-series, which will be a mix of financial and

macroeconomic variables over the sample period, from 01:1999 to 06:2019. The start date of

the sample corresponds to the introduction of the Euro – and henceforth the start of the ECB’s

monetary activities and influence in the Euro Area – and dates up to this year. The sample

includes the financial crisis in 2008 and the subsequent introduction of unconventional

monetary policy, such as the APP in 2015, and the current zero lower bound phase. The data is

obtained from the ECB Statistical Warehouse, Bloomberg, FRED and Thomas Reuters Eikon.

 18

As a measure of output and price level, the log of industrial production and the log of

the harmonized index of consumer prices (HICP) are included in the baseline VAR. The

industrial production index excludes construction and is seasonally and working day adjusted.

For the HICP, the overall index is used, seasonally and working day adjusted. For both indices

the reference year is 2015. As financial variables, the Euro Stoxx50 Index and a corporate bond

spread are included to incorporate financial market conditions and credit risk. The Euro

Stoxx50 Index is a weighted blue-chip index and incorporates 50 stocks from 11 Eurozone

countries. As BBB corporate bond spread, the Euro High Yield Option-Adjusted Spread is used

analogously to (Jarociński & Karadi, 2018). Additionally, the 1-year German Government Bill

Index serves as the policy indicator. Both units are in percent.

The baseline VAR is estimated in levels via ordinary least squares with two lags

according to the minimum value of -31.62, of the Bayes information criterion (BIC) in the lag

length test. According to Dolado & Lütkepohl (1996), estimating a VAR with an order of

integration equal to 𝐼(1) with a number of lags 𝑑 ≥ 2 still provides asymptotically normal t-

ratios, thus inference can be made when estimating a VAR in levels; inference on impulse

response functions also remains valid if the VAR has a lag length greater than one (Luetkepohl,

2011). Additionally, the autocorrelation function of the residuals will be consulted to confirm

the choice of lag length. All autocorrelation plots (Figure 5), which are reported with 95%

confidence bands, lie within the confidence bands indicating that there is no serial

autocorrelation within the residuals. Except for the corporate bond spread which shows one

significant spike at lag five. However, in accordance with the BIC, an optimal lag length of two

is confirmed, as all other information criteria, such as the AIC, FPE and HQIC, recommend a

lag length of 2 as well. Moreover, the rest of the variables do not exhibit any serial

autocorrelation and a higher order would only inflate the coefficients.

Prior literature in the proxy SVAR method emphasises the importance of a fitting

instrument and policy indicator choice. Gertler & Karadi (2013) try several different

 19

combinations of policy indicator and instrument within a regression exercise while Hafemann

& Tillmann (2017) use an event-study-regression to study this issue. However, within the

monthly VAR both use the first stage F-statistic to confirm the adequacy of the instrument as

proxy for the policy indicator. Stock, Wright, & Yogo (2002) recommend a high threshold for

the first-stage F-statistic, with a value higher than 10, to reject a weak instrument problem and

assure reliable inference. After estimating the reduced VAR, 2SLS estimation is performed with

the reduced VAR residuals and the instrument. In the first stage regression of the policy

residuals on a constant and the instrument, I obtain a F-statistic with the value of 33.08 (Figure

6), which is quite above the threshold of 10 and thus assures the adequacy of the instrument.

With an accurate instrument choice, the estimation continues by calculating the 2SLS estimator

𝛽𝐼𝑉 , and identifying the matrix 𝐻(1) to further estimate the impulse response functions with

90% bootstrapping confidence bands (Appendix A).

5. Results

The impulse response functions span over a horizon of 40 periods. Figure 3 shows the impulse

response functions for a 100 basis points contractionary monetary policy shock. This shock

leads the 1-year German Government Bond to increase for two periods until it is 1.35

percentage points above its previous value, that is, relative to the situation when there was no

policy shock. After that, the response of the government bond decreases and starts to slowly

decay towards zero. After 25 periods the response reaches zero and the response turns negative

for the subsequent periods. However, the response is only significant for the first twelve

periods. Notably, the results suffer from the price puzzle: a statistically significant increase of

the price level. However, the output puzzle does not appear: industrial production has a negative

response in the initial period and drops by 0.01% against its initial value. The response increases

until it turns positive, decays towards zero and turns negative again after 14 periods; however

it is insignificant for almost all periods. Contrary to theory that a monetary tightening leads to

 20

a decline of stock indices, the Euro Stoxx50 Index has a positive reaction to a tightening of

monetary policy and increases up to 0.17%. The response gets smaller after two periods and

goes towards zero (until period 15), and then turns negative; but is only significant in the short-

run (first 5 periods). Moreover, the BBB corporate bond spread initially decreases with a

tightening of monetary policy indicating improving financial conditions. The response to the

monetary policy shock turns positive after 7 periods and then slowly decays to zero; but the

impulse response function is only significant in the short-run (till period 4) and again in the

medium-run (period 10-30).

Figure 3: Impulse response to a monetary policy shock.

In comparison to the findings of other papers that applied high frequency identification, this

paper’s results slightly differ. Corsetti, Duarte and Mann (2018)’s results do not show the prize

puzzle due to the adoption of the high-frequency identification and a dynamic factor model,

which incorporates information about several price indices in the economy. As the price puzzle

 21

is a common problem in VAR analysis, this result might suggest that using solely the HICP as

indicator for inflation in the model is not enough to model the price dynamics in the economy

correctly. Moreover, the results for the stock index and the corporate bond spread do not align

with economic theory but are consistent with the results of Jarociński and Karadi (2018), who

find as well that stock prices increase and corporate bond spreads decrease following a

tightening monetary policy shock with standard high-frequency identification. Jarociński and

Karadi (2018) delve deeper into the cause of a positive response of the stock prices and conclude

that a positive co-movement of monetary policy and stock prices are due to a central bank

information shock, which biases the results of standard high-frequency identification which in

turn should indicate a negative co-movement according to theory.

These central bank information shocks are transmitted through central banks’

announcements, in which private information of the central bank and their beliefs of the

development of the economy are revealed to the public; a positive central bank information

shock is associated with good news about the economy. Hence, it would translate into a

situation in which the central bank tightens monetary policy but would communicate a positive

perception of the economic outlook in order to counteract the effects of a monetary policy

tightening on the economy. The positive co-movement of monetary policy and stock prices

would also result in improving financial conditions, consistent with a decline of the corporate

bond spread. Although Altavilla et al. (2019) obtain results about the stock prices according to

standard economic theory, they re-estimate their variables in a small exercise finding evidence

of information shocks, so called Delphic surprises. Thus, this paper’s results could be

decomposed further to confirm the theory of different macroeconomic effects of so-called

Delphic (information shock) and Odyssean (monetary policy) surprises.

Furthermore, it should be noticed, that the model is estimating the response of the aggregate

Euro Area. However, heterogeneity issues within the member countries could also lead to

results not complying to standard economic theory, as the transmission channel with weaker

 22

member countries could be partially broken. Hafemann and Tillmann (2017) attribute the

different responses of stock prices on the country-level to an impaired monetary policy

transmission in structurally aggrieved countries.

6. Robustness Checks

To confirm the structural validity of the results, several robustness checks are carried out. All

results are reported with 90% bootstrapping confidence bands.

6.1 Cholesky Identification

As alternative identification scheme, the Cholesky identification is used to compare the results.

The Cholesky ordering is the following: Log of industrial production, log of HICP, the policy

indicator, and then followed by the log of the Euro Stoxx50 Index and last, the BBB corporate

bond spread. This ordering assumes that the stock index and the corporate bond spread react

contemporaneously to monetary policy, while inflation and output only react within a period.

Figure 7 shows the impulse response functions for the Cholesky identification. Strikingly, the

results obtained via the Cholesky identification not only display the price puzzle but also the

output puzzle underlining the more accurate measuring of monetary policy effects through

high-frequency identification. Industrial production has a positive reaction over the whole time

horizon but is only significant for the first ten periods. The reaction of consumer prices to a

monetary policy shock is also positive but quickly decays to zero. The impulse response is only

significant until period 4. The curve for the Euro Stoxx50 Index behaves similar to the external

instrument case but the effect of a tightening of monetary policy is stronger: While in the

external instrument case the 1% shock to monetary policy led the Euro Stoxx50 Index initially

to increase by 0.12% from its previous value, the Cholesky case shows an increase of 0.46% in

the initial period. Moreover, the response is positive at all times and does not reach zero in the

entire time horizon; the response is significant for 20 periods. Also, the effect on the corporate

bond spread is similar to the external instrument case but again stronger in the initial period.

 23

6.2 The Post-2008 Sample

To investigate the effects of unconventional monetary policy the sample is split and only the

period after the financial crisis will be analysed: from 10:2008 till the end of the sample in

06:2019. October 2008 is marked as the beginning of the crisis sample as the ECB sharply cut

their interest rates by 50 bp that month, in coordination with the FED as the effects of the

financial crisis intensified. The VAR is estimated with only one lag according to the Bayesian

information criterion. In the crisis sample, the first stage regression F-test has a value of 7.99,

indicating a weak-instrument problem. However, the impulse response functions in Figure 8 do

not show any puzzles. The HICP decreases with a 1% monetary policy shock but the response

is insignificant; industrial production also has a negative reaction with a monetary policy

tightening but the response is only significant for the first two periods. However, the response

for the Euro Stoxx50 Index and the BBB Corporate Bond spread still not obey to economic

theory: The Euro Stoxx50 Index reacts positively but then the response get constantly smaller

and goes to zero. The impulse response mirroring the financial conditions behaves similar to

the external instrument case, the reactions are only prolonged.

6.3 Alternative Instrument

The robustness of the results is also verified by employing an alternative instrument, the

Eurozone overnight index swap, but with a shorter maturity of six months. According to the

first stage F-statistic, which has a value of 29.3, the 6-month OIS rate is also an adequate

instrument. The impulse response functions with the 6-month rate do not differ greatly from

the ones with the 1-year rate, underlining the validity of the method.

