Contribuição para o estudo de infecção por
Treponema pallidum subespécie *pallidum*: resposta serológica, diagnóstico molecular e genotipagem

Rita Maria Rodrigues Teixeira de Castro
Instituto de Higiene e Medicina Tropical
Universidade Nova de Lisboa
Lisboa 2004
Dissertação de candidatura ao Grau de Doutor no Ramo de Ciências Biomédicas – especialidade Microbiologia pela Universidade Nova de Lisboa – Instituto de Higiene e Medicina Tropical
ÍNDICE

ÍNDICE ... vii
ÍNDICE DE FIGURAS ... xi
ÍNDICE DE TABELAS .. xiii

Capítulo 1. Introdução geral .. 1

1. Perspectiva histórica ... 3

2. Características de Treponema pallidum subespécie pallidum 8
 2.1. Taxonomia e classificação .. 8
 2.2. Características do gênero Treponema .. 9
 2.3. Características de Treponema pallidum subespécie pallidum 12
 2.3.1. Características morfológicas e estruturais 12
 2.3.2. Características do genoma ... 18
 2.3.3. Características culturais ... 23

3. Patogénese .. 24

4. Epidemiologia e transmissão ... 30

5. História natural da doença e manifestações clínicas 35
 5.1. História natural da doença .. 35
 5.2. Manifestações clínicas .. 38
 5.2.1. Complexo primário ... 38
 5.2.2. Período secundário .. 39
 5.2.3. Sífilis latente ... 41
 5.2.4. Sífilis tardia ... 42
 5.3. Sífilis e infecção por VIH ... 45

6. Diagnóstico laboratorial ... 52
 6.1 Métodos de detecção directa de Treponema pallidum 52
 6.1.1. Microscopia de fundo escuro ... 53
6.1.2. Teste de imunofluorescência directa (DFA-TP) ..55
6.1.3. Coloração pela prata ..57
6.1.4. Detecção directa de antigénio ...57
 6.1.4.1. Inoculação em modelo animal ...57
 6.1.4.2. Teste imunoenzimático directo ...58
 6.1.4.3. Sondas de ADN ..59
 6.1.4.4. Reacção em cadeia da polimerase (PCR) ...60
 6.1.4.5. Multiplex – PCR (M-PCR) ..64
 6.1.4.6. Reacção da transcriptase reversa (RT-PCR)66
6.1.4.7. Reacção da transcriptase reversa (RT-PCR)66
6.2. Métodos serológicos ..67
 6.2.1. Testes não treponémicos ..68
 6.2.2. Testes treponémicos ..74
 6.2.2.1. Teste de imunofluorescência indirecta (Fluorescent Treponema
 Antibody Absorbed - FTA-Abs) ..76
 6.2.2.2. Testes de aglutinação ...78
 6.2.2.3. Técnicas imunoenzimáticas ..81
 6.2.2.4. Técnicas de Western-blot ..82
 6.2.2.5. Testes rápidos para pesquisa de anticorpos anti- *T. pallidum*84
6.2.3. Pesquisa de Anticorpos anti *T. pallidum* do tipo IgM85
6.2.4. Métodos para detecção de anticorpos no liquor87
6.2.5. Diagnóstico laboratorial nos diferentes estádios clínicos87
7. Terapêutica ..95
8. Prevenção e controlo ...102
9. Objectivos gerais ...104

Capítulo 2. Pesquisa de anticorpos anti-*Treponema pallidum* no sangue 105

 1. Introdução ...107
 2. Material e métodos ..109
 2.1. População ...109
 2.2. Teste VDRL – Disease Research Laboratory112
 2.3. Teste RPR – Rapid Plasma Reagin ...112
 2.4. Teste de imunofluorescência indirecta ...113
 2.5. Teste de hemaglutinação (TPHA) ...115
Índice

2.6. Teste de aglutinação (TP.A) ... 116
2.7. Teste imunoenzimático (EIA) ... 117
2.8. Técnica de Western blot .. 118
3. Resultados .. 122
 3.1. Comparação dos testes não treponémicos ... 122
 3.2. Monitorização do resultado da terapêutica com os testes não-treponémicos ... 124
 3.3. Avaliação dos testes não treponémicos em doentes infectados
 por VIH ... 126
 3.4. Relação do teste RPR com a infecção por VIH e toxicodependência ... 129
 3.5. Avaliação de uma técnica de hemaglutinação – TPHA 132
 3.6. Avaliação de uma técnica de aglutinação – TPPA 134
 3.7. Avaliação de uma técnica imunoenzimático – EIA 138
 3.8. Avaliação de uma técnica Western blot .. 142
4. Discussão e conclusões ... 148

Capítulo 3. Pesquisa de anticorpos anti-Treponema pallidum no liquor. 167
 1. Introdução .. 169
 2. Material e métodos .. 173
 2.1. População .. 173
 2.2. Exame citoquímico do liquor ... 174
 2.3. Testes serológicos ... 174
 3. Resultados .. 175
 4. Discussão e conclusões ... 183

Capítulo 4. Pesquisa de ADN de Treponema pallidum 191
 1. Introdução .. 193
 2. Material e métodos .. 200
 2.1. População .. 200
 2.2. Amplificação de ADN de Treponema pallidum (PCR – diagnóstica) 201
 2.3. Subtipagem genómica de Treponema pallidum 205
 2.3.1. Análise de gene tpr por nested PCR – RFLP 205
 2.3.2. Análise de gene arp por PCR ... 207
 2.4. Prevenção de contaminações nas reacções da PCR 209
2.5. Estudo de amostras clínicas ... 209
3. Resultados .. 211
 3.1. Optimização da PCR-diagnóstica ... 211
 3.2. Resultados PCR-diagnóstica das amostras clínicas 218
 3.3. Subtipagem de Treponema pallidum ... 229
 3.3.1. Análise do gene tpr por “nested PCR – RFLP” 229
 3.3.2. Análise do gene arp por técnica de amplificação 231
 3.4. Subtipagem de Treponema pallidum em amostras clínicas 232
4. Discussão e conclusões .. 234

Capítulo 5. Conclusões gerais e perspectivas futuras 253
 1. Discussão e conclusões finais ... 255
 5.2. Perspectivas futuras ... 262

Bibliografia .. 265

Bibliografia .. 267
ÍNDICE DE FIGURAS

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descrição</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fotografia de T. pallidum subespécie pallidum estirpe de Nichols, obtida por microscopia electrónica</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Fotografia de T. pallidum obtida por microscopia electrónica em corte transversal</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Distribuição dos genes codificantes de proteínas, e classificação dos mesmos</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Grupo de proteínas de repetição (Tpr) de T. pallidum</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Disseminação e espiroquetémia após infecção por T. pallidum</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Distribuição de sífilis precoce por zona geográfica</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Distribuição de sífilis precoce por grupo etário e por sexo</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Distribuição etária da população</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>Média de idades por sexo da população estudada</td>
<td>110</td>
</tr>
<tr>
<td>10</td>
<td>Comparação (%) dos resultados dos testes VDRL e RPR</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>Distribuição das infecções por VIH e por T. pallidum na população estudada</td>
<td>127</td>
</tr>
<tr>
<td>12</td>
<td>Distribuição da população estudada pela infecção por VIH e pela toxicodependência</td>
<td>130</td>
</tr>
<tr>
<td>13</td>
<td>Distribuição da falsa reactividade do teste RPR em relação com a infecção por VIH (%)</td>
<td>131</td>
</tr>
<tr>
<td>14</td>
<td>Distribuição da falsa reactividade do teste RPR em relação com a toxicodependência (%)</td>
<td>131</td>
</tr>
<tr>
<td>15</td>
<td>Optimização das condições de amplificação de um fragmento do gene Tp47 com as sequências iniciadoras KO3A/KO4</td>
<td>211</td>
</tr>
<tr>
<td>16</td>
<td>Visualização dos produtos de amplificação de ADN de amostras clínicas com a utilização das sequências iniciadoras KO4A/KO3</td>
<td>212</td>
</tr>
<tr>
<td>17</td>
<td>Optimização das condições de amplificação de um fragmento do gene Tp47 de T. pallidum com as sequências iniciadoras 47–F/47–R</td>
<td>213</td>
</tr>
<tr>
<td>18</td>
<td>Optimização da técnica de PCR-diagnóstica com as sequências iniciadoras polA-F/polA-R utilizando-se controlo positivo e diferentes concentrações de MgCl₂</td>
<td>214</td>
</tr>
</tbody>
</table>
clínicas, com a utilização das sequências iniciadoras *polA-F/polA-R*......214
Figura 20. Resultados obtidos pela aplicação da técnica de PCR optimizada
utilizando-se as sequências iniciadoras *polA-F/polA-R* (PE)215
Figura 21. Optimização da PCR-M, com as sequências iniciadoras 47-R/47-F e
polA-F/polA-R..217
Figura 22. Optimização da técnica de PCR-M com as sequências iniciadoras
KO4A/KO3 e *polA-F/polA-R*..218
Figura 23. Optimização da primeira amplificação da técnica de “nested-PCR” do
gene *tpr*. ...229
Figura 24. Optimização da segunda amplificação da técnica de “Nested-PCR”
para o gene *tpr*). ...230
Figura 25. Padrão de RFLP obtido com a enzima de restrição *MseI* aplicada ao
produto de nested-PCR do ADN de *T. pallidum*..231
Figura 26. Optimização da amplificação por PCR de um fragmento do
gene *arp* ...232
ÍNDICE DE TABELAS

Tabela 1. Características diferenciais das espécies patogénicas do género Treponema ...10
Tabela 2. História dos testes para diagnóstico de sífilis – detecção directa de antigénio ...53
Tabela 3 – Sensibilidade dos métodos de detecção directa de T. pallidum55
Tabela 4. Cronologia dos testes não treponémicos ..69
Tabela 5. Quadro de sensibilidade e de especificidade dos testes não treponémicos ...72
Tabela 6 -Cronologia dos testes treponémicos...76
Tabela 7. Quadro de sensibilidade e especificidade de testes treponémicos......80
Tabela 8. Critérios de diagnóstico de sífilis precoce...88
Tabela 9. Critérios de diagnóstico de sífilis tardia ...89
Tabela 10. Origem da população estudada ..109
Tabela 11. Grupos populacionais estudados ..111
Tabela 12. Resultados obtidos com os testes VDRL e RPR122
Tabela 13. Sensibilidade e especificidade dos testes VDRL e RPR em comparação com o teste FTA-Abs ...123
Tabela 14. Monitorização do resultado da terapêutica em doentes com sífilis primária ..125
Tabela 15. Monitorização do resultado da terapêutica em doentes com sífilis secundária ..125
Tabela 16. Monitorização do resultado da terapêutica em doentes com sífilis latente ..126
Tabela 17. Resultados obtidos com os testes RPR e VDRL na população sem infecção por VIH ...127
Tabela 18. Resultados obtidos com os testes RPR e VDRL na população com infecção por VIH ...128
Tabela 19. Resultados da falsa reactividade do teste RPR em relação à infecção por VIH e toxicodependência ...130
Tabela 20. Resultados obtidos com os testes RPR e TPHA no soro de indivíduos dos vários grupos estudados ...133
Tabela 21. Resultados obtidos com os testes TPHA e FTA-Abs-G133
Índice de tabelas

Tabela 22. Resultados obtidos com os testes TP.PA e TPHA..............................135
Tabela 23. Resultados obtidos com os testes TP.PA e FTA-ABS........................135
Tabela 24. Monitorização do resultado da terapêutica de doentes com sífilis
 primária aos seis e 12 meses com os testes RPR, TPHA e TP.PA..............136
Tabela 25. Monitorização do resultado da terapêutica de doentes com sífilis
 secundária aos seis e 12 meses com os testes RPR, TPHA e TP.PA.........137
Tabela 26. Monitorização do resultado da terapêutica de doentes com sífilis
 latente aos seis e 12 meses com os testes RPR, TPHA e TP.PA..............138
Tabela 27. Resultados obtidos com os testes EIA–G e TPHA..........................139
Tabela 28. Resultados obtidos com os testes EIA–G e FTA-Abs....................139
Tabela 29. Sensibilidade e especificidade dos testes RPR, TPHA e EIA-G em
 comparação com o teste FTA-Abs-G..140
Tabela 30. Resultados da pesquisa de anticorpos de tipo IgM específicos em
 diferentes estádios de sífilis pelos testes FTA-Abs-M e EIA-M.............142
Tabela 31. Resultados obtidos com os testes FTA-Abs-G, TPHA e Western blot
 na globalidade dos soros estudados...143
Tabela 32. Resultados obtidos com os testes Western blot e TPHA..............143
Tabela 33. Resultados obtidos com os testes Western blot e FTA-Abs-G.........144
Tabela 34. Resultados obtidos com os testes TPHA, Western blot e FTA-Abs-G,
 no soro de indivíduos dos vários grupos estudados..........................145
Tabela 35. Resultados obtidos com os testes WB – M e FTA-Abs-M no soro de
 indivíduos dos vários grupos estudados.......................................146
Tabela 36. Características diferenciais entre os testes VDRL e RPR.............148
Tabela 37. Resultados obtidos com os testes serológicos e exame citoquímico
 nas amostras de liquor...175
Tabela 38. Resultados obtidos com os testes VDRL e RPR nas amostras de
 liquor dos indivíduos do grupo sintomático.....................................176
Tabela 39. Resultados obtidos com os testes FTA-Abs, TPHA, TP.PA e Western
 blot, nas amostras de liquor dos indivíduos do grupo sintomático........177
Tabela 40. Resultados obtidos com os testes VDRL e RPR nas amostras de
 liquor dos indivíduos do grupo assintomático................................178
Tabela 41. Discriminação dos resultados obtidos nos testes treponêmicos e
 exame citoquímico das amostras de liquor nas quais os testes não
 treponêmicos foram negativos...179
Índice de tabelas

Tabela 42. Resultados obtidos com os testes FTA-Abs e TPHA nas amostras de liquor dos indivíduos do grupo assintomáticos ..180
Tabela 43. Resultados obtidos com os testes FTA-Abs e TP.PA nas amostras de liquor dos indivíduos do grupo assintomáticos ..181
Tabela 44. Resultados obtidos com os testes FTA-Abs e Western blot nas amostras de liquor dos indivíduos do grupo assintomáticos182
Tabela 45. Sequências de oligonucleotídeos para a PCR – Diagnóstica203
Tabela 46. Sequências iniciadoras para amplificação do gene tpr206
Tabela 47. Sequências iniciadoras para amplificação do gene arp208
Tabela 48. Resultados obtidos nas diversas amostras clínicas analisadas pelas técnicas de PCR-diagnóstica ..219
Tabela 49. Resultados obtidos no total de amostras (140) estudadas por todas as técnicas de PCR-diagnóstica ..220
Tabela 50. Resultados obtidos pela técnica de PCR-47 nos diferentes tipos de amostras ..221
Tabela 51. Resultados obtidos pela técnica de PCR-polA nos diferentes tipos de amostras ...221
Tabela 52. Resultados obtidos pela técnica de PCR-M nos diferentes tipos de amostras ..222
Tabela 53. Resultados obtidos com a técnica de PCR-47 nas várias amostras, de acordo com o diagnóstico clínico e laboratorial do grupo I222
Tabela 54. Resultados obtidos com a técnica de PCR-polA nas várias amostras de acordo com o diagnóstico clínico e laboratorial do grupo I223
Tabela 55. Resultados obtidos com a técnica de PCR-M de acordo com o diagnóstico clínico e laboratorial do grupo I ...223
Tabela 56. Resultados obtidos com as várias técnicas PCR-diagnóstica nas amostras de liquor ..225
Tabela 57. Resultados obtidos nas amostras de liquor de acordo com o tipo de técnica PCR-diagnóstica utilizada ...225
Tabela 58. Resultados obtidos nos testes serológicos e exame citoquímico das amostras de liquor em que todas as técnicas de PCR-diagnóstica foram negativas ..226
Tabela 59. Resultados obtidos nos testes serológicos e exame citoquímico das amostras de liquor em que todas as técnicas de PCR-diagnóstica foram
Índice de tabelas

Tabela 60. Discriminação dos resultados discordantes obtidos nas amostras de liquor, com as técnicas PCR-diagnóstica...228

Tabela 61. Resultados obtidos na subtipagem de T. pallidum de amostras sangue, plasma, soro e de exsudados de biopsia de lóbulo de orelha e de lesões..233
Agradecimentos

O presente trabalho foi possível graças ao contributo de muitos amigos, colegas e familiares que com a sua disponibilidade, o seu apoio, encorajamento, incentivo e críticas me ajudaram a concretizar esta tarefa. A todos o meu mais sincero obrigada.

Seria da mais elementar injustiça deixar de expressar a minha gratidão a duas amigas que de um modo mais directo, com o seu incentivo e colaboração foram fundamentais na elaboração deste trabalho:
A Professora Doutora Filomena Exposto, colega e amiga, que tendo-me acolhido na Unidade de DST, foi decisiva na opção por este tema de estudo. Através do seu incentivo, da sua ajuda não só científica como amiga, da sua preocupação constante, e da sua aprovação quando necessária, foram-me permitidos ultrapassar os momentos “menos bons”.
A Senhora Dr."ª Emília Prieto, pelo seu apoio e colaboração incondicional na execução prática dos estudos laboratoriais e sobretudo pela sua amizade, fundamental nestes anos de convívio e trabalho em comum.
Esta dívida de gratidão não se pode pagar tão simplesmente como a escrita destas linhas; terá de o ser diariamente pelo tempo fora.
Este trabalho, não seria, também, uma realidade sem a ajuda de todos aqueles que ao longo destes anos, partilharam comigo a sua amizade e cooperação. A todos expresso o meu reconhecimento.
À Professora Doutora Wanda Cana Ferreira pelo seu acolhimento quando da minha entrada na carreira docente, tendo-me transmitido o seu entusiasmo pela investigação.
Aos colegas dos Serviços de Infeccioologia dos Hospitais de Garcia de Orta e Egas Moniz, e das consultas de Medicina Interna da Maternidade Dr. Alfredo da Costa e Consulta de DST do Centro de Saúde da Lapa, sem os quais, este trabalho não teria sido realizável.
Aos Professores Doutora Aida Esteves e Doutor Carolino Monteiro, o meu muito obrigada pela orientação e conselhos que muito contribuíram para a realização das técnicas de biologia molecular.
Aos Professores Vittorio Sambri de Bolonha e Alan Pillay do CDC de Atlanta, pela hospitalidade, ensinamentos e colaboração na execução das técnicas de
Western-blot e de subtipagem molecular.
Ao Senhor Professor Doutor Francisco Antunes, da Unidade de Protozoários/Oportunistas/VIH, o meu muito obrigada pela sua disponibilidade na revisão exaustiva deste texto.
À Senhora Dr.ª Luzia Gonçalves pela ajuda na análise estatística.
A todos os elementos das Unidades de Virologia e Micobactérias, a quem peço perdoação por não nomear mas que pelo seu número tornar-se-ia fastidioso e para os quais guardo no coração a minha de gratidão. A todos muito e muito obrigada.
Aos meus queridos Quim, Joana, Miguel e João pelo seu amor.
Resumo

A sífilis é uma doença sexualmente transmitida, reconhecida como tal desde o século XVI, cujo agente etiológico é Treponema pallidum subespécie pallidum, para o qual não existe meio de cultura artificial. Sendo uma infecção com inúmeras manifestações clínicas, incluindo a fase de latência e não havendo uma técnica que possa ser um verdadeiro teste padrão, o seu diagnóstico clínico e laboratorial afigura-se muitas vezes difícil.

Nesta tese foram avaliados vários testes – Venereal Disease Research Laboratory (VDRL), Rapid Plasma Reagin Test (RPR), Treponema pallidum Hemaglutination Antibody (TPHA), Fluorescent Treponemal Antibody Absorption (FTA-Abs), Passive Particle Agglutination Test (TP.PA), teste imunoenzimática (SYPHILIS-EIA) e Western-blot – para a pesquisa de anticorpos anti-Treponema pallidum e técnicas de biologia molecular – reacção em cadeia da polimerase (PCR) – para o diagnóstico da sífilis nos seus diferentes estádios, incluindo neurosífilis. Experimentaram-se várias sequências iniciadoras (47-F/47-R, polA-F/polA-R-(PE), KO3A/KO4 e polA-F/polA-R) para amplificação de fragmentos dos genes da lipoproteína de 47kDa e do ADN polimerase I, e diferentes tipos de amostras: exsudado de úlceras genitais e de lesões cutâneas de secundarismo, exsudado de biopsias do lóbulo da orelha, sangue total, plasma, soro e líquor.

Foram também optimizadas técnicas de PCR para a genotipagem de Treponema pallidum (amplificação de um fragmento do gene tpr e do gene arp) as quais foram aplicadas em algumas amostras incluídas neste estudo.

Com a técnica de RPR obtiveram-se resultados idênticos ao VDRL no sangue e no líquor, pelo que parece que ambas as técnicas podem ser indiscriminadamente utilizadas nos dois tipos de produtos.

Com os testes treponémicos obtiveram-se também, resultados semelhantes no líquor e no sangue. No entanto, as diferenças encontradas indicam que: a) o FTA-Abs, o Western-blot e o TP.PA devem ser os testes a utilizar nas fases precoces da infecção; b) o teste EIA parece indicado no caso de um grande número de amostras; c) o TP.PA e o TPHA podem ser utilizados na rotina laboratorial e, o primeiro eventualmente, também, na monitorização da terapêutica; d) o FTA-Abs e o Western-blot são os testes treponémicos que, de
preferência devem ser utilizados no diagnóstico de neurosífilis embora os resultados do TP.PA se comparem aos do TPHA, no caso da infecção do sistema nervoso central por *Treponema pallidum*.

A co-infeção com o VIH parece, ter efeito apenas, na reactividade dos testes não treponémicos, ocasionando falsa reactividade, independentemente da existência simultânea de toxicodependência.

Em relação à técnica de PCR para o diagnóstico de sífilis, e para as várias sequências iniciadoras experimentadas os melhores resultados obtiveram-se com o par KO3A/KO4. A sensibilidade da técnica de PCR e de genotipagem nas amostras das úlceras genitais e das lesões cutâneas de sífilis secundária foi de 100%, o mesmo não acontecendo quando as técnicas se aplicaram à identificação de *Treponema pallidum* no sangue e no liquor, pelo que a técnica de PCR aplicada a este tipo de amostras necessita de ser aperfeiçoada. No entanto o exsudado de biopsia do lóbulo da orelha, seguido do plasma são os produtos, em que mais vezes, se identificou ADN de *Treponema pallidum*.

O genótipo de *Treponema pallidum* subespécie *pallidum* mais frequentemente encontrado foi o 14c, sendo que o genótipo 10a foi pela primeira vez identificado no presente estudo.
Summary

Syphilis is a sexually transmitted disease, which has been recognized since the 16th century. *T. pallidum* subspecies *pallidum* is the etiological agent, for which there is no artificial culture media. As this infection has a variety of clinical manifestations, including a latent phase, and since there is no test that can be considered a true “gold standard”, it's clinical and laboratory diagnosis is sometimes rather difficult.

In this thesis a number of laboratory tests for the detection of antibodies against *T. pallidum* were evaluated – Venereal Disease Laboratory (VDRL), Rapid Plasma Reagin (RPR), *Treponema pallidum* Hemaglutination Antibody (TPHA), Fluorescent Treponemal Antibody Absortion FTA-Abs), *Treponema pallidum* Passive Particle Agglutination Antibody (TPPA), EIA antibodies (SYPHILIS – EIA) and Western blot.

Molecular biology techniques were developed and optimised for the diagnosis of syphilis in different stages, including neurosyphilis. Different primers were evaluated (47-F/47-R, *polA*-F/*polA*-R-[PE], KO3A/KO4 e *polA*-F/*polA*-R) for the amplification of the 47kDa protein and DNA polimerase I gene fragments. Different types of samples were also studied - genital ulcers and skin lesions exudates, ear lobe biopsy, total blood, plasma, sera and cerebral spinal fluid (CSF) - in view of verifying in which of them the PCR technique would be more sensitive.

The RPR results were identical to those obtained with the VDRL, both in blood and CSF. Therefore, it seems that the techniques can be used in either product. The results obtained with the different treponemal tests evaluated in this study were also quite similar in blood and CSF. However, some differences were found, which indicate that: a) the FTA-Abs, the Western blot and the TPPA should be used to diagnose early phases of disease; b) the EIA test seems to be indicated when there is a high number of samples; c) the TPPA and the TPHA tests may be used in laboratory routine work and the first in following up patients; d) the FTA – Abs and the Western blot are the treponemal tests that should be used preferentially for the diagnosis of neurosyphilis. On should also mentioned that the TPPA can also be used to diagnose *Treponema pallidum*
central nervous system infection, since the results of this test were similar to those obtained with the TPHA.

Co-infection with HIV seems to cause false positive results only in non-treponemal tests and that is independent of simultaneous existence of drug addiction.

In relation to the PCR technique for the diagnosis of syphilis and for the different primers tried, the best results were obtained with the pair KO3/KO4. The sensitivity of both the PCR and the genotyping techniques was found to be high (100%) in genital ulcers and cutaneous lesions exudates. The same does not apply when these techniques were used in blood and cerebrospinal fluid, although when ear lobe biopsy and plasma samples were used, *T. pallidum* DNA was identified more often.

The most frequently *T. pallidum* subspecies *pallidum* genotype found was the 14c. To our knowledge, genotype 10a was identified for the first time in this study.
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADN</td>
<td>Ácido desoxiribonucleico</td>
</tr>
<tr>
<td>ARN</td>
<td>Ácido ribonucleico</td>
</tr>
<tr>
<td>arp</td>
<td>“Acidic repeat protein”</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosina trifosfato</td>
</tr>
<tr>
<td>C</td>
<td>Citocina</td>
</tr>
<tr>
<td>CDC</td>
<td>“Centers for Disease Control and Prevention”</td>
</tr>
<tr>
<td>CN</td>
<td>Controlo negativo</td>
</tr>
<tr>
<td>CO₂</td>
<td>Dióxido de carbono</td>
</tr>
<tr>
<td>CP</td>
<td>Controlo positivo</td>
</tr>
<tr>
<td>CTP</td>
<td>Citidina trifosfato</td>
</tr>
<tr>
<td>DFA-TP</td>
<td>“Direct fluorescent antibody staining for T. pallidum”</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxinucleótidos</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ácido Etilenodiamino tetra-acético</td>
</tr>
<tr>
<td>EIA</td>
<td>“Enzyme immunoassay” – técnica imunoenzimática</td>
</tr>
<tr>
<td>ELISA</td>
<td>“Enzyme-linked immunosorbent assay”</td>
</tr>
<tr>
<td>FTA-abs</td>
<td>“Fluorescent treponemal antibody absorption”</td>
</tr>
<tr>
<td>G</td>
<td>Guanina</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosina trifosfato</td>
</tr>
<tr>
<td>H₂O</td>
<td>Água destilada</td>
</tr>
<tr>
<td>HCl</td>
<td>Ácido clorídrico</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescência</td>
</tr>
<tr>
<td>IgG</td>
<td>Imunoglobulina G</td>
</tr>
<tr>
<td>IgM</td>
<td>Imunoglobulina M</td>
</tr>
<tr>
<td>IST</td>
<td>Infecção Sexualmente Transmitida</td>
</tr>
<tr>
<td>KDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LCR</td>
<td>Líquido céfalo-raquidiano</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mARN</td>
<td>Ácido ribonucleico mensageiro</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Cloreto de magnésio</td>
</tr>
<tr>
<td>MHA-TP</td>
<td>Microhaemagglutination for antibodies to T. pallidum</td>
</tr>
<tr>
<td>ml</td>
<td>Mililitro</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>M-PCR</td>
<td>Multiplex-PCR</td>
</tr>
<tr>
<td>msp</td>
<td>Major outer sheath protein</td>
</tr>
<tr>
<td>ºC</td>
<td>Graus Celsius</td>
</tr>
<tr>
<td>OMS</td>
<td>Organização Mundial de Saúde</td>
</tr>
<tr>
<td>ORF</td>
<td>“Open Reading Frames”</td>
</tr>
<tr>
<td>pb</td>
<td>Pares de bases</td>
</tr>
<tr>
<td>PBS</td>
<td>Tampão fosfato salino</td>
</tr>
</tbody>
</table>
PCR - Reacção em cadeia da polimerase
Pmol - Picomoles
RIT - “Rabbit infectivity test
rARN - Ácido ribonucleico ribossómico
RFLP - “Restriction fragment length polymorphism”
rpm - Rotações por minuto
RPR - “Rapid plasma reagin”
SDS - Dodecil-sulfato de sódio
SIDA - Síndrome de Imunodeficiência adquirida
Taq - “Thermus aquaticus”
tARN - Ácido ribonucleico transferência
TBE - Tampão tris ácido bórico e EDTA
TPHA - “T. pallidum haemagglutination assay”
TPI - Teste de imobilização de T. pallidum
tpr - “Treponemal repeat protein”
TTP - Timidina trifosfato
U - Unidades
VDRL - “Venereal Diseases Research Laboratory”
VIH - Virus da Imunodeficiência Humana
WHO - “World Health Organisation”
µM - Micromolar
µg - Microgram
µl - Microlitre
Capítulo 1. Introdução geral
Introdução geral

1. Perspectiva histórica

A sífilis surgiu subitamente na Europa, como uma grande pandemia, no final do século XV. A doença foi mencionada por Ruy Diaz de Isla em 1539, relatando que em 1493, pouco tempo após o regresso de Cristóvão Colombo e da sua tripulação, a população de Barcelona foi atingida por uma doença desconhecida até então, com um quadro clínico de erupções ou boubas. No entanto, a maioria dos historiadores, considera como primeira epidemia europeia a que surge mais tarde nos anos 1494/5 (Baker e Armelagos 1988). A disseminação da infecção parece ter sido facilitada pelas movimentações militares durante a guerra existente entre o rei D. Carlos VIII de França e o rei de Nápoles. Nessa altura, as tropas franceses teriam sido enviadas para Itália numa tentativa de recuperar a cidade de Nápoles, enquanto que nesta cidade se encontravam tropas provenientes de Espanha para auxiliar o rei desta cidade. Os mercenários que integravam ambos os exércitos, oriundos de toda a Europa, terão sido os principais responsáveis pela propagação da infecção, quando do regresso às suas terras de origem, no verão de 1495. Em 1496, a epidemia disseminou-se pela Holanda e em 1497 atingiu as ilhas Britânicas. Em 1500 encontrava-se espalhada por toda a Europa e manifestava-se com um quadro clínico dramático e mais severo que o actual (Davenportt-Hines e Richard 1990, Caumes e Janvier 1995).

Ao longo dos anos a doença teve diversas designações. Após o seu aparecimento em Barcelona e disseminação por toda a Espanha denominou-se de “doença espanhola”. Quando surgiu em Itália e França e os primeiros casos foram registados na Alemanha, a sífilis foi chamada de “doença francesa”, “doença alemã”, e “mal de Nápoles”, enquanto que durante o século XVI e XVII foi conhecida como “great pox”, em oposição à variola que era então designada como “small pox”. A designação actual resulta da analogia com Syphilus, o pastor protagonista de um poema intitulado “Syphilis sive morbus gallicus”, publicado em 1530, e escrito pelo médico e filósofo de Verona, Hieronymus Fracastorius (1478-1553). No poema é feita a descrição clínica da sífilis, doença
Introdução geral

sexualmente transmitida, de que o pastor sofria. A designação, proposta na altura, acabou por ser adoptada no fim do século XVIII. Jean Fernel (1506-1558) chamou-lhe *lues venereum* (*lues* provém do latim que significa “praga ou pestilência”) e era originariamente aplicada a qualquer doença venérea, tendo-se tornado sinónimo de sífilis no início do século XX (Tramont 1990).

Os diversos historiadores são unânimes em afirmar que a epidemia de sífilis se propagou com intensidade sem precedentes através da Europa durante os séculos XV e XVI. Os surtos epidémicos mais precoces foram particularmente devastadores, provavelmente devido à ausência de imunidade natural. Os doentes sofriam de feridas abertas, febre de início súbito, dores ósseas e delírio, muitas vezes com prognóstico fatal, sobretudo na fase secundária.

Foi Joahannes Widman (1440-1524), também conhecido como Salicetus, quem reconheceu, pela primeira vez, a via de transmissão sexual. Este facto acabou por ter um certo impacto cultural, levando à regulamentação da utilização dos banhos públicos e das casas de prostituição e até ao seu encerramento em determinadas circunstâncias. A utilização de luvas e peruca parece estar, também, relacionada com as manifestações secundárias e terciárias da doença, segundo Meyer *et al.* (2002) enquanto que Ross *et al.* (1995) sugerem que a sífilis possa ter tido algum papel na perseguição às bruxas que teve lugar durante o século XVI. Na época surgiram várias hipóteses para justificar o aparecimento da doença, desde punição divina ou constelação cósmica a “mau ar” ou “mau sangue”, sendo invocadas ajudas de santos padroeiros e efectuadas peregrinações penitenciais. Até ao início do século XX, a sífilis dominou as preocupações médicas e sociais, com um largo cortejo de conceitos moralizantes e culpabilizantes (Janier e Saada 1989).

Ao longo dos anos foram muitos, aqueles, que contribuíram para o conhecimento actual da doença. John Hunter (1727-1793) acreditava na teoria unitária que assegurava que a sífilis e a gonorreia eram a mesma doença (Singh e Romanowski 1999), tendo por fundamento a experiência por si efectuada em 1767, na qual inoculou pús uretral de um doente no prepúcio e na glande de um receptor (Dempster 1978). Dez dias após a inoculação surgiu uma úlcera seguida de manifestações de sífilis secundária. De acordo com os conhecimentos actuais, pensa-se que o dador teria uma infecção gonocócica em
curso, estando no segundo período de incubação da sífilis, que se segue ao
estadio de sífilis recente, mas Hunter ficou convencido que tinha induzido sífilis
com o pús gonocócico. Algum tempo depois William Wallace (1791-1837)
demonstrou a infecciosidade das lesões cutâneas, do período secundário da
sífilis, ao inocular indivíduos saudáveis com material destas lesões, refutando a
teoria corrente na época de Hunter de que estas não eram infecciosas.
A teoria unitária de Hunter manteve-se até meados de século XIX, altura em
que o sifilogista Philippe Ricord (1800-1889) demonstrou que a sífilis e a
gonorreia eram doenças diferentes e propôs que fossem considerados os três
estádios de sífilis: primária, secundária e terciária, ainda hoje utilizados. Alfred
Fournier (1832-1914), aluno e seguidor de Philippe Ricord, que dedicou toda a
sua vida ao estudo da sífilis, confirmou a origem sifilítica da neurosífilis (Sartin
e Perry 1995) e descreveu a possibilidade de um recém-nascido de pais
infetados poder nascer aparentemente saudável, só apresentando sinais da
infecção anos mais tarde.
Também Paul Diday (1812-1894) e Jonathan Hutchinson (1828-1913) deram
um grande contributo para o conhecimento da sífilis congênita. Este último,
médico contemporâneo de Fournier, caracterizou as três lesões mais
importantes desta infecção no recém-nascido, a queratite intersticial, o
endurecimento do timpano e os incisivos centrais recortados e de menor
crescimento, hoje conhecidas como a tríade de Hutchinson.
No fim do século XIX a doença era conhecida como a “grande imitadora”,
podendo simular muitas outras doenças, pelo que Sir William Osler (1849-
1919) referiu “He who knows syphilis, knows medicine”. Esta característica de
ser uma doença sistêmica, difusa e insidiosa que pode simular muitas outras
entidades clínicas é melhor compreendida após a identificação do seu agente,
Treponema pallidum, por Schaudinn Hoffman em 1905 e pela confirmação da
sua presença nas lesões de sífilis tardia. Esta identificação levou, então, ao
desenvolvimento de um primeiro teste de diagnóstico serológico, o teste de
fixação de complemento ou teste de Wasserman (1906), o qual permitiu
evidenciar a sífilis latente (Hall 2002).
No entanto, e apesar dos conhecimentos actuais, a origem da sífilis continua a
ser controversa (Baker e Armelagos 1988), sendo várias as teorias que tentam
explicar a origem e a subsequente disseminação desta infecção e das outras treponematoses, isto é a teoria pré-columbiana, a teoria columbiana, a teoria unitária ou evolucionária e a teoria alternativa (Larsen et al. 1998, Meyer et al. 2002).

A primeira admite que a sífilis e as outras treponematoses já existiriam no Velho Mundo, antes de Cristóvão Colombo ter regressado com os seus marinheiros da América, nunca tendo sido diferenciada de outras manifestações como a lepra e as outras treponematoses. Esta suposição baseava-se na existência de grande número de referências sobre a lepra (1200 - 1300), que alguns médicos da altura acreditavam ser uma doença sexualmente transmitida (Larsen et al. 1998), assim como nas descrições de “lepras temporárias”, curadas pelo uso de ungüentos mercuriais e sobretudo pela administração oral de mercúrio. Este medicamento veio mais tarde a ser utilizado para a terapêutica da sífilis e teria sido já usado na antiguidade, pelos chineses, para o tratamento de uma lesão cutânea designada por “Yinshi” devida a contacto sexual (Larsen et al. 1998). Também, de acordo com os defensores desta hipótese, as infecções treponémicas seriam comuns e de severidade moderada. As alterações nos padrões de vida europeus da época, com melhores condições de vida sobretudo higiénicas, poderiam ter levado a que a disseminação das infecções treponémicas se tenha tornado menos comum, com menor transmissão por contacto cutâneo, diminuindo o risco de transmissão durante a infância e permitindo uma maior disseminação da transmissão sexual (Brothwell 1970).

Pelo contrário, os autores aderentes à teoria columbiana acreditam que foi a tripulação dos barcos de Cristóvão Colombo que trouxe o novo microrganismo para a Europa, em 1493. Aquelas que subscrevem a teoria colombiana postulam que a sífilis foi introduzida na Europa por aqueles marinheiros, quando do seu regresso da América e terá sido a falta de resistência natural a esse novo microrganismo que levou à disseminação rápida e grave da infecção por toda a população não imune da Europa em apenas alguns anos (Baker e Armelagos 1988). Esta teoria é fundamentada na existência de ossos do crânio e outros com evidência de lesões típicas de infecções por treponemas na América e na falta de documentação paleopatológica da existência de sífilis na
Introdução geral

Europa, antes da descoberta da América. Também o estudo de múmias egípcias em 1900 não evidenciou lesões de tipo sífilítico, quer nos ossos, quer nos dentes, enquanto que, ossos do crânio de habitantes do Pacífico Oeste, datados de 834 DC, pelo método de carbono, apresentavam lesões de periostite (Goff 1967).

A teoria unitária ou evolucionária foi posta em evidência por Hudson (1946), que defendeu que todas as treponematoses teriam origem num único microrganismo que se manifestaria de modo diferente, de acordo com as condições ambientais locais. A sífilis venérea ter-se-ia desenvolvido quando grandes aglomerados populacionais começaram a formar-se nos meios urbanos, facilitando assim a disseminação sexual (Hudson 1963, 1965). Hackett (1963), sugeriu a existência de um único microrganismo desenvolvido na região Euro-Afro-Asiática 20.000 AC que teria evoluído para distintas espécies e subespécies localizadas em áreas geográficas diferentes. Assim a frambéia, infecção a *Treponema pallidum* subespécie *pertenue*, é hoje apenas encontrada nas regiões equatoriais; a sífilis endémica, devida a *Treponema pallidum* subespécie *endemicum*, é endémica nas regiões de clima quente e seco, a sífilis venérea, causada por *Treponema pallidum* subespécie *pallidum*, actualmente distribuída por todo o Mundo, no século XVI estava confinada às zonas de clima temperado, e a pinta, infecção a *Treponema carateum*, tem como limite o norte da América do Sul e Central, local em que, segundo Hackett, acabou por ficar limitada, quando devido ao aquecimento global, o estreito de Behring foi inundado cerca de 10.000 AC. Esta hipótese apoia-se no facto das três subespécies não se diferenciarem umas das outras por métodos fenotípicos ou com base em estudos de ADN, e na capacidade dos testes serológicos padrão para diagnóstico de sífilis apresentarem reactividade cruzada com as outras infecções treponémicas. Por outro lado, alguns investigadores conseguiram modificar a infecção experimental em coelhos, ajustando a temperatura ambiente, e demonstrando que as diferenças nas doenças treponémicas são mais dependentes dos factores ambientais do que das diferenças entre espécies (Turner e Hollander 1957, Hollander 1981).

Resta uma referência à teoria alternativa (Livingstone 1991), na qual não é estabelecida relação causal entre a descoberta do “Novo Mundo” e a ocorrência
da epidemia de sífilis na Europa, e que propõe África como possível origem deste microrganismo. Os contactos das populações entre os dois continentes, anteriores à descoberta das Américas, poderiam ter originado a oportunidade para que treponemas não venéreos tivessem sido trazidos para a Europa onde, ao adaptarem-se às novas condições, ambientais e de população, teriam evoluído originando a sífilis venérea.

Os novos métodos de genética molecular poderão ajudar a clarificar toda esta polêmica. Por exemplo, os estudos efectuados por Centurion-Lara et al. (1998) permitiram a caracterização de *Treponema pallidum* subespécie *pallidum* pela presença de uma única base mutada na região 5’ do gene da proteína de 15 kDa, diferenciando este treponema dos outros. Este passo foi importante para atribuição correcta do material paleontológico a uma doença específica, como aconteceu no estudo efectuado por Kolman et al. (1999), o qual permitiu identificação de *Treponema pallidum* subespécie *pallidum* numa amostra arqueológica, com 200 anos, da Ilha de Páscoa (Easter Island). Assim, o estudo por técnicas de genética molecular das espécies de *T. pallidum* em amostras arqueológicas de regiões e periodos temporais críticos permitirá responder à questão da origem da doença, fornecendo também informações sobre a sua evolução.

A construção da história da evolução da sífilis poderá permitir um avanço na compreensão da sua patologia, orientando, também, os investigadores para futuras áreas de pesquisa, como a evolução da doença e o desenvolvimento de vacinas.

2. Características de *Treponema pallidum* subespécie *pallidum*

2.1. Taxonomia e classificação

Treponema pallidum subespécie *pallidum*, o agente da sífilis, é uma espiroqueta do género *Treponema* pertencente à ordem das *Spirochaetales*. Esta subdivide-se em duas famílias – Spirochataceae e Leptospiraceae – e em sete géneros, dos
quais apenas os géneros *Treponema, Borrelia* e *Leptospiras*, têm interesse médico, por serem capazes de causar doença, especialmente no ser humano (Smibert 1984, citado por Stamm 1999)

2.2. Características do género *Treponema*

Os microrganismos do género *Treponema* caracterizam-se por serem bacilos helicoidais, sendo constituídos por um cilindro protoplasmático, com flagelos periplasmáticos inseridos nas suas extremidades. Apesar de apresentarem uma parede celular com estrutura semelhante às bactérias Gram negativo, a maior parte das espécies cora mal com os corantes de anilina, sendo coráveis pelos métodos de impregnação pela prata. São microrganismos anaeróbios estritos ou microaerofílicos, móveis, com movimentos de rotação e translação que podem ser observados utilizando a microscopia de fundo escuro.