7. Conclusion

In using a vector autoregressive model with external instrument identification through high-

frequency data, this paper analysed the effects of monetary policy shocks on economic activity

and financial markets in the aggregate Euro Area. This approach not only makes it feasible to

 24

jointly analyse economic as well as financial variables but also to evaluate unexpected monetary

policy shocks separately and incorporate market expectations. The findings show that monetary

policy is transmitted through all channels under consideration – real economic activity, the

credit channel and stock markets. Moreover, the results confirm that monetary policy analysis

through high-frequency identification shows more accurate and precise effects of monetary

policy shocks on economic activity. However, the findings also suggest that the effects of

monetary policy on financial markets need to be decomposed further and separating expected

from unexpected monetary policy shocks is not enough to fully grasp the effects on financial

markets. In alignment with Jarociński & Karadi (2018), the findings emphasise that high-

frequency identification can be biased and that monetary policy shocks to financial markets

should be further separated, e.g. into shocks to the central bank’s policy instrument and shocks

to their communication.

However, the results also need to be evaluated within the limits of this paper. For one

thing the data used for the instrument was based on the EA-MPD database due to license

restrictions with other financial databases. Therefore, the robustness of the instrument could

only be analysed by using a shorter maturity. A different financial intraday time series could

lead to different results. On the other hand, the VAR only included five variables which aimed

at modelling economic as well as financial markets activity. A model including more variables

might be able to capture the transmission mechanisms more accurately.

The findings as well as the limitations offer new directions of research, which could be

especially interesting for the unconventional monetary policy phase. Additionally, this paper

used Python as programming language and if further research would also resort to more open

software packages, a benchmark library for empirical macroeconomics could be built in Python.

 25

Bibliography

Altavilla, C., Brugnolini, L., Gürkaynak, R. S., Motto, R., & Ragusa, G. (2019). Measuring

euro area monetary policy. European Central Bank, (2281), 57.

Angeloni, I., Kashyap, A. K., Mojon, B., & Terlizzese, D. (2003). Monetary Transmission in

the Euro Area: Does the Interest Rate Channel Explain it All? (Working Paper No.

9984). https://doi.org/10.3386/w9984

Bernanke, B., & Blinder, A. (1992). The Federal Funds Rate and the Channels of Monetary

Transmission. American Economic Review, 82, 57.

Bernanke, B., & Kuttner, K. N. (2004). What Explains the Stock Market’s Reaction to Federal

Reserve Policy? 56.

Christiano, L., Eichenbaum, M., & Evans, C. (1998). Monetary Policy Shocks: What Have We

Learned and to What End? (No. w6400; p. w6400). https://doi.org/10.3386/w6400

Christiano, L. J., Eichenbaum, M., & Evans, C. (1996). The Effects of Monetary Policy Shocks:

Evidence from the Flow of Funds. The Review of Economics and Statistics, 78(1), 16–

34. https://doi.org/10.2307/2109845

Cochrane, J. H., & Piazzesi, M. (2002). The Fed and Interest Rates: A High-Frequency

Identification (Working Paper No. 8839). https://doi.org/10.3386/w8839

Corsetti, G., Duarte, J. B., & Mann, S. (2018, February). One money, many markets: A factor

model approach to monetary policy in the Euro Area with high-frequency identification

[Monograph]. Retrieved September 26, 2019, from

http://www.centreformacroeconomics.ac.uk/Discussion-Papers/Home.aspx

Dias, Daniel A., & Duarte, J. B. (2019). Monetary Policy, Housing Rents and Inflation

Dynamics. International Finance Discussion Paper, 2019(1248), 1–26.

https://doi.org/10.17016/IFDP.2019.1248

 26

Dolado, J. J., & Lütkepohl, H. (1996). Making wald tests work for cointegrated VAR systems.

Econometric Reviews, 15(4), 369–386. https://doi.org/10.1080/07474939608800362

ECB. (2019, December 9). Introductory statement to the press conference (with Q&A).

Retrieved November 5, 2019, from European Central Bank website:

https://www.ecb.europa.eu/press/pressconf/2019/html/ecb.is190912~658eb51d68.en.h

tml

ECB, E. C. B. (n.d.-a). Governing Council. Retrieved September 26, 2019, from European

Central Bank website:

https://www.ecb.europa.eu/ecb/orga/decisions/govc/html/index.en.html

ECB, E. C. B. (n.d.-b). Governing Council decisions. Retrieved September 26, 2019, from

European Central Bank website:

https://www.ecb.europa.eu/press/govcdec/html/index.en.html

Eichenbaum, M., & Evans, C. L. (1995). Some Empirical Evidence on the Effects of Shocks to

Monetary Policy on Exchange Rates. The Quarterly Journal of Economics, 110(4),

975–1009. https://doi.org/10.2307/2946646

Elbourne, A., Ji, K., & Duijndam, S. (2018). The effects of unconventional monetary policy in

the euro area (No. 371). Retrieved from CPB Netherlands Bureau for Economic Policy

Analysis website: https://ideas.repec.org/p/cpb/discus/371.html

European Central Bank. (2011). The monetary policy of the ECB. Frankfurt am Main: European

Central Bank.

Faust, J., Swanson, E. T., & Wright, J. H. (2004). Identifying VARS based on high frequency

futures data. Journal of Monetary Economics, 51(6), 1107–1131.

https://doi.org/10.1016/j.jmoneco.2003.11.001

Financial Times. (2012, July 26). ECB ‘ready to do whatever it takes.’ Retrieved November 19,

2019, from Financial Times website: https://www.ft.com/content/6ce6b2c2-d713-11e1-

8e7d-00144feabdc0

 27

Financial Times. (2019a, November 9). Draghi must deliver his parting shot of stimulus.

Retrieved November 5, 2019, from Financial Times website:

https://www.ft.com/content/0e375bbc-cfdd-11e9-99a4-b5ded7a7fe3f

Financial Times. (2019b, December 9). ECB cuts rates and tells governments to act | Financial

Times. Retrieved November 5, 2019, from Financial Times website:

https://www.ft.com/content/9b2c29c0-d53d-11e9-a0bd-ab8ec6435630

Gertler, M., & Karadi, P. (2013). Monetary Policy Surprises, Credit Costs and Economic

Activity. 44.

Gürkaynak, R. S., & Sack, B. (2004). Do Actions Speak Louder Than Words? * The Response

of Asset Prices to Monetary Policy Actions and Statements. 43.

Hafemann, L., & Tillmann, P. (2017). The Aggregate and Country-Specific Effectiveness of

ECB Policy: Evidence from an External Instruments (VAR) Approach. 40.

Jarociński, M., & Karadi, P. (2018). Deconstructing monetary policy surprises: The role of

information shocks. European Central Bank, (2133), 64.

Jentsch, C., & Lunsford, K. G. (2016, July). Proxy SVARs: Asymptotic theory, bootstrap

inference, and the effects of income tax changes in the United States.

https://doi.org/10.26509/frbc-wp-201619

Kuttner, K. (2000). Monetary Policy Surprises and Interest Rates: Evidence from the Fed

Funds Futures Market. 24.

Lakdawala, A. (2016). Decomposing the Effects of Monetary Policy Using an External

Instruments SVAR. 47.

Lloyd, S. (2018). Overnight Index Swap Market-Based Measures of Monetary Policy

Expectations (SSRN Scholarly Paper No. ID 3135278). Retrieved from Social Science

Research Network website: https://papers.ssrn.com/abstract=3135278

Luetkepohl, H. (2011). Vector autoregressive models [Working Paper]. Retrieved from

http://cadmus.eui.eu//handle/1814/19354

 28

Lunsford, K. G. (2016). Identifying Structural VARs with a Proxy Variable and a Test for a

Weak Proxy. 35.

Mertens, K., & Ravn, M. O. (2013). The Dynamic Effects of Personal and Corporate Income

Tax Changes in the United States. American Economic Review, 103(4), 1212–1247.

https://doi.org/10.1257/aer.103.4.1212

Rigobon, R., & Sack, B. P. (2002). The Impact of Monetary Policy on Asset Prices (Working

Paper No. 8794). https://doi.org/10.3386/w8794

Rudebusch, G. D. (1998). Do Measures of Monetary Policy in a Var Make Sense? International

Economic Review, 39(4), 907–931. https://doi.org/10.2307/2527344

Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1.

https://doi.org/10.2307/1912017

Stock, J. H., & Watson, M. W. (2012). Disentangling the Channels of the 2007-2009 Recession

(Working Paper No. 18094). https://doi.org/10.3386/w18094

Stock, J. H., Wright, J. H., & Yogo, M. (2002). A Survey of Weak Instruments and Weak

Identification in Generalized Method of Moments. Journal of Business & Economic

Statistics, 20(4), 518–529. https://doi.org/10.1198/073500102288618658

Szalay, E. (2019, September 11). Investors bet ECB’s next steps will strengthen euro. Retrieved

November 5, 2019, from Financial Times website:

https://www.ft.com/content/7fae3356-d3e8-11e9-a0bd-ab8ec6435630

 29

Appendix A: Estimation & Impulse Response Function

A.1 Estimation

The estimation and identification of the structural VAR follows the following procedure: First

the reduced form VAR is estimated trough the data. Then the two-stage least square approach

is used to yield a result for 𝐻(2,1)𝐻(1,1)−1. From this the relevant columns of matrix 𝐻 can be

identified.

In the first stage of the 2SLS approach, the policy residuals 𝑢𝑡
(1) are regressed on the

instrument 𝑧𝑡, such that 𝑢𝑡
(1) = γ𝑧𝑡 + η𝑡, the fitted value of 𝑢̂𝑡

(1) is then used in the second stage

in which the non-policy residuals are regressed on the policy residuals, 𝑢𝑡
(2) = β2𝑆𝐿𝑆 𝑢̂𝑡

(1) + 𝑣𝑡.

The two-stage-least-square approach then yields then a consistent estimator

β2𝑆𝐿𝑆 = 𝐸[ 𝑧𝑡𝑢𝑡
(1)]

−1
𝐸[ 𝑧𝑡𝑢𝑡

(2)], which in turn yields an estimate of the relationship

𝐻(2,1)𝐻(1,1)−1. Additionally, the first stage F-statistic provides a weak instrument test.

Following Stock & Watson a F-statistic > 10 rejects the presence of a weak instrument.

With the aid of the reduced VAR variance-covariance matrix,

 𝐸[ 𝑢𝑡𝑢𝑡
′] = Σ = [Σ11 Σ12

Σ21 Σ22
], the relevant columns of the matrix 𝐻 can be estimated. From

the structural VAR assumptions we know that 𝐸[ 𝑢𝑡𝑢𝑡
′]   = 𝐻Σϵϵ𝐻′ = 𝐻𝐻′. Hence, we can

express the columns of Σ by expressions of the matrix 𝐻:

Σ11 = 𝐸[ 𝑢𝑡
(1)𝑢𝑡

(1)′]   = (𝐻(1,1)ϵ(1) + 𝐻(1,2)ϵ(2)) ∗ (𝐻(1,1)ϵ(1) + 𝐻(1,2)ϵ(2))′

= 𝐻(1,1)𝐻(1,1)′ + 𝐻(1,2)𝐻(1,2)′, (1)

Σ21 = 𝐻(2,1)𝐻(1,1)′ + 𝐻(2,2)𝐻(1,2)′, (2)

Σ22 = 𝐻(2,1)𝐻(2,1)′ + 𝐻(2,2)𝐻(2,2)′, (3)

From (1) we know that

𝐻(1,1)2 = Σ11 − 𝐻(1,2)𝐻(1,2)′ and thus 𝐻(1,1) = √Σ11 − 𝐻(1,2)𝐻(1,2)′ .

 30

From (1) to (3) we obtain an expression

𝑄 = Σ22 − 𝐻(2,1)𝐻(1,1)−1 ∗ Σ21
′ − Σ21 ∗ 𝐻(2,1)𝐻(1,1)−1′ + 𝐻(2,1)𝐻(1,1)−1 ∗ Σ11 ∗ 𝐻(2,1)𝐻(1,1)−1′,

which can be estimated from the data. Then an expression for 𝐻(1,2)𝐻(1,2) can be estimated:

𝐻(1,2)𝐻(1,2) = (Σ21 − 𝐻(2,1)𝐻(1,1)−1 ∗ Σ11
′) ∗ 𝑄−1 ∗ (Σ21 − 𝐻(2,1)𝐻(1,1)−1 ∗ Σ11),

And finally 𝐻(1,1)2 = Σ11 − 𝐻(1,2)𝐻(1,2)′
 can also be estimated.

Now the relevant matrix 𝐻(1) is identified and can be used for the impulse response analysis.

A.2 Impulse Response Functions

The structural model is given by

𝑌𝑡 = ∑ 𝐵𝑗𝑌𝑡−𝑗

𝑝

𝑗=1

+ 𝐻ϵ𝑡.

The impulse refers to the change in the innovations of the model. By inverting the VAR into a

moving average representation, the impulse response can be studied.

The model can be rewritten in lag notation to 𝐵(𝐿)𝑌𝑡 = 𝐻ϵ𝑡, where 𝐵(𝐿) = 𝐼 − 𝐵1𝐿 − ⋯ −

𝐵𝑝𝐿𝑝 . And it can be turned into the moving average representation:

𝑌𝑡 = ∑ 𝜑𝑗𝑢𝑡−𝑗

∞

𝑗=1

,

where 𝜑𝑗 = 𝜑(𝐿) = 𝐵(𝐿)−1. The impulse response to a monetary policy shock is then given

by ∂Yt
∂𝜖1

= 𝐵(𝐿)−1𝐻. The coefficient matrix, can directly be estimated via the reduced form. The

matrix 𝐻 was identified previously.

A.3 Recursive Residual-Based Wild Bootstrapping

The wild bootstrapping algorithm was chosen for this estimation as Gertler & Karadi (2013)

and Mertens & Ravn (2013) also use it for their proxy SVAR inference. For the bootstrapping

procedure a random variable is needed with mean zero and variance 1. In proxy SVAR literature

the Rademacher distribution is used commonly, where the draws are either 1 or -1, with a

 31

probability of 0.5. The residuals and the instrument are multiplied with the Rademacher

distribution to obtain 𝑢∗, 𝑍∗. The regressors are left at their sample value, however, the response

variable is resampled based on 𝑢∗, 𝑍∗. Thus a new 𝑌∗ is produced. From the new bootstrap

sample, the reduced residuals are estimated and structural residuals identified as in the usual

proxy SVAR procedure. This algorithm is repeated several times, in this case a 1000 times.

Then the confidence intervals can be computed, which are robust against conditional

heteroskedacity and allow better inference under this design.

 32

Appendix B: Data Sources

Variable Adj. Source

1-year German Government

Bill

- Bloomberg (GDBR1 Index)

Harmonized Index of

Consumer Prices – Overall

Index

Seasonally

adjusted and

working day

adjusted

ECB Statistical Warehouse

(Series-Key:

ICP.M.U2.Y.000000.3.INX)

Industrial Production Index:

Total excluding construction

Seasonally

adjusted and

working day

adjusted

ECB Statistical Warehouse

(Series-Key:

STS.M.I8.Y.PROD.NS0020.4.000)

ICE BofAML Euro High

Yield Index Option-Adjusted

Spread

Not seasonally

adjusted

FRED (BAMLHE00EHYIOAS)

Euro Stoxx50 Index - Bloomberg (SX5E Index)

1-year Overnight Index Swap - EAMPD-Database (Altavilla et al.,

2019), based on EUREON1Y= from

Thomas Reuters Eikon

 33

Appendix C: Figures

Figure 4: Results of lag length test.

Figure 5: Residual autocorrelation plots.

 34

Figure 6:First stage regression results.

 35

Figure 7: Impulse response to a monetary policy shock with Cholesky identification.

 36

Figure 8: Impulse response for the crisis sample from (10:2008 – 06:2019).

 37

Figure 9: Impulse response for alternative instrument.

Appendix D: Python Jupyter Notebook

1. Data Transformation

December 30, 2019

*this jupyter notebook was created specifically for the pdf version presented in the appendix
of the work project document, not all tables and graphics are displayed.

In [19]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: VAR Data

In [20]: #load raw data
data = pd.read_excel('VAR_data.xlsx').sort_values(by = 'Date', ascending = True)
data1 = data.set_index('Date')
data1.head()

Out[20]: Year Month IP excl. Construction HICP eurostoxx50 \
Date
1999-01-01 1999 1 89.5 74.08 3547.15
1999-02-01 1999 2 88.4 74.10 3484.24
1999-03-01 1999 3 88.6 74.25 3559.86
1999-04-01 1999 4 89.0 74.52 3757.87
1999-05-01 1999 5 89.2 74.50 3629.46

bbb_spread 1ygovbondindx
Date
1999-01-01 7.410476 2.883
1999-02-01 7.526190 3.016
1999-03-01 7.347826 2.871
1999-04-01 6.990909 2.616
1999-05-01 6.830000 2.667

In [21]: #create seperate dataframe for the dates
date = data1[['Year', 'Month']]

1

In [22]: #load instrument data
instrument = pd.read_excel('EA_instrument.xlsx')
instrument1 = instrument.set_index('Date')
instrument1.head()

Out[22]: Year Month OIS_1Y
Date
1999-01-07 1999 1 -0.25
1999-01-21 1999 1 0.00
1999-02-18 1999 2 0.00
1999-03-04 1999 3 0.00
1999-03-18 1999 3 1.00

In [23]: #cumulate the changes in the 1-year OIS rate by month
instrument2 = instrument1.groupby(['Year', 'Month']).sum().reset_index()
instrument2['Days'] = np.ones((len(instrument2['Month'])))

In [24]: #create dataframe with datetime index
instrument2['Date'] = pd.to_datetime((instrument2.Year*10000+instrument2.Month*100+instrument2.Days).apply(str),format='%Y%m%d')
instrument3 = instrument2.drop(columns = ['Year', 'Month', 'Days']).set_index('Date')
instrument3.head()

Out[24]: OIS_1Y
Date
1999-01-01 -0.25
1999-02-01 0.00
1999-03-01 1.00
1999-04-01 -0.90
1999-05-01 0.70

In [25]: #seperate time series for transformation
ip = pd.DataFrame(data1['IP excl. Construction'])
hicp = pd.DataFrame(data1['HICP'])
stoxx = pd.DataFrame(data1['eurostoxx50'])
bbb_spread = pd.DataFrame(data1['bbb_spread'])
gov_bond = pd.DataFrame(data1['1ygovbondindx'])

In [26]: #transform time series with logs
log_ip = np.log(ip)
log_ip.rename(columns = {'IP excl. Construction': 'IP'}, inplace = True)
log_hicp = np.log(hicp)
log_stoxx = np.log(stoxx)

0.2 Part II: Visualise VAR Data

In [27]: plt.figure(figsize=(8,15))

plt.subplot(511)
plt.plot(log_ip)