Várias outras espécies treponémicas podem ser encontradas na cavidade oral, aparelhos gastrointestinal e genital, sendo na sua maioria cultiváveis e com patogenicidade limitada (Stamm 1999). Constitui excepção *Treponema denticola*, que se encontra na cavidade oral e é antigenicamente relacionada com *Treponema pallidum* subespécie *pallidum* e pode ser responsável por periodontite crónica e gengivite aguda ulcerativa necrosante (Riviere *et al.* 1991a, 1991b).

Os treponemas patogénicos para o homem são, praticamente, indiferenciáveis
Introdução geral

no que diz respeito à sua morfologia, fisiologia, homologia do ADN e conteúdo proteico. Até à utilização das técnicas de biologia molecular apenas se diferenciavam pela sua distribuição geográfica, modo de transmissão e tipo de alterações patogénicas que originavam no homem e nos animais infectados experimentalmente.

Tabela 1. Características diferenciais das espécies patogénicas do gênero Treponema*

Características:	Treponema pallidum subsp.		Treponema carateum	
	pallidum	*pertunue*	*endemicum*	
Hospedeiro natural:				
Humano	+	+	+	
Patogenicidade no homem				
muito invasiva; infecção local e sistémica: lesões na pele e ossos	moderadamente invasiva; estádios recente, latente e tardio	moderadamente invasiva; estádios recente, latente e tardio	sem envolvimento sistémico; lesões dérmicas	
Infecções que originam				
sífilis venérea	framboésia ou boubas	sífilis endémica ou bejel	pinta	
Distribuição Geográfica				
Mundial	Áreas tropicais de ambos os hemisférios	Norte de África, Médio Oriente, Europa do Leste e do Sul	América Central e do Sul	
Clima	Temperado	Tropical e desértico	Temperado e desértico	Tropical
Lesão cutânea experimental				
Coelho	+	+	+	-
Hamster	-	+	+	-
Rato	-	-	-	-
Cobaio	a	-	+	-
Transmissão:				
Contacto sexual	+	-	-	-
Contacto cutâneo	-	+	-	-
Membranas mucosas	-	-	+	-
Infeção congénita	+	-	b	-

* Ocasionally observa-se pequena lesão no local da inoculação.
b Doença congênita rara.
(Adaptado de Larsen et al. 1998 e Norris et al. 2001)
Alguns investigadores com base em técnicas de hibridização de ADN-ADN e análise da composição em guanina/citocina (G+C), determinaram o grau de homologia existente entre *Treponema pallidum* subespécie *pallidum* (estirpe de Nichols) e as outras subespécies patogênicas (Miao e Fieldsteel 1980, Stanton et al. 1991) tendo demonstrado que se apresentavam fortemente relacionados e com homologia superior a 95%. Por outro lado, apresentaram homologia ADN/ADN inferior a 5%, quando comparados com o ADN de treponemas cultiváveis, como *Treponema phagedenis*, *Treponema refringens* e *Brachyspira hypodysenteriae* (anteriormente *Treponema hypodysenteriae*), tendo também a composição em G+C bastante diferente (Norris et al. 2001).

Os estudos de comparação, utilizando a sequenciação do 16s ARN ribossomal de *Treponema pallidum*, demonstraram identidade significativa com a sequência do ARN ribossomal de outras espécies de treponemas – *T. phagedenis*, *T. denticola* – e com duas espécies de *Spirochaeta*, isto é, *S. zuelzeriae* e *S. stenostrepta* (Paster et al. 1991). Adicionalmente, observou-se que as espécies de *Treponema* e estas *Spirochaeta* continham filamentos citoplasmáticos, estruturas estas não observáveis nas outras bactérias incluídas em *Spirochaetales*, o que sugere uma relação evolutiva.

Numa tentativa de diferenciar os treponemas patogênicos, têm sido utilizadas técnicas de análise de sequência de genes, técnicas de polimorfismos de restrição (RFLP) e técnicas de reactividade a anticorpos monoclonais. Noordhoek et al. (1990), utilizando *Treponema pallidum* subespécie *pallidum* estirpe de Nichols e *Treponema pallidum* subespécie *pertenue* estirpe CDC 2575, compararam a sequência do gene do antigénio 4D (190kDa) destas estirpes com a sequência do mesmo gene de dez estirpes de *Treponema* isoladas de doentes (quatro com o diagnóstico de sífilis e seis com o diagnóstico de framboésia), tendo concluído que esse gene diferia, apenas, num dos 936 nucleótidos (no resíduo 123). No entanto, essa diferença não foi observada em todos os microrganismos isolados, pelo que não deve ser utilizada para diferenciar as duas subespécies. Por outro lado, os mesmos investigadores não encontraram, também, qualquer diferença entre as duas subespécies (Noordhoek et al. 1990), quando estudaram a reactividade serológica com anticorpos monoclonais. Todos os anticorpos monoclonais reagiram com os antigénios de peso molecular
igual para ambas as subespécies, evidenciando, uma vez mais, serem microrganismos fortemente relacionados.

Os estudos de Centurion-Lara e seus colaboradores (1998) permitiram evidenciar pequenas diferenças, através da técnica de RFLP, na região 5’ que flanqueia o gene (*tpp15*). Este gene codifica a lipoproteína de 15 kDa e a sua análise por RFLP pode ser utilizada para diferenciar *Treponema pallidum* subespécie *pallidum* dos outros treponemas patogénicos, por aquele microrganismo apresentar um único ponto de restrição, “Eco 47III”, na região 5´desse gene (Centurion-Lara et al. 1998).

2.3. Características de *Treponema pallidum* subespécie *pallidum*

2.3.1. Características morfológicas e estruturais

Tal como as outras espiroquetas, *Treponema pallidum* subespécie *pallidum* caracteriza-se por apresentar morfologia helicoidal com o corpo celular em forma de onda ou de saca-rolhas (Figura 1).

Devido às suas dimensões pequenas *T. pallidum* situa-se para além do poder de resolução do microscópio óptico, sendo apenas observável por microscopia de fundo escuro ou por microscopia electrónica.

Este microrganismo tem forma de hélice com espiras ou ondas regulares (Norris et al. 2001), de 5 – 15 μm de comprimento medido ao longo do eixo longitudinal.
e 0,16 – 0,20 µm de diâmetro. Em perfil sinusoidal, apresenta um comprimento de onda e uma amplitude de cerca de 1,1 µm e 0,4 µm. Tal como as outras espiroquetas, *T. pallidum* apresenta dupla membrana, compartilhando características tanto com as bactérias que coram negativamente como com aquelas que o fazem positivamente pela coloração de Gram.

Figura 1. Fotografia de *T. pallidum* subespécie *pallidum* estirpe de Nichols, obtida por microscopia electrónica (Adaptado de Fitzgerald *et al.* 1977).

O estudo ultramicroscópico desta bactéria permitiu definir uma membrana externa, um espaço periplasmático, uma camada de peptidoglicano, uma membrana citoplasmática ou interna e um cilindro protoplasmático (Figura 2). A membrana externa limita a superfície celular externa, constituindo uma barreira protectora relativamente ao meio ambiente, e a membrana citoplasmática rodeia ou circunda o cilindro protoplasmático.

Em oposição à membrana citoplasmática observa-se uma camada electrodensa que foi identificada por microscopia electrónica de camada fina (Hovind-Hogen 1972). Esta camada electrodensa, que nem sempre é claramente visível, corresponde ao peptidoglicano, conforme foi evidenciado por estudos bioquímicos (Radolf *et al*. 1989) que demonstraram a presença de ácido murâmico.
Membrana externa

A membrana externa constitui a superfície celular do microrganismo em contacto mais íntimo com o hospedeiro, sendo também a estrutura onde se deveriam encontrar os mais importantes componentes associados à virulência bacteriana. Pelo contrário, neste microrganismo isso parece não se verificar, visto que uma das suas propriedades mais interessantes e intrigantes é a de possuir uma superfície de baixa antigenicidade. Isto mesmo foi confirmado por diferentes autores que demonstraram que *T. pallidum* apresenta baixa concentração de proteínas transmembranárias, aproximadamente cem vezes menos que nas outras espiroquetas e bactérias que coram negativamente pelo Gram (Radolf *et al.* 1989 e 1995a, Cox *et al.* 1992, Norris *et al.* 1993) as quais se encontram ligadas covalentemente aos lípidos pelos seus radicais amino-terminais. Também, ao contrário do que sucede na constituição das membranas externas daquelas bactérias, a de *T. pallidum* não apresenta lipopolissacarídeos (LPS), que se encontram em grande abundância nas membranas externas das bactérias de coloração Gram negativo (Bailey *et al.* 1985, Penn *et al.* 1985, Radolf *et al.* 1988). Essa característica é evidenciada pela análise do genoma (Fraser *et al.* 1998), que demonstrou ausência de genes que codifiquem enzimas para a bio-síntese de lipopolissacarídeos (LPS). Apresenta, no entanto, um alto conteúdo em lípidos com uma razão lípido/proteína elevada (Radolf *et al.* 1995a).

Flagelo periplasmático e mobilidade

flagelar é composto por um “core” interno (10ηm de diâmetro) e por uma bainha externa. Estes são constituídos por quatro proteínas designadas flagelinas e subdivididas em duas classes: A e B. A flagelina de classe A (FlA), é um polipeptídeo de 37 kDa constituínte da bainha do flagelo, enquanto que o “core” é composto por três classes de moléculas de flagelina com massas moleculares de 34.500 (FlaB₁), de 33.000 (FlaB₂) e de 30.000 (FlaB₃) (Penn et al. 1985, Cockayne et al. 1987, Norris et al. 1988).

O flagelo é um órgão importante, não só devido à sua função de locomoção, como também à sua natureza antigénica. A mobilidade constitui um dos factores de virulência de *T. pallidum*, porque dela depende a invasão e disseminação tecidual. O movimento de translação em saca-rolhas característico das espiroquetas permite-lhes o movimento em meios com viscosidade aumentada (Canale Parole 1978, Kimsey e Spielman 1990), onde pode atingir a velocidade de 19 mm por segundo (Kimsey e Spielman 1990, Ruby e Charon 1998). Em meios não viscosos o movimento de translação resulta numa vigorosa rotação, podendo reverter rapidamente ao encontrar um obstáculo e, através da sua capacidade de flexão, alterar o seu rumo.

Como referido, o flagelo é uma estrutura de natureza antigénica, estimulando uma resposta de anticorpos precoce que persiste durante a infecção. O estudo da actividade de um anti-soro antiflagelo em testes de imobilização de *T. pallidum* e a inactividade do mesmo em testes de imobilização modificada têm sugerido que o flagelo pode constituir um alvo na resposta da imunidade humoral do hospedeiro (Blanco et al. 1990).

A presença de epitopos específicos de *T. pallidum* (Norris et al. 1993), na região central das proteínas flagelina FlaB, permitiu o desenvolvimento de testes serológicos mais específicos para o diagnóstico laboratorial de sífilis (Ebel et al. 2000, Sambri et al. 2001a).

Membrana citoplasmática

A membrana citoplasmática de *T. pallidum* apresenta uma ultraestrutura semelhante à das outras bactérias que coram negativamente pela coloração de Gram (Lugtenberg e Van Alphen 1983, Radolf et al. 1989, Walker et al. 1989),
com um folheto interno com partículas intramembranosas em alta concentração, em contraste com a face interna da membrana externa (Radolf et al. 1989, Walker et al. 1989).

Como constituintes da membrana citoplasmática foram identificadas, também, proteínas de ligação à penicilina (Cunningham et al. 1987, Radolf et al. 1989) e cardiolipina, embora esta esteja presente em quantidade mínima na membrana externa, explicando assim a atividade opsónica do anticorpo, pesquisado pelos testes serológicos que utilizam como antigénio este componente lipídico (Radolf et al. 1995, Shevchenko et al. 1997).

Filamentos citoplasmáticos

Uma característica de *T. pallidum* subespécie *pallidum*, de outros membros do gênero treponema e de algumas espécies de espiroquetas é a presença de filamentos citoplasmáticos situados por baixo da membrana citoplasmática, em oposição directa ao flagelo periplasmático. Estes apresentam uma estrutura fibrilar (Yuo et al. 1996) em faixas paralelas com 7,0 a 7,5 ηm de largura, tendo origem junto dos corpos basais do flagelo, não se sabendo se se estendem por todo o comprimento da célula ou se terminam na sua porção média, tal como o endoflagelo.
Outros constituintes citoplasmáticos

Estudos efectuados com diferentes colorações (Hovind-Hougen 1972) e microscopia electrónica demonstraram a presença de ribossomas, assim como a presença de outras estruturas citoplasmáticas como mesossomas, vacúolos e regiões nucleares.

O genoma contém duas cópias de genes ARN ribossomal típicas de bactérias em arranjo 16S-23S-5S (Frazer et al. 1998) contendo, também, genes de codificação de proteínas ribossomais em pequenos e grandes operões, assim como em genes isolados.

2.3.2. Características do genoma

A sequenciação do genoma de Treponema pallidum subespécie pallidum (Nichols) foi completada em 1998 (Frazer et al. 1998), tendo-se verificado que o ADN genómico deste microrganismo é composto por um único cromossoma circular (Figura 3) com 1,138,006 pares de bases (pb) e com conteúdo em guanina e citocina (% mol G+C) de 52,8%.

Mil e quarenta e uma sequências de codificação – “open reading frames” – (ORF) – foram identificadas, com uma dimensão média de 1023 pares de bases (pb), constituindo 92,2% do total do ADN genómico. A sua comparação com sequências semelhantes de genes conhecidos de outros microrganismos determinou que 577 das ORF’s (55%) codificam produtos proteicos com função biológica conhecida, 177 ORF’s (17 %,) emparelham com proteínas de função desconhecida e 287 ORF’s (28%) não se assemelham a nenhuma das sequências existentes nas bases de dados, representando, provavelmente, novos genes. Na comparação com o genoma de *Borrelia burgdorferi* (Frazer et al. 1997) verificou-se que 90 das ORF’s de função desconhecida de *T. pallidum* subespécie *pallidum* emparelham com proteínas codificadas no cromossoma de *B. burgdorferi*, mas nenhuma emparelhou com proteínas codificadas por plasmídios, sugerindo ser essa uma característica de *Borrelia burgdorferi*.

A análise da sequência de proteínas indicou que 129 das ORFs (12%) podem ser atribuídas a 42 famílias de genes paralogos. Entre estas, 15 famílias contém 44 genes aos quais não foi atribuída função biológica. A maior família, com 14 membros, é constituída por proteínas pertencentes ao sistema de transporte ABC. Ao contrário de muitas outras bactérias patogénicas foi demonstrado que o genoma de *T. pallidum* se encontra, aparentemente, desprovido de elementos de transposição, o que sugere não participar, activamente, em trocas genéticas.

O estudo do genoma e as funções atribuíveis às proteínas permitiu estabelecer alguma compreensão das características genéticas, metabólicas, estruturais e patogénicas deste microrganismo que se resumem:

Características metabólicas

Uma das características mais interessantes no genoma de *T. pallidum* é a sua relativa pobreza em genes envolvidos na bio-síntese de nutrientes e na produção de energia. O genoma contém um grupo de genes homólogos que se sabe serem responsáveis pelos processos básicos de vida, como a replicação de ADN, a sua transcrição e translação. Contudo, a via de síntese do ATP está, aparentemente, limitada à via glicolítica, não existindo genes reconhecidos para o ciclo do ácido tricarboxílico e cadeia de transporte de electrões (Fraser et al.
1998, Norris e Weinstock 2000). *T. pallidum* necessita, apenas, de quantidades limitadas de oxigénio para a sua sobrevivência e multiplicação, parecendo possuir um mecanismo ainda não identificado para a utilização do mesmo na produção de energia ou em outros processos biológicos. O gene, origem da enzima oxidase nicotinamida adenina dinucleótido, é capaz de utilizar O$_2$ como substrato, convertendo o NADH em O$_2$, NAD$^+$ e H$_2$O e podendo assim contrariar os efeitos tóxicos do oxigénio, do mesmo modo que foi demonstrado para *Brachyspira* (*Serpulina*) *hyodysenteriae* (Stanton *et al.* 1999), agente da disenteria do porco.

Os mecanismos bio-sintéticos necessários para a síntese da maioria dos nutrientes, estão ausentes neste microrganismo, pelo que *T. pallidum* retira esses nutrientes do hospedeiro utilizando proteínas de transporte (Norris e Weinstock 2000).

Características estruturais

De particular interesse, e objecto de muitos estudos, tem sido a pesquisa sobre as proteínas expostas à superfície, sobretudo com o objectivo de desenvolver vacinas.

O conhecimento do genoma permitiu a Weinstock *et al.* (1998) evidenciar 31 proteínas que poderiam encontrar-se expostas na superfície. Contudo, Radolf *et al.* (1999a) apenas identificaram duas proteínas, com sequências semelhantes a proteínas de membrana conhecidas. Por outro lado, muitas das lipoproteínas e outros produtos de membrana, previamente, identificadas parecem encontrar-se, predominantemente, associados com a membrana citoplasmática. A identificação definitiva das proteínas de membrana externa tem sido particularmente difícil, devido à fragilidade da mesma e à sua aparente pobreza em proteínas. Blanco *et al.* (1994 e 1995) tinham identificado duas proteínas nomeadas Tromp1 e 2 (raras proteínas de membrana), considerando a primeira como tendo função de porina. No entanto, a sua localização é, ainda, assunto de controvérsia, visto outros investigadores (Hardman *et al.* 1997 e Akins *et al.* 1997) terem observado que a mesma proteína apresenta grande homologia com proteínas de transporte localizadas no espaço periplasmático, sendo esta
evidência reforçada pela localização do gene da mesma num operão de transporte (Hardman et al. 1997). A mesma controvérsia aplica-se à proteína enzimática glicerofosfodiesterase (GlpQ), a qual foi identificada como possível proteína de superfície por Cameron et al. (1998, 1999). Estes autores induziram anticorpos opsónicos e proteção parcial à inoculação de T. pallidum em coelho imunizado, enquanto que Shevchenko et al. (1999) determinaram a sua localização no espaço periplasmático, não tendo induzido imunoprotecção.

Características de virulência

Para que um microrganismo sobreviva no hospedeiro necessita de factores de virulência ou de protecção que lhe são conferidos pelos seus genes. Esses genes devem codificar proteínas intracelulares essenciais à vida, como por exemplo, as necessárias para a replicação e expressão de genes, para o metabolismo celular nas diferentes condições ambientais do hospedeiro, as reguladoras, as de transporte e as que interagem com o hospedeiro. Estas últimas conferem o fenótipo patogénico, permitindo ao microrganismo aderir aos tecidos do hospedeiro, desencadear a invasão tecidual, e evadir-se aos mecanismos de defesa do hospedeiro. Weinstock et al. (1998) identificaram 67 genes em T. pallidum que podem estar relacionados com a sua patogénese. Nestes incluem-se os genes tpr, os genes que codificam hemolisinas, as proteínas reguladoras, as proteínas para a bio-síntese de polissacarídeos e possíveis proteínas de superfície.

Entre estes genes, os que se apresentaram como mais surpreendentes e interessantes são os que constituem uma família multigénica, de 12 genes relacionados, que codificam produtos proteicos semelhantes à maior proteína de membrana Msp de Treponema denticola (Haapasalo et al. 1992), os quais foram designados Treponema pallidum repeat – tpr A – L (Figura 3). Este foi o único microrganismo que apresentou semelhança com os 12 produtos dos genes tpr, quando feita a comparação nas bases de dados genómicos. A Msp de Treponema denticola é muito imunogénica e apresenta arranjo hexagonal na superfície externa da bactéria, pensando-se que tem actividade de porina (Fenno et al. 1996 e 1997, Mathers et al. 1996). Embora não se tenha observado
o mesmo tipo de organização das proteínas Tpr na superfície de *T. pallidum*, tem-se especulado que, pelo menos, alguns produtos proteicos dos genes *tpr* poderiam localizar-se na superfície da bactéria, podendo funcionar como porinas e ou adesinas (Weinstock *et al.* 1998). O número e a variabilidade das proteínas Tpr (Figura 4), levanta a hipótese de que elas poderão constituir um sistema de variação antigénica, representando um mecanismo de evasão imune, quer pela expressão alternativa de diferentes genes *tpr*, quer por recombinação entre eles, podendo também contribuir para a natureza recidivante da sífilis (Radolf *et al.* 1999a).

Figura 4. Grupo de proteínas de repetição (Tpr) de *T. pallidum*, agrupadas em subgrupos proteicos com sequências relacionadas e comparadas com a proteína de membrana de *Treponema denticola* (adaptado de Radolf *et al.* 1999a).

| Proteína | Msp | TprA | TprB | TprH | TprK | TprL | TprC | TprD | TprF | TprG | TprH | TprK | TprL | TprC | TprD | TprF | TprG |
|----------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | 58.3 (56.2) kDa | 28.7 (25.6) | 766.8 (63.7) kDa | 71.1 kDa | 76.1 kDa | 55.5 kDa | 56.6 kDa | 64.7 kDa | 64.7 kDa | 39.3/43.7 kDa | 66.5 kDa | 81.5 (79.3) kDa | 81.3 (79.0) kDa | 81.4 (79.1) kDa |

Muitas bactérias patogénicas segregam toxinas que destroem mecanismos imunes do hospedeiro ou degradam proteínas, promovendo a invasão celular. *T. pallidum* é, em geral, considerado um microrganismo não toxigénico, pois não produz LPS ou exotoxinas. No entanto, foram identificados genes que codificam cinco proteínas semelhantes a hemolisinas ou citotoxinas, sendo, ainda, necessário determinar se os produtos desses genes têm actividade lítica ou citotóxica (Weinstock *et al.* 1998). *T. pallidum* também carece de um sistema óbvio para secreção de proteínas, o qual está presente em bactérias que segregam factores de virulência.
2.3.3. Características culturais

Treponema pallidum subespécie *pallidum* é um microrganismo fastidioso de cultura difícil. Até hoje não foi possível cultivar continuamente nenhuma das suas estirpes em meios de cultura artificiais, sendo, geralmente, propagado “in vivo” por inoculação em modelo animal de laboratório.

Nos estudos experimentais utiliza-se a estirpe de Nichols, de *T. pallidum*, isolada de uma amostra de liquor de um doente com neurossífilis (Nichols e Hough 1913 citado por Norris *et al.* 2001) em 1912.

Diversos animais de laboratório têm sido utilizados para a propagação deste microrganismo. O coelho é o mais utilizado, porque nele a infecção desenvolve-se à semelhança da infecção humana, em estádios primário e latente, embora sem manifestações de secundarismo ou de fase terciária. O cobaio e o hamster são animais menos susceptíveis à infecção, e sem desenvolvimento de ulcercação após inoculação de *Treponema pallidum* subespécie *pallidum*, enquanto que outros primatas, que não o homem, embora susceptíveis, apresentam manifestações muito variadas (Turner e Hollander 1957), o que em conjunto com o seu alto custo torna pouco prática a sua utilização.

A taxa de multiplicação de *T. pallidum* “in vivo” foi determinada por quantificação sequencial de *T. pallidum* em tecido de coelho infectado e pela correlação da dose infecciosa com o tempo de desenvolvimento da lesão. A taxa de divisão é lenta, sendo o tempo de duplicação cerca de 30 a 33 horas (Magnuson *et al.* 1948 e Cumberland e Turner 1949 citados por Norris *et al.* 2001). Por outro lado, estudos efectuados em voluntários humanos por Magnuson e seus colaboradores (1956, citado por Norris *et al.* 2001) determinaram que 57 microrganismos correspondem à dose infecciosa humana, e 23 à do coelho, quando utilizado o mesmo tipo de inóculo.

Introdução geral

(fibroblastos de coelho) em condições de micro-aerofiliação e temperatura de 34 – 35º C (Cox et al. 1990 e 1994). Após um período de incubação de 36 a 48 horas *T. pallidum* multiplica-se, duplicando em 35 a 40 horas, mas essa multiplicação cessa após 10 a 12 dias, não tendo sido possível manter a multiplicação “in vitro” por mais tempo. Cox et al. (1994) efectuaram experiências de cultura “in vitro” com duas a três passagens seriadas, mas os resultados não se apresentaram reprodutíveis nas várias experiências. A sequenciação do genoma, documentando as diversas deficiências metabólicas, veio reforçar a ideia de que a grande dificuldade em efectuar a cultura “in vitro” deste microrganismo resulta da ausência de um ou mais nutrientes especiais na preparação do meio de cultura. Infelizmente, a descoberta do ou dos nutrientes em falta não é fácil, visto serem inúmeras as possibilidades que advém do estudo efectuado pela sequenciação e o facto de, eventualmente, terem já sido experimentados todos os possíveis suplementos nutricionais.

3. Patogénese

T. pallidum penetra no organismo através das superfícies mucosas intactas ou por lesões microscópicas na superfície de continuidade da pele. Antes do início das manifestações clínicas, a bactéria inicia a sua multiplicação local, após o que dissemina pelos vasos sanguíneos e pelos linfáticos como esquematizado na Figura 5 (Tramont 1995b).

T. pallidum é caracterizado pela sua alta capacidade de invasão e baixa toxicidade. Essa capacidade de disseminação e colonização persistentes resultam da sua mobilidade característica em saca-rolhas, da sua disseminação hematogênea, aderência e penetração das camadas de células epiteliais e de outras barreiras do hospedeiro, assim como da sua capacidade em evadir-se ao sistema imunitário (Norris et al. 2001).

Muita da informação sobre a patogénese da infecção resultou da investigação no modelo experimental animal, já que a informação obtida em estudos efectuados em humanos é limitada. Os estudos da inoculação experimental intracutânea no coelho efectuados por Magnuson et al. (1948 - citado por
Norris et al. 2001) demonstraram que a inoculação de um microrganismo é suficiente para que se produza a lesão típica. Utilizando microscopia de fundo escuro, *T. pallidum* foi visível em 47% das úlceras, aumentado essa percentagem de 71 a 100% quando inoculados 20 e 200.000 microrganismos, respectivamente. No mesmo estudo, demonstrou-se que o período de incubação variava em função do número de microrganismos presentes no inóculo, sendo que a inoculação de 10^7 microrganismos resultava no aparecimento de úlcera em cinco a sete dias.

Figura 5. Disseminação precoce após infecção por *T. pallidum*
Ag/Ac = Antigénio/anticorpo. (Adaptado de Tramont 1995a).
Introdução geral

Os estudos efectuados “in vitro” têm sugerido que a activação das células endoteliais, quando atravessadas pelos treponemas, resulta numa nova expressão de moléculas de adesão a leucócitos envolvidas no recrutamento de células fagocitárias responsáveis pela eliminação do microrganismo (Riley *et al.* 1992).

Todas as lesões sifilíticas, qualquer que seja o estádio da doença, apresentam infiltrados celulares compostos de linfócitos, macrófagos e células plasmáticas, que associados às alterações vasculares se correlacionam com a disfunção do órgão atingido (McBroom *et al.* 1999). A presença frequente de granulomatose sublinha a importância dos mecanismos da imunidade celular em resposta à invasão pelo microrganismo, a qual no caso da presença de gomas assume um caráter necrótico, parecendo representar um exagero da resposta de hipersensibilidade tardia aos antigénios treponémicos.

Respostas do sistema imunitário à infecção por *Treponema pallidum*

A resposta à infecção sifilítica por parte do sistema imunitário do hospedeiro envolve mecanismos humorais e celulares.

A resposta humoral à infecção por *T. pallidum* é evidenciada pela presença de anticorpos reactivos a antigénios treponémicos, cujo grau de reactividade é em regra proporcional à duração do quadro clínico. No que se refere à resposta
Introdução geral

celular, esta é claramente evidenciada pelas alterações histológicas que caracterizam as lesões sifilíticas (Salazar et al. 2002).
No decurso da infecção sifilítica são produzidos anticorpos, sobretudo imunoglobulinas de tipo IgG, com exceção da sífilis primária recente, em que predominam as imunoglobulinas de tipo IgM. Os padrões de reactividade antígenica têm sido observados por estudos em imunoblots, considerando-se como antígenos treponêmicos dominantes as lipoproteínas treponêmicas com massas moleculares de 47 kDa, 37 kDa, 35 kDa, 33 kDa, 30 kDa, 17 kDa e 15 kDa (Radolf et al. 1988, 1995). Os anticorpos produzidos durante a infecção são dirigidos contra os antígenos de superfície, como foi demonstrado por estudos utilizando microrganismos móveis. Disso são exemplos a imobilização de *T. pallidum* por soro humano sifilítico na presença de complemento (Bishop e Miller 1976), o aumento “in vitro” da fagocitose de *T. pallidum* por macrófagos, na presença de soro imune de coelho (Lukehart e Miller 1978), e o bloqueio da ligação de *T. pallidum* às células eucarióticas pelo soro de doente com sífilis (Hayes et al. 1977). A demonstração por microscopia electrónica de agregados de partículas na membrana externa dos treponemas incubados com soro imune sifilítico (Blanco et al. 1986) parece validar a hipótese destes anticorpos interagirem com os antígenos expostos na superfície treponêmica.
Como foi já referido, as alterações histológicas que caracterizam as lesões sifilíticas no homem ou no animal evidenciam uma resposta do sistema imune celular à infecção por *T. pallidum* mesmo na sífilis recente. Lukehart et al. (1980) na infecção experimental do coelho observaram linfócitos reativos a *T. pallidum* no baço, três a seis dias após a inoculação, e uma reacção proliferativa específica ao antígeno que se iniciou ao 10º dia e se prolongou até dois anos. O tempo de desenvolvimento desta resposta cellular específica correlacionou-se com a progressão da infiltração com células mononucleares no local primário da infecção. A resposta celular às fracções das proteínas de *T. pallidum* de 37 e 30 kDa de massa molecular tornaram-se evidentes ao sexto dia, enquanto que as respostas às fracções proteicas de 35, 33 e 14 kDa foram detectadas ao 10º dia, tendo as respostas sido mantidas durante sete meses de observação.
No hospedeiro humano infectado as células reativas a *T. pallidum* surgem, no sangue periférico durante a fase de sífilis primária com aumento durante o
Introdução geral

estádio secundário (Salazar et al. 2002).

Na infecção por *T. pallidum* existe, também, um processo inflamatório tecidual, o qual parece fundamental na progressão da doença (formação da lesão) e na fase de desaparecimento bacteriano (resolução da lesão), sendo a presença de treponemas nos tecidos o factor que leva à activação das células imunitárias locais e ao seu recrutamento a partir do sangue periférico. As lipoproteínas da membrana de *T. pallidum*, para além de serem o factor mais imunogénico deste microrganismo (Radolf 1995), possuem também propriedades pró-inflamatórias através dos receptores “toll-like” (TLR2) do sistema imune inato (Lien et al. 1999, Brightbill et al. 1999).

As lipoproteínas treponémicas interagem com os receptores “*pattern recognition receptors*”-PRRs, da superfície dos monócitos e macrófagos, induzindo resposta inflamatória. Sellati et al. (2001) num estudo experimental com injecção intradermica das lipoproteínas de 17 e 47 kDa de *T. pallidum* observaram uma resposta inflamatória importante dependente da dose injectada, com a presença de monócitos, macrófagos, células dentriticas e linfócitos T fenótipo Th1. Assim, demonstraram, que as lipoproteínas treponémicas têm a capacidade de induzir inflamação, semelhante à observada nas lesões sifiliticas do estádio de sífilis primária, pela presença de um infiltrado celular capaz de criar uma ponte entre o sistema imune inato e o adquirido.

Alguns investigadores demonstraram, quer por técnicas imunocitoquímicas, quer pela técnica da reacção em cadeia da polimerase (“*Polymerase Chain Reaction*” -PCR), a presença de componentes do sistema imune adquirido nas lesões da sífilis primária e da sífilis secundária. McBroom et al. (1999) demonstraram existir predomínio de macrófagos nas lesões de secundarismo, enquanto que a análise dos subgrupos das células T presentes indicou uma relativa proporção de células CD4 e CD8, com predomínio de células CD4 na úlcera e de CD8 nas lesões de secundarismo (Tosca et al. 1988, McBroom et al. 1999).

Por outro lado, foi observado que as células que infiltram as lesões primárias e secundárias contêm ácido ribonucleico mensageiro (ARNm) para indução de citocinas Th1, interleucina 2 (IL-2), gama interferão (INFγ) e interleucina 12 (IL-12) (Van Voorhis et al. 1996), o que foi também demonstrado no modelo
experimental animal (Arroll et al. 1999). Estes estudos permitem ter uma ideia do que é a complexa resposta local do sistema imune adquirido, permanecendo ainda muito por esclarecer relativamente aos imunofenotipos e especificidades antigénicas das células T presentes nos infiltrados celulares das lesões sifiliticas.

Com base nestes estudos Salazar et al. (2002) propõem uma estrutura que possa explicar a resposta imunitária celular à infecção por T. pallidum, que integra respostas imunes inata e adquiridas. Assim, quando há infecção o mecanismo imune inato será activado pelas lipoproteínas treponémicas em todos os tecidos que se encontrem infectados e em todos os estádios. Este efeito das lipoproteínas pode explicar as características histopatológicas das lesões sifiliticas e o predomínio dos macrófagos. Sobreposta a essa activação pró-inflamatória existe uma resposta do sistema imune adquirido específica de T. pallidum.

No decurso do estádio de sífilis recente quando se desenvolve o acidente primário sifilítico, surge uma resposta imune primária. As células T de memória não se encontram sensibilizadas para os antigénios treponémicos, de modo que as células apresentadoras de antigénio vão ser atraídas ao local da inflamação, mobilizando-se de seguida para os gânglios linfáticos, com a finalidade de processarem a apresentação do antigénio às células T nativas. As células T sensibilizadas deslocam-se para a úlcera genital, acelerando a eliminação bacteriana local, com subsequente cura do acidente primário sifilítico. No subsequente estádio de generalização, as células T sensibilizadas em conjunto com os anticorpos opsónicos, vão permitir uma resposta imunológica mais eficaz. Com a progressiva sensibilização das células T, a resposta imunitária do hospedeiro aumenta, as recidivas tornam-se menos frequentes e a doença progride para a fase de sífilis tardia, em que, aproximadamente 75% dos doentes entram em fase de latência clínica. À medida que decorre o tempo, esta função de “vigilância” irá diminuir e o hospedeiro poderá então apresentar recrudescência da doença (Salazar et al. 2002).
4. Epidemiologia e transmissão

A epidemiologia é a disciplina que estuda as determinantes das doenças na população humana (Last 1988) e a sua distribuição, sendo um dos seus propósitos a análise da origem de um surto epidémico.

A sífilis é uma infecção sexualmente transmitida com distribuição mundial. Contudo, as taxas de incidência são maiores nos países em desenvolvimento (Greenwood et al. 1992, Piot e Meheus 1986, Pham-Kanter et al. 1996), quando comparadas com as dos países industrializados. De acordo com a Organização Mundial de Saúde (OMS) de 1996, estimava-se que existam em todo o mundo cerca de 12 milhões de novos casos, ocorrendo a maior parte nos países em desenvolvimento (Gerbase 1998a, 1998b), nos quais cerca de 10% da população pode estar infectada. Maior número de novas infecções ocorre nas regiões da Ásia do Sul e África Subsariana (quatro milhões cada região) e América Latina e Caraíbas (três milhões).

No que se refere aos chamados países desenvolvidos as flutuações das taxas de incidência foram semelhantes. Após a diminuição devida à utilização da penicilina, surge um aumento da incidência nos anos 60, entre toda a população sexualmente activa, relacionada com a revolução sexual, e nos anos 70 entre os homossexuais masculinos, associada com a liberalização das atitudes relativamente ao comportamento homossexual. É a epidemia da SIDA que, gerando alteração dos comportamentos de risco vem a contribuir para a dramática redução dos casos de sífilis nos anos 80.

Tal como nos outros países desenvolvidos as taxas de incidência da sífilis nos Estados Unidos eram elevadas durante a II guerra mundial com um pico de 76 casos/100.000 habitantes em 1947. Com a introdução da penicilina e com os esforços dos Serviços de Saúde Públicos, observa-se diminuição para cerca de quatro casos/100.000 habitantes no final dos anos 50. Após esta quase eliminação dos casos de sífilis pelos finais dos anos cinquenta e até aos dias de hoje, observaram-se periodos cíclicos de epidemias de sífilis, os quais se relacionam, sobretudo, com fases de alterações no comportamento sexual, como a generalização da utilização da pílula nos anos 60, generalização das casas de banhos públicas para homossexuais, nos anos 70 e 80 e uso de crack-cocaina nos anos 90 (Brandt 1988, Finelli *et al.* 1993). É no entanto, de referir que apesar de se ter observado, na sequência desses surtos, um declínio na incidência da infecção (CDC 2002c), nos últimos anos observou-se um aumento da mesma devido a surtos epidémicos surgidos entre os homossexuais masculinos co-infectados com o vírus VIH (CDC 2002b, Chen *et al.* 2002, CDC 2003).

Embora não existam números exactos sobre a incidência de sífilis nos países em desenvolvimento, estudos com base na pesquisa de anticorpos anti-*T. pallidum* na população mostram uma seroprevalência muito variada que pode ir de 0,9% a 94% dependendo do grupo populacional estudado (WHO 1995). A OMS estimou em cerca de 12 milhões de novos casos de sífilis no adulto, ocorrendo na Ásia do Sul e Sudoeste, com 5,8 milhões de casos, enquanto que na África Subsahariana ocorreriam 3,5 milhões (WHO 1995). Os factores de risco associados a essa alta prevalência de sífilis incluem profissões como condutores.
a longa distância e trabalhadoras de lojas de sexo, assim como a presença de outras infecções sexualmente transmissíveis e o baixo nível educacional e socio-económico (Newell et al. 1993, WHO 1995). Em África, os condutores a longa distância foram avaliados, apresentando taxas de infecção sifilítica de cerca de 15%, enquanto as prostitutas apresentam taxas entre 23 a 47% no Norte de África e no Médio Oriente (WHO 1995). Em países como a Tailândia e o Zimbabué foi observada diminuição nas taxas de incidência, embora sejam, ainda, muito elevadas (Piot e Islam 1994, Kunawararak et al. 1995). Na Tailândia, esse declínio foi atribuído às campanhas governamentais de prevenção e controlo, com aumento de utilização de preservativo e disseminação do recurso aos antibióticos (Kunawararak et al. 1995).

Relativamente à situação em Portugal, como não existe um programa de vigilância, prevenção e controlo de infecções sexualmente transmissíveis, obtiveram-se alguns dados a partir do Boletim Informativo da Eurotrials (2001) e dos dados disponíveis na Direcção Geral de Saúde em Estatísticas e Doenças de Declaração Obrigatória.

A publicação da Eurotrials apresenta dados de 1987 a 1998, nos quais é possível verificar que se registou diminuição progressiva na incidência de sífilis na União Europeia de cerca de 3,5/100000 habitantes em 1987 para 1,5/100000 em 1998. Em Portugal, com taxas de incidência mais elevadas que a média europeia, observa-se maior descida entre 1987 (4,5/100000) e 1990 (2/100000) e valores de 2,37/100000 em 1997 e de 1,8/100000 em 1998. Em relação ao ano de 1998, as maiores taxas de incidência foram observadas no Algarve (Faro) e no Alentejo (Portalegre) com valores superiores a 3/100000, seguidas da região Litoral Centro, Litoral Alentejano e Litoral Douro, com taxas de incidência entre 2 e 2,9 por 100000 habitantes.

No gráfico da Figura 6 encontram-se os dados obtidos a partir das estatísticas das Doenças de Declaração Obrigatória (DGS - 2002 e 2003), relativamente ao número de casos notificados, distribuídos por regiões de Portugal e anos, enquanto que no gráfico da Figura 7 se encontram os mesmos dados relacionando a distribuição etária, por ano e por sexo.
Figura 6. Distribuição de sifílis precoce por zona geográfica (dados estatísticos das doenças de declaração obrigatória - Direcção Geral de Saúde)

Figura 7. Distribuição de sifílis precoce por grupo etário e por sexo (dados estatísticos das doenças de declaração obrigatória - Direcção Geral de Saúde)

No entanto, não é possível qualquer tipo de comparação entre uns dados e os outros, uma vez que os da Eurotrials se referem a taxas de incidência, enquanto que os da Direcção Geral de Saúde se referem ao número de casos...
Introdução geral

notificados. No entanto, parece que estes dados estarão subestimados, pois como não existe um centro de controlo e vigilância de infecções sexualmente transmissíveis, nem um programa de prevenção e controlo, muitos casos ficam por diagnosticar e notificar. Alguns serviços de Dermatologia e Venereologia constituíram uma rede de vigilância de Infecções Sexualmente Transmissíveis (IST), com a finalidade de obter dados mais exactos sobre a prevalência destas infecções. Segundo os dados da consulta de Doenças Sexualmente Transmitidas (DST) no Centro de Saúde da Lapa e apresentados no congresso de Dermatologia e Venereologia em Coimbra no ano de 2002, fizeram parte dessa rede catorze serviços no ano de 2000, os quais diminuíram para sete em 2001. Nesses dois anos foram notificados 1927 doentes (1091 em 2000 e 836 em 2001) e 2207 infecções sexualmente transmissíveis, das quais 581 (30,1%) foram de sífilis recente e sífilis latente indeterminada. Mesmo com base nestes números e embora referentes a anos diferentes, é possível observar a grande diferença existente entre os números oficiais e estes, que só por si não representam, no entanto, o País.