2

plt.title('Industrial Production excl. Construction')
plt.xlabel('Date')
plt.ylabel('Log of industrial production')
plt.grid()

plt.subplot(512)
plt.plot(log_hicp)
plt.title('Harmonized Index of Consumer Prices')
plt.xlabel('Date')
plt.ylabel('Log of hicp index')
plt.grid()

plt.subplot(513)
plt.plot(log_stoxx)
plt.title('Euro Stoxx50 Index')
plt.xlabel('Date')
plt.ylabel('Log of Euro Stoxx50 Index')
plt.grid()

plt.subplot(514)
plt.plot(bbb_spread)
plt.title('BBB Corporate Bond Spread')
plt.xlabel('Date')
plt.ylabel('%')
plt.grid()

plt.subplot(515)
plt.plot(gov_bond)
plt.title('1-year German Government Bond')
plt.xlabel('Date')
plt.ylabel('%')
plt.grid()

plt.tight_layout()

3

4

0.3 Part III: Prepare VAR Data in Levels

In [28]: #join transformed time series in one dataframe
df = date.join([gov_bond,log_hicp, log_ip], how = 'outer')
df2 = df.join([log_stoxx, bbb_spread], how = 'outer')

#join instrument
data_final = pd.merge(df2, instrument3, on = ['Date'], how = 'outer').dropna()
data_final.head() #final data for subsequent estimation

Out[28]: Year Month 1ygovbondindx HICP IP eurostoxx50 \
Date
1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_1Y
Date
1999-01-01 7.410476 -0.25
1999-02-01 7.526190 0.00
1999-03-01 7.347826 1.00
1999-04-01 6.990909 -0.90
1999-05-01 6.830000 0.70

0.4 Part IV: Example 1-year Eurozone OIS Rate

In [29]: #create plot of monthly OIS rate
import matplotlib.dates as mdates

plt.ioff()
fig, ax = plt.subplots(figsize=(15,7))
instrument3.plot(ax=ax)
ax.xaxis.set_major_locator(mdates.MonthLocator(interval = 8))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%m-%y'))

plt.title('Monthly Change 1-year Eurozone OIS Rate from 01:1999 - 06:2019')
plt.xlabel('Date')
plt.ylabel('1-year OIS rate change in basis points')
plt.xlim('1999','2019')
plt.ioff()

5

In [30]: #read data
df = pd.read_excel('eureon1y_minutely.xlsx')

#select time range
df2 = df[(df['Date'] > '2019-09-12 09:00:00') & (df['Date'] < '2019-09-13 00:01:00')].set_index('Date')
df2.head()

Out[30]: Close(EUREON1Y=)
Date
2019-09-13 00:00:00 -0.548
2019-09-12 23:59:00 -0.548
2019-09-12 23:58:00 -0.548
2019-09-12 23:57:00 -0.548
2019-09-12 23:56:00 -0.548

In [31]: #create plot
plt.ioff()
fig, ax = plt.subplots(figsize=(15,7))

df2.plot(ax=ax)

plt.title('Minutely Change in 1-year OIS Rate on 12th September 2019')
plt.xlabel('Time')
plt.ylabel('1-year OIS rate change in basis points')
plt.xlim('2019-09-12 09:00:00', '2019-09-12 20:01:00')

ax.xaxis.set_major_locator(mdates.HourLocator(interval = 1))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H-%M'))
ax.axvline(x = '2019-09-12 13:45:00', color = 'black', linewidth = 0.5)
ax.axvspan('2019-09-12 14:30:00','2019-09-12 15:30:00', color = 'grey', alpha = 0.5)
plt.ioff()

6

7

2. Baseline VAR Estimation and Identification

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Load Data

In [2]: #load data and set datetime as index
df = pd.read_excel('data_levels.xlsx')
df2 = df.set_index('Date')
df2.head()

Out[2]: Year Month 1ygovbondindx HICP IP eurostoxx50 \
Date
1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_1Y
Date
1999-01-01 7.410476 -0.25
1999-02-01 7.526190 0.00
1999-03-01 7.347826 1.00
1999-04-01 6.990909 -0.90
1999-05-01 6.830000 0.70

In [3]: #select variables for reduced var model
X = df2[['1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread']]

1

0.2 Part II: Preliminary Tests

In [4]: #lag length test
import statsmodels.api as sm
from statsmodels.tsa.api import VAR

model = VAR(X)
model.select_order(12).summary()

Out[4]: <class 'statsmodels.iolib.table.SimpleTable'>

In [5]: from statsmodels.graphics.tsaplots import plot_acf

results = model.fit(2, trend = 'nc')
#compute residuals
residuals = results.resid

#recheck lag selection via autocorrelation function of residuals
plt.ioff()
plot_acf(residuals[['1ygovbondindx']], lags=40, title = 'Residual Autocorrelation 1-year German Government Bond')
plot_acf(residuals[['HICP']], lags=40, title = 'Residual Autocorrelation Harmonized Index of Consumer Prices')
plot_acf(residuals[['IP']], lags=40, title = 'Residual Autocorrelation Industrial Production')
plot_acf(residuals[['eurostoxx50']], lags=40, title = 'Residual Autocorrelation Euro Stoxx50 Index')
plot_acf(residuals[['bbb_spread']], lags=40, title = 'Residual Autocorrelation Corporate Bond Spread')
plt.ioff()

0.3 Part III: Estimation Reduced VAR

In [6]: #manual estimation of reduced var

#create dataframe with lags
XLAG = pd.DataFrame()
num_lags = 2 #number of lags according to BIC
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn dataframe into arrays
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficient
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

2

#print beta coefficient results
col_names = list(X2.columns)
index = list(XLAG2.columns)
coefficient_matrix = pd.DataFrame(Bhat, index = index, columns = col_names)
coefficient_matrix

Out[6]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
1ygovbondindx-1 1.206220 0.001479 0.007181 0.059325 -1.882308
HICP-1 12.326375 1.143944 0.222482 0.041549 45.282049
IP-1 -0.772842 0.019828 0.688560 0.026600 -4.739764
eurostoxx50-1 0.183317 0.002299 0.013894 0.965809 -5.918025
bbb_spread-1 -0.018017 -0.000184 -0.003683 0.007399 0.988982
1ygovbondindx-2 -0.264382 -0.001726 -0.007373 -0.070943 2.165812
HICP-2 -13.176063 -0.153208 -0.213005 -0.190087 -40.974560
IP-2 1.290158 -0.008866 0.278898 0.145637 -0.506159
eurostoxx50-2 0.007398 -0.003173 0.000026 0.021246 6.508368
bbb_spread-2 0.014252 0.000206 0.002969 -0.006951 -0.090552

0.4 Part III: Two-Stage Least Square Regression

In [7]: date = list(X2.index)

#estimate errors from reduced form VAR
res = X3 - XLAG3@Bhat
u = pd.DataFrame((X3 - XLAG3@Bhat),index = date, columns = col_names) #create dataframe

#reduced error covariance matrix
#VAR.Sigma = (VAR.res'*VAR.res)/(VAR.T-VAR.n*VAR.p-1);
sigma = (u.T@u)/(num_obs - num_lags*num_vars - 1)

#partition errors
#policy residuals
res_p = u[['1ygovbondindx']]

#non-policy residuals
res_q = u[['HICP', 'IP','eurostoxx50', 'bbb_spread']]

#turn into array
u_p = np.array(res_p).reshape(len(X3),1)
u_q = np.array(res_q)

u.head() #show excerpt of residuals

Out[7]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
1999-03-01 -0.210170 0.000402 -0.004420 0.013827 0.038525
1999-04-01 -0.267440 0.001887 0.002309 0.069471 -0.525029
1999-05-01 0.021309 -0.002252 -0.000331 -0.012007 -0.393453
1999-06-01 0.169593 -0.001076 0.004220 0.040930 -0.226711
1999-07-01 -0.004069 -0.000314 0.004733 -0.049821 0.136371

3

In [8]: sigma #show variance-covariance matrix

Out[8]: 1ygovbondindx HICP IP eurostoxx50 \
1ygovbondindx 0.026809 6.301566e-06 1.504118e-04 0.003799
HICP 0.000006 2.640349e-06 4.292477e-07 -0.000006
IP 0.000150 4.292477e-07 9.716275e-05 0.000057
eurostoxx50 0.003799 -5.905515e-06 5.695121e-05 0.003037
bbb_spread -0.034949 -1.407716e-04 -1.159073e-03 -0.013639

bbb_spread
1ygovbondindx -0.034949
HICP -0.000141
IP -0.001159
eurostoxx50 -0.013639
bbb_spread 0.498320

In [9]: #get instrument
instrument = df2[['OIS_1Y']].iloc[num_lags:,:] #adapt data range according to lag length
Z = np.array(instrument)

In [10]: #2SLS
#First Stage: OLS with policy residual and instrument
#policy residual = constant + instrument

b_p = inv(Z.T@Z)@Z.T@u_p # beta coefficient for Z

#find constant
N = len(u_p)
c = np.ones(N)
c0 = np.mean(u_p)-(b_p*np.mean(Z))

#calculate fitted values for policy residual
u_p_hat = c0 + b_p*Z

print('The first stage coefficients are',c0, 'and', b_p)

#Produce table of actual and fitted values of dependent variable
actual = pd.DataFrame(u_p).rename(columns = {0: 'actual'})
fitted = pd.DataFrame(u_p_hat).rename(columns = {0: 'fitted'})
t1 = actual.join(fitted)
t1.head() #show excerpt

The first stage coefficients are [[-0.00077337]] and [[0.01247968]]

Out[10]: actual fitted
0 -0.210170 0.011706
1 -0.267440 -0.012005
2 0.021309 0.007962

4

3 0.169593 -0.007013
4 -0.004069 0.067865

In [11]: #f-test for weak instruments
k = 2
T = len(Z)

SSE = (u_p - c0 - b_p*Z).T@(u_p - c0 - b_p*Z) #sum of squared errors
SST = (u_p - np.mean(u_p)).T@(u_p - np.mean(u_p)) #total sum of squares

r_squared = 1 - (SSE/SST) #calculate R^2

F_test = (r_squared/(k-1))/((1-r_squared)/(T-k)) #F-test

print('R-squared:',r_squared)
print('F-test:',F_test)

R-squared: [[0.12969016]]
F-test: [[33.08156933]]

In [12]: #Second stage
#u_q = b * u_p_hat
b_iv = inv(u_p_hat.T@u_p_hat)@u_p_hat.T@u_q #coefficients
print(b_iv)

[[9.60695155e-04 -1.28505766e-02 1.18980757e-01 -1.18129020e+00]]

0.5 Part IV: Identification

In [13]: #turn reduced VAR variance-covariance matrix into array
sig = np.array(sigma)

#2SLS coefficient is estimate of H21iH11
h21ih11 = b_iv.T

#partitioning of the covariance matrix
sig11 = sig[0][0].reshape(1,1)
sig21 = sig[1:,0].reshape(-1,1)
sig22 = sig[1:,1:5]

#start by estimating Z
Q = sig22 - h21ih11@sig21.T - sig21@(h21ih11.T) + h21ih11*sig11*h21ih11.T

#next
h12h12 = (sig21 - h21ih11*sig11).T@inv(Q)@(sig21 - h21ih11*sig11)
h11h11 = sig11 - h12h12

5

h11 = np.sqrt(h11h11)
print('h11 is',h11)
print('and h21 is', h21ih11*h11)

#find H1, obtained estimates for h11 and h21
H1 = np.vstack((h11, (h21ih11*h11)))

h11 is [[0.15584716]]
and h21 is [[1.49721613e-04]
[-2.00272589e-03]
[1.85428134e-02]
[-1.84100725e-01]]

0.6 Part V: Impulse Response Function

In [14]: #impulse response function
num_impulses = 40 #number of periods
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (H1.T/(H1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]
irs = irs
irf_proxy = pd.DataFrame(irs, columns = col_names) #turn irf into dataframe

In [15]: irf_proxy.head() #show beginning of irf table

Out[15]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
0 1.000000 0.001470 0.135193 0.097597 -1.454463
1 1.290790 0.003846 0.060131 0.160887 -3.896407
2 1.421694 0.005773 0.067443 0.148352 -4.646878
3 1.486044 0.006745 0.087355 0.144625 -4.284896
4 1.505833 0.007245 0.088019 0.146016 -3.803853

0.7 Part VI: Bootstrapping

In [16]: #function for estimating reduced VAR
def estimate(X):

X = pd.DataFrame(X)
XLAG = pd.DataFrame()
num_lags = 2

for i in range(1,num_lags+1):
XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#

6

X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
res = X3 - XLAG3@Bhat
return res, Bhat

In [17]: #function for identification
def proxysvar (residual, instrument):

sigma = (residual.T@residual)/(num_obs - num_lags*num_vars - 1)
pshock = residual[:,0].reshape(-1,1)
qshock = residual[:,1:,]
#first stage
b_fs = inv(instrument.T@instrument)@instrument.T@pshock
constant = np.ones(len(pshock))
constant = np.mean(pshock)-(b_fs*np.mean(instrument))
#fitted value
pshock_hat = constant + b_fs*instrument
#second stage
b_ss = inv(pshock_hat.T@pshock_hat)@pshock_hat.T@qshock
#2SLS coefficient is estimate of H21iH11
b21ib11 = b_ss.T
#Columns of the covariance matrix
sigma11 = sigma[0][0].reshape(1,1)
sigma21 = sigma[1:,0].reshape(-1,1)
sigma22 = sigma[1:,1:5]
#start by estimating Q
S = sigma22 - b21ib11@sigma21.T - sigma21@(b21ib11.T) + b21ib11*sigma11*b21ib11.T
#next
b12b12 = (sigma21 - b21ib11*sigma11).T@inv(S)@(sigma21 - b21ib11*sigma11)
b11b11 = sigma11 - b12b12
b11 = np.sqrt(b11b11)
#find H1, obtained estimates for h11 and h21
B1 = np.vstack((b11, b21ib11*b11))

return B1

In [18]: #function for impulse response
def impulse(Bhat, B1):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (B1.T/(B1[0]))

7

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irsb = irs[num_lags : num_lags + num_impulses,:]
irf_proxy = pd.DataFrame(irsb, columns = col_names)
return irsb

In [19]: #simulate new data and repeat in loop

jj = 0
nboot = 1000 #number of repetitions
imp = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb = (res*(rr@np.ones((1, num_vars)))).T #u*
Zb = np.vstack(((Z[0:num_lags,:]),(rr*np.ones((1,1))*Z))) #Z*
varsb = np.zeros((len(X), num_vars))
#initial condition
varsb[0:num_lags,:] = X[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars = (varsb[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb[j,:] = lvars.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb[:,j-num_lags].T

var_j = estimate(varsb) #obtain fitted value for u_star
H_j = proxysvar(var_j[0], Zb[num_lags:,:])
irf_j = impulse(var_j[1], H_j)
irf_x = np.array(irf_j)
imp[:,jj-1] = np.reshape(irf_x,(num_impulses*(num_vars),1)).flatten()

In [20]: #create confidence bands
imp = imp.reshape(num_impulses,num_vars,nboot)
imp = np.sort(imp,axis=2)#
impci = imp[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [21]: #plot impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_proxy.index

plt.subplot(511)
plt.plot(periods, irf_proxy['1ygovbondindx'], 'black', label = 'External Instrument')

8

plt.plot(periods, impci[:,0,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,0,1], 'r', linestyle = 'dashed')
plt.xlabel('Periods')
plt.title('1-year German Government Bond', weight = 'bold')
plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_proxy['HICP'],color = 'black')
plt.plot(periods, impci[:,1,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,1,1], 'r', linestyle = 'dashed')
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(513)
plt.plot(irf_proxy['IP'], color = 'black')
plt.plot(periods, impci[:,2,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,2,1], 'r', linestyle = 'dashed')
plt.title('Industrial Production', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(514)
plt.plot(irf_proxy['eurostoxx50'],color = 'black')
plt.plot(periods, impci[:,3,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,3,1], 'r', linestyle = 'dashed')
plt.title('Euro Stoxx50', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(515)
plt.plot(irf_proxy['bbb_spread'], color = 'black')
plt.plot(periods, impci[:,4,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,4,1], 'r', linestyle = 'dashed')
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.tight_layout()

9

3. Robustness Check Cholesky Identification

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
from numpy import linalg as LA
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Load Data

In [2]: #load data and set datetime as index
df = pd.read_excel('data_levels.xlsx')
df.drop(columns = 'OIS_1Y', inplace = True) #no instrument needed
df2 = df.set_index('Date')

In [3]: #cholesky ordering
#log of industrial production, log of consumer prices, the 1-year government bond, eurostoxx and the corporate bond spread
X = df2[['IP','HICP','1ygovbondindx','eurostoxx50','bbb_spread']]
X.head()

Out[3]: IP HICP 1ygovbondindx eurostoxx50 bbb_spread
Date
1999-01-01 4.494239 4.305146 2.883 8.173900 7.410476
1999-02-01 4.481872 4.305416 3.016 8.156005 7.526190
1999-03-01 4.484132 4.307438 2.871 8.177476 7.347826
1999-04-01 4.488636 4.311068 2.616 8.231608 6.990909
1999-05-01 4.490881 4.310799 2.667 8.196839 6.830000

0.2 Part II: Reduced VAR

In [4]: #lag length test
model = VAR(X)
model.select_order(12).summary()

1

Out[4]: <class 'statsmodels.iolib.table.SimpleTable'>

In [5]: #create dataframe for lags
XLAG = pd.DataFrame()
num_lags = 2
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn datafram into array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficent
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

#print beta coefficient results
col_names = list(X2.columns)
index = list(XLAG2.columns)
coefficient_matrix = pd.DataFrame(Bhat, index = index, columns = col_names)
coefficient_matrix

Out[5]: IP HICP 1ygovbondindx eurostoxx50 bbb_spread
IP-1 0.688560 0.019828 -0.772842 0.026600 -4.739764
HICP-1 0.222482 1.143944 12.326375 0.041549 45.282049
1ygovbondindx-1 0.007181 0.001479 1.206220 0.059325 -1.882308
eurostoxx50-1 0.013894 0.002299 0.183317 0.965809 -5.918025
bbb_spread-1 -0.003683 -0.000184 -0.018017 0.007399 0.988982
IP-2 0.278898 -0.008866 1.290158 0.145637 -0.506159
HICP-2 -0.213005 -0.153208 -13.176063 -0.190087 -40.974560
1ygovbondindx-2 -0.007373 -0.001726 -0.264382 -0.070943 2.165812
eurostoxx50-2 0.000026 -0.003173 0.007398 0.021246 6.508368
bbb_spread-2 0.002969 0.000206 0.014252 -0.006951 -0.090552

0.3 Part III: Cholesky Identification

In [6]: #estimate errors from reduced form VAR
res = X3 - XLAG3@Bhat
sigma = res.T@res/(num_obs - num_lags*num_vars - 1) #variance-covariance matrix
#cholesky transformation
A0 = LA.cholesky(sigma)
d = np.zeros(A0.shape)
np.fill_diagonal(d,np.diag(A0)) #scale diagonal

2

A0 = inv(d)@A0
A0

Out[6]: array([[1. , 0. , 0. , 0. , 0.],
[0.02680918, 1. , 0. , 0. , 0.],
[0.09362299, 0.02129264, 1. , 0. , 0.],
[0.11631999, -0.07631395, 0.46002446, 1. , 0.],
[-0.18445229, -0.131 , -0.31630658, -0.27376288, 1.]])