A sífilis é usualmente adquirida por contacto sexual, com excepção dos casos de sífilis congénita em que a criança adquire a infecção “in útero” (Sparling 1999). A transmissão sexual requer contacto com as lesões húmidas, cutâneas ou mucosas, pelo que um indivíduo só transmitirá a infecção durante os primeiros anos, enquanto existe probabilidade de recidiva espontânea das lesões cutâneo-mucosas de secundarismo. A taxa de aquisição de infecção por contacto sexual foi estimada entre nove e 63%, tendo como base estudos sobre eficácia de vários antibióticos em prevenirem a infecção (Moore et al. 1963, Schoeter et al.1971), enquanto que os resultados de estudos de casas da notificação de parceiros estimaram a taxa de transmissão de sífilis recente de 18 a 80% (Schober et al. 1983, Schrijvers et al. 1989). As discrepâncias e os limites desses estudos foram discutidos por Garnett et al. (1997), que concluíram haver alta probabilidade de transmissão da infecção a T. pallidum durante contacto sexual entre indivíduo susceptível e indivíduo infeccioso, a qual se situaria em redor dos 60%, em contradição com Sparling (1999) que refere que aproximadamente 30% dos indivíduos com contacto sexual com outros, com lesões activas da pele
ou das mucosas irão desenvolver sífilis.
A sífilis pode ainda ser transmitida por contactos como o beijo ou o toque de lesões activas, como sucedia na época em que as amas de leite disseminavam a infecção às crianças que amamentavam (Tratmont 1990).
O risco de transmissão sanguínea é actualmente negligenciável, devido à selecção dos dadores de sangue, para os quais é obrigatória a pesquisa de anticorpos para a sífilis e ao tipo de transfusão que, de sangue fresco passou a ser de componentes sanguíneos refrigerados (Willcox e Guthe 1966). Apesar disso é possível, pelo menos teoricamente, a transmissão via produtos sanguíneos, uma vez que os microrganismos podem sobreviver até cinco dias em sangue refrigerado (Van der Sluis et al. 1984 e 1985).
A transmissão por partilha de seringas entre toxicodependentes injectáveis em fase de espiroquetémia seria possível, mas, provavelmente, não tem papel significativo. É, no entanto, um assunto sobre o qual quase não existem estudos (Singh e Romanowski 1999). A transmissão não sexual presumida resultante de lesões nas mãos foi descrita em trabalhadores de saúde antes da utilização de luvas por rotina e em crianças partilhando a cama com pessoas infectadas (Singh e Romanowski 1999).

5. História natural da doença e manifestações clínicas

5.1. História natural da doença

As manifestações clínicas da sífilis são conhecidas desde há muito, mas a descrição da sua história natural tem origem em estudos realizados no início do século passado.
O primeiro, o estudo de Oslo, iniciado em 1891 por Boeck, incluiu 1978 doentes com sífilis recente com diagnóstico apenas baseado em critérios clínicos, pois na altura não existia microscopia de fundo escuro nem testes serológicos disponíveis (Sparling 1999). Boeck iniciou o estudo por estar preocupado com o facto da terapêutica em uso na época (mercuriais) parecer mais tóxica que a própria doença. Assim, seleccionou doentes com sífilis primária e sífilis
secundária que apresentando lesões, eram internados, não sendo tratados. Os doentes foram seguidos por Boeck até 1910 depois por Brusgaard e mais tarde, de 1949 a 1951, por Gjestland que monitorizou 1404 desses doentes (Gjestland 1955 - citado por Sparling 1999). Os dados revistos em 1955 foram re-analisados em 1964 por Clark e Danbolt (Clark e Danbolt 1955 e 1964 - citados por Sparling 1999). Os resultados obtidos indicaram que, aproximadamente, um terço dos doentes desenvolveu manifestações terciárias neurológicas, cardiovasculares e gomas e que a probabilidade de morrer devido a sífilis não tratada era de 17% no homem e de 8% nas mulheres. A manifestação tardia mais frequente foi a goma, ocorrendo em 14% dos homens e 17% das mulheres, surgindo um a 46 anos após a cura das lesões iniciais. A incidência de sífilis cardiovascular clinicamente aparente foi de 13,6% nos homens e 7,6% nas mulheres, tendo aparecido após 30 a 40 anos de evolução da doença, enquanto que a neurosífilis se desenvolveu em 9,4% dos homens e 5% das mulheres. Destes casos de neurosífilis a forma meningo-vascular aparece entre os 15 a 18 anos de evolução, a paralisia geral entre os 20 e os 25 anos e a “tabes dorsalis” mais tardiamente, após cerca de 30 anos de evolução (Sparling 1999).

Outra investigação semelhante foi efectuada durante 40 anos no Instituto de Tuskegee em Macon, Alabama, pelos Serviços de Saúde Pública dos Estados Unidos em 1932, em homens afro-americanos com sífilis que não foram tratados. O estudo tem sido criticado devido a ser eticamente reprovável, sobretudo por não ter sido oferecida a terapêutica com penicilina já disponível na altura. Por esta razão o presidente Clinton, em 1997, pediu desculpa aos sobreviventes e familiares dos indivíduos nele incluídos. Um total de 412 homens com sífilis latente não tratada e 204 controlos não infectados foram monitorizados. A monitorização foi feita durante cerca de 20 anos, tendo-se perdido cerca de 10% dos doentes, enquanto que dois terços tinham morrido tendo sido efectuada autópsia. A principal conclusão foi a de que existiu uma alta mortalidade sobretudo nos primeiros vinte anos de evolução. O envolvimento cardiovascular foi a complicação mais frequentemente encontrada, tendo aparecido em 50%
Introdução geral

dos doentes infectados. Após vinte anos, a sífilis cardiovascular e a neurossífilis foram as causas primárias de morte (Sparling 1999).

Um terceiro estudo importante para a história natural da doença foi a revisão de todas as autópsias efectuadas entre 1917 e 1941, realizado por Rosahn (Rosahn 1947 citado por Sparling 1999), na Escola de Medicina da Universidade de Yale. Das 4000 autópsias de indivíduos com idades superiores a 20 anos na altura da morte, 9,7% tinham evidência clínica, laboratorial ou anátomo-patológica de sífilis, tendo apenas cerca de metade efectuado terapêutica. Na totalidade, 51% dos doentes com sífilis apresentaram na autópsia lesões típicas da infecção e 30% dos doentes com diagnóstico efectuado em vida apresentaram lesões de sífilis tardia. Entre os 77 doentes não tratados e com lesões tardias na autópsia, 83% tinham lesões cardiovasculares, 9% tinham lesões tardias benignas (goma) e 8% tinham lesões neurológicas.

Estes estudos concluíram ter havido um aumento da mortalidade devido à sífilis, e que 15 a 40% dos doentes não tratados desenvolveram complicações tardias, sendo estas sobretudo, cardiovasculares e neurológicas.

Na era pós-antibiótica, e essencialmente por razões éticas não se efectuaram mais estudos deste tipo, sendo no entanto evidente que a terapêutica com penicilina dos doentes com sífilis recente, quase sempre, previne o aparecimento das lesões tardias. Os diferentes estudos estatísticos vêm demonstrar que, pelo menos, aparentemente os antibióticos abortam o aparecimento de complicações tardias da sífilis (Sparling 1999). Gomas e paralisia geral praticamente desapareceram da cena contemporânea, embora existam alguns registos de aparecimento de sífilis tardia sobretudo em doentes co-infectados por VIH (Luxon et al. 1972, Hay et al. 1990b, Romero-Jimenez et al. 2003).

Embora as complicações tardias sejam agora menos frequentes do que na era pré-antibiótica é importante alertar para a possibilidade do seu aparecimento, devendo-se ter sempre presente, as múltiplas facetas da grande imitadora que é a sífilis venérea.
5.2. Manifestações clínicas

A sífilis adquirida não tratada é uma infecção crónica que progride através uma variedade de estádios clínicos, com períodos activos sintomáticos e períodos de latência sem sintomatologia, apresentando manifestações e patologia distintas.

5.2.1. Complexo primário

A inoculação de *T. pallidum* ocorre através do contacto directo da pele ou das mucosas com lesões infecciosas, sendo a taxa de aquisição de infecção estimada em cerca de 30% (Schroeter *et al.* 1971). Após o contacto, segue-se um período de incubação de cerca de três a 90 dias (em média três semanas), sem manifestações clínicas ou muito discretas (febrícula). No local da inoculação surge então uma pápula caracteristicamente não dolorosa, e que em poucos dias evolui para a lesão que caracteriza o complexo primário, o qual associa o acidente primário, linfadenite regional e espiroquetemia. A úlcera, é geralmente única, não dolorosa, de 0,5 a 1 cm de diâmetro, de base limpa e dura à palpação. Embora a úlcera solitária seja mais frequente, as lesões múltiplas também podem ocorrer (cerca de 30% dos casos), sendo mais comuns nos indivíduos com co-infecção por VIH (Musher 1999, Rompalo *et al.* 2001b). A úlcera ocorre, geralmente, nas áreas genital, perineal ou anal, embora possa localizar-se em qualquer outra parte do corpo. No homem é mais frequente no pénis, sobretudo no sulco balanoprepucial, enquanto que na mulher se localiza na vagina, sendo mais frequente no colo do útero, podendo passar despercebida. A adenopatia satélite, de localização inguinal (no caso de acidente primário genital), é em regra única, sendo dura, indolor, sem sinais inflamatórios e não aderente aos planos superficiais ou profundos.

Na ausência de tratamento, a lesão primária cicatriza espontaneamente em 10 a 14 dias, havendo também desaparecimento da adenopatia satélite.

Embora a ulceração represente a infecção local que evidencia, inicialmente a infecção por *T. pallidum*, a sífilis torna-se uma infecção sistémica praticamente desde o seu início. A disseminação dos treponemas ocorre precocemente, a
bactéria multiplica-se no local de penetração por divisão binária em cerca de 33 horas, disseminando pelos vasos linfáticos e sanguíneos (Larsen et al. 1998). Trata-se de uma fase altamente infecciosa, com presença de T. pallidum nas lesões, e segundo Sparling (1999), aproximadamente, 30% dos contactos de um indivíduo com lesão irá desenvolver sífilis.

5.2.2. Período secundário

Semanas a meses mais tarde, 25% a 35% dos indivíduos com complexo primário sifilitico não tratado, irão desenvolver doença sistémica, evoluindo para o período secundário, não havendo, por vezes, demarcação entre os dois estádios. Em cerca de um terço dos doentes com secundarismo foi observada a presença do complexo primário, e em cerca de 60% de doentes com estádio secundário, não foi possível encontrar história clínica de sífilis primária (complexo primário), podendo esta ter passado despercebida ou ter sido assintomática (Chapel 1980).

O período secundário corresponde à generalização da infecção, com grande número de manifestações clínicas. As lesões desta fase resultam da disseminação hematogénnea das espiroquetas durante a sífilis primária. Na fase inicial do secundarismo podem surgir manifestações gerais, usualmente moderadas, como febre, artralgias, anorexia, prostração, emagrecimento (Singh e Romanowski 1998), adenopatias generalizadas das cadeias ganglionares superficiais e um quadro clínico dermatológico com lesões da pele e/ou das mucosas que podem imitar outras doenças dermatológicas.

As lesões da pele, geralmente não pruriginosas, são muito variáveis, indo desde o exantema macular a maculo-papular, papular e pustuloso (Chapel 1980). As lesões papulares esbranquiçadas, geralmente designadas como condilomas planos, ocorrem em áreas húmidas como as comissuras labiais, os genitais e/ou o períneo, sendo mais frequentes em áreas próximas da lesão primária, reflectindo a disseminação directa dos microrganismos a partir do local da inoculação (Chapel 1980).

Em 5 a 22% dos doentes observam-se também lesões típicas ulcerosas das mucosas, envolvendo a língua, a mucosa labial e a mucosa bucal (Chapel
1980). Estas lesões, com cerca de 1-10 mm, são em geral, ligeiramente elevadas, não dolorosas, com erosão central coberta de uma fina membrana (Singh e Romanowski 1998). Embora possam ser lesões que desaparecem em horas ou dias, tipicamente mantêm-se durante duas a três semanas.

As manifestações neurológicas deste estádio da sífilis podem ser variáveis, e têm merecido uma maior atenção nos últimos anos, devido à relação com a concomitante infecção por VIH. Em cerca de 40% dos doentes com sífilis secundária observam-se alterações no exame citoquímico do liquor com aumento do número de leucócitos, do valor total de proteínas, teste para antígeno cardiolipina (VDRL) reativo ou presença de T. pallidum, mesmo na ausência de alterações neurológicas clinicamente aparentes (Mills 1936 e Bauer 1952, citados por Musher 1999). No entanto, não mais de 1 a 2% dos doentes com sífilis secundária apresentaram sintomas ou sinais correspondendo ao envolvimento do sistema nervoso central (Musher 1999).

Dores ósseas e articulares foram referidas em cerca de 12% dos doentes, mas osteite e artrite foram raramente descritas (Reginato 1993). A sífilis maligna ou úlcero-nodular é uma manifestação rara deste estádio, surgindo com sintomas prodrómicos de febre, mal-estar geral e mialgias, seguidos de exantema papular
que progride para pústulas com centros necróticos ulcerados (Fisher et al. 1969). A associação com a infecção VIH tem sido sugerida, já que onze dos doze casos referenciados desde 1989 ocorreram em doentes infectados por VIH (Sands e Markus 1995).

Todos os sintomas e sinais desta fase vão diminuindo com o tempo, até a infecção se tornar silenciosa do ponto de vista das manifestações clínicas, entrando em fase de latência e progredindo, assim, de infecção aguda para crónica.

Também durante a fase de secundarismo sifilítico, o doente é altamente contagioso.

5.2.3. Sífilis latente

Mesmo sem terapêutica os sinais e sintomas da sífilis primária e do secundarismo resolvem espontaneamente, após um período de três a 12 semanas, e os doentes entram no estádio latente ou assintomático da infecção. Este é definido como o estádio da doença em que os testes treponémicos são reactivos, mas no qual não existem manifestações clínicas de sífilis, o que não significa que a doença não progreda. A fase de latência prolonga-se, até que haja cura terapêutica ou desenvolvimento de sífilis terciária.

A fase assintomática ou latente foi subdividida em fase latente precoce e fase latente tardia sendo sobretudo utilizada como guia de decisões terapêuticas. A Organização Mundial de Saúde (WHO 2001) definiu como sífilis latente precoce e potencialmente infeccioso o período de latência precoce até dois anos após o início da doença, enquanto que o mesmo para o Centers for Disease Control and Prevention (CDC 2002a) corresponde apenas ao primeiro ano de evolução da doença.

Na prática, a distinção torna-se difícil porque raramente os doentes têm testes serológicos para sífilis do ano precedente ao diagnóstico de sífilis latente, e não se lembram de sinais ou sintomas sugestivos de sífilis primária ou de sífilis secundária, passando a serem designados como de sífilis latente de duração indeterminada e devendo ser para todos os efeitos considerados como se tivessem sífilis latente tardia (CDC 1998, 2002a). Enquanto que o indivíduo
com sífilis latente precoce é considerado como infeccioso devido aos 25% que podem recidivar, o doente com sífilis latente tardia apresenta uma relativa imunidade à recidiva e um aumento de resistência à reinfecção com estirpes treponémicas homólogas (Musher 1999).

5.2.4. Sífilis tardia

A sífilis tardia (ou sífilis terciária) ocorre, aproximadamente, num terço dos doentes não tratados, provavelmente devido à diminuição da resposta imune do hospedeiro. Este estádio pode surgir entre 4 a 40 anos após a infecção inicial, na maior parte dos casos entre 15 e 25 anos (Swartz et al. 1999). Os treponemas invadem principalmente a pele, o sistema nervoso central, o cardiovascular, e os ossos. A sífilis tardia pode ser definida como uma doença inflamatória de progressão lenta, que pode atingir qualquer órgão, e causar doença muitos anos após a infecção inicial. A lesão patológica subjacente resulta, primariamente, de uma endarterite obliterante das pequenas artérias, mas também, por efeito directo, em consequência da invasão, da destruição dos tecidos, sobretudo do sistema nervoso central. Caracteristicamente e embora algum grau de sobreposição possa surgir, cerca de metade dos doentes que progridem para sífilis tardia terão goma, um quarto apresentará sífilis cardiovascular e um quarto neurosífilis (Swartz et al. 1999).

Sífilis cardiovascular

O envolvimento cardiovascular ocorre, em geral, entre 10 e 30 anos após primo-infecção (Swartz et al. 1999). As lesões cardiovasculares são, em regra, resultantes da inflamação local induzida pela multiplicação dos treponemas no interior da parede da aorta, com endarterite obliterante dos “vasavasorum”, levando à necrose da média, com destruição do tecido elástico e subsequente aortite e aneurisma (Singh e Romanowski 1999).
Introdução geral

Neurossífilis

O sistema nervoso central é invadido em, pelo menos, 40% dos casos no decurso da bacterêmia do estádio recente (Chesney e Kemp 1924 citado por Swartz et al. 1999, Lukehart et al. 1988), e tal como sucede com o envolvimento de outros órgãos, as manifestações resultantes, do respectivo compromisso, variam de doente para doente.

A invasão inicial do sistema nervoso central pode evoluir de formas distintas, desde a a remissão espontânea ou cura terapêutica, manter-se assintomática, evoluir para meningite sifilítica aguda ou crónica. A meningite crónica pode, por seu turno, ser assintomática ou progredir para padrões patológicos que classicamente constituem a neurossífilis (sífilis meningo-vascular e neurossífilis parenquimatosas). Deve ter-se sempre presente que as manifestações e a progressão da doença constituem um espectro contínuo de variações e sobreposições, pelo que é sempre necessário excluir neurossífilis antes de se considerar o diagnóstico de qualquer processo degenerativo progressivo do sistema nervoso central como a esclerose múltipla e a doença de Alzheimer.

Neurossífilis assintomática

Esta situação é definida pela presença de alterações do exame citoquímico do líquor, como um aumento no número de células 5-100/mm³ (na sua maioria linfócitos), aumento da concentração de proteínas 45-100mg/dl, diminuição na concentração de glucose e/ou teste não treponémico VDRL reactivo, na ausência de qualquer sinal ou sintoma de doença neurológica (Tramont 1995b). De considerar, também, a presença de T. pallidum já que pode ser o único sinal desta situação (Lukehart et al. 1988). Assim, o diagnóstico de neurossífilis assintomática é um diagnóstico laboratorial.

A punção lombar está recomendada para exclusão de diagnóstico de neurossífilis assintomática nos doentes com sífilis: a) que apresentem sintomas ou sinais neurológicos ou oftalmológicos; b) com evidência de sífilis terciária activa; c) com insucesso terapêutico ou com infecção por VIH em associação com sífilis latente tardia ou de duração indeterminada (CDC 2002a).
Neurossífilis sintomática

A neurossífilis sintomática pode surgir com diferentes formas, meníngea ou parenquimatososa (Swartz et al. 1999).

A meningite sífilítica é situação clínica que ocorre, em geral, no primeiro ano da infecção. Em cerca de um quarto desses doentes a meningite é a primeira manifestação da doença, dos quais uma pequena percentagem pode, ainda, apresentar exantema (Merrit 1935, citado por Swartz et al. 1999). A sintomatologia é característica da de meningite aguda (febre persistente, cefaleias moderadas e rigidez da nuca), cujas principais manifestações neurológicas incluem alterações dos pares cranianos e sinais de aumento de pressão intracraniana.

O denominador comum da sífilis meningovascular é a presença de endarterite, primeiro das médias e em seguidas das grandes artérias. Este tipo de lesão, que pode ou não progredir para enfarte cerebral, ocorre em qualquer nível do sistema nervoso central levando ao aparecimento de uma grande variedade de sinais e sintomas, tais como, cefaleias intermitentes, perda de memória, disfagia, perda de visão, alterações vestibulares, etc. A sífilis meningovascular da medula espinhal é uma manifestação rara, que quando presente quase sempre se associa com envolvimento cerebral.

A neurossífilis parenquimatososa é o reflexo da invasão directa e da destruição do tecido nervoso, sendo classicamente dividida em paralisia geral e tabes dorsalis. Na sua forma mais pura, a primeira está directamente relacionada com a invasão do cérebro por T. pallidum, tratando-se de um processo crónico lento, que evolui ao longo de muitos anos, geralmente para a morte, 15 a 25 anos após o início da infecção. Clinicamente, a paralisia geral combina sintomas neurológicos e psiquiátricos, associando-se às manifestações secundárias de sífilis meningovascular. Do ponto de vista patológico o cérebro encontra-se atrófico com degenerescência e perda de células nervosas, podendo ser demonstrada a presença de treponemas. Os vasos sanguíneos apresentam endarterite. Nesta fase, a terapêutica antibiótica pode parar mas não reverte o processo degenerativo.

A tabes dorsalis ocorre num terço dos doentes com neurossífilis não tratada
Introdução geral

desenvolvendo-se, também, tardiamente na evolução da doença não tratada, cerca de 30 anos depois do início da infecção. O sintoma mais característico desta alteração neurológica é o aparecimento de dor severa penetrante, irradiante, que desaparece após alguns minutos. Geralmente, ocorre nos membros inferiores mas pode surgir em qualquer outro ponto do organismo, como por exemplo no abdômen, imitando uma urgência cirúrgica. Alterações pupilares (pupilas de Argyll Robertson) estão, quase sempre, presentes e a atrofia óptica é também comum, tal como a ausência de reflexos nos membros. Com a progressão da doença, surge degenerescência do cordão posterior da medula espinhal, que resulta em perda do sentido de posição e da sensibilidade vibratória com sinal de Rombert positivo, desenvolvimento de articulações de Charcot e/ou mal perfurante plantar. A progressão é em geral para incapacidade completa. A penicilina não reverte as extensivas lesões teciduais observadas neste estádio tardio da sífilis (Swartz et al. 1999).

O envolvimento ocular pode ocorrer, quer como manifestação principal (irite, uveite, nevrite óptica), quer concomitantemente com outras manifestações, sobretudo nos estádios tardios de neurossífilis (Shin et al. 1976, Ross e Sutton 1980).

Uveite anterior, irite e uveite posterior, podem surgir durante ou logo após o período de secundarismo, apresentando os sintomas e sinais típicos de fotofobia, dor, visão desfocada e aumento do lacrimejo (Shin et al. 1976). A nevrite óptica é menos frequente, mas deverá ter-se em mente, visto tratar-se de uma urgência médica pelo risco de perda de visão. Estas manifestações oculares da sífilis, assim como outras alterações pupilares, tais como alterações da visão e cegueira óptica secundária a atrofia são comuns na neurossífilis tardia.

5.3. Sífilis e infecção por VIH

A co-infecção por VIH e por T. pallidum resulta numa doença multiforme devido à sua interacção (Tramont 1987, Hook 1989, Musher et al. 1990, Musher 1991,
As duas infecções partilham algumas semelhanças, sendo que os esforços efectuados para compreender e controlar a epidemia da sífilis no século passado são semelhantes aos realizados actualmente, com o mesmo fim no que diz respeito à epidemia por VIH, os dois microrganismos compartilham os mesmos mecanismos de transmissão (sexual e sanguínea) e afectam o mesmo tipo de população. A possibilidade de ambas infecções coexistirem no mesmo doente é elevada (Simonsen et al. 1988), tendo sido estabelecida uma associação entre infecção VIH e história de úlcera genital (Hook 1989, Kreis et al. 1988).

A coexistência de ambas as infecções tem levantado algumas questões aos diversos investigadores interessados nas infecções sexualmente transmissíveis (IST). Por exemplo, as alterações imunológicas ocasionadas por VIH poderão provocar, também, alterações nos testes serológicos utilizados no diagnóstico laboratorial da sífilis e na avaliação da evolução e da resposta à terapêutica efectuada. Para alguns investigadores, a presença de VIH e as alterações por ele originadas poderão alterar a história natural da sífilis (Johns et al. 1987, Berry et al. 1987, Gordon et al. 1994, Malone et al. 1995, O’Mahony et al. 1997), com o aparecimento de lesões mais severas, progressão mais rápida da infecção por *T. pallidum*, com diminuição do período de latência e aparecimento de neurossífilis, terapêutica habitual para sífilis ineficaz, assim como aparecimento precoce de neurossífilis em indivíduos correctamente tratados.

Através de estudos epidemiológicos foi possível estabelecer associação entre história de sífilis no passado (presença de úlcera genital e ou testes serológicos reactivos) e a presença de infecção por VIH (Ghys et al. 1995, Quinn et al. 1988, Simonsen et al. 1988, Stamm et al. 1988, Hook 1989). A úlcera genital constitui um co-fator de infecção por este vírus devido à presença de grande número de células inflamatórias como linfócitos e macrófagos, os quais constituem células alvo virais que aumentam a eficácia da inoculação por VIH (Hook 1992).

Pelo menos, aparentemente, parece plausível que as alterações da imunidade celular e humoral devidas à infecção por VIH (Bowen et al. 1985) limitem as defesas do hospedeiro contra a infecção por *T. pallidum*, alterando as manifestações clínicas e/ou a evolução natural da infecção sifilitica (Stamm et
Introdução geral

Na maior parte dos indivíduos com infecção por VIH e por *T. pallidum* as manifestações dermatológicas da sífilis apresentam as características clínicas típicas de sífilis primária ou secundária, tais como úlcera e exantema maculo papular (Musher 1991, Hutchinson et al. 1994), embora em alguns estudos tenham sido observadas diferenças. Hutchinson et al. (1994), efectuaram um estudo comparativo de doentes com sífilis primária, secundária e latente precoce com e sem infecção por VIH, tendo concluído que havia maior probabilidade de desenvolvimento de doença secundária nos indivíduos infectados por aquele vírus, sobretudo quando presente contagem de linfócitos TCD4+ inferior a 500/mm³. Outro estudo efectuado numa clínica de IST concluiu que a presença continuada de úlcera genital no estádio de secundarismo era mais frequente nos indivíduos com infecção por VIH (Gourevitch et al. 1993). Outros autores observaram que nos indivíduos infectados por VIH, a probabilidade de surgirem úlceras múltiplas era maior (Rolfs et al. 1997, Rompalo et al. 2001b). Úlceras atípicas, incluindo lesões com

Quanto à maior probabilidade de desenvolvimento de neurossífilis, a questão tem sido alvo de alguma discussão e estudo. A maioria dos casos de neurossífilis em co-infectados surge sob a forma de neurossífilis do secundarismo, nomeadamente meningite sifilítica aguda (Flood et al. 1998).

No que diz respeito ao diagnóstico laboratorial, é importante conhecer a sensibilidade e a especificidade dos testes serológicos para o diagnóstico da sífilis nos doentes co-infectados por VIH, já que as alterações da função das
células B, traduzida por activação policlonal perante antigénios previamente conhecidos e por incapacidade de resposta a novos antigénios (Bowen et al. 1985) poderá alterar a resposta serológica. Terry et al. (1988) estudaram dois grupos de doentes com infecção por VIH, um com história anterior de sífilis e outro com infecção treponémica adquirida posteriormente à infecção viral. Esses investigadores demonstraram que em nenhum dos grupos a resposta serológica foi diferente da observada nos indivíduos com sífilis e sem infecção por VIH, concluindo que a resposta serológica à infecção a *T. pallidum* parece preservada nos indivíduos em estádios precoces da infecção viral.

No entanto, outros estudos têm demonstrado que os testes serológicos para o diagnóstico laboratorial de sífilis podem revelar resultados diferentes dos esperados, nos infectados por VIH, tendo sido registados títulos superiores ao que seria de esperar nos testes não treponémicos (Hutchinson et al. 1991, Gourevitch et al. 1993, Jurado et al. 1993), assim como atraso ou mesmo ausência de reactividade em doentes com sífilis secundária comprovada (Hicks et al. 1987, Gregory et al. 1990, Drabick e Tramont 1990, Tikjob et al. 1991).

Por outro lado, obtiveram-se reacções falsamente positivas em testes não treponémicos em infectados por VIH (Rompalo et al. 1992, Augenbraun et al. 1994, Rusnak et al. 1994). As taxas de reacções falsamente positivas são de cerca de 4% (Rompalo et al. 1992, Augenbraun et al. 1994, Rusnak et al. 1994) nos infectados por VIH e entre 0,2 a 0,8% nos não infectados, embora este facto segundo alguns autores, possa estar relacionado com a utilização de drogas endovenosas nos co-infectados (Singh e Romanowski 1999).

Os testes treponémicos podem apresentar, também, alterações na co-infecção. Num estudo com RPR reactivo de título superior ou igual a 1:8, efectuado por Erbelding et al. (1997) alguns doentes apresentavam teste FTA-Abs falsamente negativo, uma vez que nos mesmos doentes foram detectados anticorpos para os antigénios de 47 kDa e 17 kDa de *T. pallidum*.

Os testes serológicos para o diagnóstico da sífilis continuam, no entanto, a ser de grande utilidade, devendo-se ter presente a possibilidade de determinadas alterações se verificarem. Assim, perante um doente com infecção por VIH e suspeita de infecção a *T. pallidum* deve-se ter em consideração todo um conjunto de factores como a história clínica, o exame objectivo, o exame
introdução geral

microscópico para a observação dos treponemias a partir de lesões suspeitas, os testes serológicos e, na evidência clínica de envolvimento neurológico, a punção lombar para exame do líquor. A neurossífilis é um diagnóstico a considerar no diagnóstico diferencial de doença neurológica dos infectados por VIH, tornando-se mais difícil neste caso, visto que, 40% da população infectada por VIH pode apresentar alterações do exame citoquímico do líquor, incluindo aumento dos leucócitos e das proteínas (Singh e Romanowski 1999). O diagnóstico de neurossífilis, sobretudo quando assintomática, baseia-se nas alterações encontradas no exame citoquímico (aumento de células mononucleadas e das proteínas) e num teste de VDRL reativo no líquor. Quando este é negativo então o diagnóstico torna-se mais complicado, devido à ausência de outros testes de diagnóstico laboratorial que permitam diferenciar entre doença neurológica devida à infecção por T. pallidum e à determinada por VIH ou por outro agente patogénico que possa estar presente e que muitas vezes surge nos estádios avançados da infecção por VIH. A maioria dos doentes com co-infecção por VIH e por T. pallidum e neurossífilis sintomática apresentam, no líquor, o VDRL reativo e significativo aumento na contagem dos linfócitos (Matlow e Rachlis 1990; Flood et al. 1998). Contudo, foram observados doentes com infecção por VIH e teste VDRL negativo que, mais tarde, apresentaram neurossífilis sintomática, sugerindo que a neurossífilis pode não ser diagnosticada e tratada se apenas se tiver em conta os resultados daquele teste (Feraru et al. 1990). Assim, torna-se necessário o desenvolvimento de novos testes que permitam o diagnóstico de neurossífilis activa. Alguns autores têm sugerido a pesquisa de antígenos treponêmicos e o isolamento do agente (Hart G. 1986, Tomberlin et al. 1994) e/ou a detecção de ADN de T. pallidum (Hay et al. 1990a, Burstain et al. 1991). No entanto, estes métodos ainda não estão, adequadamente, validados.

Do ponto de vista terapêutico, torna-se premente saber se o esquema recomendado para a sífilis recente é eficaz no caso da co-infecção por VIH, já que alguns autores sugerem que não seria suficiente para prevenir a evolução para estádios mais avançados, incluindo a neurossífilis (Markovitz et al. 1986, Guinan 1987, Johns et al. 1987). Tal facto estaria associado à imunodeficiência, do doente infectado pelo vírus VIH, permitindo uma maior
proliferação e disseminação dos treponemas. Esta questão coloca-se sobretudo no tratamento de sífilis recente com uma dose única de penicilina G benzatínica, já que a neurosífilis do período de generalização ou sífilis oftálmica foi referida em alguns destes casos, sugerindo que a mesma não tinha sido suficientemente eficaz (Katz e Berger 1989, McLeish et al. 1990, Musher et al. 1990, Berry et al. 1987). No entanto, a latitude desse risco não ficou esclarecida, considerando a maior parte dos autores que será mínimo, pelo que se recomenda apenas uma observação neurológica cuidadosa do doente. Lukehart et al. (1988) efectuaram um estudo prospectivo em doentes com sífilis não tratada aos quais foi efectuada punção lombar, tendo sido pesquisado *T. pallidum* no liquor por inoculação no coelho. O microrganismo foi isolado em 30% dos indivíduos com sífilis primária e com sífilis secundária. O isolamento de *T. pallidum* apresentou-se significativamente associado à presença de uma ou mais alterações no exame do liquor (aumento do número de células, de proteínas e teste de VDRL reactivo). No entanto, a concomitante infecção por VIH não se associou com o aumento do isolamento de *T. pallidum*, nem com o aumento do número de células no exame do liquor, embora fosse mais frequente um número de leucócitos superior a 5/mm³.

Em todos os doentes com sífilis, com ou sem co-infeccão por VIH recomenda-se a terapêutica com penicilina em todos os estádios da infecção sifilítica, sendo que a terapêutica dos co-infectados não difere da utilizada nos imunocompetentes com sífilis (Flood et al. 1998, WHO 2001, CDC 2002a). Alguns investigadores têm recomendado tratamentos adicionais como as doses múltiplas recomendadas para a sífilis latente tardia ou suplementar com outro antibiótico como a amoxicilina, a qual teria o benefício, pelo menos teórico, de melhor penetração no liquor, atingindo níveis treponemicidas (Faber et al. 1983, Morrison et al. 1985, Hay et al. 1990c, Musher 1991), no entanto, não foram encontrados benefícios aumentados no resultado do ensaio clínico de comparação de terapêutica de sífilis recente de duração inferior a um ano, com e sem amoxicilina.
6. Diagnóstico laboratorial

Em comparação com outras infecções sexualmente transmissíveis, o diagnóstico laboratorial de infecção a *T. pallidum* é complicado, colocando desafios, quer do ponto de vista clínico quer do ponto de vista laboratorial. *T. pallidum* é de difícil detecção durante as fases de latência e/ou quando em circulação ou no liquor, não sendo cultivável em meios laboratoriais sem células. Por isso, o diagnóstico da sífilis está dependente da integração dos dados clínicos com os laboratoriais.

Os diferentes métodos laboratoriais a utilizar e a sua eficácia (sensibilidade e especificidade) estão dependentes da fase clínica da doença, e vão desde a identificação do microrganismo, do seu ADN ou da presença de anticorpos anti-*T. pallidum*.

6.1 Métodos de detecção directa de *Treponema pallidum*

A primeira associação entre sífilis e o seu agente, foi efectuada em 1905 por Schaudinn e Hofmann ao identificaram *Spirochaeta pallida*, (Tabela 2) utilizando um método de coloração de Giemsa modificado, para observar esfregaços obtidos a partir de amostras colhidas das úlceras. Em 1909, Coles (citado por Larsen et al. 1998) utilizou a microscopia de fundo escuro para a observação do mesmo microrganismo, referindo, sobretudo, a sua mobilidade. Em 1964, foi utilizado um método de fluorescência directa, desenvolvido por Yobs *et al.*, o qual foi modificado em 1985 por Hook e seus colaboradores pela utilização de anticorpos monoclonaís. Mais recentemente, e com o desenvolvimento de técnicas de biologia molecular, a técnica de PCR começou a fazer parte do arsenal de testes, utilizáveis para o diagnóstico laboratorial de sífilis.
Introdução geral

Tabela 2. História dos testes para diagnóstico de sifilis – detecção directa de antigénio*

<table>
<thead>
<tr>
<th>Ano</th>
<th>Autores</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905</td>
<td>Schaudinn e Haufmann</td>
<td>Associaram Spirochaeta pallida (Treponema pallidum) com sifilis</td>
</tr>
<tr>
<td>1909</td>
<td>Coles</td>
<td>Descreveu uso de microscopia de fundo escuro</td>
</tr>
<tr>
<td>1964</td>
<td>Yobs et al.</td>
<td>Desenvolveram teste de fluorescência directa com utilização de um anticorpo específico</td>
</tr>
<tr>
<td>1991</td>
<td>Grimprel et al.</td>
<td>Descreveram a técnica de reacção da polimerase em cadeia (PCR) para diagnóstico de sifilis congénita</td>
</tr>
<tr>
<td>1991b</td>
<td>Noordhoek et al.</td>
<td>Aplicaram a técnica de PCR ao diagnóstico de sifilis</td>
</tr>
</tbody>
</table>

*Adaptado de Larsen *et al.* (1998)

6.1.1. Microscopia de fundo escuro

A microscopia de fundo escuro é o método mais antigo, simples, mas ainda de extrema utilidade para identificação de *T. pallidum*.

Devido à sua diminuta espessura, os treponemas não podem ser observados com a luz normal do microscópio, sendo necessário um microscópio equipado com um condensador de raios reflectidos, simples ou duplo. A iluminação para a observação em campo escuro é obtida quando os raios de luz atingem o objecto no campo de microscópio em ângulo oblíquo, de modo a que apenas os raios de luz que se reflectem no objecto entrem no microscópio (Kennedy e Creighton 1998b), aparecendo o mesmo iluminado contra um fundo escuro.

Um microscopista experiente pode identificar *T. pallidum* a partir das ulcerções sifiliticas pelas suas características morfológicas e de movimento, diferenciando-o das outras espiroquetas. *T. pallidum* apresenta uma forma característica em saca-rolhas com espirais uniformes, estreitas e profundas. Quanto à sua mobilidade pode diferenciar-se um movimento de translação
(movimento uniforme em linha recta), lento, de diante para trás com movimentos ocasionais erráticos, um movimento de rotação lento a rápido em volta do eixo longitudinal como um saca-rolhas, podendo rodar sem sair do mesmo sitio, e um movimento de flexão. A rotação é acompanhada de movimento de ondulação ou flexão que origina efeito de luz trémula. O movimento de flexão do microrganismo ocorre geralmente na zona média e de forma rígida, semelhante a uma mola quando é libertada. Apesar de todas estas características não é possível diferenciar *T. pallidum* subespécie *pallidum* dos outros treponemas patogénicos através desta técnica. Os microrganismos que mais facilmente se confundem com *T. pallidum* são *Treponema refringens* e *Treponema denticola*.

A microscopia de fundo escuro é o método de eleição quando existem lesões, como na sífilis primária, secundária e congénita precoce, sendo particularmente útil quando ainda não são detectáveis os anticorpos. Para a execução da técnica é necessária a colheita de amostra apropriada, a qual consiste em líquido seroso, livre de eritrócitos, de outros microrganismos e de restos celulares. A lesão deve ser limpa, se contiver restos tecidulares ou estiver obviamente contaminada, com água estéril ou com soro fisiológico. Porque a viabilidade dos treponemas é indispensável para identificar *T. pallidum* é necessário que a observação seja efectuada logo após a colheita. As lesões do colo uterino e da vagina podem também ser observadas por esta técnica se todas as precauções forem tomadas na colheita. No entanto, tal não é possível para lesões da boca, já que mesmo para microscopistas experientes é muito difícil ou mesmo impossível diferenciar *T. pallidum* das espiroquetas saprófitas que se podem encontrar nessa localização. No entanto, exceptuam-se as lesões de recém-nascido com sífilis em que a microscopia de fundo escuro é recomendada por ainda não existirem espiroquetas saprófitas.

A técnica apresenta alguns limites de sensibilidade (Tabela 3). Um resultado negativo por microscopia de fundo escuro não exclui o diagnóstico, existindo factores técnicos que podem levar a esse resultado, como pouca amostra na lâmina com rápida secagem da preparação, demasiado líquido, o qual pode dificultar a observação do movimento dos treponemas, ou lamela com grossura inapropriada que leva a dificuldades de focagem. Se o doente tiver utilizado
terapêutica tópica os treponemas móveis, podem não se observar, mesmo quando várias amostras são examinadas. O contrário também pode suceder com resultados falso positivos resultantes da presença de espiroquetas não patogénicas, ou para um observador pouco experiente, da presença de fibras de algodão e movimentos brownianos.

Tabela 3 – Sensibilidade dos métodos de detecção directa de *T. pallidum*

<table>
<thead>
<tr>
<th>Método</th>
<th>Amostra</th>
<th>Nº mínimo de organismos presentes</th>
<th>Sensibilidade %</th>
<th>Referências</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopia de fundo escuro</td>
<td>5 µl de exsudado</td>
<td>50</td>
<td>73.8 - 78.8</td>
<td>Kennedy e Creighton (1998b)</td>
</tr>
<tr>
<td>Teste de fluorescência directa</td>
<td>5 µl de exsudado</td>
<td>50</td>
<td>73 - 100</td>
<td>Romanowski et al. (1987), George et al. (1998a)</td>
</tr>
<tr>
<td>PCR-DNA</td>
<td>5 µl de exsudado</td>
<td>1-10</td>
<td>Cerca de 100</td>
<td>Burstain et al. (1991), Wicher et al. (1992), Orle et al. (1996), Liu et al. (2001)</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>1 µl de exsudado</td>
<td>1</td>
<td>Cerca de 100</td>
<td>Centurion-Lara et al. (1997)</td>
</tr>
</tbody>
</table>

* Adaptado de Wicher *et al.* (1999)

6.1.2. Teste de imunofluorescência directa (DFA-TP)

A técnica de imunofluorescência directa (DFA-*Treponema pallidum*) pode ser utilizada em substituição da microscopia de fundo escuro na observação de amostras de exsudados de lesões e de fluidos orgânicos (Yobs *et al.* 1964, Jue *et
Introdução geral

al. 1967, Daniels e Ferneyhough 1977, Ito et al. 1992), permitindo identificar os microrganismos pela utilização de anticorpos anti-\textit{T. pallidum} marcados com isotiocianato de fluoresceína (FITC) tendo, também, a vantagem da colheita poder ser efectuada durante a observação clínica e enviada para laboratório de referência.

Os anticorpos anti-\textit{T. pallidum} marcados são preparados a partir de soro humano ou de coelho com sífilis após adsorção com \textit{Treponema} de Reiter, a fim de os tornar específicos, ou com anticorpos anti-\textit{T. pallidum} monoclonais (Romanowski et al. 1987, Ito et al. 1991, 1992, George et al. 1998a). A adsorção é necessária porque \textit{T. pallidum} compartilha antigénios com uma grande variedade de microrganismos. A especificidade da técnica permite que a mesma seja efectuada em amostras colhidas de lesões da boca, rectais ou intestinais, mas não permite o diagnóstico diferencial com os outros treponemas patogénicos, mesmo quando se utilizam anticorpos monoclonais.

Para a sua execução deve ser efectuado esfregaço a partir de exsudado da lesão, o qual será fixado com acetona ou com etanol a 100% se se utiliza anticorpo monoclonal (Larsen et al. 1998). A colheita efectua-se do mesmo modo que para observação em fundo escuro. Se os treponemas estiverem presentes, serão evidenciados pela incubação das lâminas fixadas com antiglobina anti-\textit{T. pallidum} marcada com FITC e observadas em microscópio de fluorescência (George et al. 1998a).

A sensibilidade da técnica é próxima de 100% quando executada a partir de material colhido recentemente (Ito et al. 1992, Daniels e Ferneyhough 1977). Tal como no estudo por microscopia de fundo escuro, a amostra não deve apresentar restos celulares ou eritrócitos, o que dificulta a observação. Young (1992a) sugeriu que seriam necessárias três amostras, colhidas em dias consecutivos, para se considerar o resultado negativo. Em casos de lesões suspeitas, a presença de treponemas detectados por esta técnica é diagnóstico definitivo. Um resultado negativo não exclui o diagnóstico, dado que a sensibilidade da técnica depende da idade da lesão, do tratamento antes da colheita ou de má técnica de colheita, factores estes que podem diminuir a capacidade de se identificar \textit{T. pallidum}. O método tem sido utilizado, também, para detectar \textit{T. pallidum} em tecidos (George et al. 1998d). A combinação do
Introdução geral

teste de imunofluorescência directa para *T. pallidum* com as colorações histológicas de tecidos permite o exame de amostras de biopsias e de autópsias. Esta metodologia de diagnóstico tem sido aplicada, sobretudo, a cortes de tecidos embebidos em parafina, colhidos de cérebro, aparelho gastrointestinal, cordão umbilical ou pele (Larsen et al. 1998). O teste tem sido utilizado para diagnóstico de sífilis tardia, sífilis congénita ou para diferenciar lesões sifiliticas da pele daquelas causadas pela doença de Lyme (Ito et al. 1992).