In [7]: ##impulse response function
num_impulses = 40 #number of periods
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (A0[:,2].reshape(-1,1).T)
for jj in range (1, num_impulses):

lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]

irf_chol = pd.DataFrame(irs, columns = col_names) #turn irf into dataframe

In [8]: irf_chol.head()

Out[8]: IP HICP 1ygovbondindx eurostoxx50 bbb_spread
0 0.000000 0.000000 1.000000 0.460024 -0.316307
1 0.014737 0.002594 1.296249 0.501281 -4.917565
2 0.036808 0.003985 1.499161 0.466188 -5.033820
3 0.041425 0.004135 1.580896 0.457615 -4.151676
4 0.045873 0.003665 1.614890 0.449456 -3.244012

0.4 Part IV: Cholesky Bootstrapping Confidence Bands

In [9]: #function for estimating reduced var
def estimate(X):

X = pd.DataFrame(X)
XLAG = pd.DataFrame()
num_lags = 2

for i in range(1,num_lags+1):
XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#turn into array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#calculate coefficients
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

3

res = X3 - XLAG3@Bhat
return res, Bhat

In [10]: #function for identification
def cholsvar(sigma):

cholmatr = LA.cholesky(sigma)
d = np.zeros(cholmatr.shape)
np.fill_diagonal(d,np.diag(cholmatr))
cholmatr = inv(d)@cholmatr
return cholmatr

In [11]: #function for impulse response
def impulse(Bhat, cholmatr):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (cholmatr[:,2].reshape(-1,1).T)

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]
irfbs = pd.DataFrame(irs, columns = col_names)
return irfbs

In [12]: #bootstrapping
#simulate new data and repeat in loop

jj = 0
nboot = 1000 #number of repetitions
imp = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb = (res*(rr@np.ones((1, num_vars)))).T #u*
varsb = np.zeros((len(X), num_vars))
#initial condition
varsb[0:num_lags,:] = X[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars = (varsb[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb[j,:] = lvars.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb[:,j-num_lags].T

var_j = estimate(varsb) #obtain fitted value for u_star
res_j = var_j[0]

4

sigma_j = (res_j.T@res_j)/(num_obs-num_lags*num_vars-1)
A_j = cholsvar(sigma_j)

irf_j = impulse(var_j[1], A_j)
irf_x = np.array(irf_j)
imp[:,jj-1] = np.reshape(irf_x,(num_impulses*(num_vars),1)).flatten()

In [13]: #create confidence bands
imp = imp.reshape(num_impulses,num_vars,nboot)
imp = np.sort(imp,axis=2)#
impci = imp[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [14]: #plot impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_chol.index

plt.subplot(511)
plt.plot(irf_chol['IP'], color = 'black', label = 'Cholesky')
plt.plot(periods, impci[:,0,0], 'r',linestyle='dashed')
plt.plot(periods, impci[:,0,1], 'r',linestyle='dashed')
plt.title('Industrial Production excl. Construction', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_chol['HICP'], color = 'black')
plt.plot(periods, impci[:,1,0], 'r', linestyle='dashed')
plt.plot(periods, impci[:,1,1], 'r', linestyle='dashed')
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(513)
plt.plot(periods, irf_chol['1ygovbondindx'], color = 'black')
plt.plot(periods, impci[:,2,0], 'r', linestyle='dashed')
plt.plot(periods, impci[:,2,1], 'r', linestyle='dashed')
plt.title('1-year German Government Bond', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(514)
plt.plot(irf_chol['eurostoxx50'], color = 'black')
plt.plot(periods, impci[:,3,0], 'r',linestyle='dashed')

5

plt.plot(periods, impci[:,3,1], 'r',linestyle='dashed')
plt.title('Euro Stoxx 50 Index', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(515)
plt.plot(irf_chol['bbb_spread'], color = 'black')
plt.plot(periods, impci[:,4,0], 'r', linestyle='dashed')
plt.plot(periods, impci[:,4,1], 'r', linestyle='dashed')
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

6

4. Robustness Check Crisis Sample

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Data & Functions

In [2]: df = pd.read_excel('data_levels.xlsx')
df.head()

Out[2]: Date Year Month 1ygovbondindx HICP IP eurostoxx50 \
0 1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1 1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
2 1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
3 1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
4 1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_1Y
0 7.410476 -0.25
1 7.526190 0.00
2 7.347826 1.00
3 6.990909 -0.90
4 6.830000 0.70

In [3]: #time span
post_crisis = df[['Date','1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread', 'OIS_1Y']].loc[df['Date'] > '2008-09-01']

X_post = post_crisis[['Date','1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread']].set_index('Date')
X_post.head()

1

Out[3]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
Date
2008-10-01 2.501 4.521354 4.629863 7.860092 17.016957
2008-11-01 1.999 4.517213 4.590057 7.795774 20.288571
2008-12-01 1.714 4.513384 4.552824 7.802871 22.780455
2009-01-01 1.161 4.514041 4.511958 7.712882 18.964091
2009-02-01 1.029 4.515574 4.489759 7.588946 19.948095

In [4]: #function for estimating reduced VAR
num_lags = 1

def estimate(X):
X = pd.DataFrame(X)
XLAG = pd.DataFrame()
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)
#change names to frames that we modify
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#Building arrays for using OLS
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#VAR - standard OLS
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
res = X3 - XLAG3@Bhat
return res, Bhat

In [5]: #function for identification
def proxysvar (residual, instrument):

sigma = (residual.T@residual)/(num_obs - num_lags*num_vars - 1)
pshock = residual[:,0].reshape(-1,1)
qshock = residual[:,1:,]
#first stage
b_fs = inv(instrument.T@instrument)@instrument.T@pshock
constant = np.ones(len(pshock))
constant = np.mean(pshock)-(b_fs*np.mean(instrument))
#fitted value
pshock_hat = constant + b_fs*instrument
#second stage
b_ss = inv(pshock_hat.T@pshock_hat)@pshock_hat.T@qshock
#2SLS coefficient is estimate of H21iH11
b21ib11 = b_ss.T
#Columns of the covariance matrix
sigma11 = sigma[0][0].reshape(1,1)
sigma21 = sigma[1:,0].reshape(-1,1)
sigma22 = sigma[1:,1:5]

2

#start by estimating Q
S = sigma22 - b21ib11@sigma21.T - sigma21@(b21ib11.T) + b21ib11*sigma11*b21ib11.T
#next
b12b12 = (sigma21 - b21ib11*sigma11).T@inv(S)@(sigma21 - b21ib11*sigma11)
b11b11 = sigma11 - b12b12
b11 = np.sqrt(b11b11)
#find H1, obtained estimates for h11 and h21
B1 = np.vstack((b11, b21ib11*b11))

return B1

In [6]: #function for impulse response
def impulse(Bhat, B1):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (B1.T/(B1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irsb = irs[num_lags : num_lags + num_impulses,:]
irsb_proxy = pd.DataFrame(irsb, columns = col_names)
return irsb

0.2 Part II: Post-Crisis Sample

In [7]: model_post = VAR(X_post)
model_post.select_order(8).summary()

Out[7]: <class 'statsmodels.iolib.table.SimpleTable'>

In [8]: #dataframe for lags
XLAG = pd.DataFrame()
num_lags = 1
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X_post.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X_post.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn into array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficient

3

Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

#Print coefficient results
col_names = list(X2.columns)
index = list(XLAG2.columns)
coefficient_matrix = pd.DataFrame(Bhat, index = index, columns = col_names)
coefficient_matrix

Out[8]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
1ygovbondindx-1 0.964851 -0.000513 0.001354 -0.015212 0.343410
HICP-1 0.581017 0.988323 0.113882 0.429521 -6.799611
IP-1 -0.498559 0.015777 0.853584 -0.251250 9.848345
eurostoxx50-1 -0.043502 -0.002177 0.019522 0.897664 -1.697296
bbb_spread-1 -0.008019 -0.000042 -0.000873 0.000664 0.896826

In [9]: #estimate errors
date_post = list(X2.index)
res_post = X3 - XLAG3@Bhat
u_post = pd.DataFrame((X3 - XLAG3@Bhat),index = date_post, columns = col_names)

#reduced error covariance matrix
sigma_post = (u_post.T@u_post)/(num_obs - num_lags*num_vars - 1)

#partition errors
#policy residuals
res_post_p = u_post[['1ygovbondindx']]

#non-policy residuals
res_post_q = u_post[['HICP', 'IP','eurostoxx50', 'bbb_spread']]

#turn into array
u_post_p = np.array(res_post_p).reshape(len(X3),1)
u_post_q = np.array(res_post_q)

u_post.head()

Out[9]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
2008-11-01 -0.254424 -0.005286 -0.018793 -0.011970 2.656319
2008-12-01 -0.049071 -0.004655 -0.016783 0.034831 2.641227
2009-01-01 -0.323134 0.000347 -0.023008 -0.075230 -2.959358
2009-02-01 0.023153 0.001235 -0.011227 -0.134813 1.891359
2009-03-01 -0.032945 -0.001320 -0.003693 0.014446 2.579796

In [10]: instrument_post = post_crisis[['OIS_1Y']].iloc[num_lags:,:] #adapt data range
Z_post = np.array(instrument_post)

In [11]: #2SlS
#first Stage: OLS with u_p and instrument

4

b_post_p = inv(Z_post.T@Z_post)@Z_post.T@u_post_p # coefficient for Z

#find constant
N = len(u_post_p)
c = np.ones(N)
c0_post = np.mean(u_post_p)-(b_post_p*np.mean(Z_post))

#fitted values
u_post_p_hat = c0_post + b_post_p*Z_post

print('The first stage coefficients are',c0_post, 'and', b_post_p)

#Produce table of actual and fitted values of dependent variable
actual = pd.DataFrame(u_post_p).rename(columns = {0: 'actual'})
fitted = pd.DataFrame(u_post_p_hat).rename(columns = {0: 'fitted'})
t1 = actual.join(fitted)
t1.head()

The first stage coefficients are [[0.00014298]] and [[0.00791587]]

Out[11]: actual fitted
0 -0.254424 0.107799
1 -0.049071 0.037348
2 -0.323134 -0.008564
3 0.023153 -0.050519
4 -0.032945 -0.010148

In [12]: #f-test for weak instruments
k = 2
T = len(Z_post)

SSE = (u_post_p - c0_post - b_post_p*Z_post).T@(u_post_p - c0_post - b_post_p*Z_post)
SST = (u_post_p - np.mean(u_post_p)).T@(u_post_p - np.mean(u_post_p))

r_squared = 1 - (SSE/SST)

F_test = (r_squared/(k-1))/((1-r_squared)/(T-k))
print('R-squared:', r_squared)
print('F-test:',F_test)

R-squared: [[0.06888323]]
F-test: [[7.98974798]]

In [13]: #Second stage
#u_q = b * u_p_hat
b_iv_post = inv(u_post_p_hat.T@u_post_p_hat)@u_post_p_hat.T@u_post_q
print(b_iv_post)

5

[[-0.00214137 -0.06687888 0.27507276 -0.50915359]]

In [14]: #Reduced VAR variance-covariance matrix
sig_post = np.array(sigma_post)

#2SLS coefficient is estimate of H21iH11
h21ih11 = b_iv_post.T

#Columns of the covariance matrix
sig11 = sig_post[0][0].reshape(1,1)
sig21 = sig_post[1:,0].reshape(-1,1)
sig22 = sig_post[1:,1:5]

#start by estimating Z
Q = sig22 - h21ih11@sig21.T - sig21@(h21ih11.T) + h21ih11*sig11*h21ih11.T

#next
h12h12 = (sig21 - h21ih11*sig11).T@inv(Q)@(sig21 - h21ih11*sig11)
h11h11 = sig11 - h12h12
h11 = np.sqrt(h11h11)
print('h11 is',h11)
print('and h21 is', h21ih11*h11)

#find H1, obtained estimates for h11 and h21
H1_post = np.vstack((h11, (h21ih11*h11)))

h11 is [[0.08906932]]
and h21 is [[-0.00019073]
[-0.00595686]
[0.02450055]
[-0.04534997]]

In [15]: #impulse response function
num_impulses = 40
irs_post = np.zeros([num_lags+num_impulses, num_vars])
irs_post[num_lags,:] = (H1_post.T/H1_post[0])

for jj in range (1, num_impulses):
lvars_post = irs_post[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs_post[(num_lags + jj),:] = lvars_post.flatten(1).T@Bhat

irs_post = irs_post[num_lags : num_lags + num_impulses,:]
irf_post = pd.DataFrame(irs_post, columns = col_names)

In [16]: irf_post.head()

Out[16]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
0 1.000000 -0.002141 -0.066879 0.275073 -0.509154

6

1 0.989067 -0.004262 -0.050162 0.247256 -1.224178
2 0.975895 -0.005999 -0.036067 0.216867 -1.642915
3 0.959830 -0.007402 -0.024480 0.185223 -1.820779
4 0.940540 -0.008522 -0.015233 0.153429 -1.808437

In [17]: #bootstrapping
#simulate new data and make loop
jj = 0
nboot = 1000
imp_post = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb_post = (res_post*(rr@np.ones((1, num_vars)))).T #u*
Zb_post = np.vstack(((Z_post[0:num_lags,:]),(rr*np.ones((1,1))*Z_post))) #Z*
varsb_post = np.zeros((len(X_post), num_vars))
#initial condition
varsb_post[0:num_lags,:] = X_post[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars_post = (varsb_post[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb_post[j,:] = lvars_post.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb_post[:,j-num_lags].T

var_post = estimate(varsb_post) #obtain fitted value for u_star
H_post = proxysvar(var_post[0], Zb_post[num_lags:,:])
irf_b_post = impulse(var_post[1], H_post)
irf_bs_post = np.array(irf_b_post)
imp_post[:,jj-1] = np.reshape(irf_bs_post,(num_impulses*(num_vars),1)).flatten()

In [18]: #create confidence bands
imp_post = imp_post.reshape(num_impulses,num_vars,nboot)
imp_post = np.sort(imp_post,axis=2)#
impci_post = imp_post[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [19]: #impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_post.index

plt.subplot(511)
plt.plot(periods, irf_post['1ygovbondindx'], 'black', label = 'External Instrument')
plt.plot(periods, impci_post[:,0,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,0,1], 'r', linestyle = 'dashed')
plt.xlabel('Periods')
plt.title('1-year German Government Bond', weight = 'bold')

7

plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_post['HICP'],color = 'black')
plt.plot(periods, impci_post[:,1,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,1,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.subplot(513)
plt.plot(irf_post['IP'], color = 'black')
plt.plot(periods, impci_post[:,2,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,2,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('Industrial Production', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.subplot(514)
plt.plot(irf_post['eurostoxx50'],color = 'black',label='External Instrument')
plt.plot(periods, impci_post[:,3,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,3,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('Euro Stoxx50 Index', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.subplot(515)
plt.plot(irf_post['bbb_spread'], color = 'black')
plt.plot(periods, impci_post[:,4,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci_post[:,4,1], 'r', linestyle = 'dashed')
plt.grid()
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)

plt.tight_layout()

8

5. Robustness Check Alternative Instrument

December 30, 2019

In [1]: #libraries
import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.tsa.api import VAR
import matplotlib.pyplot as plt
%matplotlib inline
import datetime
from numpy.linalg import inv
from scipy import linalg
import warnings
warnings.filterwarnings("ignore")

0.1 Part I: Data

In [2]: #load data and set datetime as index
df = pd.read_excel('data_levels.xlsx')
df.drop(columns = ['OIS_1Y'], inplace = True) #drop instrument of baseline VAR
df.head()

Out[2]: Date Year Month 1ygovbondindx HICP IP eurostoxx50 \
0 1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1 1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
2 1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
3 1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
4 1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread
0 7.410476
1 7.526190
2 7.347826
3 6.990909
4 6.830000

In [3]: #load alternative instrument
instrument = pd.read_excel('EA_alternative_instrument.xlsx')
instrument.head()

1

Out[3]: Date Year Month OIS_6M
0 1999-01-07 1999 1 -5.25
1 1999-01-21 1999 1 1.00
2 1999-02-18 1999 2 0.00
3 1999-03-04 1999 3 0.00
4 1999-03-18 1999 3 -0.50

In [4]: #transform instrument to a monthly time series
instrument2 = instrument.groupby(['Year', 'Month']).sum().reset_index()
instrument2['Days'] = np.ones((len(instrument2['Month'])))
instrument2['Date'] = pd.to_datetime((instrument2.Year*10000+instrument2.Month*100+instrument2.Days).apply(str),format='%Y%m%d')
instrument3 = instrument2.drop(columns = ['Year', 'Month', 'Days']).set_index('Date')
instrument3.head()

Out[4]: OIS_6M
Date
1999-01-01 -4.25
1999-02-01 0.00
1999-03-01 -0.50
1999-04-01 0.10
1999-05-01 0.10

In [5]: #final dataframe
data_final = pd.merge(df, instrument3, on = ['Date'], how = 'outer').dropna()
data_final.head()

Out[5]: Date Year Month 1ygovbondindx HICP IP eurostoxx50 \
0 1999-01-01 1999 1 2.883 4.305146 4.494239 8.173900
1 1999-02-01 1999 2 3.016 4.305416 4.481872 8.156005
2 1999-03-01 1999 3 2.871 4.307438 4.484132 8.177476
3 1999-04-01 1999 4 2.616 4.311068 4.488636 8.231608
4 1999-05-01 1999 5 2.667 4.310799 4.490881 8.196839

bbb_spread OIS_6M
0 7.410476 -4.25
1 7.526190 0.00
2 7.347826 -0.50
3 6.990909 0.10
4 6.830000 0.10

In [6]: #set variables for reduced VAR
X = data_final[['1ygovbondindx','HICP','IP','eurostoxx50','bbb_spread']]

0.2 Part II: Estimation Reduced VAR

In [7]: #lag length test
model = VAR(X)
model.select_order(12).summary()

2

Out[7]: <class 'statsmodels.iolib.table.SimpleTable'>

In [8]: #create dataframe with lags
XLAG = pd.DataFrame()
num_lags = 2 #number of lags
for i in range(1,num_lags+1):

XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)
#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]

#turn dataframe into an array
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)

#calculate beta coefficient
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3

0.3 Part III: Two-Stage-Least-Square Estimation

In [9]: col_names = list(X2.columns)
date = list(X2.index)

#estimated errors from reduced form
res = X3 - XLAG3@Bhat
u = pd.DataFrame((X3 - XLAG3@Bhat),index = date, columns = col_names)

#reduced error covariance matrix
sigma = (u.T@u)/(num_obs - num_lags*num_vars - 1)

#partition residuals
#policy residuals
res_p = u[['1ygovbondindx']]

#non-policy residuals
res_q = u[['HICP', 'IP','eurostoxx50', 'bbb_spread']]

#turn into array
u_p = np.array(res_p).reshape(len(X3),1)
u_q = np.array(res_q)

u.head() #show excerpt of residuals

Out[9]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
2 -0.210170 0.000402 -0.004420 0.013827 0.038525
3 -0.267440 0.001887 0.002309 0.069471 -0.525029

3

4 0.021309 -0.002252 -0.000331 -0.012007 -0.393453
5 0.169593 -0.001076 0.004220 0.040930 -0.226711
6 -0.004069 -0.000314 0.004733 -0.049821 0.136371

In [10]: #get instrument
Z = data_final[['OIS_6M']].iloc[num_lags:,:] #adapt data range to number of lags
Z = np.array(Z)