6.1.3. Coloração pela prata

A coloração pela prata tem sido muito utilizada pelos anatomopatologistas, no entanto não é específica para *T. pallidum*. O nitrato de prata impregna diferentes microrganismos, sendo a identificação efectuada pela morfologia. Um factor potencial de erro é a presença de artefactos teciduais, pelo que é aconselhável a utilização de testes com anticorpo específico marcado com fluoresceína (Ito et al. 1991).

6.1.4. Detecção directa de antigénio

6.1.4.1. Inoculação em modelo animal

A técnica mais antiga para detectar infecção a *T. pallidum* é o teste de infecciosidade no animal, sendo, ainda, o método mais sensível para a detecção de treponemas infecciosos (Wilcox e Guthe 1966). Muitas espécies de animais como hamsters, chimpanzés e coelhos foram utilizados para manutenção dos treponemas ou para determinar a infecciosidade dos mesmos (Wilcox e Guthe 1966), mas as manifestações de infecção ou a reactividade serológica não se desenvolvem em todos. O coelho é o animal mais utilizado, porque desenvolve lesão no local de inoculação, podendo a infecção ser transferida de animal para animal e porque apresenta reactividade serológica.
O teste de infecciosidade no coelho (rabbit infectivity test – RIT) é o mais utilizado para a detecção de infecção por *T. pallidum* (Magnuson *et al.* 1948, citado por Larsen *et al.* 1995), por inoculação intratesticular da amostra a estudar.

A sensibilidade do teste é cerca de 100% se o número de microrganismos presentes no inóculo for superior a vinte e três e o doente não tiver sido previamente tratado. O RIT tem sido utilizado como teste padrão para determinar a sensibilidade de métodos como a pesquisa de ADN de *T. pallidum* em amostras clínicas por técnica de reacção em cadeia da polimerase (PCR) (Grimprel *et al.* 1991, Sanchez *et al.* 1993, Wicher *et al.* 1998). Qualquer tipo de amostra pode ser utilizada para a sua execução, desde que a inoculação seja efectuada até uma hora após colheita ou congelada de imediato e mantida em azoto líquido ou a temperatura inferior a 78ºC (Larsen *et al.* 1995) até ser utilizada. As amostras são, em geral, inoculadas por via intratesticular ou intradérmica, sendo o período de incubação no animal, inversamente proporcional ao tamanho do inóculo. Embora com boa sensibilidade, (10 a 50 microrganismos - Wicher *et al.* 1999) é pouco prática para o diagnóstico de rotina, por ser cara, laboriosa e necessitar de condições especiais para a manutenção dos animais.

6.1.4.2. Teste imunoenzimático directo

Como método alternativo à microscopia, para a detecção de *T. pallidum* em lesões sifílicas do estádio recente, foi utilizada uma técnica imunoenzimática indirecta de captura (White e Fuller 1989) “Visuwell Syphilis Antigen EIA test” (ADI Diagnostics, Canada). O material é colhido por zaragatoa, sendo de seguida o antigénio extraído e colocado em contacto com um anticorpo monoclonal reactivo à proteína de 47kDa de *T. pallidum*, previamente fixado nos poços de uma placa. A detecção é efectuada por anticorpo anti-*T. pallidum* policlonal de coelho. O teste permite a leitura de uma reacção enzimática colorimétrica, podendo ser executado no próprio dia da colheita. Cummings *et al.* (1996) compararam-no com a microscopia de fundo escuro e com a técnica de imunofluorescência directa. O teste imunoenzimático e a microscopia de
fundo escuro apresentaram resultados positivos, respectivamente em 81.3% (52/64) e 85.9 % (55/64) dos doentes, enquanto que a coloração de imunofluorescência com anticorpo monoclonal demonstrou a presença de *T. pallidum* em 92.2 % (59/64) dos doentes.

O teste apresentou especificidade de 89,5%, com resultados positivos em 13 dos 124 que tinham resultados negativos em microscopia de fundo escuro e em imunofluorescência. Os resultados obtidos demonstraram que esta técnica é menos sensível e específica que as outras duas, razão provável porque acabou por ser abandonada.

6.1.4.3. Sondas de ADN

As sondas de ADN no diagnóstico laboratorial da sífilis, não têm sido muito utilizadas, talvez devido à incompleta compreensão da biologia do microrganismo, o que dificulta a selecção de antigénio ou sequências de ADN alvo. No entanto, foram utilizadas sondas de ADN (Wilkinson *et al.* 1986, Viscidi e Yolken 1987) para a identificação de outros microrganismos patogénicos importantes, assim como foram efectuadas experiências com outras espiroquetas, o que indica a potencialidade do método ser aplicável à identificação de *T. pallidum* (Terpstra *et al.* 1986). Ensaios “Dot-blot”, baseados em sondas de ADN para identificar *T. pallidum*, parecem não apresentar a sensibilidade desejada para um método diagnóstico, mas não foi feita qualquer tentativa de optimização da técnica, como o de determinar quais as sequências mais apropriadas, pelo que o potencial do método está ainda por definir (Terpstra *et al.* 1986). Muitas das situações de sífilis (neurossífilis, sífilis congénita) de diagnóstico problemático, devido ao pequeno número de microrganismos presentes nas amostras, poderiam eventualmente ser resolvidas por uma técnica de maior sensibilidade como esta. A sequenciação do genoma (Frazer *et al.* 1998) deste microrganismo poderá vir a ajudar a desenvolver esta técnica, tornando mais fácil a pesquisa de genes alvos para este tipo de método.
6.1.4.4. Reacção em cadeia da polimerase (PCR)

A técnica da reacção em cadeia da polimerase (PCR) permite amplificar selectivamente uma sequência de ADN alvo em mais de 10^6 vezes e, pelo menos, teoricamente, detectar um único microrganismo (Saiki et al. 1988, Eisenstein 1990), sendo assim um método que oferece grandes possibilidades de aplicação clínica.

A aplicação da técnica de PCR em modelos animais experimentais de sífilis tem também permitido informações úteis. Wicher et al. (1992, 1996 e 1998) observaram que o sangue total é preferível ao soro para a execução da técnica. Das 18 amostras de soro de animais cuja PCR foi positiva no sangue total, somente um soro foi positivo (Wicher et al. 1992). Os mesmos autores, ao efectuarem estudos em coelhos infectados experimentalmente, demonstraram que a coagulação do sangue colhido para o estudo, aprisionava os microrganismos. Todos os coágulos estudados foram positivos pela técnica de PCR, enquanto que os respectivos soros foram negativos (Wicher et al. 1999).

No entanto, tem sido enfatizado que a técnica de PCR não permite diferenciar entre microrganismos vivos e mortos. Este problema foi também avaliado em condições experimentais utilizando PCR e RIT. Estirpes de *T. pallidum* mortos pelo calor (Wicher et al. 1998) e inoculados em coelhos foram eliminados até 10 dias após a inoculação intratesticular e até 15 dias quando inoculados na pele.
Contudo, quando o ADN era injectado (10fg a 10 ng) em múltiplos locais da pele e intratesticularmente a eliminação deu-se em 24 a 48 horas, pelo que os autores concluíram que a identificação de ADN de *T. pallidum* por uma reacção de PCR positiva será indicativo de infecção activa.

Os vários métodos de PCR utilizados têm sido desenvolvidos com a finalidade de permitir um diagnóstico mais seguro de sífilis, principalmente na neurossífilis, sífilis congénita e sífilis primária ou mesmo para aumentar a sensibilidade das técnicas de diagnóstico laboratorial.

A maior parte desses testes utilizam sequências iniciadoras para genes que codificam lipoproteínas de membranas, os quais têm sido clonados e sequenciados. Esse trabalho tem sido favorecido pelo facto do *T. pallidum* ser conservado geneticamente.

Hay *et al.* (1990a) utilizaram uma técnica de PCR para o estudo de liquores de doentes com sífilis. Estes investigadores amplificaram segmentos dos genes *TmpA* (que codifica para a proteína de membrana de 45 kDa) e da proteína 4D, sendo detectado 65 microrganismos no liquor onde previamente tinha sido colocado *T. pallidum* estirpe de Nichols. A especificidade da técnica foi de 96,7%, tendo os autores testado 30 amostras de liquores de indivíduos não suspeitos de infecção por VIH e/ou sífilis. Como as amostras positivas não puderam ser confirmadas por RIT, não foi possível determinar a sensibilidade da técnica PCR. Na mesma altura, Burstain *et al.* (1991) desenvolveram um ensaio PCR, o qual amplificava um fragmento de 658 pb do gene da lipoproteína de membrana de 47 kDa. Os autores referem ter amplificado ADN de *T. pallidum* em amostras de soro, liquor e líquido amniótico de doentes com sífilis. Para confirmar a especificidade da técnica utilizaram uma sonda de 496 pb interna ao produto de 658 pb. Os resultados positivos pela técnica e confirmados por RIT foram obtidos no estudo de líquido amniótico de duas mulheres grávidas com sífilis latente não tratada, no soro e no liquor de uma doente com sífilis latente precoce cujo liquor apresentava testes normais e no liquor de uma doente com meningite sifilitica. Trata-se, no entanto, de um estudo limitado pelo pequeno número de amostras estudadas. Grimprel *et al.* (1991), utilizando a metodologia descrita por Burstain *et al.*, efectuaram um estudo com o objectivo de utilizarem a técnica no diagnóstico de sífilis...
congênita. Para tal, amplificaram o ADN de *T. pallidum* no líquido amniótico, liquor e soro de recém-nascidos. O ensaio de PCR foi 100% específico para *T. pallidum* quando comparado com RIT para todas as amostras testadas. A técnica de PCR no líquido amniótico foi 100% sensível, quando correlacionada com RIT, mas a sensibilidade foi mais baixa quando aplicada aos soros e aos líquores dos 21 recém-nascidos de mães com sífilis investigados. Comparada a técnica de PCR com a RIT, a sensibilidade foi de 60% (3/5) nos líquores dos recém-nascidos e de 67% (4/6) nos soros dos mesmos, tendo os autores considerado que a menor sensibilidade poderia ser devida ao pequeno número de treponemas existentes no sangue e no líquor. Assim, foi concluído que, técnica de PCR pode ser útil no diagnóstico da sífilis congênita.

Com a finalidade de verificar o interesse da técnica de PCR no diagnóstico de neurosífilis, Noordodhoek e seus colaboradores (1991) experimentaram-na no estudo de doentes com neurosífilis antes e após terapêutica. Utilizando como alvo o gene *bmp* de *T. pallidum* da proteína básica de membrana de 39-kDa, a sua primeira escolha nas sequências iniciadoras resultou em ensaios de pouca sensibilidade, pelo que desenvolveram em seguida uma “nested-PCR”. Antes da terapêutica com penicilina, o ADN de *T. pallidum* foi detectado em 71% (5/7) dos doentes com neurosífilis aguda, em nenhum dos quatro doentes com neurosífilis parenquimentosa e em 12,5% (2/6) dos doentes com neurosífilis assintomática. Estes resultados podem, no entanto, representar uma subestimativa da sensibilidade da técnica PCR porque as amostras foram colhidas muito tempo antes e conservadas sem os cuidados especiais para prevenir a degradação do ADN. Os autores detectaram ADN de *T. pallidum* no líquor de cinco dos sete doentes após terapêutica.

Jethwa *et al.* (1995) compararam a técnica de PCR com a imunofluorescência directa para a detecção de *T. pallidum em* amostras de doentes com úlceras sifilíticas. Neste caso, a técnica de PCR amplificava um fragmento de 658 pb do gene da proteína de membrana de 47kDa enquanto que a técnica de fluorescência utilizava um anticorpo monoclonal específico de *T. pallidum* para o antigénio de 37 kDa marcado com fluoresceína. Esfregaços de úlceras genitais de 165 doentes foram corados, pela técnica de imunofluorescência. Após o exame ao microscópio, o esfregaço era raspado para extracção do ADN a ser
utilizado para a técnica de PCR. Vinte e duas das 165 amostras foram positivas para *T. pallidum* por imunofluorescência e PCR, enquanto que 127 foram negativas por ambas as técnicas, o que resultou numa concordância de 95,5% ($\kappa=0.84$). Quatro amostras positivas pela técnica de PCR foram negativas pela fluorescência, enquanto que três das negativas pela técnica de PCR foram positivas por fluorescência. No que se refere às primeiras, os autores põem a hipótese do resultado ser devido ao grande número de leucócitos presentes no esfregaço, o que dificulta a visualização dos treponemas, enquanto que os resultados de fluorescência positivos e da técnica de PCR negativas seriam devidos à ineficácia da extracção do ADN. A inibição da técnica de PCR foi excluída, porque o ADN purificado, foi amplificado quando adicionado a alíquotas de cada amostra.

Os resultados obtidos pelo estudo mostraram que a técnica de PCR e a de imunofluorescência directa são métodos equivalentes para a detecção de *T. pallidum* em amostras de úlceras genitais.

O gene *polA* treponémico codifica para uma proteína enzimática, a ADN polimerase I, a qual em *T. pallidum* subespécie *pallidum* parece apresentar algumas características especiais. A comparação da sequência de aminoácidos da enzima de *T. pallidum* com a de enzimas ADN polimerase I de seis outras bactérias diferentes (*Escherichia coli, Borrelia burgdoferi, Thermus aquaticus, Dienococcus radiodurans, Mycobacterium tuberculosis, e Streptococcus pneumoniae*) revelou duas características: um elevado conteúdo em cisteína e quatro inserções no domínio 3’-5’ da exonuclease, sem homologias com os outros genes *polA* sequenciados. Dois resíduos de cisteína estão, também, presentes nas sequências I e II da exonuclease 3’-5’.

Esta característica parece ser única para a enzima ADN polimerase de *T. pallidum* (Rodes *et al.* 2000), razão pela qual Liu *et al.* (2001) desenvolveram uma técnica de PCR tendo o gene *polA* como alvo, o que, eventualmente, a tornaria mais específica e sensível. Inicialmente, desenharam dois pares de sequências iniciadoras F1/R1 e F2/R2, os quais originam respectivamente produtos com 377 e 395 pares de bases, tendo em consideração as sequências de ADN correspondentes às regiões de aminoácidos que apresentam as inserções adicionais e o elevado conteúdo em cisteínas. F1/R1 incluem duas
cisteínas na sequência a montante e uma na sequência a jusante, enquanto que F2/R2 contêm duas cisteínas em cada uma das sequências iniciadoras. A detecção dos produtos foi efectuada por visualização em gel e em sequenciador automático ABI 310 (Applied Biosystems).

Para esta análise as sequências iniciadoras foram marcadas com marcadores fluorescentes. Os investigadores efectuaram estudo de especificidade utilizando um painel de microrganismos onde incluíram outros agentes de infeccões sexualmente transmitidas (Neisseria gonorrhoea, Chlamydia trachomatis, Vírus Herpes Simplex tipo 1 e 2 e Trichomonas vaginalis), outras espiroquetas, incluindo as patogênicas para o homem, Borrelia burgdoferi e ainda outros agentes que não espiroquetas, tendo sido verificada boa especificidade e sensibilidade. Geralmente, o limite de detecção de produtos pela técnica de PCR quando visualizado em gel de agarose, corresponde à presença de 10 a 50 microrganismos. No entanto, a utilização do analisador genético permitiu aos autores aumentar a sensibilidade para 1 log, o que é vantajoso para a pesquisa de ADN em amostras que contenham pequeno número de microrganismos, como é o caso do sangue e do líquor. Os autores utilizaram esta técnica para pesquisa de ADN de T. pallidum em amostras de úlceras genitais, comparando os resultados obtidos com os previamente encontrados com a utilização de técnica de “multiplex-PCR”, tendo obtido uma sensibilidade de 95,8% e uma especificidade de 95,7%. Esta mesma técnica aplicada a amostras de sangue total (Marfin et al. 2001) permitiu a amplificação de 13 das 32 amostras (41%) de doentes com sífilis não tratada e em período de incubação, demonstrando-se assim a existência de espiroquetémia no decurso do estádio recente da infeccão por T. pallidum.

6.1.4.5. Multiplex – PCR (M-PCR)

As úlceras genitais têm como agentes mais frequentes T. pallidum, o vírus herpes simplex e/ou Haemophilus ducreyi. Devido ao maior risco de transmissão da infeccão por VIH em indivíduos com úlceras genitais, a terapêutica eficaz precoce é importante na doença úlcero-genital. Contudo, o tratamento orientado para cada um dos microrganismos é diferente, pelo que a
Introdução geral

sua identificação é crítica para uma terapêutica apropriada. Orle e colaboradores (1996) associados à Roche Molecular Systems na Califórnia, USA, desenvolveram um método de PCR que permite a detecção simultânea dos três microrganismos (T. pallidum, H. ducreyi, vírus herpes simplex tipo 1 e tipo 2), designada técnica de “multiplex-PCR” (M-PCR). Esta técnica emprega três pares de sequências iniciadoras diferentes (uma para cada microrganismo) para a amplificação de um fragmento do ADN de cada um dos três microrganismos no mesmo tubo de reacção. A detecção dos produtos é em seguida efectuada por uma técnica de captura, utilizando sondas de oligonucleótidos específicos para cada um dos microrganismos e uma reacção colorimétrica.

A técnica de M-PCR, quando avaliada independentemente para cada microrganismo, apresentou sensibilidade de um a 10 microrganismos, embora a presença simultânea dos três microrganismos no mesmo tubo de reacção, a sensibilidade fosse de 10 microrganismos. Os autores utilizaram a técnica em 295 úlceras de doentes do sexo masculino que foram observados em consulta de doenças sexualmente transmissíveis, tendo executado microscopia de fundo escuro e a técnica de M-PCR. A comparação dos dois métodos demonstrou sensibilidade de 91% e 81% e especificidade de 99% e 100% para as técnicas de PCR e microscopia de fundo escuro, respectivamente. A concordância da técnica de M-PCR com uma outra técnica de PCR confirmatória para T. pallidum foi de 99,3%.

A técnica M-PCR parece ser uma técnica promissória para o diagnóstico de úlcera genital, apresentando ainda a vantagem de permitir o diagnóstico diferencial com os outros agentes de úlceras genitais, H. ducreyi, HSV-1 e 2, num mesmo tubo de reacção.

Apesar do teste não se encontrar comercializado, Morse et al. (1997), utilizaram a técnica de M-PCR comparando-a com métodos laboratoriais padrão em 105 doentes com úlceras genitais. Registaram sensibilidade de 95% na técnica de M-PCR para a identificação de ADN de H. ducreyi e de 93% para o vírus herpes simplex, tendo as sensibilidades destes dois microrganismos em cultura sido de 75% e 60%, respectivamente. No que se refere à sífilis, os autores obtiveram positividade de 8% nas amostras estudadas, mas não foi possível efectuar estudo de sensibilidade, porque a microscopia de fundo escuro não foi
executada e os testes serológicos nesta fase da doença são relativamente insensíveis e inespecíficos (Larsen et al. 1995), não permitindo a comparação. Os autores referem que a técnica de PCR melhorou o diagnóstico das úlceras genitais, tendo reduzido o número de diagnósticos indeterminados, de 35% para 6%, sendo o principal factor para essa diminuição a maior sensibilidade da técnica de M-PCR e a sua capacidade para detectar *T. pallidum* nas amostras de úlceras. A técnica foi, também, utilizada noutros estudos (Beyer et al. 1998, Risbud et al. 1999, Behets et al. 1999), com bons resultados na discriminação dos agentes de úlcera genital, isto é, *T. pallidum*, *H. ducrey* e vírus herpes simplex.

Mais recentemente, Bruisten et al. (2001) utilizaram uma técnica M-PCR para o diagnóstico diferencial de úlceras genitais, embora utilizando sequências iniciadoras para genes diferentes. Também observaram uma maior sensibilidade desta técnica no diagnóstico laboratorial desta situação clínica.

6.1.4.6. Reacção da transcriptase reversa (RT-PCR)

As diversas técnicas de PCR que têm sido desenvolvidas para o diagnóstico de sífilis, não têm, ainda sensibilidade adequada. Os investigadores Centurion-Lara et al. (1997) efectuaram uma experiência utilizando uma mistura de líquores humanos adicionados de *T. pallidum*. Para a identificação do microrganismo por técnica de PCR, foram utilizadas sequências iniciadoras para o gene 16S ARNr, sendo os produtos de amplificação, em seguida, detectados por southernblot. Os resultados obtidos foram comparados com a técnica de PCR para o gene da proteína TpN47. A técnica RT-PCR detectou o mínimo de um microrganismo, sendo mais sensível que a ADN-PCR, em que o mínimo detectado foi de 10 microrganismos. O procedimento está, ainda, para avaliar em amostras clínicas. Os autores fazem, ainda, notar que a técnica é de mais difícil execução, porque o ARN é rapidamente degrado, o que pode limitar a sua utilidade.
6.2. Métodos serológicos

Os testes serológicos são o método mais utilizado no diagnóstico laboratorial da sífilis, considerados como métodos indirectos de diagnóstico, identificam anticorpos produzidos em resposta à infecção por *T. pallidum*. Estes começam a ser detectáveis no estádio primário (duas a três semanas após a infecção) e aumentam de concentração no estádio de generalização. Durante a infecção, são produzidos dois tipos de anticorpos: não treponêmicos e treponêmicos, sendo os primeiros também designados como fosfolipídicos, cardiolipina ou não específicos, e os segundos específicos. Embora seja, ainda, desconhecido o antigénio responsável pela estimulação dos anticorpos anticardiolipina, os resultados dos estudos de alguns investigadores (Radolf 1995, Shevchenko *et al.* 1997) permitiram afirmar que o conteúdo lipídico em cardiolipina estava associado à membrana citoplasmática, assim como se encontrava presente em fracções da membrana externa, explicando a actividade opsónica do antígeno anti-antigénio VDRL.

Em 1906 Wasserrman, Neisser e Bruck (citado por Larsen *et al.* 1995) realizaram pela primeira vez o serodiagnóstico da sífilis ao aplicarem a reacção de fixação do complemento de Bordet-Gengou no diagnóstico da infecção. Na altura, o antigénio utilizado foi obtido a partir de extracto de fígado de feto com sífilis, rico em treponemas. Inicialmente, os investigadores pensaram que o antigénio de Wasserman era específico, mas Landsteiner demonstrou que outros tecidos, sobretudo extracto alcoólico de músculo cardíaco, podiam também, ser utilizados como antigénios (Larsen *et al.* 1995). Este antigénio, não específico, constituído por partículas lipídicas em suspensão, era formado por uma mistura de lipídios tecidulares mais ou menos próxima da que se encontra na membrana dos treponemas. Esta suspensão antigénica, com algumas variantes (purificação dos lipídios: cardiolipina de Mary Pangborn, aperfeiçoamento da técnica de Bordet-Gengou), constituiu até 1949 um dos principais métodos imunológicos de diagnóstico laboratorial de sífilis. À reacção de fixação do complemento foram depois associadas reacções de floculação (Kahn), ou de aglutinação (Kline e VDRL) que utilizavam o mesmo tipo de
antígeno, não tendo por isso sido melhorada a sua especificidade.

Em 1949, foi, pela primeira vez, descrito o teste de Nelson e Mayer (Nelson e Mayer 1949), um teste serológico de diagnóstico que utilizava como antígenio o próprio *T. pallidum* vivo e móvel. Embora de realização difícil, este teste foi uma verdadeira revolução na história da sífilis, por ter introduzido uma reacção específica, que permitia julgar sobre o valor das reacções anteriores, que, com frequência, eram responsáveis por reacções falsamente positivas, surgindo no curso de outras doenças, como as doenças auto-imunes, as parasitoses, as hepatites ou estados fisiológicos como a gravidez. Aquele teste esteve na origem de outras reacções, que surgem 10 a 20 anos mais tarde, o teste de imunofluorescência indirecta e o teste de hemaglutinação. De 1949 a 1959 foi o único teste específico utilizado, até ao aparecimento do teste de imunofluorescência indirecta de Deacon *et al.* (1957 – citado por Larsen *et al.* 1995). Em 1969, Tomizawa e Kazamatsu descreveram uma reacção de hemaglutinação passiva que utilizava antígeno específico e que acaba por ser adaptada como prova de rastreio das treponematoses (Larsen *et al.* 1995). Em 1980 acaba por ser suprimida a técnica de Bordet-Gengou, utilizando-se para o diagnóstico serológico da sífilis uma reacção lipídica por micro-aglutinação (teste não treponémico) e outra treponémica (teste treponémico).

Os métodos de detecção de anticorpos complementam os de detecção de antígeno, utilizados para o diagnóstico do complexo primário e do secundarismo e são os únicos métodos de diagnóstico prático em uso até hoje, para os estádios latentes e tardios.

Os testes serológicos para pesquisa de anticorpos anti-*T. pallidum* são divididos em dois grupos com designação derivada do tipo de antígenio utilizado: testes não treponémicos e testes treponémicos.

6.2.1. Testes não treponémicos

Os testes não treponémicos evidenciam anticorpos das classes das imunoglobulinas IgG e IgM que surgem como reacção às substâncias fosfolipídicas libertadas pelas células do endotélio vascular destruídas no decurso da infecção sifilitica, assim como contra a cardiolipina e substâncias
semelhantes a lipoproteínas, componentes estruturais libertados pelos treponemas (Matthews et al. 1979, Belisle et al. 1994). Estes anticorpos têm sido erradamente designados de reaginas, sendo, actualmente, mais conhecidos por anticorpos anticardiolipina. Os anticorpos anticardiolipina, são produzidos em conseqüência da infecção por T. pallidum ou a outros treponemas, e como resposta a doenças não treponémicas, tais como as doenças agudas ou crónicas com lesão de células teciduais (Catterall 1972), pelo que um teste não treponémico reactivo por si só, não confirma a infecção por T. pallidum.

O primeiro teste a ser utilizado para o diagnóstico laboratorial de sífilis foi o já referido teste de fixação do complemento de Wassermann, Neisser e Bruck, a partir do teste introduzido por Bordet e Gengou em 1901 (Tabela 4).

Tabela 4. Cronologia dos testes não treponémicos*

<table>
<thead>
<tr>
<th>Data</th>
<th>Autor</th>
<th>Teste</th>
</tr>
</thead>
<tbody>
<tr>
<td>1906</td>
<td>Wassermann et al.</td>
<td>Teste de fixação de complemento</td>
</tr>
<tr>
<td>1907</td>
<td>Michaelis</td>
<td>Teste de precipitação sem complemento</td>
</tr>
<tr>
<td>1922</td>
<td>Kahn</td>
<td>Teste de floculação com complemento</td>
</tr>
<tr>
<td>1941</td>
<td>Pangborn</td>
<td>Isolamento e purificação da cardiolipina</td>
</tr>
<tr>
<td>1946</td>
<td>Harris et al.</td>
<td>Venereal Disease Research Laboratory (VDRL)</td>
</tr>
<tr>
<td>1957</td>
<td>Portnoy et al.</td>
<td>Modificação de VDRL para soro não descomplementado (USR)</td>
</tr>
<tr>
<td>1961</td>
<td>Portnoy et al.</td>
<td>Modificação do USR para teste rápido em plasma (RPR)</td>
</tr>
<tr>
<td>1980</td>
<td>March e Stiles</td>
<td>Teste de rastreio reaginas (RST)</td>
</tr>
<tr>
<td>1983</td>
<td>Pettit et al.</td>
<td>Modificação do URS para teste em soro não descomplementado com vermelho de toluidina</td>
</tr>
<tr>
<td>1987</td>
<td>Pedersen et al.</td>
<td>Técnica imunoenzimática ELISA</td>
</tr>
</tbody>
</table>

* Adaptado de Larsen et al. 1998
Introdução geral

Embora bastante úteis, os testes de fixação do complemento eram muito complicados, pelo que Michaelis, em 1907, utilizando extracto aquoso de figado sifilítico e Meinick em 1917, utilizando extracto de figado em água ou em cloreto de sódio, desenvolveram o primeiro teste de precipitação, que não necessitava do complemento (citados por Larsen et al. 1995). Mais tarde, em 1922, Kahn introduziu o primeiro teste de floculação sem complemento, o qual podia ser lido macroscopicamente. Estes testes variavam muito em sensibilidade e especificidade, porque os antigénios eram derivados de extractos não purificados, tendo sido Mary Pangborn, que em 1941, ao isolar com sucesso a cardiolipina, iniciou a era da padronização dos testes não treponémicos.

A cardiolipina, associada ao colesterol e à lecitina, forma um antigénio activo para a detecção deste tipo de anticorpos, permitindo a sua padronização, tanto química como serológica. Este facto veio aumentar a reprodutibilidade dos testes, quer no próprio laboratório, quer entre laboratórios.

Com este novo tipo de antigénio foram desenvolvidos microtestes, como o Venereal Disease Research Laboratory (VDRL), os quais devido à comercialização padronizada dos reagentes foram, rapidamente, convertidos em métodos utilizados no rastreio de grande número indivíduos. Com a adição de cloreto de colina e ácido etilenodiamino tetra-acético (EDTA) ao antigénio do VDRL, foi possível aumentar a reactividade do teste e estabilizar a suspensão antigénica (Portnoy et al. 1961), de que resultou um teste que não necessitava da descomplementação do soro antes da sua execução, e que podia também ser efectuado em plasma (“unheated serum reagin” - USR). A incorporação de partículas de carvão a este antigénio (Portnoy et al. 1957) veio permitir a leitura macroscópica do mesmo.

O teste resultante passou a ser designado como teste reagina plasmático rápido (RPR), sendo efectuado em cartões plastificados. Surge então o RPR – “teardrop card test” (Portnoy et al. 1962), desenvolvido com a finalidade de rastreio em locais com pouco equipamento laboratorial, já que o “kit” continha todo o material necessário à execução do teste, sendo o plasma obtido de sangue colhido por punção do dedo. No entanto, esta técnica é considerada menos sensível do que a que correntemente se utiliza, com círculos de 18 mm no cartão plastificado (Van Dyck et al. 1993). Ao contrário do RPR “teardrop card test”, vocacionado para rastreio no campo, o “RPR – card test” foi
desenvolvido para execução em laboratórios com grande número de amostras. (Falcone et al. 1964)
Posteriormente, são efectuadas algumas modificações ao antigénio básico do RPR como a adição de vermelho de toluídina que passou a ser designado por TRUST (Pettit et al. 1983), e o teste de rastreio de reagina (RST) que utiliza sudan black B como corante (March et al. 1980).
Dos diferentes testes desenvolvidos, os mais utilizados são o VDRL e o RPR, cujo antigénio é uma solução alcoólica padronizada de cardiolipina, colesterol e lecitina purificada, adicionada no caso do RPR, de partículas de carvão que tornam a reacção visível macroscopicamente, ao contrário do primeiro, cuja leitura é possível, apenas, ao microscópio óptico (utilizando objectiva de 10X).
Nos testes qualitativos é utilizado soro não diluído para verificar a presença ou a ausência de anticorpos. Nos testes quantitativos são efectuadas diluições seriadas do soro até um ponto final em que não há reactividade, sendo o título registado como a mais alta diluição na qual a reactividade é completa. O título de anticorpos dos testes não treponémicos tem sido correlacionado com a actividade da doença (Grasse et al. 1999). O título inicial de um teste não treponémico estabelece uma linha de base de reactividade a partir da qual podem ser verificados: infecção recente com a demonstração do aumento em duas diluições no título inicial, re-infecção ou recidiva que pode ser detectada em indivíduos com reactividade persistente (“serofastidiosos”).
Os diferentes tipos de testes apresentam o mesmo nível de sensibilidade e especificidade (Tabela 5). No entanto, apresentam níveis diferentes de reactividade, pelo que a monitorização da terapêutica, cujo sucesso ou fracasso se baseia na diminuição em pelo menos duas diluições a partir do título base do dia da terapêutica, deve ser sempre avaliada, utilizando o mesmo tipo de teste (Larsen et al. 1995).
Tabela 5. Quadro de sensibilidade e de especificidade dos testes não treponémicos*

<table>
<thead>
<tr>
<th>Testes</th>
<th>Sensibilidade – estádios da infecção (%)</th>
<th>Especificidade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sífilis primária</td>
<td>Sífilis secundária</td>
</tr>
<tr>
<td>VDRL</td>
<td>78 (74-87)</td>
<td>100</td>
</tr>
<tr>
<td>RPR</td>
<td>86 (77-100)</td>
<td>100</td>
</tr>
<tr>
<td>VDRL/EIA</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

* Adaptado de Larsen et al. (1998)

Um teste RPR tornar-se-á, não reactivo um ano após terapêutica correcta da sífilis recente e após dois anos no estádio de secundarismo (Fiumara 1980a, Brown et al. 1985). O tempo necessário para que a reactividade desapareça correlaciona-se com o intervalo de tempo entre o contacto e a instituição da terapêutica (Fiumara 1980a), assim como com a severidade da doença e o tipo de lesões cutâneas do secundarismo. Um indivíduo com exantema macular reverte mais rapidamente para não reactivo do que um com exantema papular (Tramont 1990).

Em 1987, Pedersen et al. desenvolveram uma técnica imunoenzimática (EIA) de tipo indirecto em que o antigénio VDRL reveste os micropoços da microplaca. O soro a estudar é, então, adicionado e os anticorpos não treponémicos, quando presentes, vão ligar-se a esse antigénio. Os anticorpos ligados ao antigénio são detectados pela adição de um conjugado anti-humano marcado com uma enzima, a qual, ao reagir com um substrato, desencadeia a reacção colorimétrica que é em seguida lida em espectofotómetro.

Nos estudos efectuados por aqueles investigadores o teste mostrou uma sensibilidade de 97% em doentes não tratados e especificidade de 97%. Tal como para os outros testes não treponémicos, a reactividade diminui ou desaparece após a terapêutica, apresentando a desvantagem de não permitir
quantificação de reactividade em título essencial para a monitorização do resultado da terapêutica. No entanto, é uma técnica que permite a execução de muitos testes simultaneamente, por ser automatizável.

Embora os testes não treponêmicos sejam muito úteis no diagnóstico laboratorial de sífilis, os seguintes problemas podem surgir pela sua utilização: o fenómeno de “prozona”, os resultados falso positivos e a dificuldade na interpretação dos testes.

Nos soros que contêm grande quantidade de anticorpos não treponêmicos pode surgir o chamado fenómeno de “prozona”, em que um soro não diluído não apresenta reactividade, enquanto que esta vai surgindo com a diluição do mesmo. Esta reacção surge em cerca de 1 a 2% dos doentes em estádio de secundarismo (Spangler et al. 1964, Jurado et al. 1993) e deve-se à presença de anticorpos em excesso que bloqueiam ou tornam a reacção antigénio-anticorpo incompleta ou anormal, pelo que, soros que deveriam apresentar uma forte reactividade surgirão como fracamente reactivos, negativos ou com uma reacção granulosa no soro não diluído. Após a diluição, o soro apresenta um aumento na reactividade que diminuirá em seguida até um ponto final de não reactividade. A diluição de 1:16 é geralmente adequada para obter a concentração apropriada de anticorpo e detectar este tipo de reacção.

As reacções falsamente positivas estão dependentes da população estudada. Este tipo de reacções dividem-se em dois grupos: agudas com duração inferior a seis meses e crónicas que persistem por períodos superiores (Larsen et al. 1998). As primeiras estão associadas a hepatite viral, sarampo, mononucleose infecciosa, varicela e outras infecções virais, malária, vacinação, gravidez, idade e erros técnicos de laboratório. As reacções falsamente positivas crónicas estão relacionadas com doenças do tecido conjuntivo como lupus eritematoso sistémico, ou com doenças associadas com imunoglobulinas anormais, sendo mais comuns na mulher. Também a utilização de narcóticos injectáveis, a idade (Tuffanelli 1966), a lepra e as doenças malignas podem ocasionar este tipo de reactividade (Larsen et al. 1998).

Os títulos das reacções falsamente positivas são, em geral, baixos, embora raramente possam ser extremamente altos, como no caso dos
Introdução geral

toxicodependentes injectáveis, os quais apresentam uma percentagem de 10% ou mais com títulos superiores a oito (Larsen et al. 1995).
A interpretação do resultado dos testes não treponémicos está dependente da população testada. O valor preditivo do teste aumenta quando associado com teste treponémico reactivo, pelo que ao utilizar-se um teste não treponémico em população de baixo risco todos os testes reactivos devem ser confirmados por um teste treponémico. Nesta população, a reactividade pode estar relacionada com um falso positivo (Larsen et al. 1998).
O resultado do teste deve também ser interpretado tendo em conta o estádio da sífilis. Um resultado reactivo ou reactivo fraco pode ser observado em todos os estádios da doença, podendo, também, indicar um indivíduo serofastidioso (indivíduo que apesar da terapêutica ter sido adequada mantém teste não treponémico reactivo) ou um falso positivo (Larsen et al. 1995). Um resultado negativo permite de um modo geral excluir infecção activa, devendo-se ter presente que a não reactividade serológica para teste não treponémico pode ser encontrada no período de incubação da doença, uma vez que os anticorpos não treponémicos só são detectáveis sete a 10 dias após aparecimento da úlcera (Larsen et al. 1995). Assim, quando se suspeita de sífilis é importante repetir o teste, já que 15% dos indivíduos com sífilis recente podem não apresentar reactividade inicialmente (Anderson et al. 1989). Também, no estádio latente tardio o teste não treponémico pode ser não reactivo (Young 1992a).
A maior parte dos erros de laboratório associados com os testes não treponémicos relacionam-se com a temperatura do laboratório, a amostra e os reagentes. Temperaturas inferiores a 25°C levam à diminuição de reactividade, enquanto que superiores a 29°C a aumentam. Outros erros relacionam-se com amostras hemolisadas, contaminadas ou com aumento de lipídos, o tempo ou a velocidade de rotação inadequada e incorrecta descarga de antigénio (Kennedy e Creighton 1998a, Larsen e Creighton 1998).

6.2.2. Testes treponémicos

Os testes treponémicos pesquisam anticorpos específicos porque utilizam *T. pallidum* ou algum dos seus componentes como antigénio, sendo utilizados,
sobretudo, para confirmar a reactividade dos testes não treponémicos.
São testes de execução mais difícil e mais caros que os não treponémicos, pelo que, em regra não são utilizados para o rastreio, mantendo-se reactivos pelo resto da vida do doente, mesmo após terapêutica correcta, não sendo, por isso, utilizados para a sua monitorização.

As primeiras tentativas para utilizar treponemas como antigénio foram efectuadas por Nelson e Mayer em 1949, que desenvolveram o primeiro teste de pesquisa de anticorpos específicos, o teste de imobilização de *T. pallidum* (TPI). Este baseava-se na capacidade dos anticorpos existentes no soro do doente, em presença de complemento, serem capazes de imobilizar treponemas vivos quando observados ao microscópio de fundo escuro.

Embora de realização difícil, este teste originou verdadeira revolução na história da sífilis, porque, finalmente, se encontrou uma reacção específica, que além disso permitia julgar o valor das técnicas existentes. Esteve também na origem das técnicas que surgiram 10 a 20 anos mais tarde, como o teste de imunofluorescência indirecta e o teste de hemaglutinação passiva.

No entanto, tratava-se de uma técnica complicada, difícil do ponto de vista técnico, necessitando de treponemas vivos e móveis que não podendo ser cultivados em meios artificiais eram mantidos por cultura “in vivo” de *T. pallidum* da estirpe de Nichols, com passagens intratesticulares, de oito em oito dias, no coelho. Assim, tornava-se uma técnica demorada e cara, apresentando ainda o risco de contaminação dos técnicos de laboratório, pelo que foram desenvolvidos mais tarde outros testes (Tabela 6) de maior ou menor popularidade.

Na altura, o TPI obteve rápida aceitação, e apesar da sua complexidade, custo, dificuldade na reprodutibilidade e necessidade de animais, foi uma técnica muito utilizada até cerca de 1980, sobretudo para resolver resultados conflituosos, tendo acabado por ser substituída pela técnica de imunofluorescência indirecta (Wicher *et al.* 1999).
Introdução geral

Tabela 6 - Cronologia dos testes treponémicos*

<table>
<thead>
<tr>
<th>Data</th>
<th>Investigadores</th>
<th>Tipo de Teste</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949</td>
<td>Nelson e Mayer</td>
<td>Teste de Imobilização de Treponema pallidum</td>
</tr>
<tr>
<td>1953</td>
<td>D’Allesandro e Dardanoni</td>
<td>Teste de fixação de complemento de Reiter</td>
</tr>
<tr>
<td>1957</td>
<td>Deacon et al.</td>
<td>Teste de imunofluorescência</td>
</tr>
<tr>
<td>1964</td>
<td>Hunter et al.</td>
<td>Teste de imunofluorescência modificada por absorção</td>
</tr>
<tr>
<td>1965</td>
<td>Rathlev</td>
<td>Teste de hemaglutinação</td>
</tr>
<tr>
<td>1969</td>
<td>Cox et al.</td>
<td>Teste de hemaglutinação em microplaca</td>
</tr>
<tr>
<td>1975</td>
<td>Veldekamp e Visser</td>
<td>Teste imunoenzimático (EIA)</td>
</tr>
<tr>
<td>1982</td>
<td>Hanff et al.</td>
<td>Aplicação técnica de Western blot ao diagnóstico de sífilis</td>
</tr>
<tr>
<td>1989</td>
<td>Schouls et al.</td>
<td>Utilização primeiros antigénios clonados no serodiagnóstico de sífilis</td>
</tr>
</tbody>
</table>

*Adaptado de Larsen *et al.* (1998)

6.2.2.1. Teste de imunofluorescência indirecta (Fluorescent Treponema Antibody Absorbed - FTA-Abs)

Um dos maiores avanços nos testes treponémicos foi o desenvolvimento da técnica de fluorescência em 1957 por Deacon *et al.* O procedimento original utilizava diluição a 1:5 do soro do doente que reagia com uma suspensão de treponemas mortos, mas apresentava cerca de 25% de reações inespecíficas em soros normais (Wallace e Norris 1969). Para a eliminação das reações inespecíficas passou a diluir-se o soro a 1:200 (Deacon *et al.* 1960), o que aumentou a especificidade, mas tornou o teste pouco sensível. Como as reações inespecíficas eram devidas à presença de antigénios comuns entre *T. pallidum* e os treponemas não patogénicos que podem existir na flora humana normal, Deacon e Hunter em 1962 desenvolveram uma técnica que remove os
anticorpos inespecíficos por absorção dos soros a estudar, com treponemas de Reiter preparados a partir de culturas sonicadas, tendo conseguido melhores especificidade e sensibilidade com o teste que designaram por “Fluorescent Treponemal Antibody Absorbent” (FTA-Abs).