In [11]: #2SLS
#first stage: OLS with policy shock and instrument

b_p = inv(Z.T@Z)@Z.T@u_p # coefficient for Z

#find constant
N = len(u_p)
c = np.ones(N)
c0 = np.mean(u_p)-(b_p*np.mean(Z))

#calculate fitted values for policy shock
u_p_hat = c0 + b_p*Z

print('The first stage coefficients are',c0, 'and', b_p) #results

The first stage coefficients are [[-0.00015531]] and [[0.01373348]]

In [12]: #F-test for weak instruments
k = 2
T = len(Z)

SSE = (u_p - c0 - b_p*Z).T@(u_p - c0 - b_p*Z) #sum of squared residuals
SST = (u_p - np.mean(u_p)).T@(u_p - np.mean(u_p)) #total sum of squares
r_squared = 1 - (SSE/SST) #r-squared

F_test = (r_squared/(k-1))/((1-r_squared)/(T-k)) #F-test
#results
print('R-squared:',r_squared)
print('F-test:', F_test)

R-squared: [[0.11659479]]
F-test: [[29.30030694]]

In [13]: #Second stage
#u_q = b * u_p_hat
b_iv = inv(u_p_hat.T@u_p_hat)@u_p_hat.T@u_q
print(b_iv)

[[1.52143309e-04 -1.81087293e-02 1.17240720e-01 -1.12700210e+00]]

4

0.4 Part IV: Identification

In [14]: #Reduced VAR variance-covariance matrix
sig = np.array(sigma)

#2SLS coefficient is estimate of H21iH11
h21ih11 = b_iv.T

#Columns of the covariance matrix
sig11 = sig[0][0].reshape(1,1)
sig21 = sig[1:,0].reshape(-1,1)
sig22 = sig[1:,1:5]

#start by estimating Z
Q = sig22 - h21ih11@sig21.T - sig21@(h21ih11.T) + h21ih11*sig11*h21ih11.T

#next
h12h12 = (sig21 - h21ih11*sig11).T@inv(Q)@(sig21 - h21ih11*sig11)
h11h11 = sig11 - h12h12
h11 = np.sqrt(h11h11)
print('h11 is',h11)
print('and h21 is', h21ih11*h11)

#find H1, obtained estimates for h11 and h21
H1 = np.vstack((h11, (h21ih11*h11)))

h11 is [[0.15201587]]
and h21 is [[2.31281970e-05]
[-2.75281419e-03]
[1.78224497e-02]
[-1.71322202e-01]]

0.5 Part V: Impulse Response Function

In [15]: #impulse response function
num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (H1.T/(H1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irs = irs[num_lags : num_lags + num_impulses,:]
irs = irs
irf_proxy = pd.DataFrame(irs, columns = col_names)

In [16]: irf_proxy.head()

5

Out[16]: 1ygovbondindx HICP IP eurostoxx50 bbb_spread
0 1.000000 0.000152 -0.018109 0.117241 -1.127002
1 1.263888 0.001771 0.000525 0.163744 -3.598005
2 1.335849 0.002752 0.009558 0.143309 -3.794887
3 1.325633 0.002623 0.012525 0.128516 -2.980327
4 1.268788 0.002005 0.012455 0.116681 -2.091942

0.6 Part VI: Bootstrapping Confidence Bands

In [17]: #function for estimating reduced VAR
def estimate(X):

X = pd.DataFrame(X)
XLAG = pd.DataFrame()

for i in range(1,num_lags+1):
XLAG = pd.concat([XLAG,X.shift(i).add_suffix("-"+str(i))],axis=1)

#
X2 = X.iloc[num_lags:,:]
XLAG2 = XLAG.iloc[num_lags:,:]
num_vars = X2.shape[1]
num_obs = XLAG2.shape[0]
#
X3 = np.array(X2)
XLAG3 = np.array(XLAG2)
#
Bhat = inv(XLAG3.T@XLAG3)@XLAG3.T@X3
res = X3 - XLAG3@Bhat
return res, Bhat

In [18]: #function for identification
def proxysvar (residual, instrument):

sigma = (residual.T@residual)/(num_obs - num_lags*num_vars - 1)
pshock = residual[:,0].reshape(-1,1)
qshock = residual[:,1:,]
#first stage
b_fs = inv(instrument.T@instrument)@instrument.T@pshock
constant = np.ones(len(pshock))
constant = np.mean(pshock)-(b_fs*np.mean(instrument))
#fitted value
pshock_hat = constant + b_fs*instrument
#second stage
b_ss = inv(pshock_hat.T@pshock_hat)@pshock_hat.T@qshock
#2SLS coefficient is estimate of H21iH11
b21ib11 = b_ss.T
#Columns of the covariance matrix
sigma11 = sigma[0][0].reshape(1,1)
sigma21 = sigma[1:,0].reshape(-1,1)
sigma22 = sigma[1:,1:5]

6

#start by estimating Q
S = sigma22 - b21ib11@sigma21.T - sigma21@(b21ib11.T) + b21ib11*sigma11*b21ib11.T
#next
b12b12 = (sigma21 - b21ib11*sigma11).T@inv(S)@(sigma21 - b21ib11*sigma11)
b11b11 = sigma11 - b12b12
b11 = np.sqrt(b11b11)
#find H1, obtained estimates for h11 and h21
B1 = np.vstack((b11, b21ib11*b11))

return B1

In [19]: #function for impulse response
def impulse(Bhat, B1):

num_impulses = 40
irs = np.zeros([num_lags+num_impulses, num_vars])
irs[num_lags,:] = (B1.T/(B1[0]))

for jj in range (1, num_impulses):
lvars = irs[np.arange(start = num_lags + jj - 1, stop = jj - 1, step = -1),:].T
irs[(num_lags + jj),:] = lvars.flatten(1).T@Bhat

irsb = irs[num_lags : num_lags + num_impulses,:]
return irsb

In [20]: #bootstrapping
#simulate new data and make loop

jj = 0
nboot = 1000
imp = np.zeros([(num_impulses*num_vars),nboot])

for rep in range(1,nboot):
jj=jj+1

rr = (1-2*(np.random.random(len(X2)) > 0.5)).reshape(-1,1) #Rademacher distribution

resb = (res*(rr@np.ones((1, num_vars)))).T #u*
Zb = np.vstack(((Z[0:num_lags,:]),(rr*np.ones((1,1))*Z))) #Z*
varsb = np.zeros((len(X), num_vars))
#initial condition
varsb[0:num_lags,:] = X[0:num_lags]

for j in range ((num_lags), (num_lags + len(X2))):
lvars = (varsb[np.arange(start = j - 1, stop = j-num_lags-1, step = -1)]).T #lags
varsb[j,:] = lvars.flatten(1).T@Bhat[0:(num_lags*num_vars),:] + resb[:,j-num_lags].T

var_j = estimate(varsb) #obtain fitted value for u_star
H_j = proxysvar(var_j[0], Zb[num_lags:,:])

7

irf_j = impulse(var_j[1], H_j)
irf_x = np.array(irf_j)
imp[:,jj-1] = np.reshape(irf_x,(num_impulses*(num_vars),1)).flatten()

In [21]: #create confidence bands
imp = imp.reshape(num_impulses,num_vars,nboot)
imp = np.sort(imp,axis=2)#
impci = imp[:,:,[np.int(0.05*nboot),np.int(0.95*nboot)]]

In [22]: #impulse response with bootstrapping confidence bands
plt.ioff()
plt.figure(figsize=(8,15))
periods = irf_proxy.index

plt.subplot(511)
plt.plot(periods, irf_proxy['1ygovbondindx'], 'black', label = 'External Instrument')
plt.plot(periods, impci[:,0,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,0,1], 'r', linestyle = 'dashed')
plt.xlabel('Periods')
plt.title('1-year German Government Bond', weight = 'bold')
plt.xlim(0, num_impulses)
plt.legend()
plt.grid()

plt.subplot(512)
plt.plot(irf_proxy['HICP'],color = 'black')
plt.plot(periods, impci[:,1,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,1,1], 'r', linestyle = 'dashed')
plt.title('Harmonized Index of Consumer Prices', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(513)
plt.plot(irf_proxy['IP'], color = 'black')
plt.plot(periods, impci[:,2,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,2,1], 'r', linestyle = 'dashed')
plt.title('Industrial Production', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(514)
plt.plot(irf_proxy['eurostoxx50'],color = 'black')
plt.plot(periods, impci[:,3,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,3,1], 'r', linestyle = 'dashed')
plt.title('Euro Stoxx50 Index', weight = 'bold')
plt.xlabel('Periods')

8

plt.xlim(0, num_impulses)
plt.grid()

plt.subplot(515)
plt.plot(irf_proxy['bbb_spread'], color = 'black')
plt.plot(periods, impci[:,4,0], 'r', linestyle = 'dashed')
plt.plot(periods, impci[:,4,1], 'r', linestyle = 'dashed')
plt.title('BBB Corporate Bond Spread', weight = 'bold')
plt.xlabel('Periods')
plt.xlim(0, num_impulses)
plt.grid()

plt.tight_layout()

9

	1. Introduction
	2. Literature Review
	2.1 Traditional Monetary Policy Analysis
	2.2 High Frequency Identification in Monetary Policy Analysis
	2.3 Monetary Transmission in the Euro Area

	3. Empirical Framework
	3.1 Identification via External Instruments
	3.2 Instrumental Variable

	4. Data and Estimation
	4.1 The baseline VAR

	5. Results
	6. Robustness Checks
	6.1 Cholesky Identification
	6.2 The Post-2008 Sample
	6.3 Alternative Instrument

	7. Conclusion
	Bibliography
	Appendix A: Estimation & Impulse Response Function
	A.1 Estimation
	A.2 Impulse Response Functions
	A.3 Recursive Residual-Based Wild Bootstrapping

	Appendix B: Data Sources
	Appendix C: Figures
	Appendix D: Python Jupyter Notebook