No FTA-Abs é utilizado *T. pallidum* estirpe de Nichols, como antigénio, e o soro do doente, diluído em absorvente (constituído por extractos de treponema de Reiter) é colocado em contacto com os treponemas fixados na lâmina. A presença da ligação antigénio-anticorpo, quando existem anticorpos no soro, é, em seguida, evidenciada pela utilização de um anticorpo anti-humano conjugado com fluoresceína, o que resulta em treponemas fluorescentes, quando observados ao microscópio de fluorescência.

O FTA-Abs em infecções recentes apresenta uma sensibilidade de 70 a 100%, sendo positivo em 100% dos casos de secundarismo e reactivo em 96 a 100% dos estádios de sífilis tardia (Lukehart et al. 1988, Larsen et al. 1998). A reactividade do FTA-Abs persiste mesmo após terapêutica adequada, embora por vezes se possa tornar não reactivo se a terapêutica tiver sido instituída precocemente na evolução da doença (Young 1992a). A especificidade do teste encontra-se entre 92% a 99% (Hunter et al. 1986).

O FTA-Abs apresenta algumas desvantagens, como o facto da sua interpretação ser subjectiva, de necessitar de pessoal treinado para a sua observação, e da padronização do teste ser difícil de um laboratório para o outro. A sua principal aplicação tem sido na diferenciação dos resultados de falsa reactividade dos testes não treponémicos e para estabelecer o diagnóstico de sífilis latente ou de sífilis tardia (George et al. 1998b). Um teste FTA-Abs reactivo sugere infecção actual ou passada com treponema patogénico, enquanto que um teste FTA-Abs não reactivo com um teste não treponémico reactivo sugere uma reacção de falsa reactividade deste último.

Esta técnica tem sido aplicada à pesquisa de anticorpos anti-*T. pallidum* no liquor para diagnóstico de neurossífilis, efectuando-se diluição com o absorvente de 1:5 (FTA-Abs –LCR). O teste FTA-Abs-LCR mostrou ser mais sensível que o VDRL-LCR (Larsen e Johnson 1998), embora o significado clínico dessa reactividade seja difícil de estabelecer por o mesmo se manter reactivo em doentes com sífilis recente ou sífilis latente adequadamente tratados (Jaffe et al. 1998a).

6.2.2.2. Testes de aglutinação

Rathlev et al. (1965) foram os primeiros a aplicar a técnica de aglutinação passiva (hemaglutinação) à pesquisa de anticorpos anti-*T. pallidum*, tendo utilizado como antigénio eritrócitos de carneiro sensibilizados com extractos sonicados de *T. pallidum*, estirpe de Nichols. A técnica original, Teste de Hemaglutinação Passiva (TPHA) era efectuada em tubo, tendo sido posteriormente modificada (Cox et al. 1969) para execução com pequenos volumes em microplaca (MHA-TP). Diversas variações da técnica, utilizando eritrócitos de peru, carneiro e galinha estão actualmente comercializados, e em todas elas são utilizadas células não sensibilizadas, para controlo das reacções inespecíficas.

A presença de anticorpos no soro do doente é observada pela aglutinação dos eritrócitos sensibilizados, com formação de uma malha ou rede dos mesmos, cobrindo o micropoço, enquanto que os resultados não reactivos são definidos pela formação de um botão compacto no fundo do micropoço.

A técnica permite definir os resultados de modo qualitativo (reactivos, não reactivos ou indeterminados) ou quantitativo. A maior parte dos estudos efectuados não tem demonstrado relação prática entre o título e o estádio da doença e ao contrário dos testes não treponémicos não é um teste útil para a monitorização terapêutica (Cox et al. 1971, Johnston 1972a, Buist et al. 1973). O teste de hemaglutinação em microplaca (MHA-TP) tem sido utilizado, sobretudo, para confirmar a reactividade dos testes não treponémicos (Jaffé 1975, Jaffé et al. 1987). Tem a vantagem de ser mais fácil de executar do que o teste FTA-Abs e embora seja tão específico como aquele, é menos sensível na sífilis primária (Fiumara 1980a).

A origem de erros de laboratório, para este tipo de técnica, relaciona-se, sobretudo, com a utilização de placas sujas com pó, erros na pipetagem e vibrações no laboratório que podem alterar o padrão da aglutinação. Várias tentativas de automatização deste teste foram ensaiadas, sobretudo,
para a sua utilização em bancos de sangue. Uma dessas técnicas designa-se por Olympus PK-TP e utiliza eritrócitos de galinha, os quais após fixação são sensibilizados com componentes sonicados de *T. pallidum*. Dos estudos efectuados (Forbes *et al.* 1991) concluiu-se que a técnica era pelo menos tão específica como o RPR em cartão.

A utilização de eritrócitos com portadores de antigénio *T. pallidum* pode resultar em reacções heterófilas, pelo que investigadores da companhia comercial Fujirebio Inc. produziram um novo teste de aglutinação passiva que utiliza uma preparação liofilizada de partículas de gelatina coloridas como portadoras do antigénio *T. pallidum*. O princípio e execução do teste são semelhantes ao teste de hemaglutinação em placa. Quando presentes no soro, os anticorpos anti-*T. pallidum* irão reagir com as partículas sensibilizadas com estirpe de Nichols, formando um véu de partículas de gel aglutinadas nos poços da microplaca. Os primeiros estudos efectuados com o teste (Kobayashi *et al.* 1983, Degushi *et al.* 1994) demonstraram que o teste TP.PA parecia superior ao TPHA na detecção dos casos de sífilis recente. Estudos posteriores, confirmaram esse achado, sugerindo-o como apropriado substituto do TPHA (Pope *et al.* 2000, Young *et al.* 2000)

Problemas encontrados com os testes treponémicos

Dos testes mais utilizados, o FTA-Abs e o TPHA, o que origina mais resultados falsos positivos é o FTA-Abs (Jaffé *et al.* 1978a, Wentworth *et al.* 1978 Larsen *et al.* 1981).

Embora se possam encontrar resultados de falsa reactividade transitórios, de origem desconhecida, a maioria destes resultados originados com o teste treponémico FTA-Abs estão associados a doenças do sistema conjuntivo (Shore e Faricelli 1977, Anderson e Stillman 1978), como a variedade de lúpus eritematoso induzido por drogas (Kraus *et al.* 1971), mas também em doentes com anemia hemolítica auto-imune (Mackey *et al.* 1969) e nas grávidas (Buchanan e Haserick 1970). Para ultrapassar esse tipo de reacções procede-se à absorção com ADN de timo de vitela, para remoção dos anticorpos anti-ADN no soro (Kraus *et al.* 1971) Resultados falsamente reactivos inexplicáveis são
Introdução geral

por vezes também observados nos idosos. Outras causas são a deficiente absorção na remoção dos anticorpos formados, que originam reactividade cruzada (Hunter et al. 1986, Magnarelli et al. 1990).

Com a técnica de hemaglutinação, os resultados falso positivos são, em regra, inferiores a 1%, embora se possam observar resultados incoerentes em doentes com mononucleose infecciosa, sobretudo na presença de altos títulos de anticorpos heterófilos (Johnston 1972a). Um teste de hemaglutinação com resultados de falsa reactividade pode ocorrer, também, em doentes com doenças do colagénio, lepra e em toxicodependentes (Wentworth et al. 1978, Rein et al. 1980, Larsen et al. 1981). Muitas vezes, os resultados são difíceis de diferenciar, já que a sífilis pode coexistir com aquelas condições. No entanto, uma amostra reactiva por técnica de FTA-Abs ou TPHA pode, em 95% dos casos, ser considerada como correspondendo a infecção passada ou actual (Rein et al. 1980). Os testes treponémicos variam a sua reactividade em relação à condição clínica, apresentando-se não reactivos durante o período de incubação. Reactivam na fase de sífilis recente, durante a qual a reactividade varia, dependendo do tempo decorrido entre desenvolvimento da lesão e a colheita de amostra para o estudo serológico (Tabela 7), mantendo-se depois reactivos durante anos com ou sem terapêutica.

<table>
<thead>
<tr>
<th>Teste</th>
<th>Sensibilidade (%)</th>
<th>Especificidade (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estágio de infecção não tratada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primário</td>
<td>Secundário</td>
</tr>
<tr>
<td>FTA-Abs</td>
<td>70-100</td>
<td>100</td>
</tr>
<tr>
<td>MHA-TP</td>
<td>69-90</td>
<td>100</td>
</tr>
<tr>
<td>FTA-Abs DS</td>
<td>69-93</td>
<td>100</td>
</tr>
<tr>
<td>ELISA-47kDa</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Western-blot</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

*Adaptado de Larsen e Johnson (1998)
Introdução geral

No diagnóstico de sífilis tardia, não tratada, um teste treponémico reactivo pode ser a única indicação de infecção treponémica prévia. Após tratamento adequado, os testes treponémicos mantêm-se reactivos em 85% dos casos durante muitos anos e em alguns indivíduos durante toda a vida (Schroeter et al. 1972)

6.2.2.3. Técnicas imunoenzimáticas

De um modo geral, esses testes utilizam microplacas de fundo liso revestidas com antigénio *T. pallidum* sonificado. O soro é colocado em contacto com o antigénio e a presença de anticorpos é evidenciada pela utilização de anticorpo anti-humano marcado com enzima ou biotina, os quais, ao reagirem com um substrato, produzem uma reacção colorimétrica observável e lida em espectofotómetro. Os resultados obtido são de tipo qualitativo com informação de reactivo, não reactivo e indeterminado. Quando estudada a sua sensibilidade foram obtidos valores de 98,3% a 100%, independentemente do estádio da sífilis (Young et al. 1992b, Nayar e Campus 1993, Hooper et al. 1994, Backhouse e Hudson 1995).

Na sequência deste tipo de testes foram desenvolvidos outros baseados em antigénios clonados, sendo uma das primeiras proteínas a ser clonada e utilizada no diagnóstico de sífilis a proteína TmpA (Schouls et al. 1989). Esta é uma lipoproteína provavelmente localizada na membrana e associada com outra proteína de membrana a TmpB. A proteína TmpA foi utilizada como antigénio na técnica EIA (Ijssemuiden et al. 1987, Schouls et al. 1989), resultando num teste com boa sensibilidade e especificidade e de resultados semelhantes às técnicas MHA-TP e FTA-Abs. Outras proteínas recombinantes foram
desenvolvidas com a finalidade de serem utilizadas no diagnóstico imunoenzimático de sífilis, entre elas a proteína de 47-kDa, com a qual foi comercializado um teste de EIA de tipo indirecto com o nome de “Spirotek syphilis”. O teste utiliza placas revestidas com a proteína 47-kDa recombinante (Pope e Fears 1998). Os anticorpos do soro do doente reagem com o antigénio e são detectados por imunoglobulina anti-humana biotinilada marcada com estreptavidina peroxidase, com formação de uma reacção colorida. A intensidade da cor é proporcional aos níveis de anticorpo presentes no soro. O teste apresentou sensibilidade superior à dos outros testes treponémicos, sobretudo no diagnóstico de sífilis recente não tratada.

Um outro teste imunoenzimático, utilizando o princípio de imunocaptura (Young et al. 1998) foi desenvolvido e comercializado com a designação de “ICE Syphilis” e recomendado como teste de rastreio. Este utiliza como antigénio três proteínas recombinantes de *T. pallidum* (TpN15, TpN17 e TpN47). A avaliação demonstrou que a técnica foi mais sensível e específica que a técnica semelhante que utiliza como antigénio *T. pallidum* sonicado e mais sensível que a técnica de FTA-Abs.

Embora pouco práticas e de custo elevado para o estudo de pequeno número de amostras, as técnicas imunoenzimáticas apresentam a grande vantagem de serem automatizáveis, permitindo o processamento de grande número de amostras simultaneamente. Ao mesmo tempo elimina-se a leitura subjectiva das técnicas TPHA e FTA-Abs, uma vez que é efectuada em espectofotómetro.

6.2.2.4. Técnicas de Western-blot

Os métodos de imunoblot são presentemente considerados como técnicas de rotina no diagnóstico laboratorial, tendo sido propostos como testes de confirmação para a infecção a *T. pallidum* (Dettori 1989, Byrne et al. 1992, Meyer et al. 1994), visto que os outros testes serológicos ocasionarem falsas reacções em várias condições clínicas.

Foi graças aos trabalhos de biologia molecular sobre *T. pallidum* subespécie *pallidum*, estirpe de Nichols, que se conheceu melhor a sua estrutura antigénica. Em 1981, Pedersen e colaboradores utilizaram uma técnica de
contra-imunoelectroforese para identificar quatro antigénios de *T. pallidum* que reagissem com anticorpos do soro de um doente na fase de secundarismo da sífilis. Lukehart *et al.* (1982), utilizando, também, uma técnica de Western blot identificaram oito identidades antigénicas, das quais três reagiam com anticorpos treponêmicos. Com a mesma técnica, Hanff *et al.* (1982) identificaram pelo menos 22 polipeptídeos e caracterizaram a resposta humoral de um soro sífilítico humano, demonstrando no coelho a cinética de aparecimento desses anticorpos. Após o 3º dia de inoculação e por técnica de Western blot evidenciaram a presença de anticorpos dirigidos contra duas proteínas de peso molecular, 60 kd e 46 kd. Ao 19º dia o número de anticorpos dirigidos aos antigénios do treponema aumentou indo até 22 (com peso moleculares entre 94 kd e 14,4 kd), ficando então estáveis, o que parece constituir a resposta humoral máxima.

O método de Western blot baseia-se na separação das proteínas a partir de extracto de *T. pallidum* fervido em sulfato de dodecil de sódio (SDS) por electroforese em gel de gradiente de poliacrilamida. Após a separação, as proteínas são transferidas electroforeticamente para uma folha de nitrocelulose, a qual é, em seguida, cortada em tiras que são incubadas com o soro a estudar. A presença de anticorpos é detectada pela utilização de um segundo anticorpo anti-humano marcado com uma enzima, ao qual se segue adição de substrato para visualização da reacção. Quando os anticorpos para *T. pallidum* estão presentes, há formação de reacção colorida com o aparecimento de bandas características na tira da membrana de nitrocelulose.

Actualmente, muitos investigadores concordam que a presença de anticorpos reactivos com os componentes de *T. pallidum* de massas molecular de TpN 15 (15.5 kda), TpN 17 (17kda), TmpA (45 kda), e TpN 47 (47 kDa) permite
confirmar o diagnóstico de sífilis (Norris et al. 1993, George et al. 1998c). Anticorpos dirigidos a, pelo menos, três dessas proteínas são necessários para considerar o soro reactivo.

Alguns grupos de investigadores têm referido o interesse da utilização de proteínas recombinantes para Western blot (Strugnell et al. 1990, Sambri et al. 2001b). A produção de antigénios recombinantes permite a produção e a caracterização de proteínas antigénicas específicas e individuais em quantidades ilimitadas, tornando o processo mais simples e barato.

Sambri et al. (2001b) efectuaram um estudo de diagnóstico serológico de sífilis utilizando técnica de Western blot com proteínas recombinantes (rTpN47, rTmpA, rTpN37, rTpN17, rTpN15). Estudaram 450 soros, 200 de doadores de sangue, 200 de doentes com sífilis em diferentes estádios e 50 de potencial reactividade cruzada, gravidez, ou outras infecções treponémicas e doenças auto-imunes. Comparando aquele com o teste TPHA e com o teste de Western blot de lisado total, concluíram que a técnica Western blot utilizando antigénio recombinante poderia substituir a técnica de Western blot efectuada com o extracto total, visto que apresentava boa sensibilidade e especificidade. Por outro lado, as tiras apresentavam menos imunodeterminantes, o que permitiu a leitura e interpretação mais fácil, constituindo um método simples de confirmação na detecção de anticorpos anti-\textit{T. pallidum} no soro. Devido à sua alta sensibilidade associada à simplicidade e objectividade, o teste tem sido considerado como teste de confirmação, podendo ser efectuado quer em soro quer em plasma.

6.2.2.5. Testes rápidos para pesquisa de anticorpos anti-\textit{T. pallidum}

Desde há uns anos têm sido desenvolvidos e avaliados testes treponémicos designados com o nome de testes rápidos para diagnóstico de sífilis. Trata-se de testes de execução simples e leitura fácil, adequados para serem utilizados em centros de saúde de cuidados primários, executáveis por pessoal técnico com um mínimo de treino e não requerendo equipamento especializado.

Estes testes utilizam como antigénios as proteínas recombinantes de \textit{T. pallidum} TpN47, TpN15 e TpN17, associados ou isoladamente. Essas proteínas
pode encontrar-se ligadas a um suporte sólido constituindo um ensaio de imunocromatografia ou ligadas a partículas de látex, constituindo um teste de aglutinação, podendo ser utilizados para a pesquisa de anticorpos no soro, plasma e sangue total. São geralmente testes com leitura em cinco a 20 minutos.

Numa avaliação preliminar de um teste protótipo deste gênero, que utilizava como antígeno TpN47, Zarakolu et al. (2002), demonstraram que o teste foi mais sensível e específico que o teste RPR, sendo não reativo em todos os soros que tinham apresentado resultados de falsa reactividade pelo teste RPR. Este tipo de testes foi também avaliado no programa “Sexually Transmitted Diseases Diagnostic Initiative (SDI)” incluído no “UNDP/World Bank/WHO Special Programe for Research and Training in Tropical Diseases (TDR)” da Organização Mundial de Saúde “TDR/SDI/DE (2003). Nesse estudo (WHO 2003), foram avaliados seis tipos de testes rápidos, que utilizavam um ou mais antígenos treponémicos recombinantes, os quais apresentaram um bom rendimento quando comparados com os testes TPHA e TP. PA. A Avaliação de um teste comercializado com o nome de “Determine Syphilis Treponema pallidum -Abbot” foi, também efectuada, por Sato et al. (2003) e Diaz et al. (2004). Nos dois estudos foi determinada a sensibilidade e especificidade do teste. Estas foram de 93,6% e 92,5% no primeiro estudo, enquanto que os segundos autores obtiveram em indivíduos com infecção pelo VIH (198) sensibilidade de 96,2 a 99,2% e de 94,4 a 96,3% em não infectados por aquele vírus (127), tendo a especificidade sido de 92,4 a 95,5% entre os primeiros e de 97,2 a 100% na segunda população (não infectados pelo VIH).

6.2.3. Pesquisa de Anticorpos anti *T. pallidum* do tipo IgM

Uma vez que o serodiagnóstico da sifilis congénita põe sérios problemas, devido à transferência passiva de anticorpos da mãe ao filho, pensou-se que a pesquisa de anticorpos de tipo IgM específicos, que não atravessam a barreira placentária e podem ser sintetizados pelo feto após os três meses, como resposta à infecção, seriam de extrema utilidade. Aos testes citados anteriormente foram efetuadas algumas variações, com a finalidade de pesquisar anticorpos anti-*T. pallidum* de
tipo IgM, com vista a melhorar o diagnóstico laboratorial da sífilis congénita. Um dos primeiros testes descritos foi o FTA-Abs–M (Scotti e Logan 1968) semelhante ao FTA-Abs – G, que utilizava como conjugado um anticorpo anti-IgM. A técnica mostrou-se inespecífica e pouco sensível (Johnson 1972, Kaufman et al. 1974, Muller 1986). A especificidade na pesquisa de anticorpos de tipo IgM tem sido posta em causa, devido ao facto do recém-nascido poder produzir esta classe de anticorpos, em resposta à própria transferência passiva de anticorpos de tipo IgG maternos (factor reumatóide e anticorpos anti-idiopáticos), mais do que como resposta à própria infecção (Mayer e Malan 1989). Algumas investigadores procuraram eliminar este facto, através do FTA-Abs 19S IgM (Muller 1986), de modo a excluir todas as imunoglobulinas de tipo G livres ou ligadas à IgM (factor reumatóide) no soro. Essa eliminação pode ser obtida por passagem do soro através de uma coluna contendo proteína G, de modo que a fracção rica em IgM é depois identificada com a utilização de um anticorpo específico IgM conjugado. Reacções falsamente positivas podem, ainda, ser observadas, mas são raras. O teste carece de sensibilidade (Stoll et al. 1993), pelo que apesar de o FTA-Abs 19S M ser útil no diagnóstico de sífilis congénita não permite substituir uma cuidadosa e repetida observação clínica associada a um teste não treponémico quantitativo seriado, como forma de avaliação dos recém-nascidos com possível sífilis congénita.

Também, as técnicas imunoenzimática e de Western blot têm sido investigadas para pesquisa de anticorpos de tipo IgM a utilizar neste diagnóstico, sendo idênticas às utilizadas para pesquisa de IgG, excepto de que o conjugado IgM substitui o conjugado IgG (Ijsselmuiden et al. 1989a, Lefever et al. 1990, Meyer et al. 1994, Sanchez et al. 1989). Uma técnica imunoenzimática específica desenvolvida para a detecção de anticorpos específicos de tipo IgM foi comercializada com a designação de CAPTIA Syphilis M. Nesta, as placas utilizadas estão revestidas com um anticorpo anti-humano específico de cadeia μ. Este liga-se indiscriminadamente a qualquer anticorpo IgM presente no soro. Os anticorpos específicos para T. pallidum irão, quando presentes, ser evidenciados pela adição de um antigénio obtido a partir de extractos de T. pallidum (Nichols) que reage com os anticorpos de tipo IgM específicos. Em seguida, essa reacção é evidenciada pela adição de anticorpo anti-T. pallidum
monoclonal conjugado com uma enzima que ao reagir com substrato cromogéneo produz reacção colorida visível com leitura no espectofotómetro. O teste apresentou sensibilidade, em recém-nascidos sintomáticos, semelhante ao FTA-Abs 19 S e uma especificidade mais elevada (Leferve et al. 1990, Ijsselmuiden et al. 1989a, Stoll et al. 1993), tendo sido também utilizado para detecção de IgM na sífilis recente. A sensibilidade foi nesse caso de 94% na sífilis primária, 85% no secundarismo e de 82% na sífilis latente recente (Leferve et al. 1990). A diminuição na sensibilidade deve-se ao desaparecimento dos anticorpos específicos de tipo IgM no decurso da doença.

6.2.4. Métodos para detecção de anticorpos no liquor

6.2.5. Diagnóstico laboratorial nos diferentes estádios clínicos

Apesar do grande número de testes existentes para o diagnóstico laboratorial da sífilis, este apresenta-se ainda problemático, sobretudo quando relacionado com complexo primário, sífilis latente, neurosífilis e sífilis congênita, assim como na co-infecção T. pallidum-VIH em utilizadores de drogas injectáveis e em doentes com infecções a microrganismos que apresentam reactividade cruzada.

O Centers for Disease Control, definiu critérios para o diagnóstico da sífilis, que se dividem em três categorias: diagnóstico definitivo, diagnóstico presuntivo e diagnóstico sugestivo, os quais, se encontram resumidos nas Tabela 8 para sífilis precoce e Tabela 9 para sífilis tardia (Larsen et al. 1998).
Tabela 8. Critérios de diagnóstico de sífilis precoce*

Complexo primário (sífilis primária)

Diagnóstico definitivo
Exame microscópico directo: identificação de *T. pallidum* em amostras das úlceras, no aspirado do glândulo linfático ou no de biopsia

Diagnóstico presuntivo (1 associado a 2 ou 3)
1. Lesão típica
2. Teste não treponémico ou treponémico reactivo sem história de sífilis
3. Indivíduo com história de sífilis e com aumento em duas diluições no título de teste não treponémico actual em relação a teste do passado

Diagnóstico sugestivo (requer 1 e 2)
1. Lesão semelhando úlcera do complexo primária sifilítico
2. Contacto sexual nos 90 dias anteriores com indivíduo com sífilis recente ou secundarismo ou sífilis latente precoce.

Sífilis secundária

Diagnóstico definitivo
Exame microscópico directo: identificação de *T. pallidum* em amostras de lesão, aspirado de glândulo linfático ou de biopsia de lesão

Diagnóstico presuntivo (1 associado a 2 ou 3)
1. Lesões típicas de sífilis secundária da pele ou mucosas
 a) Macular, papular, folicular ou pustular
 b) Condilomas planos – (região anogenital, ou da boca)
 c) Lesões mucosas (orofaringe ou colo cervical)
2. Teste não treponémico título >/= a 8, teste treponémico reactivo e sem história de sífilis
3. Indivíduo com história de sífilis e aumento em duas diluições no título de teste não treponémico actual em comparação com o título do passado

Diagnóstico sugestivo (1 associado a 2 e apenas quando não é possível efectuar testes serológicos)
1. Presença de manifestações referidas anteriormente
2. Contacto sexual nos últimos seis meses com indivíduo com sífilis recente

Sífilis latente precoce

Diagnóstico definitivo
Não é possível porque as lesões não estão presentes no estádio de latência

Diagnóstico presuntivo (1e 2 associados a 3 ou 4)
1. Ausência de sintomas e sinais
2. Teste não treponémico e treponémico reactivos
3. História clínica de teste não treponémico não reactivo no ano anterior
4. Aumento em duas diluições no título de teste não treponémico quando comparado com teste anterior em indivíduo com história de sífilis ou história de sintomas compatíveis com sífilis precoce

Diagnóstico sugestivo (1 associado a 2)
1. Teste não treponémico reactivo
2. História de contacto sexual no ano anterior.

* Adaptado de Larsen *et al.* (1998)
Tabela 9. Critérios de diagnóstico de sífilis tardia

Sífilis benigna e cardiovascular

<table>
<thead>
<tr>
<th>Diagnóstico definitivo</th>
<th>Diagnóstico presuntivo</th>
</tr>
</thead>
</table>
| Exame microscópico directo: identificação de *T. pallidum* em amostras de biopsia tecidual por técnica de imunofluorescência | 1. Teste treponémico reativo
2. Desconhecimento de terapêutica para sífilis
3. Sintomas característicos de sífilis benigna ou de sífilis cardiovascular |

Neurossífilis

<table>
<thead>
<tr>
<th>Diagnóstico definitivo (requer associação de 1 e 2 ou 3)</th>
<th>Diagnóstico presuntivo (requer associação de 1 e 2 ou 3)</th>
</tr>
</thead>
</table>
| 1. Teste treponémico reativo no soro
2. VDRL no liquor reativo
3. Identificação de *T. pallidum* no liquor ou em biopsia tecidual por observação microscópica ou inoculação em animal | 1. Teste treponémico reativo no soro
2. Manifestações clínicas de neurossífilis
3. Aumento de proteínas ou células no liquor na ausência de outra causa conhecida |

* Adaptado de Larsen et al. (1998)

Período de incubação

Aproximadamente 30% dos indivíduos que tiveram contactos sexuais com um indivíduo infectado por *T. pallidum* irão infectar-se (Sparling 1990). No entanto, com nenhum dos testes referidos é possível detectar a infecção por *T. pallidum* no período de incubação, embora Marfin et al. (2001), ao utilizar uma técnica de PCR tendo como alvo o gene da ADN polimerase I, tenham obtido amplificação em quatro dos oito doentes considerados em período de incubação. Por esta razão, é recomendado efectuar terapêutica a todos os doentes com exposição conhecida a indivíduos com sífilis nos 90 dias anteriores, mesmo sem diagnóstico de infecção por *T. pallidum* (CDC 1991b).
Sífilis primária

A detecção directa de *T. pallidum*, um teste não treponémico quantitativo, informação histórica relativamente a terapêutica para sífilis e o diagnóstico de sífilis num parceiro sexual recente, são as informações chave necessárias para o diagnóstico de sífilis primária. A utilização da microscopia de fundo escuro, e de um teste não treponémico, permite o diagnóstico imediato e iniciar terapêutica, assim como a notificação do parceiro sexual logo na consulta inicial. A observação de *T. pallidum* em exsudado de úlcera genital ou extragenital é sinónimo de diagnóstico definitivo de sífilis. A técnica de imunofluorescência directa pode ser útil quando o exame em fundo escuro não é possível ou é inespecífico, como no caso das lesões orais.

A amplificação do ADN por técnica de PCR, além de possibilitar a identificação do microrganismo, permite, também, o diagnóstico diferencial com outros agentes de úlcera genital que muitas vezes podem coexistir (Orle *et al.* 1996). Um teste não treponémico não reativo associado a uma observação microscópica positiva deve-se geralmente a um atraso na resposta immune (Sparling 1999). Um teste não treponémico reativo num doente não tratado ou um aumento em duas diluições no título de um teste não treponémico, num indivíduo com história prévia de terapêutica para a sífilis pode ser considerado como diagnóstico presuntivo de sífilis recente, se *T. pallidum* não foi detectado na úlcera ou se o próprio exame não foi efectuado (CDC 1998). Uma vez que a detecção directa do agente e os testes serológicos podem ser insensíveis na fase precoce da sífilis recente, aqueles devem ser repetidos num período de duas a 12 semanas, para exclusão do diagnóstico de sífilis. A serologia para pesquisa de anticorpos apenas se apresenta positiva em 30% dos casos quando se utiliza o teste VDRL, ou 50% dos casos com o teste FTA-Abs, ELISA ou Western-blot, duas a três semanas após a infecção (Larsen *et al.* 1995). Nesta fase devido à menor sensibilidade do teste de hemaglutinação é recomendada a pesquisa de anticorpos pelo FTA-Abs (Jaffe *et al.* 1978a, Wentworth *et al.* 1978, Shore 1967, Dyckman *et al.* 1980).
Sífilis secundária

O estágio secundário surge, em geral, seis a oito semanas após o início de uma infecção não tratada. Quando a doença atinge este estágio, todos os testes são reactivos atingindo sensibilidade de 100%, podendo também observar-se treponemas nas lesões. A presença do microrganismo pode ser evidenciada por técnicas microscópicas e por técnicas de biologia molecular, como a técnica da PCR. Tal como na sífilis recente a utilização da microscopia de fundo escuro e dos testes não treponémicos permite o diagnóstico rápido, iniciar, de imediato, a terapêutica e notificar o parceiro sexual na visita clínica inicial. Um diagnóstico presuntivo de sífilis secundária baseia-se na presença de lesões típicas e de um teste não treponémico com título superior ou igual a 1:8 em indivíduos sem história prévia de sífilis, ou no caso desta ter existido, um aumento em duas diluições relativamente ao mais recente título anterior de um teste não treponémico.

O título nos testes serológicos pode ser maior nos doentes com co-infecção por VIH, mas a escolha e a interpretação dos testes para o diagnóstico de sífilis secundária são os mesmos, quer exista ou não co-infecção por VIH (Rolfs et al. 1997).

T. pallidum foi detectado no liquor de uma minoria de indivíduos com e sem infecção por VIH e sífilis secundária. O exame de rotina do liquor não é recomendado na ausência de sintomas neurológicos nestes doentes (Rolfs et al. 1997).

Sífilis latente

Por definição, nesta fase estão ausentes sintomas e sinais de infecção, pelo que para se detectar infecção latente são efectuados testes de rastreio. Na sífilis latente precoce os testes não treponémicos são reactivos, mas com o decorrer do tempo o doente entra na fase de latência tardia e a probabilidade dos testes não treponémicos apresentarem reactividade diminui.

Numa população com baixa prevalência de infecção (1 a 2%), a especificidade
dos testes não treponémicos e dos testes treponémicos é de cerca de 99%, pelo que há um aumento da possibilidade de se obterem resultados de falsa reactividade. Contudo, as causas desse tipo de reacções para os testes não treponémicos são diferentes das dos testes treponémicos, pelo que a reactividade de um teste de um grupo pode ser confirmada pela execução de um teste do outro grupo (Larsen e Johnson 1998).

O diagnóstico definitivo de sífilis latente não é, em regra, confirmado, visto ser difícil a obtenção de uma amostra para detecção directa de *T. pallidum*. O diagnóstico presuntivo deve basear-se na reactividade de um teste treponémico associada à reactividade de um teste não treponémico, sem história de sífilis tratada ou no caso de ter existido sífilis tratada no aumento, em duas diluições, no título de um teste não treponémico. Os doentes com co-infecção por VIH podem apresentar títulos de testes não treponémicos mais elevados no estádio de sífilis latente recente, tal como pode suceder nos outros estádios da sífilis recente (Rolfs *et al.* 1997, Musher 1991, Gourevitch *et al.* 1993, Jurado *et al.* 1993), excepção feita quando o doente apresenta imunodeficiência muito avançada (Gregory *et al.* 1990 e Hicks *et al.* 1987). De qualquer modo, quando se suspeita de sífilis utilizam-se os critérios anteriormente referidos.

Sífilis tardia

A sífilis latente tardia ocorre em cerca de um terço dos doentes que não são tratados ou em que a terapêutica não foi eficaz, enquanto que os sintomas de sífilis tardia podem ocorrer 10 a 20 anos após a infecção inicial. No que se refere aos testes serológicos, 30% dos doentes com sífilis tardia apresentarão reactividade no teste treponémico sendo o teste não treponémico não reativo, pelo que devem ser executados testes treponémicos em todos os doentes com teste não treponémico não reativo e suspeita de sífilis tardia.

O diagnóstico definitivo de gomas (sífilis tardia benigna) pode basear-se na observação do microrganismo por uma técnica microscópica ou por técnica de PCR (Horowtiz *et al.* 1994), sendo de referir que o número de treponemas pode ser pequeno. O diagnóstico presuntivo pode ser fundamentado por testes treponémicos reactivos e história de sífilis não tratada.
O diagnóstico de sífilis cardiovascular é afirmado com base na presença de insuficiência ou de aneurisma aórtico, teste treponémico reativo e história de sífilis não tratada.

O exame do liquor com teste VDRL e exame citológico e químico do mesmo está recomendado nos doentes com sífilis latente tardia e nos com sintomas e/ou sinais de neurossífilis.

A neurossífilis tem sido subdividida em neurossífilis assintomática, neurossífilis meningovascular e neurossífilis parenquimatoso. A neurossífilis assintomática é definida por ausência de sinais ou sintomas neurológicos associados à presença de teste serológico para sífilis reativo no soro e alterações no exame citoquímico do liquor e/ou reactividade deste aos testes serológicos. Relativamente ao exame citoquímico do liquor e à serologia podem-se observar pleiocitose (> 5/cm3), e aumento de proteínas (> 45 mg/dl), assim como VDRL reativo ou a evidência de produção local de anticorpos (Tratmont 1995a). A pesquisa de ADN de *T. pallidum* por PCR ou isolamento deste microrganismo (inoculação em animal) são também evidência de neurossífilis assintomática (Tratmont 1995a).

Sempre que um teste VDRL for reativo no liquor, deve ser efectuada quantificação do mesmo, para efeitos de monitorização do resultado da terapêutica. Resultados de VDRL falsamente reactivos no liquor são muito raramente observados (Horowtiz *et al.* 1994), enquanto que reacções falsamente negativas podem ocorrer em doentes com neurossífilis sintomática e assintomática, pelo que um teste de VDRL não reativo, não exclui o diagnóstico. Os testes específicos como o FTA-Abs e o TPHA também têm sido utilizados, sendo mais sensíveis, mas a sua reactividade pode resultar da difusão de imunoglobulinas para o liquor ou da contaminação deste por pequenas quantidades de sangue (Swartz 1999). A produção de anticorpos a nível do sistema nervoso central de forma a discriminar a invasão do mesmo, poderá ser medida directamente pela pesquisa de anticorpos de tipo IgM (*Luger et al*. 1981, *Lee et al*. 1986) ou pelas seguintes fórmulas: (1) título do TPHA-IgG no LCR / IgG total /mg no LCR a dividir pelo título de TPHA-IgG no soro/imunoglobulina total/mg no soro = Índex de TPHA-IgG, (2) título de TPHA no LCR a dividir pela concentração da albumina do LCR/(mg/dl) x 103 /
concentração da albumina no soro (mg/dl) = Index de TPHA. A razão albumina no soro/albumina no LCR superior a 144 é indicativa de barreira hematoencefálica intacta, enquanto que um índice TPHA-IgG superior ou igual a três e um índice de TPHA superior ou igual a 100 são indicativos de produção local de síntese de anticorpos específicos.

Embora o teste de FTA-Abs não seja considerado como teste padrão nesta situação, ele tem sido utilizado para excluir o diagnóstico de neurossífilis quando se apresenta não reactivo no liquor (Jaffe et al. 1978b, Marra et al. 1995). No entanto, um FTA-Abs reactivo no liquor, por si só, pode não ser indicativo de neurossífilis já que, por exemplo, pode apenas indicar a presença de anticorpos de um caso de sífilis correctamente tratada (Jaffe et al. 1978b, Marra et al. 1995).

Avaliação após a terapêutica

Para avaliar a eficácia da terapêutica os doentes devem ser monitorizados no que se refere à resolução dos sintomas e sinais e, ainda, à diminuição do título de anticorpos anticardiolipina, visto serem estes os que diminuem com aquela. A diminuição no título de anticorpos correspondente ao factor quatro (ou seja duas diluições), após a terapêutica presume cura, enquanto que o aumento estabelece insucesso terapêutico ou corresponde a re-infecção (Fiumara 1978, 1979, 1980a, 1980b). O teste não treponémico deve ser efectuado no soro do doente e sempre que possível deve utilizar-se o mesmo tipo de teste e o mesmo laboratório.

Apesar de não existir um critério de cura ou de insucesso terapêutico, a persistência de sinais e de sintomas ou um sustentado aumento em duas diluições indicam terapêutica ineficaz. As normas do CDC (2002a) sugerem, também, que a não redução em duas diluições após seis meses de terapêutica em doentes com sífilis recente e sífilis secundária identifica falência na terapêutica, assim como a ausência na diminuição em duas diluições após 12 a 24 meses em doente com sífilis latente e títulos iniciais superiores ou iguais a 1:32. O tempo necessário para que haja redução em duas diluições após a terapêutica parece ser maior para o RPR que para o VDRL (Brown et al. 1985).

7. Terapêutica

Desde a introdução da sífilis na Europa, foram recomendados diversos métodos e fármacos para a terapêutica desta infecção. O mercúrio e seus derivados foram os primeiros compostos a ser utilizados sob a forma de fumigações (Sartin e Perry 1995) ou através das vias cutânea, oral, rectal ou injectável (Rodrigues e Silva 1987). O mercúrio induzia alguma melhoria nos sintomas, levando a uma sintomatologia menos severa, embora não curasse a doença. No entanto, este agente provocava reacções tóxicas graves, sendo de realçar o aparecimento de intenso aumento de salivação, estomatites, erupções cutâneas, perturbações gastrintestinais e lesões do fígado e rim. William Wallace (1791-1838) introduziu a terapêutica com iodeto associado a pequenas doses de mercúrio, a fim de diminuir essas reacções tóxicas. Em 1884 foram feitas algumas tentativas de substituir mercúrio por bismuto, mas foi apenas em 1912 que o Na-K-bitartrate foi introduzido no tratamento, por Sazerac e Levaditi. Em seguida, foram tentados outros metais como tellurium, vanadium, platinium e ouro que se mostraram ineficazes. A era da quimioterapia moderna inicia-se com Paul Ehrlich (1854-1915) e seu associado Sahachiro Hata (1873-1938) que desenvolveram um derivado arsenical, o diaxidiamidoarsenobenzol (Salvarsan) que actuava directamente no microrganismo e cuja eficácia rapidamente se demonstrou ser superior à do mercúrio, tornando-se, então o medicamento de eleição para a terapêutica antiluética (Sartin e Perry 1995). Embora inicialmente Ehrlich propusesse uma injeção única de 0,3 a 0,4 g, esta foi ineficaz, o que levou não só ao aumento
Introdução geral

das doses, como do número de injeções que passaram a ser repetidas, em regra de cinco a oito, seguidas de novo ciclo após pausa de três a quatro semanas, se a reação de Wasserman se mantivesse positiva (Rodrigues e Silva 1987). No entanto, o Salvarsan era ineficaz na paralisia cerebral, pelo que em 1917 Wagner von Jauregg (1857-1940), psiquiatra em Viena, introduziu a técnica de inoculação da malarioterapia para o tratamento dos casos de paralisia, confirmando experiências passadas que pareciam demonstrar que temperaturas elevadas tinham efeito curativo no processo crónico. Mais tarde, os americanos Fred Kislig e Walter Simpson inventaram um aparelho para produzir electropiréxia. Este aparelho induzia quatro a oito horas de febre por dia, permitindo diminuição na dose de salvarsan a utilizar. No entanto, esta metodologia não trouxe grandes benefícios aos doentes com infecção por T. pallidum.

Atendendo a que o principal objectivo da terapêutica de qualquer infecção é a prevenção da transmissão e das complicações tardias que afectam o doente, a verdadeira revolução na terapêutica da sífilis ocorreu em 1943, quando Mahoney et al. (1943) utilizaram a penicilina, com sucesso, em quatro doentes com sífilis recente que recuperam por completo. Na realidade, nenhuma doença foi tão dramaticamente afectada pela descoberta da penicilina como o foi a sífilis. A incidência diminuiu dezoito vezes, de um pico de setenta e dois casos por cem mil habitantes em 1943 para quatro em 1956 (Tramont 1987).

Os regimes iniciais da terapêutica consistiam em injeções intramusculares de penicilina de curta duração (penicilina G) durante oito a 10 dias, as quais, por serem dolorosas, dificultavam muito a adesão do doente à terapêutica (Tramont 1987). Uma das primeiras penicilinas injectáveis de acção prolongada a ser utilizada foi a penicilina procaínica em óleo com monoesterato de alumínio. A eficácia da penicilina para o tratamento da infecção a T. pallidum foi comprovada através da sua utilização na prática clínica, antes mesmo que estudos controlo terapêutico tivessem sido efectuados.

Embora tenham sido publicados diversos guias de terapêutica (CDC 1991a, CDC 1998, 2002a; Association of Genitourinary Medicine and the Medical Society for the Study of Venereal Diseases 1999a, 1999b, WHO 2001), não existem estudos prospectivos que permitam estabelecer a dose óptima ou a
duração da terapêutica para os diferentes estádios da infecção.
A penicilina oral não é utilizada por não atingir níveis adequados no sangue. Para a terapêutica eficaz, o agente antimicrobiano deve atingir nível treponemicida no sangue e no liquor em caso de neurosífilis. Os níveis de penicilina superiores a 0.018 mg/l são considerados treponemicidas (Idsoe et al. 1972), embora esse valor esteja longe da sua eficácia máxima “in vitro”, o qual é de 0,36 mg/l (Eagle et al. 1950).
A penicilina benzatínica apresenta um pico de concentração plasmática entre as 13 e as 24 horas, com concentração eficaz mantida durante sete a 10 dias. Por outro lado, a penicilina procaínica apresenta um pico de concentração plasmática máximo entre uma a quatro horas, com concentração eficaz mantida entre as 12 e as 24 horas. Para ser eficaz, a concentração treponemicida deve ser mantida, pelo menos, durante sete dias para cobrir o tempo de divisão dos treponemas (30 a 33 horas) na sífilis recente, mas uma duração mais prolongada de tratamento é necessário na sífilis tardia, situação na qual a divisão do microrganismo é mais lenta. Os treponemas podem persistir mesmo após terapêutica aparentemente com sucesso, o que pode resultar do facto de existirem bactérias que “escaparam” à terapêutica ou que ainda se dividem mais lentamente (Collart et al. 1964, Yobs et al. 1968, Smith et al. 1968, Hardy et al. 1970, Tramont 1976).
Como referido, a penicilina e os seus derivados são os agentes antimicrobianos indicados para a terapêutica da sífilis, desde que utilizados nas doses recomendadas. Em doentes com sífilis recente, secundária e latente recente e imunologicamente competentes é recomendada a utilização de uma dose única de 2,4 milhões de UI de penicilina G benzatínica (Larsen et al. 1998), a qual resulta em concentrações bactericidas que se mantêm pelo menos, durante três semanas (McCracken et al. 1973, Rein 1976). Nas situações de neurosífilis deve ser utilizada penicilina G cristalina aquosa ou penicilina procaínica, porque a penicilina benzatínica parece não atingir níveis treponemicidas no sistema nervoso central (Mohr et al. 1976, van der Valk et al. 1988). Foram identificados T. pallidum viáveis no liquor após este tipo de terapêutica (Lukehart et al. 1988) e relatados casos de insucesso, especialmente da neurosífilis e de sífilis ocular (Johns et al. 1987, Musher et al. 1990).
Terapêutica da sífilis recente

Recomenda-se dose única de 2,4 milhões de unidades de penicilina benzatínica para cura clínica em situações de sífilis primária e sífilis secundária, o que previne a transmissão sexual e as complicações tardias. Deve notar-se que em todos os doentes com sífilis deve ser efectuado rastreio de infecção concomitante por VIH. Em áreas de alta prevalência desta infecção ou com comportamentos de risco para a mesma, deve repetir-se a pesquisa de anticorpos anti-VIH três meses depois, se o primeiro teste for negativo. Aos doentes com sífilis e com sintomas sugestivos de doença neurológica ou oftalmica deve ser efectuado exame do liquor e exame oftalmológico, sendo a terapêutica estabelecida de acordo com o resultado desses exames. A invasão do sistema nervoso central por *T. pallidum* associada a alterações do exame citoquímico do liquor é comum no adulto com sífilis primária ou sífilis secundária. No entanto, a neurosífilis apenas se desenvolve num pequeno número de doentes (aos quais deve ser prescrito o regime terapêutico recomendado), pelo que a menos que estejam presentes sintomas ou sinais neurológicos ou oftálmicos, a análise do liquor não é recomendada na sífilis recente.

Os doentes com sífilis recente devem ser monitorizados clinicamente e serologicamente, seis e 12 meses após a terapêutica. Quando não se observa diminuição em duas diluições no título inicial de um teste não treponémico, seis meses após a terapêutica da sífilis primária ou sífilis secundária, provavelmente aquela não foi adequada.

A persistência ou recorrência de sintomas ou sinais e/ou título de teste não treponémico persistentemente aumentado em duas diluições (comparativamente ao título considerado como de base na altura do tratamento) coloca a hipótese de re-infecção ou de terapêutica ineficaz. Estes doentes devem ser tratados de novo e reavalidos para co-infecção pelo VIH. Como é difícil o diagnóstico diferencial entre re-infecção a *T. pallidum* e insucesso terapêutico, deverá recorrer-se a novo exame citoquímico e teste não treponémico do liquor, a fim de se excluir prováveis alterações a nível do sistema nervoso central (CDC 2002a).
Sífilis latente

No que se refere à terapêutica de sífilis latente, há que recordar que esta é caracterizada por seroreactividade sem qualquer outro sinal ou sintoma de doença e que se subdivide em sífilis latente recente e sífilis latente tardia. A recomendação terapêutica difere nestas duas situações, isto é, uma dose única de 2,4 milhões de UI de penicilina G benzatícnica na sífilis latente recente e 2,4 milhões UI de penicilina G benzatícnica, por semana, durante três semanas consecutivas na sífilis latente tardia.

O diagnóstico de sífilis latente recente faz-se quando no decurso de um ano (CDC 2002a) ou dois anos precedentes (WHO 2001), o doente apresentou seroconversão, sinais ou sintomas de sífilis primária, secundária, ou teve um parceiro sexual com diagnóstico de sífilis primária, secundária ou recente.

Os doentes com sífilis latente de duração indeterminada são considerados para efeito de terapêutica como tendo sífilis latente tardia (CDC 2002a). Todos os doentes com sífilis latente devem ser avaliados através da pesquisa de sinais e de sintomas de infecção primária ou secundária, assim como para evidência de sífilis terciária (aortite, goma, irite etc.), com avaliação concomitante para infecção por VIH.

Sífilis terciária

A sífilis terciária refere-se à sífilis cardiovascular e às gomas com exclusão da neurosífilis, devendo instituir-se penicilina G benzatícnica 2,4 milhões de UI intramuscular, semanalmente, durante três semanas consecutivas. A estes doentes e antes da terapêutica, deve ser efectuada punção lombar para estudo do liquor a fim de se excluir o diagnóstico de neurosífilis. Os doentes com sífilis cardiovascular devem também ser acompanhados por um cardiólogista,
porque mesmo com terapêutica adequada a doença cardíaca pode progredir.

Neurossífilis

Em qualquer estádio da infecção a *T. pallidum* pode ocorrer invasão do sistema nervoso central, pelo que qualquer evidência clínica de envolvimento neurológico (disfunção cognitiva, deficit sensorial ou motor), sintomas oftálmicos ou otológicos, alteração a nível de nervos cranianos e sintomas ou sinais de meningite, obriga a punção lombar para exame do liquor, e identificação dos que apresentam alterações, as quais devem ser monitorizados após a terapêutica. A terapêutica indicada para a neurossífilis do adulto é a penicilina G aquosa procaínica, 18 a 24 milhões de UI por dia, em doses de três a quatro milhões de unidades via endovenosa de quatro em quatro horas, em perfusão contínua, durante 10 a 14 dias.

A uveíte sifilítica ou outras manifestações oculares (neuroretinite, nevrite atrófica) estão frequentemente associadas a este quadro clínico, devendo os doentes ser tratados de acordo com as recomendações para a neurossífilis.

Aos doentes com pleiocitose inicial no liquor este exame deve ser repetido de seis em seis meses após a terapêutica, até que a contagem das células seja normal. As proteínas e o VDRL no liquor deverão ser avaliadas. No entanto, estes parâmetros normalizam mais lentamente do que a contagem de células (Hahn e Clark 1946 citado por Larsen et al. 1998). Se a contagem das células no liquor não diminuir seis meses após terapêutica, ou se o liquor não se encontrar com todos os seus parâmetros dentro da normalidade, dois anos após a mesma, o doente deve ser tratado, de novo (CDC 2002a).

Reacção de Jarisch-Herxheim

Esta reacção sistémica ocorre uma a duas horas após o início da terapêutica da sífilis com antibióticos, sobretudo com a penicilina. O quadro clínico é caracterizado pelo aparecimento súbito de arrepios, febre, mialgias, cefaleias, taquicardia, hiperventilação, vasodilatação e hipotensão moderada, tratando-se de uma situação particularmente comum após o tratamento de sífilis.
secundária (70-90%), mas que pode ocorrer após a terapêutica de qualquer outro estádio da sífilis (10 a 25%) (Tramont 1990). A reacção mantém-se, pelo menos, durante 12 a 24 horas e tem sido relacionada com a libertação de produtos pirogénicos estáveis ao calor pelos treponemas (Young et al. 1982). Trata-se de uma síndrome autolimitada, melhorando com terapêutica sintomática com ácido acetilsalicílico de quatro em quatro horas, durante 24 a 48 horas. Os corticóides diminuem, também, o efeito da reacção e podem ser utilizados como terapêutica adjuvante, sobretudo quando se trata de neurossífilis ou sífilis cardiovascular, já que nestes casos o aparecimento da reacção de Jarisch-Herxheim pode ter consequências particularmente graves.

Terapêutica em doentes alérgicos à penicilina

A terapêutica dos indivíduos com sífilis e com alergia à penicilina envolve a utilização de outros antibióticos e requer administrações múltiplas, ficando a eficácia dependente da adesão do doente à terapêutica. Em situações de sífilis primária e sífilis secundária a doxiciclina (100 mg, por via oral, duas vezes por dia, durante 14 dias) e a tetraciclina (500 mg, por via oral, quatro vezes por dia, durante 14 dias) são as alternativas que têm sido utilizadas com mais sucesso (Rein 1972), sendo que a adesão é provavelmente melhor com a doxiciclina, por a tetraciclina apresentar, com mais frequência, efeitos colaterais gastrintestinais. A eritromicina também tem sido utilizada, mas apresenta taxas de insucesso superiores às da penicilina G benzatínica, não previne a sífilis congénita (Hashisaki et al. 1983) e não penetra no liquor nem atravessa a barreira placentária (Philipson et al. 1973).

Alguns estudos clínicos utilizando cefalosporinas de primeira geração (Nicolis e Loucopoulos 1974, Duncan e Knox 1974) e amoxicilina (Onoda 1979) sugerem que estes antibióticos poderão ser eficazes no tratamento de sífilis recente, mas há poucas informações sob a sua utilização por rotina. Os estudos com ceftriaxona (Steele 1984, Hook et al. 1988), o qual apresenta boa penetração na barreira hemato-encefálica, têm mostrado resultados eficazes.

Alguns estudos com azitromicina (Lukehart et al. 1990) demonstraram a sua eficácia no tratamento da infecção experimental em modelo animal (coelho),
num pequeno número de doentes com sífilis recente (Verdon et al. 1994) e na prevenção da sífilis em doentes expostos, numa dose única de 1g por dia, por via oral (Hook et al. 1999). No entanto, serão necessários mais estudos, visto a eficácia destas terapêuticas alternativas não estarem perfeitamente documentadas.

Os doentes com alergia à penicilina e cuja aderência ou monitorização pós-terapêutica não pode ser assegurada devem ser dessensibilizados e tratados com penicilina (CDC 2002a).

No tratamento de doentes com sífilis latente tardia ou de duração indeterminada as únicas terapêuticas alternativas aceitáveis são a doxiciclina ou a tetraciclina, durante 28 dias, devendo o doente ser cuidadosamente vigiado do ponto de vista clínico e serológico. Como regimes alternativos na neurosífilis e em indivíduos com função imune normal, foram utilizados outros regimes terapêuticos como a amoxicilina na dose de 2g associada a 500 mg de probencid, quatro vezes ao dia durante 14 dias (Faber et al. 1983, Morrison et al. 1985, Fiumara 1989, Hay et al. 1990a), ou doxiciclina na dose de 200 mg por via oral, duas vezes por dia, durante três semanas (Yim et al. 1985). A ceftriaxona tem sido, também, utilizada como alternativa em doentes com neurosífilis, embora possa existir certa reacção cruzada com a penicilina, numa dose de 2 g por dia intramuscular ou intravenosa durante 10 a 14 dias (Marra et al. 1992, Hook et al. 1986).

8. Prevenção e controlo

A educação do público em geral sobre as consequências e o modo de prevenir a sífilis e outras IST é essencial.

O rastreio para a sífilis deve ser efectuado por diversas razões, incluindo a prevenção das complicações, a prevenção da sífilis congénita e a diminuição da
sua transmissão (Schmid 1996). Para a prevenção da sífilis congênita o CDC recomenda que todas as grávidas, no 1º e 3º trimestre de gravidez devem efectuar rastreio laboratorial para sífilis (CDC 1998). Por razões óbvias o rastreio deve também ser efectuado entre os dadores de sangue. O diagnóstico e tratamento da infecção são componentes essenciais no controlo da mesma (Cates *et al.* 1996) uma vez que a detecção precoce e a terapêutica consequente diminuem as complicações, assim como a transmissão (CDC 1988, Hart 1980). Historicamente, a notificação dos contactos com avaliação, tratamento e monitorização são essenciais para limitar a disseminação da doença (Kaufman *et al.* 1974). Uma vez que não é possível prever quais os contactos de doentes com sífilis que se irão infectar, tem sido recomendado o tratamento profiláctico (Hart 1980, Willcox 1973). Este tipo de procedimento associado à notificação dos parceiros tem-se mostrado eficaz no controlo de epidemias (Ball 1965, Lee *et al.* 1987). A investigação é, também, essencial para identificar e avaliar novos métodos de controlo da sífilis e da sua prevenção. Por exemplo, uma dose única oral de medicação associada a um teste rápido não invasivo seria extremamente útil na identificação e no controlo dos doentes (St. Louis 1996). A sequenciação recente do genoma de *T. pallidum* tem levado ao desenvolvimento de técnicas de diferenciação de estirpes e subtipos, o que irá permitir melhorar os estudos epidemiológicos da sífilis (St. Louis e Wasserheit 1998). Para a eliminação eficaz da infecção será de grande importância identificar como, porquê e onde a transmissão de sífilis persiste nos períodos de declínio.
9. Objectivos gerais

Tendo em conta as dificuldades existentes no que se refere ao diagnóstico de infecção a *Treponema pallidum* são objectivos gerais desta tese:

- avaliar várias técnicas serológicas para o diagnóstico de sífilis, no sangue e no liquor, incluindo técnicas comercializadas, não comercializadas e técnicas de biologia molecular.

- estudar a associação entre falsa reactividade dos testes não treponémicos em indivíduos VIH e em toxicodependentes.

- desenvolver e optimizar uma técnica de subtipagem de *Treponema pallidum* que possa ser utilizada em estudos de epidemiologia molecular e de patogénese deste microrganismo.
Capítulo 2. Pesquisa de anticorpos anti-*Treponema pallidum* no sangue
1. Introdução

Como referido no capítulo 1, o diagnóstico da sífilis baseia-se na avaliação clínica, na detecção e identificação do seu agente etiológico e na utilização de testes serológicos para pesquisa de anticorpos.

A variabilidade das lesões dermatológicas sifiliticas e das outras apresentações clínicas desta infecção, com os seus estádios sintomático e assintomático, e as suas manifestações atípicas, torna essencial a detecção do microrganismo ou a pesquisa de anticorpos anti-\textit{T. pallidum}. A sífilis primária, a neurosífilis, a sífilis latente (sobretudo a latente tardia ou a de duração indeterminada) e a sífilis congênita assintomática são as que mais problemas colocam do ponto de vista de diagnóstico. Estes tornam-se, ainda, mais complexos, quando o doente apresenta infecção simultânea por VIH ou nos indivíduos toxicodependentes por via endovenosa, nos quais a reactividade dos testes serológicos pode estar alterada.

Os diversos testes serológicos usados no diagnóstico laboratorial são agrupados e classificados consoante a sua aplicação em testes de rastreio, testes de confirmação e testes de monitorização terapêutica. Esta forma de agrupamento dos testes serológicos para o diagnóstico da sífilis deve-se às diferenças existentes entre o desenho de cada teste e a sua especificidade e sensibilidade, ao início e duração da sua reactividade, à sua manutenção ou desaparecimento após a terapêutica e à associação entre a reactividade e os diferentes estádios da infecção.

Se um destes é reativo, deve confirmar-se com um teste que utilize antigênios treponémicos para identificação específica de anticorpos anti-*T. pallidum*, como o teste de hemaglutinação (TPHA) ou o teste de imunofluorescência indirecta (FTA-Abs). Apesar de, em geral, ser preconizada a associação de um teste específico e um teste inespecífico no rastreio dos doentes, actualmente existem, recomendações, de alguns grupos de investigadores que sugerem que, em populações com baixa prevalência de infecção a *T. pallidum* a utilização de uma técnica imunoenzimática (EIA) com base num antigénio treponémico, pode ser a alternativa apropriada ao rastreio combinado de um teste não treponémico com um teste treponémico (Association of Genitourinary Medicine and the Medical Society for the Study of Venereal Diseases 1999a, 1999b, Egglestone e Turner 2000). Contudo, em regiões onde a prevalência é alta, continua a ser recomendada a utilização de um teste não treponémico com confirmação de reactividade por um teste treponémico (CDC 2002a).

Os objectivos deste capítulo foram:

- Comparar entre si os testes serológicos clássicos utilizados no diagnóstico da sífilis (treponémicos e não treponémicos), com a finalidade de relacionar a sua reactividade com a presença de infecção a *T. pallidum*.

- Estudar a associação entre a falsa reactividade dos testes não treponémicos quando presente infecção por VIH e/ou a toxicodependência.

- Avaliar duas novas técnicas comercializadas, uma de aglutinação (TP.PA) e uma imunoenzimática (SYPHILIS-EIA), assim como uma técnica não comercializada de Western blot, no diagnóstico da infecção a *T. pallidum* nos seus diferentes estádios.
2. Material e métodos

2.1. População

Os doentes incluídos no estudo foram provenientes de consultas e serviços hospitalares descriminados na Tabela 10.

<table>
<thead>
<tr>
<th>Origem</th>
<th>Número de casos</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro Saúde da Lapa</td>
<td>912</td>
<td>69,5</td>
</tr>
<tr>
<td>Hospital de Egas Moniz</td>
<td>118</td>
<td>9,0</td>
</tr>
<tr>
<td>Hospital Garcia de Orta</td>
<td>62</td>
<td>4,7</td>
</tr>
<tr>
<td>Hospital S. Francisco de Xavier</td>
<td>36</td>
<td>2,7</td>
</tr>
<tr>
<td>Hospital S. João de Deus</td>
<td>19</td>
<td>1,4</td>
</tr>
<tr>
<td>Maternidade Dr. Alfredo da Costa</td>
<td>70</td>
<td>5,3</td>
</tr>
<tr>
<td>Instituto de Higiene e Medicina Tropical</td>
<td>59</td>
<td>4,5</td>
</tr>
<tr>
<td>Outros</td>
<td>36</td>
<td>2,7</td>
</tr>
<tr>
<td>Total</td>
<td>1312</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Após consentimento informado, foram obtidos dados epidemiológicos e clínicos, efectuada colheita de sangue e de liquor, quando se pretendia excluir diagnóstico de neurosífilis.

O sangue foi centrifugado à chegada ao laboratório para obtenção de soro. Este foi dividido em alíquotas de 0,5ml, sempre que possível, sendo uma parte utilizado de imediato para a execução dos testes serológicos e o restante armazenado a – 20ºC para posterior utilização, quando necessário.

Receberam-se amostras de um total de 1312 indivíduos com idade média de 39 anos, variando entre os 11 e os 83 anos, com predomínio dos grupos etários entre os 20 e os 55 anos (Figura 8).
No que se refere à sua distribuição por gênero, estudaram-se 464/1312 (35,4%) mulheres, com idade média de 35,21 das 403 com idade conhecida, e 848/1312 (64,6%) homens com idade média 41,19 entre os 740 com idades conhecidas (Figura 9).
Aos 1312 indivíduos incluídos no estudo, foi diagnosticada: sífilis primária em 62, sífilis secundária em 45, sífilis latente em 336 e neurossífilis em 8. Dos restantes 861 indivíduos, 418 não apresentavam história clínica, sintomas ou sinais compatíveis com diagnóstico de sífilis nem reactividade serológica, sendo considerados como não possuindo infecção a *T. pallidum*, enquanto que 443, por terem efectuado terapêutica para a sífilis e não apresentarem sintomas ou sinais daquela infecção, foram considerados como sífilis tratada (Tabela 11).

Tabela 11. Grupos populacionais estudados

<table>
<thead>
<tr>
<th></th>
<th>Nº de casos</th>
<th>Casos/total (%)</th>
<th>Válidos (%)</th>
<th>Cum. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem sífilis</td>
<td>418</td>
<td>31,9</td>
<td>31,9</td>
<td>31,9</td>
</tr>
<tr>
<td>Sífilis recente</td>
<td>62</td>
<td>4,7</td>
<td>4,7</td>
<td>36,6</td>
</tr>
<tr>
<td>Sífilis secundária</td>
<td>45</td>
<td>3,4</td>
<td>3,4</td>
<td>40,0</td>
</tr>
<tr>
<td>Sífilis latente</td>
<td>336</td>
<td>25,6</td>
<td>25,6</td>
<td>65,6</td>
</tr>
<tr>
<td>Neurossífilis</td>
<td>8</td>
<td>0,6</td>
<td>0,6</td>
<td>66,2</td>
</tr>
<tr>
<td>Sífilis tratada</td>
<td>443</td>
<td>33,8</td>
<td>33,8</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>1312</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Aos indivíduos com sífilis era pedido que voltassem à consulta, para monitorização após a terapêutica, aos três, seis, 12 e 24 meses, dependendo do estádio da sífilis e de acordo com as recomendações do CDC (2002a), na qual se efectuava uma observação clínica e colheita de sangue.

Para o estudo da associação entre a falsa reactividade nos testes não treponémicos e infecção por VIH e/ou a toxicodependência incluíram-se soros de doentes infectados por VIH provenientes da Unidade Virologia do IHMT e soros provenientes de uma população de mulheres reclusas do Estabelecimento Prisional de Tires, colhidos no âmbito de um projecto da Unidade de DST subsidiado pela Comissão Nacional de Luta contra a SIDA.
2.2. Teste VDRL – Disease Research Laboratory

A técnica utilizada foi o VDRL *Omega Diagnostic Limited* – IMMUNOTREP, um teste de floculação de leitura microscópica que utiliza como antigénio uma solução etanólica de 0,9% de colesterol, 0,3% de cardiolipina bovina e 0,2% de lecitina. A pesquisa de anticorpos foi efectuada em lâmina, segundo protocolo fornecido pela casa comercial.

O antigénio foi preparado antes da execução do teste, sendo a solução antigénica diluída com o tampão VDRL salino fornecido.

As amostras de soros foram descomplementados por aquecimento a 56ºC durante 30 minutos antes do teste ser efectuado e sempre que existiu um intervalo de mais de quatro horas entre a inactivação e a sua execução.

Todas as amostras foram testadas não diluidas (50 µl de amostra adicionada de 20 µl de antigénio) a que se seguia uma diluição de 1:16 para os soros, a fim de prevenir o fenómeno de prozona. Um soro reactivo e um soro não reactivo foram sempre testados em simultâneo com as amostras, de modo a servirem de controlo. A leitura do resultado foi efectuada ao microscópio óptico usando ocular e objectiva de 10x, e os resultados registados como teste positivo sempre que se observaram agregados, fracamente positivo quando presentes agregados finamente dispersos e negativo quando não existiam agregados.

Todas as amostras reactivas foram em seguida semiquantificadas, efectuando-se diluições seriadas de factor dois da amostra a estudar com o tampão VDRL fornecido e considerando-se como título (em dils - D) o valor recíproco da última diluição na qual se observou a reactividade.

2.3. Teste RPR – Rapid Plasma Reagin

O teste RPR, *Rapid Plasma Reagin (RPR)* – BECTON DICKINS é de leitura macroscópica, constituído por uma suspensão antigénica estabilizada de partículas de carbono pronta a utilizar, constituída por 0,003% de cardiolipina, 0,0020 – 0,022% de lecitina, 0,09% de colesterol, 0,02% de carbono, 0,0125 M de ácido etilenediaminotetracético (EDTA) e 10% de cloreto de colina. O EDTA
estabiliza o antigénio, eliminando a necessidade de preparação diária, obrigatória quando se utiliza o teste VDRL; o cloreto de colina torna desnecessária a inactivação dos soros e aumenta a reactividade do antigénio, enquanto que as partículas de carbono permitem a visualização macroscópica da reacção.

O teste foi efectuado em cartões fornecidos e executado conforme o protocolo estabelecido. Para se efectuar o seu controlo, a suspensão antigénica era testada com soros controlo de vários níveis de reactividade antes de se testar as amostras.

Tal como para o VDRL, as amostras foram testadas não diluídas (50 µl de amostra e 17 µl de suspensão antigénica), sendo o soro também diluído a 1:16 em soro fisiológico para controlar o fenómeno de prozona.

A leitura foi efectuada após rotação de oito minutos em agitador mecânico a 100 rpm, considerando-se haver reactividade quando se observou aglutinação (floculação) forte a mínima. A ausência de aglutinação foi interpretada como falta de reactividade.

Em seguida, quantificaram-se as amostras reactivas. O teste quantitativo foi executado do mesmo modo que o qualitativo, com o pormenor de se terem efectuado diluições seriadas de dois em dois. A diluição realizou-se com soro fisiológico a 0,9%, ou que continha 2% de soro humano seronegativo para infecção por *Treponema pallidum*, quando de diluição superior ou igual a 1:32. Tal como para o VDRL considerou-se como título a última diluição em que existiu reactividade.

2.4. Teste de imunofluorescência indirecta

O *Fluorescent Treponema Antibody Absorbed Test* – FTA-Abs IgG e FTA-Abs IgM – EUROIMMUN, foi um, dos testes treponémicos utilizados.

Na execução deste, a amostra a estudar é colocada em contacto com o antigénio de *T. pallidum* fixado na lâmina fornecida. A reacção é evidenciada pela utilização de uma imunoglobulina anti-humana anti-IgG ou anti-IgM,
consoante o tipo de anticorpos que se pretendem pesquisar, conjugada com o isotiocianato de fluoresceína, que ao combinar-se com os anticorpos IgG ou IgM que aderiram aos treponemas fixados, resulta numa reacção observável ao microscopio de fluorescência.

As instruções da casa comercial foram seguidas, na execução da técnica. Antes das amostras serem colocadas em contacto com os treponemas fixados nas lâminas, foram absorvidas com *Treponema phagedaenis*, a fim de eliminar reactividade cruzada com anticorpos inespecíficos.

Quando da pesquisa de anticorpos de tipo IgM efectuou-se também imunoabsorção com o reagente *EUROSOR, RF-Absorbent* – EUROIMMUNE. Este reagente contém anticorpos anti-humanos de cabra, com alta afinidade para os anticorpos de tipo IgG, eventualmente presentes na amostra, os quais precipitam após a reacção ter tido lugar.

O factor reumatóide, quando presente, será absorvido pelo complexo IgG/IgG anti-humano, prevenindo-se a falsa reactividade devida à presença daquele factor.

Em cada determinação foram utilizados um controlo reativo e um controlo não reactivo. As amostras absorvidas e com diluição final de 1:10 (25 µl) foram colocadas durante 30 minutos em contacto com o antigénio fixado na lâmina. Após esse período, os anticorpos não ligados foram lavados com o tampão fosfato salino pH 7,2 (PBS) adicionado de Tween 20 a 0,2%.

Após a lavagem, adicionou-se o anticorpo conjugado anti-IgG ou anti-IgM, diluído a 1:5 em PBS-Tween 20 (20µl), conforme o tipo de anticorpos a evidenciar, efectuando-se nova incubação durante mais 30 minutos.

Por fim, as láminas foram lavadas, cobertas com óleo de imersão e lamela e observadas ao microscopio de fluorescência com objectiva de 40x.

Para a leitura do resultado considerou-se como presença de reactividade sempre que se observou fluorescência evidente dos treponemas que cobriam a área de reacção na lâmina.

As amostras com ausência de fluorescência dos treponemas foram consideradas como não reactivas.
2.5. Teste de hemaglutinação (TPHA)

O teste de hemaglutinação TPHA – Phasyl 210 – Diagast executado neste trabalho utiliza eritrócitos de carneiro sensibilizados com extracto de *T. pallidum* – estirpe Nichols. Estes, quando colocados em contacto com a amostra a estudar nas placas de microtitulação, aglutinam na presença de anticorpos anti-*T. pallidum* sedimentando em tapete homogéneo. Quando a amostra não contém anticorpos anti-*T. pallidum* não há reacção e os eritrócitos caem em botão no fundo do micropoço.

Para controlo da reacção utilizaram-se células não sensibilizadas, as quais permitem verificar a presença de reactividade inespecífica. A técnica foi efectuada segundo o protocolo fornecido pela casa comercial. Inicialmente as amostras foram rastreadas e as positivas tituladas. Em cada determinação foram usados um soro controlo positivo e outro negativo.

Para o rastreio utilizaram-se 80 µl de eritrócitos não sensibilizados no poço 1 da microplaca e 80 µl de eritrócitos sensibilizados no poço 2, adicionando em seguida 1 µl de soro (diluição de 1:80) ou 10 µl de liquor (diluição 1:8).

A leitura efectuou-se após homogeneização e incubação durante duas horas à temperatura ambiente.

A reacção foi considerada reactiva sempre que se observou o fundo do micropoço completamente atapetado por um véu uniforme ou um véu associado a um ligeiro botão de eritrócitos e não reactiva, quando se visualizou um anel de eritrócitos no fundo do micropoço ou sedimentação em um único ponto.

As amostras com leitura reactiva foram, em seguida, quantificadas por diluições em progressão geométrica de factor dois, a partir de 1:80 da amostra de soro e de 1:8 de amostra de liquor, com o reagente de eritrócitos sensibilizados, efectuando-se, simultaneamente, titulação do controlo positivo. O título da amostra foi considerado o valor da maior diluição em que se observou reactividade.
2.6. Teste de aglutinação (TP.PA)

O teste de aglutinação SERODIA–TP.PA – FUJIREBIO INC. é um teste de princípio básico semelhante ao de hemaglutinação, que em vez de eritrócitos utiliza partículas de gelatina sensibilizadas com a estirpe de Nichols de *T. pallidum*.

A técnica foi efectuada em microplacas, segundo o protocolo fornecido pela casa comercial, dirigido apenas a amostras de soro.

Nesta dissertação utilizou-se a técnica de TP.PA em amostras de soro e liquor, comparando-se os resultados com os dos outros testes de pesquisa de anticorpos. As amostras foram rastreadas e as reactivas tituladas, tendo sido sempre utilizado em simultâneo soros, controlo positivo e negativo.

Para o rastreio as amostras foram diluídas com o reagente de diluição fornecido, tendo-se adicionado em seguida 25µl de partículas não sensibilizadas à diluição da amostra de 1:40 e 25 µl de partículas sensibilizadas à diluição da amostra de 1:80. De seguida, foram, então, homogeneizadas e incubadas durante duas horas à temperatura ambiente, após o que se procedeu à sua leitura. Nesta, foram consideradas como reactivas as amostras que apresentavam partículas aglutinadas, cobrindo a superfície do micropoço uniformemente ou com um anel grande e bem definido de contorno irregular e aglutinação periférica. Pelo contrário, foi estabelecida como ausência de reactividade quando as partículas se concentravam em forma de botão no centro do micropoço, com o contorno externo bem definido e considerada reacção duvidosa quando as partículas tomaram forma de anel compacto com um contorno externo arredondado e liso.

As amostras reactivas foram, em seguida, tituladas, simultaneamente com o controlo positivo, sendo diluídas seriadamente, a partir da diluição de 1:80 com o reagente de diluição, colocando-se em seguida 25 µl de partículas sensibilizadas em cada uma das diluições. A leitura foi efectuada após duas horas de incubação à temperatura ambiente, considerando-se como título a maior diluição que apresentava reactividade.

A execução das amostras de liquor seguiu-se o protocolo utilizado na técnica de TPHA e já referido anteriormente.
2.7. Teste imunoenzimático (EIA)

A técnica imunoenzimática usada neste trabalho foi a SYPHILIS IgG EIA e IgM KIT EIA DiaSorin, utiliza como antigénio extracto de *T. pallidum* (estirpe de Nichols), que se encontra fixado nos poços de uma microplaca.
Para evidenciar essa ligação utilizou-se imunoglobulina anti-humana de tipo IgG ou IgM, conjugada com uma enzima. Esta, ao reagir com um substrato, evidencia, por reacção colorimétrica, a presença ou ausência de anticorpos na amostra.
Novamente, foram seguidas as instruções da casa comercial na execução da técnica. As amostras diluídas a 1:100, com o diluente, foram colocadas em contacto com antigénio purificado de *T. pallidum* que reveste os micropoços da placa. Após incubação de duas horas, os componentes do soro não ligados foram lavados, com tampão fosfato salino (PBS-Tween 20). Em seguida, adicionou-se 100 µl de anticorpo monoclonal anti-humano marcado com a peroxidase, com a diluição de 1:20, aos micropoços da placa, incubando duas horas, com a finalidade de evidenciar a reacção antigénio-anticorpo.
A enzima ligada foi revelada pela reacção com o substrato cromogéneo tetrametilbenzidina (TMB). A utilização de anticorpo monoclonal anti-humano de tipo IgG ou IgM conjugado serviu para diferenciar entre os anticorpos de tipo IgG e de tipo IgM, consoante o tipo de anticorpos a pesquisar.
A leitura da reacção imunoenzimática efectuou-se em espectofotómetro com filtro de 450 nm.
A técnica foi validada pela introdução, em duplicado, de um controlo negativo e de dois controlos positivos, considerando-se fiável quando a média dos controlos era inferior ou igual a 0.250 de dendidade óptica (DO) para controlo negativo, entre 0.300 a 0.500 de DO para o controlo positivo baixo e superior a 0.500 de DO para o controlo positivo alto.
Para cada amostra, os resultados foram determinados pelo índice de actividade, que compara a absorvância da amostra com a absorvância do controlo mais baixo. O resultado foi considerado positivo quando o índice foi superior ou igual a 1.1, negativo quando inferior ou igual a 0.9 e duvidoso ou indeterminado quando entre 0.9 a 1.1.
2.8. Técnica de Western blot

Neste estudo empregou-se este método na pesquisa de anticorpos anti-*T. pallidum* de tipo IgG e IgM.

Preparação de antigénio de *Treponema pallidum*

O antigénio foi preparado a partir de *T. pallidum* (estirpe Nichols), mantido “in vivo” em coelho branco adulto. A estirpe de Nichols de *Treponema pallidum* subespécie *pallidum* utilizada foi gentilmente cedida pelo Dr. Vittorio Sambri do departamento de Microbiologia do Hospital de St. Orsola da Universidade de Bolonha (Bolonha-Itália) e armazenada em azoto líquido.

Os coelhos adultos foram inoculados intratesticularmente, sob anestesia geral, com 1 ml de uma suspensão, com cerca de 2 milhões de *T. pallidum/ml. Antes de inoculados, foi-lhes retirado sangue para efectuar os testes de RPR e TPHA com a finalidade de excluir infecção a *Treponema paraluiscuniculi*. Após a inoculação os coelhos foram mantidos no biotério com alimentação sem antibióticos, sendo observados todos dias para o aparecimento de orquite. Após uma semana colheu-se sangue para detecção da presença de anticorpos pelos testes de RPR e TPHA.

Quando se verificava a presença de orquite e de testes serológicos reactivos sacrificou-se o animal (geralmente entre o 12º e o 14º dia após inoculação) por eutanásia com thiopental (Eutasil). Os testículos foram retirados assépticamente, libertados de todos os tecidos envolventes e macerados.

A extracção de *T. pallidum* foi efectuada em frasco contendo 15 ml de meio de extracção estéril, tampão fosfato salino com pH 7.2 (PBS). O macerado foi lavado repetidamente, em PBS estéril (cerca de três lavagens) e removem-se os restos celulares por centrifugação a 1,400 x g a 4°C. Os sobrenadantes das diferentes lavagens foram decantados e misturados, sendo em seguida centrifugados a 16.000 x g durante 20 minutos a 4°C. Os sedimentos contendo *T. pallidum* foram lavados com PBS, sendo os treponemas concentrados cerca de cem vezes em relação ao volume primário da centrifugação.

Em seguida foi efectuada observação em microscópio de fundo escuro, feita
contagem, diluição em PBS estéril de modo a obter uma suspensão de treponemas de 10^9 bactérias/ml sendo congelada em pequenos alíquotos a –80ºC.

Electroforese das proteínas antigénicas

A electroforese das proteínas do extracto treponémico foi realizada de acordo com Laemmli *et al.* (1970). As fracções proteicas foram separadas por electroforese em gel de poliacrilamida em SDS (SDS-PAGE) a 12% (12 ml de acrilamida a 30%, 7,5 ml de tris-base HCl 1,5M pH 8,8; 4 ml de sucrose a 50%, 9,87 ml de H$_2$O pura, 300 µl de SDS - dodecil sulfato de sódio a 10%, 300 µl de uma solução de persulfato de amónia [APS] a 10% e 25 µl de solução de tetrametil-etilenodiamina [Temed – Biorad]) em sistema de gel vertical (Hoefer 400, Amersham Pharmacia Biotech).

O gel de separação foi polimerizado entre as placas de vidro, após o que se adicionou o gel de concentração em SDS a 4% (1,7 ml de acrilamida, 6,8 ml de H$_2$O pura 1,25 ml de tris base HCl 0,5% pH 6,8, 200 µl de SDS, 100 µl de APS e 10 µl de Temed). Um pente contínuo, com um poço para colocação do marcador de pesos moleculares, foi colocado e deixou-se polimerizar, após o que se retirou o pente e se colocou o gel na tina inferior do aparelho de electroforese. Em seguida aplicou-se a tina superior. Ambas as tinas foram preenchidas com o tampão de tris-glicina – SDS (12g de tris base HCl, 57,2g de glicina, 8g de SDS). Em seguida foi depositado o antigénio previamente diluído a 1:2 com o tampão (SDS a 2%, M-Tris pH 6,8, 10% de glicerol, 1% de mercaptoetanol, 0,5 ml de azul de bromofenol a 1%) e fervido durante cinco minutos em banho-maria.

O marcador de peso molecular Rainbow™ (Amersham), tratado da mesma forma que a amostra, foi, também, depositado e fez-se passar pelo sistema uma corrente eléctrica constante de intensidade de 6 mA, cerca de 18 horas. Todos os ensaios foram realizados com uma suspensão de 10^9 *T. pallidum* /ml.

Após a electroforese efectuou-se a detecção das bandas de proteínas por coloração de uma tira do gel com Azul de Coomassie (Merck). Para tal, o gel era colocado numa solução de coloração (quatro comprimidos de Azul de Coomassie R250 dissolvidos em 250 ml de mistura de metanol/ácido acético/água -
Pesquisa de anticorpos anti-\textit{Treponema pallidum} no sangue

40/10/50; v/v/v) durante uma hora a 37°C, sendo descorado em seguida com uma solução descorante (metanol/ácido acético/água (30/10/60; v/v/v) durante o tempo necessário para a visualização das bandas azuis sob um fundo claro.

\textbf{Western blot}

As proteínas antigénicas separadas foram, em seguida, transferidas para uma membrana hidrofóbica de polivinilidene difluoreto (PVDF- Hybond – P - PVDF membrane – Amersham). Antes de se efectuar a transferência, a membrana e o gel foram imersos em tampão de transferência tris-glicina (3,3g tris – base HCl e 14,4g glicina - Merck) sob agitação durante 30 minutos. Ao fim desse tempo, colocou-se o gel e a membrana de PVDF, numa tina vertical (Trans-Blot - Cell-Biorad) completamente submersos com o mesmo tampão de transferência e entre dois grandes eléctrodos em painel. A transferência decorreu sob corrente eléctrica de 60 V durante uma hora e quinze minutos, após o que a membrana foi retirada e lavada em PBS-Tween 0,1% (v/v).

Esta transferência foi controlada pela visualização do marcador de pesos moleculares na membrana, e por coloração com “tinta da china” (PBS 100 ml, Tween 20 0,3% e tinta da china 100 µl) de uma tira do blot.

Em seguida separou-se a tira com o marcador de peso molecular, sendo esta e a restante membrana identificadas pela data da execução da transferência e guardando-se a membrana no frio a – 4°C até ser utilizado.

Antes da utilização, a membrana foi cortada em tiras de cerca de 2 mm que se colocaram em cuvetes de incubação. Em seguida cada tira foi mergulhada em metanol (100%), passada por água e bloqueada por imersão numa solução de bloqueio (PBS com 5% de leite desnatado - w/v) durante uma hora à temperatura ambiente, sob agitação, sendo em seguida lavada três vezes com o tampão PBS-Tween 20 a 0,1%.

Um volume apropriado da amostra a estudar, de modo a obter uma diluição de 1:100 para os soros e de 1:50 para os líquores, foi adicionado a cada cuvete de incubação contendo a tira, e incubado durante 18 horas à temperatura ambiente, sob agitação. Os controlos, positivo e negativo, foram estudados em
Pesquisa de anticorpos anti-*Treponema pallidum* no sangue

Simultâneo com as amostras, em cada um dos ensaios. Após a incubação as tiras foram lavadas com PBS-Tween 20 e incubadas com imunoglobulina de coelho, anti-IgG ou anti-IgM humana conjugada com peroxidase (Dako) e diluída em PBS-Tween a 1:500, durante duas horas, à temperatura ambiente sob agitação. Após a incubação com o conjugado, as tiras foram lavadas e mergulhadas no substrato de peroxidase 3,3-diaminobenzidine (um comprimido de ureia peroxidase e outro de tris-tampão dissolvidos em 5 ml de H₂O destilada - Sigma Fast 3,3’-Diaminobenzidine Tablet Sets DAB peroxidase; SIGMA), até aparecimento das bandas, o que correspondia a cerca de dez minutos. A reacção foi suspensa por imersão das tiras em água destilada.

Os soros que apresentaram reactividade para três das cinco proteínas TpN 15, TpN 17; TpN 37, TmpA, TpN47 (George *et al.* 1998c), foram considerados como reactivos.
3. Resultados

3.1. Comparação dos testes não treponênicos

A reactividade dos testes não treponênicos foi avaliada em 1231 soros, sendo o VDRL reativo em 656/1231 (53,3%) e não reativo em 575/1231 (46,7%), enquanto que o RPR apresentou reactividade em 604/1231 (49,1%), não tendo demonstrado em 627/1231 (50,9%). A taxa de concordância entre os dois testes foi de 93,5%. Sessenta e seis dos 656 (10%) soros que apresentaram reactividade no VDRL e 14/575 (2,4%) dos que não a demonstraram no VDRL foram não reactivos e reactivos no RPR, respectivamente (Tabela 12 e Figura 10).

<table>
<thead>
<tr>
<th></th>
<th>VDRL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não reativo</td>
<td>Reactivo</td>
</tr>
<tr>
<td>RPR</td>
<td>Não reativo</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>Reactivo</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>575</td>
<td>656</td>
</tr>
</tbody>
</table>

Figura 10. Comparação (%) dos resultados dos testes VDRL e RPR
Pesquisa de anticorpos anti-*Treponema pallidum* no sangue

Dos 66 soros reactivos no VDRL e não reactivos no RPR, quatro provinham de doentes sem história clínica, sem sintomatologia e sem reactividade serológica em nenhum outro teste para infecção a *T. pallidum*, pelo que foram considerados como nunca tendo tido sífilis, um foi reativo nos testes treponémicos, cujo VDRL diminuiu após terapêutica pelo que se considerou como estádio de sífilis latente. Os restantes 61, também reactivos nos testes treponémicos, eram provenientes de indivíduos sem sintomas ou sinais de sífilis activa e que tinham efectuado terapêutica, pelo que foram considerados como doentes com sífilis tratada. Relativamente aos 14 doentes com soros reactivos no RPR e sem reactividade no VDRL e utilizando os mesmos critérios, cinco foram considerados como nunca tendo tido sífilis, um como tendo sífilis latente e os restantes oito com sífilis tratada.

Uma vez que, tal como mencionado anteriormente, o FTA-Abs-G é geralmente usado como teste padrão, foi efectuado estudo da sensibilidade e especificidade dos testes VDRL e RPR nos diferentes estádios da infecção, em doentes com história de sífilis correctamente tratada e em doentes sem sífilis (Tabela 13).

Tabela 13. Sensibilidade e especificidade dos testes VDRL e RPR em comparação com o teste FTA-Abs

<table>
<thead>
<tr>
<th></th>
<th>VDRL</th>
<th>RPR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensibilidade Nº+vo/FTA-Abs+vo (%)</td>
<td>Especificidade Nº-vo/FTA-Abs-vo (%)</td>
</tr>
<tr>
<td>Sífilis primária</td>
<td>57/62 (91,9%)</td>
<td>57/62 (91,9%)</td>
</tr>
<tr>
<td>Sífilis secundária</td>
<td>45/45 (100%)</td>
<td>45/45 (100%)</td>
</tr>
<tr>
<td>Sífilis latente</td>
<td>321/322 (99,7%)</td>
<td>321/322 (99,7%)</td>
</tr>
<tr>
<td>Neussífilis</td>
<td>8/8 (100%)</td>
<td>8/8 (100%)</td>
</tr>
<tr>
<td>Sífilis tratada</td>
<td>191/393 (48,6%)</td>
<td>140/393 (35,6%)</td>
</tr>
<tr>
<td>Sem sífilis</td>
<td>360/388 (92,8%)</td>
<td>359/388 (92,5%)</td>
</tr>
</tbody>
</table>
Os dois testes apresentaram sensibilidades iguais nos vários estádios de sífilis, sendo de 91,9% na sífilis primária, 100% na sífilis secundária, 99,7% na sífilis latente e 100% na neurossífilis. Nos doentes com sífilis tratada a sensibilidade do VDRL foi de 48,6%, enquanto que no RPR foi de 35,6%.
A especificidade foi de 92,8% (360/388) para o VDRL e de 92,5% (359/388) para o RPR, correspondendo a uma taxa de falsa reactividade de 7,2% (28/388) no VDRL e de 7,5% (29/388) para o RPR.

3.2. Monitorização do resultado da terapêutica com os testes não-treponêmicos

A monitorização após a terapêutica de doentes com sífilis deve ser orientada pela observação clínica e pela pesquisa de anticorpos por teste não treponêmico com titulação, geralmente aos três, seis, 12 meses para os estádios de sífilis recente e até aos dois anos para os doentes com sífilis tardia e neurossífilis. Considera-se que a terapêutica teve sucesso quando se observa diminuição significativa no título do teste não treponêmico (pelo menos em duas diluições em relação ao título inicial), ou quando o teste se torna não reativo (seroreversão). A monitorização terapêutica dos doentes incluídos neste estudo foi efectuada, sempre que possível, aos três, seis e 12 meses, variando o número de doentes de acordo com as fases da sífilis e com o tempo de monitorização.

Nas Tabela 14, 15 e 16 estão descritos os resultados dos testes não treponêmicos efectuados para controlo terapêutico. Foram monitorizados doentes com sífilis primária (21 aos três meses e 12 aos seis e 12 meses), sífilis secundária (15 aos três meses, nove aos seis e oito aos 12 meses), e sífilis latente (66 aos três, 50 aos seis e 40 aos 12 meses).
Aos três meses observou-se não existir diminuição significativa dos títulos dos testes VDRL e RPR respectivamente em 11/21 e 5/21 soros, na sífilis primária, assim como em 5/15 e 4/15 na sífilis secundária e em 46/66 e 45/66 na sífilis latente, existindo diminuição significativa no VDRL e no RPR em 9/21 e 11/21

Na sífilis primária e sífilis secundária não se observou diminuição significativa nos títulos dos testes de VDRL e RPR em 2/12 e 1/12 e em 3/9 e 1/9, respectivamente, aos seis meses após terapêutica, enquanto que o mesmo foi observado na sífilis latente em 20/50 e 19/50 e em 9/40 e 6/40 aos seis e 12 meses, para os testes de VDRL e RPR.

Tabela 14. Monitorização do resultado da terapêutica em doentes com sífilis primária

<table>
<thead>
<tr>
<th>Sífilis primária</th>
<th>3 Meses</th>
<th>6 Meses</th>
<th>12 Meses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDRL</td>
<td>RPR</td>
<td>VDRL</td>
</tr>
<tr>
<td></td>
<td>n° doentes (total)</td>
<td>n° doentes (total)</td>
<td>n° doentes (total)</td>
</tr>
<tr>
<td>Sem diminuição no título</td>
<td>11/21 (52,4%)</td>
<td>5/21 (23,8%)</td>
<td>2/12 (16,7%)</td>
</tr>
<tr>
<td>Com diminuição significativa</td>
<td>9/21 (42,9%)</td>
<td>11/21 (52,4%)</td>
<td>8/12 (66,7%)</td>
</tr>
<tr>
<td>Seroreversão</td>
<td>1/21 (4,8%)</td>
<td>5/21 (23,8%)</td>
<td>2/12 (16,7%)</td>
</tr>
</tbody>
</table>

Tabela 15. Monitorização do resultado da terapêutica em doentes com sífilis secundária

<table>
<thead>
<tr>
<th>Sífilis secundária</th>
<th>3 Meses</th>
<th>6 Meses</th>
<th>12 Meses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VDRL</td>
<td>RPR</td>
<td>VDRL</td>
</tr>
<tr>
<td></td>
<td>n° doentes (total)</td>
<td>n° doentes (total)</td>
<td>n° doentes (total)</td>
</tr>
<tr>
<td>Sem diminuição no título</td>
<td>5/15 (33,3%)</td>
<td>4/15 (26,7%)</td>
<td>3/9 (33,3%)</td>
</tr>
<tr>
<td>Com diminuição significativa</td>
<td>10/15 (66,7%)</td>
<td>11/15 (73,3%)</td>
<td>6/9 (66,7%)</td>
</tr>
<tr>
<td>Seroreversão</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Aos seis e 12 meses e para a sífilis primária houve diminuição significativa na reactividade dos títulos dos testes VDRL e RPR em 8/12 e 7/12 e em 4/12 e 3/12 respectivamente. O mesmo sucedeu na sífilis secundária para 6/9 e 7/9 e para 7/8 e 5/8, enquanto que na sífilis latente o mesmo tipo de resultado para os mesmos períodos e testes foi respectivamente de 29/50 e 26/50 e de 26/40 e 23/40.

A seroreversão foi observada na sífilis primária aos seis e 12 meses em 2/12 e 4/12 e em 8/12 e 9/12 respectivamente para os testes VDRL e RPR. Na sífilis secundária aos seis meses apenas se observou seroreversão em 1/9 e para o RPR enquanto que aos 12 meses aquela esteve presente em 1/8 e 3/8 para o VDRL e RPR, respectivamente. Para os mesmos períodos (seis e 12 meses) e para os casos de sífilis latente observou-se que 1/50 e 5/50 e em 4/40 e 11/40 apresentaram resultado negativo nos testes VDRL e RPR, respectivamente.

3.3. Avaliação dos testes não treponémicos em doentes infectados por VIH

A avaliação da reactividade serológica dos testes RPR e VDRL foi efectuada em 899 dos 1312 doentes incluídos no estudo, uma vez que apenas naquele número de doentes se consegui obter informação sobre a existência ou não de infecção por VIH. Relativamente a estes indivíduos 249/899 (27,7%) estavam infectados por VIH e 650/899 (72,3%) não. Nestes foi diagnosticada infecção por *T. pallidum* em 308/650 (47,4%), enquanto que nos indivíduos com co-infecção por VIH, a infecção foi diagnosticada em 184/249 (73,9%) (Figura 11).

![Figura 11. Distribuição das infecções por VIH e por *T. pallidum* na população estudada](image)

Na população VIH negativa e relativamente aos testes não treponémicos em avaliação, 326/650 (50,2%) foram não reactivos e 324/650 (49,8%) reactivos no VDRL, enquanto que pela técnica de RPR 358/650 (55,1%) foram não reactivos e 292/650 (44,9%) apresentaram reactividade (Tabela 17). A taxa de concordância entre os dois testes foi de 94,2% (612/650).

Tabela 17. Resultados obtidos com os testes RPR e VDRL na população sem infecção por VIH

<table>
<thead>
<tr>
<th>Sem infecção por VIH</th>
<th>VDRL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não reactivo</td>
<td>Reactivo</td>
</tr>
<tr>
<td>Não reactivo</td>
<td>323</td>
<td>35</td>
</tr>
<tr>
<td>RPR</td>
<td>3</td>
<td>289</td>
</tr>
<tr>
<td>Total</td>
<td>326</td>
<td>324</td>
</tr>
</tbody>
</table>
Trinta e dois dos 35 (91,4%) soros reactivos no VDRL e não reactivos no RPR, pertenciam a doentes com sífilis tratada e os restantes 3/35 (8,6%) a doentes sem infecção por *Treponema pallidum*. Dos três indivíduos com soros reactivos no RPR e não reactivos no VDRL, dois pertenciam ao grupo de sífilis tratada e o terceiro a um indivíduo sem sífilis.

Efectuado estudo para análise da falsa reactividade nesta população encontrou-se uma taxa de 2,6% (17/650) para o VDRL e de 2,3% (15/650) para o RPR.

Em relação aos testes não treponémicos, nos indivíduos com infecção pelo VIH, 55/249 (22,1%) soros não demonstraram reactividade pelo VDRL e 194/249 (77,9%) demonstraram-na, enquanto que pelo teste RPR 58/249 (23,3%) foram não reactivos e 191/249 (76,7%) reactivos (Tabela 18). A taxa de concordância entre os dois testes foi de 94,7% (236/249).

<table>
<thead>
<tr>
<th>Com infecção por VIH</th>
<th>VDRL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não reativo</td>
<td>Reactivo</td>
</tr>
<tr>
<td>RPR</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>Reactivo</td>
<td>5</td>
<td>186</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>194</td>
</tr>
</tbody>
</table>

Estudadas as divergências verificou-se que os oito (100%) soros reactivos pelo VDRL e não reactivos pelo RPR pertenciam ao grupo de doentes com sífilis tratada e os cinco reactivos no RPR e não reactivos no VDRL apresentaram as seguintes características: dois (2/5 – 40%) pertenciam ao grupo de indivíduos com sífilis tratada, dois (2/5 - 40%) nunca tinham tido infecção por *T. pallidum* e um (1/5 - 20%) estava em estádio de sífilis latente.

A taxa de falsa reactividade determinada para esta população foi de 6% (15/249) para o VDRL e de 6,4% (16/249) para o RPR.

Com o objectivo de verificar se haveria ou não associação estatisticamente
significativa entre a infecção por *T. pallidum* e por VIH, efectuou-se comparação entre a presença da infecção viral e a de sífilis. Efectuado estudo estatístico pelo teste do Pearson Chi-Square, com correção pelo teste de Fisher, observou-se a existência de uma associação significativa entre as duas infecções (*p* < 0,0001)

3.4. Relação do teste RPR com a infecção por VIH e toxicodependência

Estudos anteriores têm demonstrado que a resposta serológica não treponémica pode estar alterada (falsa reactividade) tanto nos indivíduos toxicodependentes como nos indivíduos com infecção por VIH. No entanto não se sabe até que ponto cada uma destas situações por si só, contribui para a presença de reacção falsamente positiva, principalmente no que diz respeito à infecção por VIH, uma vez que esta se encontra frequentemente associada à toxicodependência. Neste estudo avaliou-se a associação entre a falsa reactividade do RPR, a toxicodependência e a infecção por VIH, tendo como objectivo saber se cada uma destas duas situações influenciaria a presença de reacções falsamente positivas nos testes não treponémicos.

Uma vez que no presente estudo o teste RPR mostrou ser tão específico e sensível como o VDRL, inclusive nos infectados por VIH, sendo mais fácil de executar e mais objectivo, decidiu-se utilizar apenas aquele teste nesta parte do trabalho.

Incluíram-se soros cedidos pela Unidade de Virologia, soros de uma população prisional de Tires e alguns soros do presente estudo, totalizando 736. Destes 306 eram provenientes de doentes com infecção por VIH, dos quais 122 (39,9%) eram também toxicodependentes e 430 não apresentavam infecção por aquele vírus, sendo 113 (26,3%) toxicodependentes (Figura 12).
Pesquisa de anticorpos anti- *Treponema pallidum* no sangue

Figura 12. Distribuição da população estudada pela infecção por VIH e pela toxicodependência

Todos os soros foram estudados com os testes RPR e FTA-Abs, tendo-se obtido uma percentagem de falsa reactividade de 3,5% no total, sendo esta de 6,5% (20/306) nos indivíduos infectados por VIH e de 1,4% (6/430) nos indivíduos não infectados por este vírus (Tabela 19 e Figura 13).

Tabela 19. Resultados da falsa reactividade do teste RPR em relação à infecção por VIH e toxicodependência

<table>
<thead>
<tr>
<th></th>
<th>VIH +vo (%)</th>
<th>VIH -vo (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicodependentes</td>
<td>11/122 (9%)</td>
<td>2/113 (1,8%)</td>
<td>13/235 (5,5%)</td>
</tr>
<tr>
<td>Não toxicodependentes</td>
<td>9/184 (4,9%)</td>
<td>4/317 (1,3%)</td>
<td>13/501 (2,6%)</td>
</tr>
<tr>
<td>Total</td>
<td>20/306 (6,5%)</td>
<td>6/430 (1,4%)</td>
<td>26/736 (3,5%)</td>
</tr>
</tbody>
</table>
Figura 13. Distribuição da falsa reactividade do teste RPR em relação com a infecção por VIH (%)

Relativamente aos toxicodependentes a percentagem de falsa reactividade foi de 5,5% (13/235) e nos não toxicodependentes de 2,6% (13/501) (Tabela 19 e Figura 14).

Figura 14. Distribuição da falsa reactividade do teste RPR em relação com a toxicodependência (%)
Associando-se os dois factores (infecção por VIH e toxicodependência) em estudo, a falsa reactividade do teste RPR foi observada em 11/122 (9%) dos indivíduos VIH positivos/toxicodependentes, em 9/184 (4,9%) dos indivíduos VIH positivos e sem toxicodependência, em 2/113 (1,8%) indivíduos sem infecção pelo VIH e toxicodependentes e em 4/317 (1,3%) dos indivíduos VIH negativos sem toxicodependência.

Efectuado estudo estatístico pelo teste do Pearson Chi-Square observou-se associação significativa entre a infecção por VIH e a toxicodependência (p <0.001), uma associação significativa entre infecção por VIH e a presença de falsa reactividade no RPR (p <0,001) e embora existisse associação entre toxicodependência e falsa reactividade esta não foi estatisticamente significativa (p = 0.004)

3.5. Avaliação de uma técnica de hemaglutinação – TPHA

A reactividade do teste treponémico TPHA foi avaliada em 1309 soros, dos quais 872/1309 (66,6%) foram reactivos e 437/1309 (33,3%) não reactivos.

Na Tabela 20 encontram-se sintetizados os resultados obtidos com os testes, TPHA e RPR, comparados entre si e discriminados por grupos de doentes. Como se pode verificar apenas no grupo de doentes com sífilis secundária há concordância total de resultados. A percentagem de resultados falsamente negativos pelo teste TPHA foi de 0,6% (8/1306) correspondendo a 2/62 (3,2%) de sífilis primária, 1/8 (12,5%) de neurossífilis e 5/335 (1,5%) de sífilis latente, com o teste RPR obtiveram-se resultados falso negativos em 0,5% (6/1306), dos quais 5/62 (8,1%) foram diagnosticados como sífilis primária e 1/335 (0,3%) como sífilis latente.

A falsa reactividade dos testes TPHA e RPR, apenas encontrada no grupo de doentes sem sífilis, foi de 0,3% (4/1306) e 2,5% (32/1306), respectivamente. Por outro lado, todos estes soros com falsa reactividade no teste não treponémico foram correctamente diferenciados pelo teste treponémico.
Tabela 20. Resultados obtidos com os testes RPR e TPHA no soro de indivíduos dos vários grupos estudados

<table>
<thead>
<tr>
<th>Grupos estudados</th>
<th>TPHA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não reactivo</td>
<td>Reactivo</td>
<td></td>
</tr>
<tr>
<td>Sem sífilis</td>
<td>382</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(418)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPR</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não reactivo</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sífilis primária</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPR</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não reactivo</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sífilis secundária</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPR</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não reactivo</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sífilis latente</td>
<td>329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(335)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPR</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não reactivo</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurossífilis</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPR</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Não reactivo</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sífilis tratada</td>
<td>277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(438)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A sensibilidade e a especificidade do teste TPHA foram calculadas utilizando-se o teste FTA-Abs como técnica padrão, sendo, respectivamente, de 97,6% e 97%, com taxa de concordância de 97,4% (Tabela 21).

Tabela 21. Resultados obtidos com os testes TPHA e FTA-Abs-G

<table>
<thead>
<tr>
<th>FTA-Abs-G</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivo</td>
<td>859</td>
<td>13</td>
<td>872</td>
</tr>
<tr>
<td>Não reactivo</td>
<td>21</td>
<td>416</td>
<td>437</td>
</tr>
</tbody>
</table>

Sensibilidade (859/880) – 97,6%
Especificidade (416/429) – 97%
Taxa de concordância (1275/1309) – 97,4%
Na análise das discrepâncias entre os dois testes, verificou-se que dos 21 soros não reactivos no teste TPHA e reactivos com a técnica FTA-Abs-G, 13 eram provenientes de doentes com sífilis tratada, dois de doentes com sífilis primária, um de doente com neurosífilis, sendo os restantes cinco de doentes com sífilis latente.
Em relação aos 13 soros reactivos pelo teste TPHA e sem reactividade no teste FTA-Abs, nove pertenciam a doentes com sífilis tratada e quatro ao grupo de indivíduos sem sífilis.

3.6. Avaliação de uma técnica de aglutinação – TPPA

Com a técnica de aglutinação TP.PA, foram estudados 449 soros. Ao contrário do que é habitual com os testes treponémicos, há indícios, não confirmados, de que a técnica TP.PA poderia ser útil para avaliar a eficácia da terapêutica, tal como acontece com os testes não treponémicos. Assim, com esta técnica foi monitorizado o resultado da terapêutica em 54 doentes.

Comparação do TP.PA com os testes treponémicos clássicos – TPHA e FTA-Abs

Dos 449 soros estudados, 324 (72,2%) foram reactivos com o teste TPHA, 331 (73,7%) com o teste TP.PA e 336 (74,8%) com o teste FTA-Abs, enquanto que foram não reactivos 125 (27,8%) com o teste TPHA, 118 (26,3%) com o teste TP.PA e 113 (25,2%) com o teste FTA-Abs.

Na comparação dos testes TP.PA e TPHA (Tabela 22) o primeiro apresentou uma sensibilidade de 100%, uma especificidade de 94,4% e uma taxa de concordância de 98,9%.
Pesquisa de anticorpos anti-*Treponema pallidum* no sangue

Tabela 22. Resultados obtidos com os testes TP.PA e TPHA

<table>
<thead>
<tr>
<th></th>
<th>TP.HA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactivo</td>
<td>Não reactive</td>
</tr>
<tr>
<td>TP.PA</td>
<td>324</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>118</td>
</tr>
<tr>
<td>Total</td>
<td>324</td>
<td>125</td>
</tr>
</tbody>
</table>

Sensibilidade (324/324) – 100%
Especificidade (118/125) – 94,4%
Taxa de concordância (442/449) – 98,4%

Na comparação com o FTA-Abs (Tabela 23) obteve-se sensibilidade de 98,5%, especificidade de 100% e taxa de concordância de 98,8%.

Tabela 23. Resultados obtidos com os testes TP.PA e FTA-ABS

<table>
<thead>
<tr>
<th></th>
<th>FTA-ABS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactivo</td>
<td>Não reactive</td>
</tr>
<tr>
<td>TP.PA</td>
<td>331</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>113</td>
</tr>
<tr>
<td>Total</td>
<td>336</td>
<td>113</td>
</tr>
</tbody>
</table>

Sensibilidade (331/336) – 98,5 %
Especificidade (113/113) – 100 %
Taxa de concordância (444/449) – 98,9 %

Entre os 449 doentes estudados o diagnóstico de sífilis primária foi feito em 28 destes. Visto que no estádio primário, os testes treponémicos se tornam reactivos mais precocemente, sobretudo o FTA-Abs, calculou-se a sensibilidade destes testes treponémicos nesta fase da sífilis, tendo-se obtido 100% (28/28) para o TP.PA e FTA-Abs e 89,3% (25/28) para o TPHA.
Monitorização do resultado da terapêutica

Na monitorização do resultado da terapêutica foi comparado o teste TP.PA com os testes RPR e TPHA, uma vez que o primeiro é um teste não treponémico habitualmente utilizado para este fim e o segundo é um teste específico semelhante ao TP.PA.

A grande maioria dos doentes em que o resultado da terapêutica não foi monitorizado, apresentava perfil clínico e serológico compatível com sífilis latente.

A totalidade de doentes monitorizados foi de 54, dos quais 22 foram acompanhados até aos 12 meses. Daqueles, foi diagnosticada sífilis primária em 10, sífilis secundária em 13 e sífilis latente em 31. Na globalidade, uma significativa diminuição no título de anticorpos no teste RPR (mínimo de duas diluições) seis meses após terapêutica foi observada em 30/54 (55,6%), enquanto que no teste TPHA esta foi de 14/54 (25,9%) e no TP.PA de 38/54 (70,4%). Até aos 12 meses esta situação foi registada em 15/22 (68,2%), 10/22 (45,5%) e em 19/22 (86,4%). A seroreversão observou-se apenas nos títulos de RPR e em 7/54 (13%) amostras, das quais duas aos seis meses e cinco aos 12 meses após a terapêutica.

Todos os doentes com o diagnóstico de sífilis primária (10) foram observados até aos seis meses e quatro até aos 12 meses (Tabela 24).

Tabela 24. Monitorização do resultado da terapêutica de doentes com sífilis primária aos seis e 12 meses com os testes RPR, TPHA e TP.PA

<table>
<thead>
<tr>
<th></th>
<th>RPR 6 Meses</th>
<th>RPR 12 Meses</th>
<th>TPHA 6 Meses</th>
<th>TPHA 12 Meses</th>
<th>TP.PA 6 Meses</th>
<th>TP.PA 12 Meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sem diminuição no título</td>
<td>2 (20%)</td>
<td>0 (0%)</td>
<td>7 (70%)</td>
<td>3 (75%)</td>
<td>1 (10%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Com diminuição no título</td>
<td>8 (80%)</td>
<td>2 (50%)</td>
<td>3 (30%)</td>
<td>1 (25%)</td>
<td>9 (90%)</td>
<td>4 (100%)</td>
</tr>
<tr>
<td>Seroreversão</td>
<td>0 (0%)</td>
<td>2 (50%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>
Aos seis meses 8/10 (80%) dos soros apresentaram diminuição significativa do título no teste RPR, 3/10 (30%) no teste TPHA e 9/10 (90%) no teste TP.PA. Todos os soros dos doentes observados aos 12 meses depois da terapêutica tinham, pelo menos, significativa diminuição no título do RPR e do TP.PA, embora o mesmo estivesse mantido no TPHA em três casos.

Os 13 doentes com diagnóstico de sífilis secundária foram seguidos até aos seis meses dos quais seis foram monitorizados até aos 12 meses (Tabela 25). Aos seis meses, 10/13 (77%) apresentavam significativa diminuição no título do RPR, 5/13 (38,5%) no TPHA e 11/13 (84,6%) no TP.PA, enquanto que 3/13 (23,1%) registavam o mesmo título no RPR, 8/13 (61,5%) no TPHA e 2/13 (15,4%) no TP.PA. Todos os soros dos doentes observados aos 12 meses apresentaram significativa diminuição no título do RPR e do TP.PA enquanto que dois o mantiveram no TPHA.

Tabela 25. Monitorização do resultado da terapêutica de doentes com sífilis secundária aos seis e 12 meses com os testes RPR, TPHA e TP.PA

<table>
<thead>
<tr>
<th></th>
<th>RPR</th>
<th></th>
<th>TPHA</th>
<th></th>
<th>TP.PA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Meses</td>
<td>12 Meses</td>
<td>6 Meses</td>
<td>12 Meses</td>
<td>6 Meses</td>
<td>12 Meses</td>
</tr>
<tr>
<td>Sem diminuição no título</td>
<td>3 (23,1%)</td>
<td>0 (0%)</td>
<td>8 (61,5%)</td>
<td>2 (33,3%)</td>
<td>2 (15,4%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Com diminuição no título</td>
<td>10 (77%)</td>
<td>4 (66,7%)</td>
<td>5 (38,5%)</td>
<td>4 (66,7%)</td>
<td>11 (84,6%)</td>
<td>6 (100%)</td>
</tr>
<tr>
<td>Seroreversão</td>
<td>0 (0%)</td>
<td>2 (33,3%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>

Trinta e um doentes com diagnóstico de sífilis latente foram monitorizados até aos seis meses depois da terapêutica, enquanto que apenas 12 o foram até aos 12 meses (Tabela 26). Aos seis meses observou-se diminuição significativa no título do teste RPR em
12/31 (38,7%) doentes, sendo que 17/31 (54,8%) não registaram esta alteração. O estudo dos mesmos soros pelo teste TPHA não apresentou diminuição significativa em 25/31 (80,6%) doentes, sendo a mesma significativa em 6/31 (19,4%), enquanto que o título do TP.PA se manteve em 13/31 (42%) desses doentes e apresentou significativa diminuição em 18/31 (58,1%).

Em relação aos doentes observados até aos 12 meses, encontrou-se seroreversão no soro de 1/12 (8,3%) doente com o RPR, significativa diminuição no título deste teste em 9/12 (75%) doentes, no teste TPHA em 5/12 (41,7%) e com o teste TP.PA em 9/12 (75%).

Dois dos 12 (16,7%) doentes mantiveram o título no RPR, 7/12 (58,3%) no TPHA e 3/12 (25%) no TP.PA.

Tabela 26. Monitorização do resultado da terapêutica de doentes com sífilis latente aos seis e 12 meses com os testes RPR, TPHA e TP.PA

<table>
<thead>
<tr>
<th></th>
<th>RPR</th>
<th>TPHA</th>
<th>TP.PA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Meses</td>
<td>12 Meses</td>
<td>6 Meses</td>
</tr>
<tr>
<td>Sem diminuição no título</td>
<td>17 (54,8%)</td>
<td>2 (16,7%)</td>
<td>25 (80,6%)</td>
</tr>
<tr>
<td>Com diminuição no título</td>
<td>12 (38,7%)</td>
<td>9 (75%)</td>
<td>6 (19,4%)</td>
</tr>
<tr>
<td>Seroreversão</td>
<td>2 (6,5%)</td>
<td>1 (8,3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>12</td>
<td>31</td>
</tr>
</tbody>
</table>

3.7. Avaliação de uma técnica imunoenzimático – EIA

As técnicas imunoenzimáticas estão largamente difundidas no diagnóstico laboratorial de diversas patologias, sendo também utilizadas na pesquisa de anticorpos específicos de *T. pallidum*.

Neste estudo avaliou-se uma técnica imunoenzimática (EIA) para pesquisa de anticorpo anti-*T. pallidum*, com o objectivo de determinar a sua utilidade na
rotina do diagnóstico serológico de sífilis, nomeadamente no seu rastreio.

Estudaram-se 441 soros provenientes de indivíduos distribuídos pelos seguintes grupos: 25 com sífilis primária, 25 com sífilis secundária, 179 com sífilis latente, 105 que apresentavam história de sífilis correctamente tratada no passado e 107 sem história clínica de sífilis. Estes 441 soros foram estudados, também, pelos testes RPR, TPHA e FTA-Abs. Com o teste RPR, 289/441 (65,5%) foram reactivos e 152/441 (34,5%) não reactivos e pelos testes TPHA, FTA-Abs e EIA 313/441 (71%), 324/441 (73,5%) e 322/441 (73%) foram reactivos e não reactivos 128/441 (29%), 117/441 (26,5%), 119/441 (27%), respectivamente.

Tendo como referência o teste TPHA (Tabela 27), a sensibilidade e a especificidade do teste EIA, foi de 100% e de 93%, enquanto que estas foram de 99,4% e 100% respectivamente, quando a referência foi o teste FTA-Abs-G (Tabela 28). A taxa de concordância entre o teste EIA e o TPHA foi de 98% e entre aquele e o FTA-Abs de 99,5%.

Tabela 27. Resultados obtidos com os testes EIA–G e TPHA

<table>
<thead>
<tr>
<th></th>
<th>TPHA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactivo</td>
<td>Não reactivo</td>
<td>Total</td>
</tr>
<tr>
<td>EIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactivo</td>
<td>313</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Não Reactivo</td>
<td>0</td>
<td>119</td>
</tr>
<tr>
<td>Total</td>
<td>313</td>
<td>128</td>
<td>441</td>
</tr>
</tbody>
</table>

Sensibilidade (313/313) – 100 %
Especificidade (119/128) – 93 %
Taxa de concordância (432/441) – 98 %

Tabela 28. Resultados obtidos com os testes EIA–G e FTA-Abs

<table>
<thead>
<tr>
<th></th>
<th>FTA-ABS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reactivo</td>
<td>Não reactivo</td>
<td>Total</td>
</tr>
<tr>
<td>EIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactivo</td>
<td>322</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Não Reactivo</td>
<td>2</td>
<td>117</td>
</tr>
<tr>
<td>Total</td>
<td>324</td>
<td>117</td>
<td>441</td>
</tr>
</tbody>
</table>

Sensibilidade (322/324) – 99,4%
Especificidade (117/117) – 100%
Taxa de concordância (439/441) – 99,5%
O teste de rastreio ideal é aquele que tem a capacidade de permitir o diagnóstico etiológico o mais precocemente possível, tendo a capacidade de distinguir entre infecção recente e passada, devendo ainda detectar todos os casos de doença, ser negativo na sua ausência, sendo este comportamento encontrado em todas as fases da mesma.

Tendo estas premissas em conta determinou-se a sensibilidade dos testes RPR, TPHA, e EIA em cada um dos grupos de doentes atrás referidos (sífilis primária, sífilis secundária, sífilis latente e doentes com sífilis correctamente tratada), considerando-se o teste FTA-Abs como teste padrão (Tabela 29).

A especificidade de cada um dos testes foi determinada pelo estudo dos soros do grupo sem sífilis.

Tabela 29. Sensibilidade e especificidade dos testes RPR, TPHA e EIA-G em comparação com o teste FTA-Abs-G

<table>
<thead>
<tr>
<th></th>
<th>RPR</th>
<th>TPHA</th>
<th>EIA-G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensibilidade</td>
<td>Especificidade</td>
<td>Sensibilidade</td>
</tr>
<tr>
<td></td>
<td>Nº+vo/FTA-abs+vo (%)</td>
<td>Nº+vo/FTA-abs+vo (%)</td>
<td>Nº+vo/FTA-abs+vo (%)</td>
</tr>
<tr>
<td>SP*</td>
<td>23/25 (92%)</td>
<td>-</td>
<td>22/25 (88%)</td>
</tr>
<tr>
<td>SS*</td>
<td>25/25 (100%)</td>
<td>-</td>
<td>25/25</td>
</tr>
<tr>
<td>SL*</td>
<td>178/17 (99,4%)</td>
<td>-</td>
<td>178/179 (99,4%)</td>
</tr>
<tr>
<td>ST*</td>
<td>55/95 (57,9%)</td>
<td>-</td>
<td>88/95 (92,6%)</td>
</tr>
<tr>
<td>S/S</td>
<td>-</td>
<td>95/107 (88,8%)</td>
<td>-</td>
</tr>
</tbody>
</table>

*SP – Sífilis primária; SS – Sífilis secundária; SL – Sífilis latente; ST Sífilis tratada; S/S – Sem Sífilis
No grupo de doentes com sífilis primária (25), a sensibilidade dos testes RPR, TPHA e EIA foi de 92% (23/25), 88% (22/25) e 100% (25/25), respectivamente. No grupo com sífilis secundária (25) a sensibilidade foi de 100% (25/25) para todos os testes, enquanto que nos doentes com sífilis latente (179) e sífilis tratada (105) a sensibilidade foi, respectivamente, de 99,4% (178/179) e 57,9% (55/95) quando utilizado o teste RPR, 99,4% (178/179) e 92,6% (88/95), quando utilizado o método de TPHA e 100% (179/179) e 97,9% (93/95) ao utilizar-se o teste EIA.

Quando os soros dos indivíduos sem evidência clínica de sífilis e teste FTA-Abs não reactivo foram avaliados pelo teste RPR, 12 apresentaram resultado reactivo. Os mesmos soros, quando estudados pelos testes TPHA e EIA foram não reactivos. Assim, a especificidade do teste RPR foi de 88,8% e a dos testes treponémicos TPHA e EIA foi de 100%.

A pesquisa de anticorpos específicos da classe IgM, tem sido referenciada como podendo auxiliar no diagnóstico de sífilis recente, pelo que se efectuou a deteção deste tipo de anticorpos utilizando um teste EIA-M e um teste FTA-Abs-M.

A deteção de anticorpos de tipo IgM efectuou-se nos soros de doentes em diferentes estádios da infecção (Tabela 30), em 25 soros de doentes com sífilis primária, em 25 com sífilis secundária e em 179 com sífilis latente.

Na globalidade, 65/229 (28,4%) soros foram reactivos, 150/229 (65,5%) não reactivos e 14/229 (6,1%) indeterminados pelo teste FTA-Abs-M, enquanto que com o teste EIA-M 75/229 (32,8%) foram reactivos, 150/229 (65,5%) não reactivos e 4/229 (1,7%) considerados indeterminados.

Em relação às diferentes fases da sífilis 18/25 (72%), 17/25 (68%) e 30/179 (16,8%) amostras apresentaram reactividade no FTA-Abs-M enquanto que 22/25 (88%), 19/25 (76%) e 34/179 (19%) foram reactivos pela técnica EIA-M, respectivamente, nas fases primária, secundária e latente da sífilis.

As diferenças observadas nos resultados dos dois testes não foram consideradas estatisticamente significativas. Os soros de um grupo de doentes com história de sífilis tratada foram também avaliados, tendo a pesquisa de anticorpos específicos de tipo IgM sido negativa, por ambas as técnicas.
Tabela 30. Resultados da pesquisa de anticorpos de tipo IgM específicos em diferentes estádios de sífilis pelos testes FTA-Abs-M e EIA-M.

<table>
<thead>
<tr>
<th></th>
<th>FTA-Abs-M</th>
<th></th>
<th>EIA-M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reac./tot</td>
<td>Não reac./total</td>
<td>Indet./total</td>
<td>Reac./tot</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>SP*</td>
<td>18/25 (72%)</td>
<td>1/25 (4%)</td>
<td>6/25 (24%)</td>
<td>22/25 (88%)</td>
</tr>
<tr>
<td>SS*</td>
<td>17/25 (68%)</td>
<td>6/25 (24%)</td>
<td>2/25 (8%)</td>
<td>19/25 (76%)</td>
</tr>
<tr>
<td>SL*</td>
<td>30/179 (16,8%)</td>
<td>143/179 (79,9%)</td>
<td>6/179 (3,4%)</td>
<td>34/179 (19%)</td>
</tr>
<tr>
<td>Total</td>
<td>65/229 (28,4%)</td>
<td>150/229 (65,5%)</td>
<td>14/229 (6,1%)</td>
<td>75/229 (32,8%)</td>
</tr>
</tbody>
</table>

* SP – Sífilis primária; SS – Sífilis secundária; SL – Sífilis latente; Reac. – Reactivo; Indet. - Indeterminado

3.8. Avaliação de uma técnica Western blot

A técnica de Western blot para pesquisa de anticorpos específicos de tipo IgG foi avaliada pelo estudo de 800 soros, comparando-se os resultados obtidos com os que se obtiveram com o teste TPHA e com o teste FTA-Abs-G, uma vez que alguns autores referem esta técnica como mais específica sendo muitas vezes indicada como teste confirmatório ideal (Byrne et al. 1992, George et al. 1998c, Pâris-Hamelin et al. 1999).

Os 800 soros analisados foram reactivos em 658/800 (82,3%), 656/800 (82%) e 636/800 (79,5%) e não reactivos em 142/800 (17,8%), 132/800 (16,5%) e 164/800 (20,5%) pelas técnicas FTA-Abs-G, TPHA e Western blot, respectivamente (Tabela 31).
Tabela 31. Resultados obtidos com os testes FTA-Abs-G, TPHA e Western blot na globalidade dos soros estudados

<table>
<thead>
<tr>
<th>FTA-Abs-G</th>
<th>TPHA</th>
<th>Western blot – G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivo</td>
<td>658/800</td>
<td>656/800</td>
</tr>
<tr>
<td>Não reactivo</td>
<td>142/800</td>
<td>132/800</td>
</tr>
</tbody>
</table>

Comparação com o teste TPHA

Na comparação do método Western blot com o teste TPHA (Tabela 32) obteve-se uma sensibilidade de 95,1% (624/656), uma especificidade de 91,7% (132/144) e uma taxa de concordância de 94,5% (756/800).

Tabela 32. Resultados obtidos com os testes Western blot e TPHA

<table>
<thead>
<tr>
<th>TPHA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivo</td>
<td>Não reactivo</td>
</tr>
<tr>
<td>WB-G</td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>624</td>
</tr>
<tr>
<td>Não reactivo</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>656</td>
</tr>
</tbody>
</table>

Sensibilidade (624/656) – 95,1%
Especificidade (132/144) – 91,7%
Taxa de concordância (756/800) – 94,5%

Analisados os resultados não concordantes entre os dois testes, verificou-se que dos 32 soros reactivos pelo teste TPHA e não reactivos por técnica de Western blot, 28 pertenciam a doentes com sífilis tratada, um a doente com sífilis latente
e três provinham de indivíduos sem sífilis.
Os 12 soros não reactivos pelo teste TPHA, mas com reactividade pela técnica de Western blot apresentaram a seguinte distribuição: dois provieram de doentes com sífilis primária, três de doentes com sífilis latente, um de doente com neurosífilis e seis de doentes com sífilis tratada.

Comparação com o teste FTA-Abs-G

A sensibilidade e a especificidade obtidas para o teste Western blot, considerando-se o teste FTA-Abs como técnica padrão, foram respectivamente, de 96,4% (634/658) e de 98,6% (140/142) (Tabela 33), com uma taxa de concordância de 96,8% (774/800).
A análise das diferenças existentes entre os dois testes revelou que dos 24 soros reactivos pelo FTA-Abs-G e não reactivos pelo Western blot, 23 eram de doentes com sífilis tratada e o outro de um doente com sífilis primária, enquanto que os dois soros reactivos na técnica de Western blot e não reactivos no FTA-Abs eram de doentes com sífilis tratada.

Tabela 33. Resultados obtidos com os testes Western blot e FTA-Abs-G

<table>
<thead>
<tr>
<th>FTA-Abs-G</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactivo</td>
<td>634</td>
<td>636</td>
</tr>
<tr>
<td>Não reativo</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WB-G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>24</td>
<td>164</td>
</tr>
<tr>
<td>Não reativo</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensibilidade (634/658) – 96,4%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificidade (140/142) – 98,6%</td>
</tr>
<tr>
<td>Taxa de concordância (774/800) – 96,8%</td>
</tr>
</tbody>
</table>

A comparação da técnica de Western blot com os testes TPHA e FTA-Abs-G foi feita, para os diferentes estádios da sífilis, cujos resultados são apresentados na Tabela 34.
Pesquisa de anticorpos anti-*Treponema pallidum* no sangue

Tabela 34. Resultados obtidos com os testes TPHA, Western blot e FTA-Abs-G, no soro de indivíduos dos vários grupos estudados

<table>
<thead>
<tr>
<th></th>
<th>TPHA</th>
<th>Western blot</th>
<th>FTA-Abs-G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*Reac./total (%)</td>
<td>**Não reac./total (%)</td>
<td>Reac./total (%)</td>
</tr>
<tr>
<td>Sífilis primária</td>
<td>58/60 (96,7%)</td>
<td>2/60 (3,3%)</td>
<td>59/60 (98,3%)</td>
</tr>
<tr>
<td>Sífilis secundária</td>
<td>45/45 (100%)</td>
<td>0/45 (0%)</td>
<td>45/45 (100%)</td>
</tr>
<tr>
<td>Neurosífilis</td>
<td>7/8 (87,5%)</td>
<td>1/8 (12,5%)</td>
<td>8/8 (100%)</td>
</tr>
<tr>
<td>Sífilis latente</td>
<td>307/310 (99%)</td>
<td>3/310 (1%)</td>
<td>310/310 (100%)</td>
</tr>
<tr>
<td>Sífilis tratada</td>
<td>236/243 (97,1%)</td>
<td>7/243 (2,9%)</td>
<td>214/243 (88,1%)</td>
</tr>
<tr>
<td>Sem sífilis</td>
<td>3/134 (2,2%)</td>
<td>131/134 (97,8%)</td>
<td>0/134 (0%)</td>
</tr>
</tbody>
</table>

* Reac./total – número de amostras reactivas / total de amostras estudadas
** Não reac./total – número de amostras não reactivas / total de amostras estudadas

No que se refere às diferentes fases da doença todos os testes apresentaram sensibilidade de 100% nos doentes com sífilis secundária, o Western blot e o FTA-Abs-G na neurosífilis e sífilis latente e apenas o FTA-Abs-G na sífilis primária. Em relação a esta, o Western blot apresentou sensibilidade de 98,3% e o TPHA de 96,7%.

No grupo de doentes com sífilis tratada o Western blot foi o teste que apresentou menor taxa de reactividade (88,1%), enquanto que esta foi de 97,1% para o TPHA e de 96,7% para o FTA-Abs-G.

Por outro lado, ao contrário do TPHA e do mesmo modo que o FTA-Abs-G, o Western blot não apresentou falsa reactividade, sendo não reativo em todos os doentes sem sífilis o que corresponde a uma especificidade de 100%.

Tal como anteriormente descrito, a pesquisa de anticorpos específicos de tipo
IgM, poderá ser uma estratégia a utilizar com a finalidade de confirmar o diagnóstico de sífilis precoce. Assim, efectuou-se a pesquisa deste tipo de anticorpos, utilizando as técnicas de FTA-Abs-M e Western blot M.

Esta pesquisa foi efectuada por ambas as técnicas em 933 soros, com os seguintes resultados: 133/933 (14,3%) soros reactivos, 786/933 (84,2%) não reactivos e 14/933 (1,5%) com resultados indeterminados com o teste FTA-Abs-M, sendo 166/933 (17,8%) reactivos e 767/933 (82,2%) não reactivos com o teste Western blot M. Todos os resultados indeterminados pelo teste FTA-Abs-M resultaram reactivos pelo teste de Western blot M.

Os resultados obtidos com ambas as técnicas nos soros dos doentes com diferentes estádios de sífilis encontram-se discriminados na Tabela 35.

Tabela 35. Resultados obtidos com os testes WB – M e FTA-Abs-M no soro de indivíduos dos vários grupos estudados

<table>
<thead>
<tr>
<th></th>
<th>Western blot M</th>
<th>FTA-Abs M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reac*./total (%)</td>
<td>Não reac./total (%)</td>
</tr>
<tr>
<td>Sífilis primária</td>
<td>53/62 (85,5%)</td>
<td>9/62 (14,5%)</td>
</tr>
<tr>
<td>Sífilis secundária</td>
<td>40/45 (88,9%)</td>
<td>5/45 (11,1%)</td>
</tr>
<tr>
<td>Sífilis latente</td>
<td>67/332 (20,2%)</td>
<td>265/332 (79,8%)</td>
</tr>
<tr>
<td>Neurossífilis</td>
<td>2/8 (25%)</td>
<td>6/8 (75%)</td>
</tr>
<tr>
<td>Sífilis tratada</td>
<td>4/180 (2,2%)</td>
<td>176/180 (97,8%)</td>
</tr>
<tr>
<td>Sem sífilis</td>
<td>0/306 (0%)</td>
<td>306/306 (100%)</td>
</tr>
</tbody>
</table>

* Reac – reactivo; Indet. – indeterminado

No estudo de doentes com sífilis primária e secundária, o Western blot
apresentou reactividade de 85,5% (53/62) e de 88,9% (40/45), respectivamente, enquanto que com o FTA-Abs-M essa reactividade foi de 62,9% (39/62) e de 73,3% (33/45). A percentagem de reactividade foi igual nas situações de neurossífilis. Com o teste FTA-Abs-M observaram-se seis, duas e seis amostras com resultados indeterminados em indivíduos com sífilis primária, sífilis secundária e sífilis latente, respectivamente, as quais foram reactivas pela técnica de Western blot. De referir, ainda, a presença de anticorpos de tipo IgM em doentes com sífilis tratada, em quatro e três soros pelas técnicas Western blot e FTA-Abs-M, respectivamente, os quais correspondiam a doentes com sífilis recente, recentemente tratada.
4. Discussão e conclusões

Para avaliação dos diferentes testes serológicos utilizados no diagnóstico laboratorial de sífilis, estudaram-se soros de doentes, provenientes de consultas e serviços hospitalares já anteriormente referidos. Com base na história clínica e resultados dos testes de pesquisa de anticorpos anti-*Treponema pallidum*, estes doentes foram subdivididos em diferentes grupos, com a finalidade de se efectuar uma análise mais compreensível dos resultados obtidos.

A avaliação dos testes não treponémicos constitui a primeira parte deste capítulo, já que lhes são apontadas algumas limitações, como seja incidência relativamente elevada de resultados falsamente positivos e menor sensibilidade na sífilis primária e tardia. Por outro lado, os resultados falsamente negativos podem resultar, também, do fenômeno de prozona, ocorrendo em cerca de 1 – 2 % dos doentes com sífilis secundária (Spangler *et al.* 1964, Jurado *et al.* 1993).

No presente estudo esta situação foi observada em 0,6% (8/1312) dos soros estudados de doentes, com diagnóstico de sífilis secundária.

Se bem que, tanto o VDRL como o RPR, sejam recomendados como testes não treponémicos a utilizar na rotina laboratorial para diagnóstico de sífilis (Association of Genitourinary Medicine and the Medical Society for the Study of Venereal Diseases 1999a, 199b, CDC 2002a), o VDRL apresenta algumas desvantagens em relação ao RPR (Tabela 36), isto é, por um lado, há necessidade de preparação diária do antigénio e da descomplementação dos soros, tendo que se executar uma técnica microscópica, ao contrário do RPR, cuja leitura do resultado é macroscópica.

<table>
<thead>
<tr>
<th>VDRL</th>
<th>RPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descomplementação dos soros</td>
<td>Sem descomplementação dos soros</td>
</tr>
<tr>
<td>Antigénio preparado diariamente</td>
<td>Antigénio pronto a utilizar</td>
</tr>
<tr>
<td>Leitura microscópica</td>
<td>Leitura macroscópica</td>
</tr>
</tbody>
</table>

Por estas razões, sendo o RPR mais fácil de executar (a experiência anterior do
grupo de trabalho da Unidade de DST do IHMT parecia demonstrar que com esta técnica se obtinham resultados semelhantes aos do VDRL, e não havendo, praticamente, estudos de comparação entre estes dois testes, um dos objectivos desta tese foi a sua avaliação nos diferentes estádios da sífilis e a monitorização do efeito terapêutico. Se os resultados obtidos com os dois testes fossem comparáveis e uma vez que o RPR apresenta vantagens técnicas, deixaria de haver razão para a preferência de utilização do VDRL no diagnóstico de infecção a *T. pallidum*.

No presente estudo, e na globalidade, obteve-se uma taxa de concordância entre os dois testes de 93,5%, sendo maior o número de soros reactivos obtidos com o VDRL. Quando se analisaram os soros reactivos pela técnica de VDRL, não reactivos no teste RPR (66), quatro foram considerados falsos reactivos. Tratava-se de soros provenientes de indivíduos que não apresentavam sintomatologia e os testes específicos foram negativos. Sessenta e um eram de indivíduos que tinham sido tratados para sífilis, pelo que não tinham sífilis activa, e um pertencia a um doente com sífilis latente, razão pela qual era um falso negativo pela técnica de RPR.

Quanto às amostras (14) com reactividade no RPR, não reactivas no VDRL, e com os mesmos critérios acima mencionados, observou-se que cinco soros apresentaram falsa reactividade, oito pertenciam a doentes tratados para sífilis e um a um doente com sífilis latente não diagnosticada pelo VDRL (falso negativo por este teste).

No conjunto, os dados obtidos demonstraram taxa de concordância relativamente boa. Nos resultados discrepantes, cada teste originou um resultado falso negativo e o número de verdadeiros falso positivos foi praticamente igual (quatro para o VDRL e cinco para o RPR). A ausência de reactividade na sífilis latente verificou-se numa amostra para cada teste, o que corresponde a uma falsa negatividade de 0,08% (1/1231), idêntica à encontrada noutros estudos (Larsen *et al.* 1995, D’Errico *et al.* 1996).

Por outro lado, o facto de neste estudo existir um maior número de amostras reactivas no VDRL, consideradas negativas no RPR, e provenientes de doentes que efectuaram terapêutica correcta para sífilis, parece significar que a técnica de VDRL, tal como os testes treponémicos mantem a sua reactividade durante
Pesquisa de anticorpos anti-*Treponema pallidum* no sangue

mais tempo após a terapêutica, perdendo eficácia na monitorização do resultado da terapêutica. Este resultado parece pois demonstrar que o RPR diminui mais rapidamente após a terapêutica do que o VDRL, tendo-se revelado ser um teste mais eficiente na avaliação precoce da eficácia da mesma.

Para a avaliação da sensibilidade e especificidade dos dois testes não treponémicos nas diferentes fases da sífilis (sífilis primária, secundária, latente e neurosífilis), na sífilis tratada e nos indivíduos sem sífilis, utilizou-se o FTA-Abs-G como teste padrão.

Nos diferentes estádios da infecção os dois testes apresentaram sensibilidades iguais, sendo de 100% na sífilis secundária e neurosífilis, de 99,7% na sífilis latente e de 91,9% na sífilis primária. Sensibilidades semelhantes, variando de 92,3% a 100%, foram também obtidas por outros autores (Perryman *et al.* 1982, Pettit *et al.* 1983, White *et al.* 1989, Pope *et al.* 2000), os quais observaram, também, menor sensibilidade na sífilis primária. Com base neste tipo de resultados, isto é, menor sensibilidade no estádio primário, é recomendada a repetição dos testes serológicos, em todos os suspeitos de infecção por *T. pallidum*, oito a 15 dias depois de um resultado negativo, quando o quadro clínico é sugestivo de sífilis.

Nos doentes com sífilis tratada, e em comparação com o FTA-Abs, o VDRL parece diminuir mais lentamente que o RPR, o que confirma os resultados da análise na globalidade, originando maior proximidade entre a reactividade do VDRL e do FTA-Abs.

No que se relaciona com a especificidade, e quando o teste FTA-Abs foi considerado como teste padrão, aquela foi semelhante para os dois testes não treponémicos em avaliação, sendo de 92,8% para o VDRL e de 92,5% para o RPR. A especificidade encontrada neste estudo foi menor do que a descrita por Parham *et al.* (1984), Hambie *et al.* (1983) e Larsen *et al.* (1995), que obtiveram valores entre 96% e 98%. As diferenças entre os resultados aqui apresentados e os dos outros estudos poderão ser explicados por a população estudada ser constituída por muitos indivíduos infectados por VIH e toxicodependentes. A influência que estes factores podem ter na reactividade dos testes para pesquisa de anticorpos não treponémicos será ainda discutida neste capítulo.

Neste estudo a menor redução nos títulos obtida com o teste VDRL, em relação
ao RPR, após a terapêutica, levou a avaliar a descida dos títulos de anticorpos ou a ausência de reactividade nos testes não treponémicos, através da observação dos seus títulos aos três, seis e 12 meses após a terapêutica nos vários estádios da sífilis. Assim, considerou-se que não tinha havido diminuição quando esta não foi significativa (duas ou mais diluições) no título inicial, diminuição significativa (com redução em duas ou mais diluições) e seroreversão no caso de se tornar não reactivo, de acordo com as normas do CDC (2002a) e WHO (2001). A diminuição e a seroreversão dos títulos foi mais evidente na sífilis primária e na sífilis secundária do que na sífilis latente, para ambos os testes, pelo que no presente estudo se confirma que neste estádio a monitorização após a terapêutica deve ser mais prolongada (Fiumara 1978, 1979, 1980a, 1986). O CDC (2002a) e outros autores (Egglestone e Turner 2000, Brown e Frank 2003) recomendam que os doentes com sífilis primária, secundária e latente precoce devem ser vigiados até aos 12 meses, enquanto que os doentes com sífilis latente tardia ou de tempo indeterminado deverão ser reavalia dos até aos 24 meses.

Por outro lado, a diminuição foi mais rápida e a seroreversão mais evidente com o RPR do que com o VDRL, pelo que se confirma ser aquele o mais indicado para a monitorização do resultado da terapêutica, se bem que Brown et al. (1985), em estudo anterior tenha mostrado que o RPR apresentou um tempo de declínio dos títulos mais prolongado. Por outro lado, Romawnosky et al. (1991) observaram descida contínua nos títulos do teste RPR, com taxas de seroreversão de cerca de 44% para a sífilis primária e de 13% para a sífilis latente um ano depois da terapêutica, enquanto que neste estudo, com o VDRL e RPR, esta foi respectivamente de 66,7% e 75% na sífilis primária e de 10% e 27,5% na sífilis latente. Tendo em conta os resultados obtidos por Romawnosky et al. (1991) verifica-se que no presente estudo se obteve uma taxa de seroreversão maior, quer na sífilis primária quer na latente, o que poderá estar relacionado com o estudo de populações diferentes ou com os títulos iniciais, antes da terapêutica.

A infecção por *T. pallidum* encontra-se muitas vezes associada com a infecção por VIH (Rogers et al. 1983, Castro et al. 1988, Hutchinson et al. 1991, MaCabe et al. 1993, Singh e Romawnosky 1999), pelo que nos doentes co-infectados os

Neste capítulo e com o objectivo de avaliar as associações mencionadas no último parágrafo, compararam-se os testes não treponémicos em dois tipos de população, uma com infecção por *T. pallidum* e por VIH e outra apenas infectada com o primeiro agente. Assim, foi possível verificar que a infecção por *T. pallidum* foi mais comum na população infectada do que na sem infecção VIH, sendo a associação entre as duas infecções estatisticamente significativa (p< 0,001), tal como observado noutros estudos (Quinn *et al.* 1990, Ansell *et al.* 1994, Schoefer *et al.* 1996).

No estudo comparativo dos testes não treponémicos nestas duas populações, as taxas de concordância entre os dois testes foram semelhantes, sendo de 94,7% e 94,2% nos indivíduos infectados por VIH e naqueles sem infecção, respectivamente.

Tal como se observou anteriormente, o RPR parece ser o teste mais indicado para a monitorização do resultado da terapêutica, já que também nestas duas populações existiu descida mais rápida dos títulos com esta técnica.

Não havendo grandes diferenças entre as duas técnicas no grupo populacional infectado e não infectado por VIH, os resultados falsamente reactivos foram em maior número nos doentes com esta infecção viral, existindo associação estatisticamente significativa entre o infecção por VIH e a falsa reactividade de ambos os testes não treponémicos.

A falsa reactividade dos testes não treponémicos é um problema desde há muito referido e que se relaciona com diferentes situações crónicas ou agudas. Estas últimas associam-se com a gravidez, hepatite, mononucleose infecciosa, pneumonia viral, varíola, sarampo, malária, vacinação e outras doenças infecciosas virais, enquanto que a falsa reactividade crónica se tem associado a
doenças como a artrite reumatóide, lúpus eritematoso disseminado, alterações das imunoglobulinas, idade, lepra e neoplasias (Tuffanelli 1966, Catteral 1972, Hart 1986). A utilização de drogas injectáveis encontra-se, também, associada a maior taxa de falsa reactividade dos testes não treponémicos (Kaufman et al. 1974, Sterk 1988, Chaisson et al. 1989), tal como anteriormente foi referido para a infecção por VIH (Rompalo et al. 1992, Rusnak et al. 1994, Hernández-Aguado et al. 1998). A taxa de incidência de falsa reactividade na população em geral é cerca de 1%, valor inferior ao encontrado no presente estudo (2,3%). Este resultado pode estar relacionado com o tipo de população estudada, isto é de indivíduos predominantemente oriundos de países de expressão portuguesa infectados com malária, alguns doentes com lúpus eritematoso e grávidas. Por outro lado, sabe-se, também, que em Portugal a percentagem de hepatite C é elevada e que tem sido identificada a sua associação com falsa reactividade de testes não treponémicos (Thomas et al. 1994.).

Para explicar o maior número de falsos reactivos, que, geralmente, se encontra na população infectada por VIH tem-se colocado a hipótese de resultarem das alterações que ocorrem na produção de anticorpos, fenómeno que pode ser observado precoce ou tardiamente no curso daquela infecção (Lane et al. 1983, Pahwa et al. 1984) ou à presença de anticorpos anticardiolipina associada com a mesma (Canoso 1987).

No nosso País, e de modo semelhante a outros, a infecção por VIH é prevalente entre os toxicodependentes e sabendo-se que a toxicodependência, por si só, é factor de falsa reactividade, a associação dos dois factores combinados numa mesma população poderá ser responsável por maior taxa de falsa reactividade na população infectada por VIH. Não havendo nenhum estudo que clarificasse qual é o factor com maior influência nos resultados falsamente positivos, avaliou-se a presença de anticorpos anti-cardiolipina pela técnica de RPR, tendo em consideração a presença de infecção por VIH e a toxicodependência.

No presente estudo foi encontrada uma associação entre os resultados falsamente reactivos e infecção VIH associada à toxicodependência, tal como em estudos anteriores (Augenbraun et al. 1994, Rompalo et al. 1992, Joyanes et al. 1998). No entanto, quando se faz a análise estatística de cada um dos factores, esta só é estatisticamente significativa para a associação de falsa reactividade
com VIH, pelo que este vírus parece ser o factor que mais influencia este tipo de reacção.
Considerando apenas o VIH os dados obtidos encontram-se na generalidade de acordo com estudos anteriores (Rompalo et al. 1992, Joyanes et al. 1998), nos quais se verificou aumento das taxas de falsa reactividade associadas à infecção por VIH, se bem que os presentes números se aproximem mais dos encontrados por Rompalo et al. (4% nos indivíduos com infecção pelo VIH e de 0,8% nos VIH negativos), enquanto que os obtidos por Joyanes et al. (1998) foram de 15% nos indivíduos infectados por VIH e de 1,2% naqueles não infectados. Estas diferenças podem, eventualmente, ser devidas a que, tal como no primeiro caso, também a população do presente estudo provinha maioritariamente de doentes atendidos numa clínica de IST, enquanto que no segundo se tratava de uma população de um hospital geral em que 70% dos doentes com infecção por VIH eram, também, toxicodependentes. No entanto, nem aqueles autores nem outros até ao presente pesquisaram a influência de cada um dos dois factores em separado na obtenção dos resultados falsamente reactivos.
Se bem que se tenha verificado, também, uma relação entre a toxicodependência e a falsa reactividade, esta não foi uma associação estatisticamente significativa, ao contrário do obtido noutros estudos como o de Rusnack et al. (1994). Estes autores encontraram, apenas, relação significativa entre a falsa reactividade e a infecção por VIH nos indivíduos que eram, também, toxicodependentes. Uma vez que no presente estudo se encontrou uma associação significativa da infecção por *T. pallidum* com VIH, independentemente da toxicodependência, parece ser importante que perante uma falsa reactividade de um teste RPR e sem outra causa confirmada capaz de originar resultados falsamente reactivos, se efectue pesquisa de anticorpos anti-VIH, do mesmo modo que a pesquisa para este vírus, é efectuada em individuos com sifilis (Hooshmand 1972, Tratmont 1987, Katz e Berger 1989).

Os testes treponémicos são, geralmente, utilizados para confirmar a reactividade dos testes não treponémicos. Como anteriormente referido, essa confirmação torna-se necessária porque os testes não treponémicos apresentam, com alguma frequência, resultados falsamente positivos (Rusnack
et al. 1994, Nandwani e Evans 1995), o que na globalidade deste estudo se verificou em cerca de 2,3%.

No presente trabalho avaliaram-se diversos tipos de testes treponémicos, desde os mais utilizados na rotina laboratorial até uma técnica de Western blot “home made”, com a finalidade de determinar a sua utilidade no diagnóstico da infecção por *T. pallidum* e analisar a sua eficácia.

Porque, tal como referido anteriormente, não existe uma técnica padrão exequível para o diagnóstico serológico da sífilis, utilizou-se para esse fim o teste FTA-Abs, visto ser considerado como o mais sensível nos diferentes estádios da doença (Larsen et al. 1995).

A avaliação dos testes treponémicos iniciou-se com a técnica de hemaglutinação passiva (TPHA), por ser presentemente a técnica mais utilizada na rotina laboratorial. Embora a técnica de imunofluorescência indirecta tenha sido desenvolvida primeiro que o teste de TPHA, este tornou-se rapidamente no mais utilizado, por ser de execução simples, mais barato e não precisar de leitura ao microscópio de fluorescência. Isto torna-o mais objectivo, não necessitando de técnico experiente em microscopia de fluorescência.

Neste estudo, o método TPHA demonstrou boa sensibilidade (97,6%) e especificidade (97%), com valores que estão de acordo com os obtidos por outros autores (Jaffe et al. 1978a, Larsen et al. 1981, Kennedy 1998).

Na sua comparação com a técnica de RPR, verificou-se que os dois testes foram totalmente concordantes no que diz respeito ao estádio de sífilis secundária, o que é compreensível, uma vez que é o estádio da sífilis em que existem mais treponemas em circulação e em que, geralmente, todos os testes são positivos.

Em relação aos resultados falsos negativos, traduzidos na maior ou menor sensibilidade dos testes em questão, o TPHA apresentou maior número de falsos negativos na globalidade, incluindo um resultado não reactivo numa amostra de soro de um doente com neurossífilis. Isto foi particularmente demonstrado no diagnóstico de sífilis latente em que no TPHA houve grande número de falso negativos 5/335 (1,5%), se bem que a maioria dos autores (Larsen et al. 1995, Kennedy 1998, Wicher et al. 1999) refira que o TPHA, ao contrário do RPR, permanece positivo durante mais tempo ao longo da história natural da sífilis e após a terapêutica. No entanto, esta situação acontece
sobretudo nos estádios tardios da infecção.

Em relação ao estádio de sífilis primária o RPR apresentou mais falsos negativos, o que não é de estranhar, já que se sabe que os testes treponémicos são os mais sensíveis neste estádio da infecção (Tramont 1990, Larsen et al. 1995, Singh e Romanowski 1999, Wicher et al. 1999).

No que diz respeito a resultados falsamente positivos, e como era de esperar (Catterall 1972, Thorton et al. 1987, Rusnak et al. 1994), foram em maior número com o teste RPR (2,4%) do que com o TPHA (0,3%).

Na comparação dos dois testes específicos mais utilizados na rotina laboratorial, o TPHA e o FTA-Abs, e considerando este como padrão, observou-se boa taxa de concordância (97,6%), tendo o TPHA apresentado sensibilidade de 97,6% e especificidade de 97,6%. Dos 21 casos em que o FTA-Abs foi positivo e o TPHA negativo, 13 eram de doentes com sífilis tratada, dois com sífilis primária, um com neurossífilis e cinco com sífilis latente. Daqui se pode concluir que o FTA-Abs identifica melhor os doentes com sífilis tratada, embora o TPHA também tenha identificado nove casos de sífilis tratada não reactivos no FTA-Abs. Este tipo de resultados é característico dos testes treponémicos (Johnson e Farnie 1994, Brown et al. 1985) mas, como consequência não distinguem entre infecção passada e recente, pelo que não se utilizam para o rastreio de infecção por *T. pallidum*.

Também, na sífilis primária, o FTA-Abs parece identificar mais casos de infecção do que o TPHA. De sublinhar que o FTA-Abs foi reativo em todos os casos de sífilis primária atrás mencionados em que o TPHA e o RPR foram negativos, o que foi semelhante ao obtido por Larsen et al. (1981), que ao efectuarem a comparação destas duas técnicas (TPHA e FTA-Abs) obtiveram sensibilidade de 86,7% (26/30) e de 100% (30/30) nos indivíduos com sífilis primária. Estes resultados não são surpreendentes, sendo concordante com o já mencionado por outros autores, de que o FTA-Abs é, de todos os testes para detecção de anticorpos anti-*T. pallidum*, o primeiro a reactivar após a infecção se estabelecer (Shore 1967, Jaffe et al. 1978a, Dyckman et al. 1980).

A detecção de cinco casos de sífilis latente pelo FTA-Abs não reactivos com o teste TPHA deve ser, também, referida, pelo facto de ser generalizada a ideia de que o TPHA apresenta sensibilidade semelhante ao FTA-Abs nos estádios que
não de sífilis primária (Larsen et al. 1995). Num trabalho comparativo de técnicas, Zrein et al. (1995) encontraram 4/440 (0,9%) reacções falsamente negativas com um teste de hemaglutinação. Assim, e atendendo aos falsos negativos obtidos com esta técnica, quando em presença de situações clínicas sugestivas de sífilis, deverá efectuar-se um teste confirmatório por uma técnica de imunofluorescência. Importante de referir é o facto do TPHA não ter sido reactivo num caso de neurossífilis acima mencionado, o qual foi diagnosticado por um teste inespecífico (RPR) e por outro teste específico (FTA-Abs). Esta situação poderá à partida eliminar a probabilidade de se efectuar punção lombar por suspeita de neurossífilis, uma vez que o estudo do liquor só está recomendado quando a serologia é positiva. Deve realçar-se o facto de ter havido quatro casos de indivíduos sem sífilis cujos soros foram reactivos no TPHA e não reactivos no FTA-Abs, do que resulta uma taxa de falsa reactividade de 0,3% para o teste TPHA. Esta, em indivíduos aparentemente saudáveis, tem sido referida como inferior a 1%, e embora as causas sejam desconhecidas, em alguns casos foi relacionada com a presença de toxicodependência, doenças do colagéneo e lepra (Jaffe et al. 1978a, Wentworth et al. 1978, Rein et al. 1980). Neste caso, não foi possível identificar a causa para este resultado e como os doentes não foram monitorizados, a repetição do teste não foi realizada.

Do estudo efectuado conclui-se que o TPHA demonstrou ser sensível e específico, permitindo diagnosticar a maioria dos doentes com infecção a *T. pallidum*, embora menos sensível e específico que o FTA-Abs.

Há alguns anos foi desenvolvido um novo teste de aglutinação em microplaca que utiliza um portador artificial de antígenio constituído por partículas de gelatina coradas em vez de eritrócitos, denominado TP.PA. Este é um teste de aglutinação passiva de princípio básico e execução semelhante ao TPHA (Deguchi et al. 1994), mas mais estável e de leitura mais simples. Devido ao novo portador de antígeno de partículas inertes são eliminadas as possíveis reacções heterófilas, que podem ocorrer quando utilizados eritrócitos (Pope e Fears 2000). Por outro lado, e à semelhança do FTA-Abs (Huber et al. 1983, Pope e Fears 2000) esta técnica parece ser mais sensível do que o TPHA nas situações de sífilis primária, sendo também mais fácil a sua leitura. Uma outra vantagem do teste seria, ao contrário dos outros testes treponémicos, a sua
eventual utilização na monitorização da terapêutica.

A avaliação do teste pelo cálculo da sua sensibilidade e especificidade, foi feita comparando-o com os testes da rotina laboratorial, TPHA e FTA-Abs. No teste em avaliação a sensibilidade e a especificidade foram elevadas e a taxa de concordância do TP.PA com o TPHA foi de 98,4% e com o FTA-Abs de 98,8%, o que está de acordo com os resultados obtidos por outros investigadores, que encontraram uma taxa de concordância de 97% (Pope et al. 2000) e 97,8% (Deguchi et al. 1994) com o TPHA. A sensibilidade do TP.PA foi de 100% e a especificidade de 94,4%, quando comparada com o TPHA sendo, respectivamente, de 98,5% e de 100%, na comparação com o FTA-Abs.

Analisando estes resultados, o TP.PA parece ser, pelo menos tão sensível como o TPHA e mais sensível que este, quando comparado com FTA-Abs (97,6%). Deve ser notado que os cinco casos reactivos no FTA-Abs e não reactivos no TP.PA estão relacionados com sífilis tratada, pelo que na realidade não são falsos negativos do TP.PA.

Em relação à especificidade fica claro, também, que o TP.PA é tão específico como o FTA-Abs e mais específico do que o TPHA na detecção de anticorpos anti-\textit{T. pallidum}.

De modo semelhante a outros trabalhos efectuados (Schroeter et al. 1972, Deacon e Harris 1975), e como já referido e demonstrado anteriormente, o FTA-Abs é mais sensível que o TPHA na sífilis primária. O mesmo se aplica ao TP.PA já que a sua sensibilidade foi igual à do FTA-Abs-G nos doentes com sífilis primária, tendo demonstrado ser, nesta fase, mais sensível do que o TPHA, podendo, eventualmente, ser utilizado no diagnóstico da sífilis em estádio precoce.

A comparação dos títulos do TP.PA com os do RPR e do TPHA, em doentes monitorizados após terapêutica, teve a finalidade de se verificar a sua utilidade na avaliação do efeito da terapêutica. Só foi possível esta avaliação num pequeno número de doentes, uma vez que a população do presente estudo é, na sua maioria de indivíduos de grupos populacionais de alto risco de de se infectarem com doenças sexualmente transmissíveis, que dificilmente regressam à consulta, sobretudo se aparentemente saudáveis.

A análise dos resultados obtidos na utilização deste teste para monitorizar a
terapêutica, na sua comparação com o RPR e o TPHA, demonstrou que um maior número de soros apresentou diminuição significativa dos títulos de anticorpos aos seis e 12 meses com a técnica TP.PA, seguindo-se o RPR. O menor número de casos com diminuição significativa do título obteve-se com o TPHA. No entanto, a seroreversão aos seis e 12 meses só foi observada com a técnica de RPR.

Ao considerar-se separadamente as várias fases da sífilis, em cada uma e na generalidade, o TP.PA demonstrou ser o teste em que houve maior número de amostras com diminuição significativa de anticorpos anti-*T. pallidum*. No entanto, no nosso estudo e de modo semelhante a outros estudos (*Jaffe et al.* 1978a, *Fiumara* 1979, 1980b, 1986), a seroreversão observou-se, apenas, num pequeno número de casos (7), a maioria ao fim de 12 meses e apenas com o teste RPR.

Os resultados obtidos sugerem que o teste TP.PA é adequado para utilização na rotina do diagnóstico laboratorial de sífilis, sendo tão sensível como o teste FTA-Abs na pesquisa de anticorpos na sífilis primária, tal como indicado por outros autores (*Koboyashi et al.* 1983, *Deguchi et al.* 1994, *Pope et al.* 2000, *Young 2000*) e útil para a monitorização do efeito terapêutico dos doentes com sífilis. Por outro lado, tem a vantagem de não ser necessária a utilização do microscópio de fluorescência, sendo menos subjectivo que o FTA-Abs e mais fácil de ler que o TPHA.

Assim, e também de acordo com *Pope e Fears (2000)*, este teste poderá, com algumas vantagens, substituir o TPHA na rotina laboratorial, quer como teste confirmatório, quer em associação com o RPR para o rastreio de sífilis, como é usual nos países europeus (*Young 2000*).

Este tipo de método tem mostrado algumas vantagens em relação aos testes mais correntes, uma vez que são fáceis e rápidos de executar e de leitura
objectiva. Embora de maior custo que as técnicas clássicas, sobretudo no estudo de pequeno número de amostras, a sua maior vantagem é a capacidade de processamento rápido quando estas são em grande número, para além da automatização da leitura, o que torna o resultado mais objectivo.

A sensibilidade dos diferentes testes imunoenzimáticos já estudados varia de 48,5%, a 100%, de acordo com o tipo de EIA, com o estádio da doença e com a prevalência da mesma (Borobio et al. 1990, Lefevre et al. 1990, Schmidt et al. 2000). No presente estudo e na globalidade dos doentes, a técnica aplicada apresentou boa sensibilidade (99,4%) quando comparada com o FTA-Abs, semelhante à de outros testes geralmente utilizados no diagnóstico laboratorial de sífilis. Resultados semelhantes aos obtidos (entre 95% a 99,6%) são referidos por outros estudos (Borobio et al. 1990, Silletti 1995, Reisner et al. 1997, Halling et al. 1999). Deve, no entanto, clarificar-se que, neste estudo, a sensibilidade do teste EIA só não foi maior porque o FTA-Abs foi positivo em dois casos de sífilis tratada. Como sublinhado anteriormente, não são verdadeiros falsos negativos.

A especificidade deste teste é mais elevada do que a do TPHA e é igual à do FTA-Abs (100%), embora ao comparar-se o teste EIA com o TPHA a especificidade daquele seja apenas de 93%. Isto deve-se ao facto de nove amostras negativas no TPHA e positivas no teste de EIA, corresponderem a falsos negativos do TPHA, uma vez que se relacionavam com casos de sífilis primária (3), sífilis latente (1) e de sífilis tratada (5). Na globalidade dos soros estudados a taxa de concordância foi, também, alta, sendo respectivamente de 99,5% e 98% com o FTA-Abs e o TPHA.

Quando se comparou a sensibilidade dos testes EIA, RPR e TPHA, nos vários estádios da infecção, utilizando o FTA-Abs como teste padrão, o primeiro mostrou alta sensibilidade em todos os estádios, inclusive na sífilis primária. Estes valores contrariam os resultados obtidos por outros autores que defenderam que o método apresentava baixa sensibilidade neste estádio (Lefevre et al. 1990, Schmidt et al. 2000). Na sífilis secundária, como esperado, os testes diagnosticaram 100% dos casos, tendo a EIA apresentado maior sensibilidade do que o TPHA e do que o RPR na sífilis primária, na sífilis latente e na sífilis tratada. Neste último grupo de doentes a sensibilidade obtida demonstra que a
técnica não apresenta nenhuma vantagem na capacidade de distinguir entre infecção tratada e não tratada, como sucede com o RPR.
A especificidade, analisada no grupo de doentes sem sífilis, foi de 100% para os testes EIA e TPHA e de 88% para o RPR, tendo o FTA-Abs como teste padrão. O teste de EIA parece ser, assim, tão específico como o FTA-Abs e o TPHA, e mais específico que o RPR, o que é vantajoso num teste de rastreio.
A presença de anticorpos de tipo IgM específicos é compatível com infecção recente a T. pallidum (Larsen et al. 1998), pelo que se decidiu verificar a capacidade de dois tipos de técnicas, uma de imunofluorescência indirecta e outra imunoenzimática (FTA-Abs-M e EIA-M) para a detecção desses anticorpos. Como era de esperar os anticorpos anti-T. pallidum de tipo IgM estavam presentes em maior número de amostras de doentes com sífilis primária do que nos doentes com sífilis secundária. As amostras de doentes com sífilis latente apresentaram uma menor reactividade para anticorpos de tipo IgM para ambos os testes, pelo que parece que ao longo da história natural da sífilis as IgM vão diminuindo. No entanto, ambos os testes estudados não tiveram a capacidade de demonstrar todos os casos de sífilis primária como seria desejável.
Comparando-se o teste ELISA-M com o FTA-Abs-M, o número de amostras indeterminadas foi menor com a técnica EIA do que com o FTA-Abs-M, parecendo que a maioria destas amostras eram na realidade reactivas. Tal pode ser devido à subjectividade do FTA-Abs, uma vez que a fluorescência é por vezes difícil de interpretar. De notar que não se encontraram anticorpos anti-T. pallidum de tipo IgM por nenhuma das técnicas nos doentes com história de sífilis tratada, o que associado à grande frequência da presença desse tipo de anticorpos nos indivíduos com sífilis primária e sífilis secundária, demonstra a utilidade do teste EIA como marcador de sífilis recente.
O teste EIA estudado parece ser uma alternativa aos testes treponêmicos mais utilizados na detecção de anticorpos anti-T. pallidum, incluindo os de tipo IgM, visto ter apresentado especificidade e sensibilidade semelhante aos mesmos, em todos os estádios da infecção. Isto é, particularmente, verdadeiro quando se compara o teste EIA com o FTA-Abs, considerado o teste mais sensível e mais específico no diagnóstico laboratorial de sífilis. O teste EIA apresentou, também, sensibilidade semelhante ao RPR, tendo ainda a vantagem de não apresentar
resultados de falsa reactividade. Parece, assim, ser uma técnica que poderá ser utilizada como técnica de rastreio, uma vez que é simples, de leitura objectiva e facilmente automatizável. Isto mesmo tem vindo ultimamente a ser recomendado por alguns autores, como alternativa ao rastreio utilizando a combinação de um teste não treponémico com um teste treponémico, sobretudo em populações com baixa prevalência de infecção (Egglestone e Turner 2000, Brwon e Frank 2003).

A comparação dos resultados obtidos entre a técnica de Western blot e as técnicas clássicas habituais permitiu reconhecer que a técnica de Western blot G executada se aproximou mais do teste FTA-Abs-G. Em relação a este apresentou sensibilidade de 96,4% e especificidade de 98,6%, enquanto que relativamente ao TPHA aquelas foram de 95,1% e 91%, respectivamente. Outros autores obtiveram resultados semelhantes com sensibilidades e especificidades de 91,7% e 92% (Byrne et al. 1992), 96,6% e 99,5% (Ebel et al. 2000) na comparação com o FTA-Abs, enquanto que estas foram de 97,1% e 96,1% e de 86% e 100% na comparação com o TPHA (Marangoni et al. 1999, Sambri et al. 2001b).

Ao analisar-se os resultados não concordantes entre o Western blot G e o TPHA obtidos neste estudo chega-se à conclusão que o Western blot G diagnosticou mais seis casos de sífilis que o TPHA e que, por outro lado, não mostrou reactividade em 28 casos de sífilis tratada, nos quais o TPHA foi reactivo. Poderá ser mais útil na monitorização terapêutica, sendo não reactivo nos doentes já tratados e portanto sem sífilis.

Nos doentes com resultados discrepantes entre o Western blot e o FTA-Abs, houve apenas o caso de um soro de um doente com sífilis primária não reactivo pelo Western blot G e reactivo pelo FTA-Abs, sendo os restantes resultados em desacordo observados no grupo de doentes tratados, na sua maioria reactivos nos testes TPHA (28) e FTA-Abs (23).

A avaliação destas três técnicas permitiu verificar que existiu concordância total de resultados entre o Western blot e o FTA-Abs-G na sífilis secundária, neurosífilis e sífilis latente. O primeiro destes testes diagnosticou menos um caso de sífilis primária, mas é mais sensível que o TPHA, pois confirmou casos de doença activa que se tinham revelado negativos no teste TPHA.
Sambri et al. (2001b) obtiveram, também, uma menor sensibilidade do teste TPHA na sífilis primária quando comparado com o método Western blot, tendo identificado 49 soros reactivos por TPHA e 55 por Western blot, num total de 64 com aquele diagnóstico, e uma taxa de concordância de 84,4%. Marangoni et al. (1999), por outro lado, encontraram sensibilidade e especificidade do método Western blot em relação ao TPHA de 86% e 100%, respectivamente, e de 88,5 e 98%, respectivamente, em relação ao FTA-Abs, em doentes com o diagnóstico clínico de sífilis recente.

Neste trabalho, a especificidade foi de 100% para o FTA-Abs e para o Western blot. De acordo com os resultados obtidos, o método de Western blot parece ser uma técnica tão sensível e específica quanto o FTA-Abs na globalidade e nos diferentes estádios de doença activa em conformidade com o anteriormente referido por outros autores (Dobson 1988, Byrne et al. 1992, Meyer et al. 1994, George et al. 1998, Sambri et al. 2001b). Por outro lado, apresenta a vantagem da visualização directa da reacção antigénio-anticorpo, enquanto que o FTA-Abs é mais subjectivo. Interessante, foi o achado da menor reactividade do teste de Western blot no grupo de doentes com sífilis tratada. Neste grupo, esta técnica foi negativa em 12% dos casos, enquanto que o TPHA o foi em 3,3% e o FTA-Abs em, apenas, 2,9%. Aparentemente, os anticorpos para as bandas mais específicas, utilizadas na discriminação da reactividade do Western blot, parecem diminuir rapidamente, não sendo a técnica tão sensível como as de TPHA e FTA-Abs aos anticorpos residuais ou cicatriciais (Pâris-Hamelin et al. 1999). Por outro lado, Ijsselmuiden et al. (1989b) monitorizaram a resposta à terapêutica, relativamente à reactividade para a proteína TmpA (45kDa) por uma técnica imuno-enzimática e observaram que os anticorpos anti-proteína TmpA diminuíam. Parece que este não será caso único, já que a descida no título de anticorpos para outras proteínas antigénicas foi observada em doentes tratados, quando se utilizaram técnicas de Western blot (Moskophidis e Muller 1984a, 1984b, Baker-Zander et al. 1986).

A técnica de Western blot para pesquisa de anticorpos específicos de tipo IgM é idêntica à utilizada para a pesquisa de anticorpos de tipo IgG, substituindo-se o conjugado IgG por um IgM específico da cadeia µ (Sanchez et al. 1989, Nogard 1993, Meyer et al. 1994,).
As imunoglobulinas de tipo IgM surgem, em geral, no início da resposta humoral a um antigénio, persistindo por pouco tempo. No caso de infecção por *T. pallidum*, a pesquisa de anticorpos de tipo IgM por Western blot tem sido dirigida, sobretudo, para o diagnóstico de sífilis congénita (Sanchez *et al.* 1993, Schmidt *et al.* 1994), enquanto que para o diagnóstico de sífilis adquirida no adulto não tem sido muito utilizada ou estudada. Apesar disso, alguns autores determinaram que a sua presença poderia, eventualmente, contribuir para o diagnóstico de sífilis recente, para controlo terapêutico e para a vigilância após contacto de risco (O’Neill e Nicol 1972, Wilkinson e Rodin 1976, Lefevre *et al.* 1983 e 1990, Pedersen *et al.* 1989). De salientar que embora a presença de anticorpos específicos anti-*T. pallidum* de tipo IgM sejam prova de doença activa (Muller 1986), a sua ausência não significa que a doença não esteja em curso (Pedersen *et al.*, 1982 Lefevre *et al.* 1983). Para a pesquisa destes anticorpos têm sido utilizadas diversas técnica, (desde a imunofluorescência a técnicas imuno-enzimáticas e de Western blot).

Neste estudo, e comparativamente ao FTA-Abs-M, o método Western blot M mostrou maior sensibilidade, tendo existido 34 soros em que não houve concordância. Dos 33 soros não reactivos pelo FTA-Abs-M e reactivos pelo Western blot M, 32 eram de doentes com sífilis activa, correspondendo apenas um caso a sífilis tratada. Do exposto pode concluir-se que além de parecer mais sensível que o FTA-Abs parece também ser mais sensível nos casos de sífilis recente sintomática. No estudo dos anticorpos específicos de tipo IgM pela técnica de Western blot foram confirmados os casos que na técnica FTA-Abs-M foram considerados duvidoso ou indeterminados, com demonstração de reactividade pela técnica de Western blot M. Ambos os métodos mostraram ser bastante específicos, não se tendo obtido nenhum resultado reactivo no grupo de indivíduos sem sífilis. Pâris–Hamelin *et al.* (1999) demonstraram que a técnica Western blot M era mais sensivel (reactiva em 4/10) que o teste FTA-Abs-M (3/10), o que está em conformidade com o presente estudo.

Assim, a técnica de Western blot parece ser bastante objectiva, sensível e específica, já que são pesquisados anticorpos dirigidos às proteínas de *T. pallidum*, sendo que o teste Western blot M permitiu a confirmação dos resultados duvidosos obtidos com a técnica de FTA-Abs-M. No entanto
apresenta a desvantagem da preparação do antigénio de *T. pallidum* que, para além de ser laboriosa, necessita da utilização de animais de biotério. Porém, estão já a ser utilizadas proteínas recombinantes, que têm apresentado resultados semelhantes às da técnica de Western blot com extracto de *T. pallidum* (Sato *et al.* 1999, Sambri *et al.* 2001b, Van Voorhis *et al.* 2003), as quais poderão ultrapassar essas desvantagens.
Capítulo 3. Pesquisa de anticorpos anti-*Treponema pallidum* no liquor
1. Introdução

A neurossífilis desenvolve-se na sequência da invasão do sistema nervoso central por *T. pallidum*, afectando cerca de 6,5% dos indivíduos infectados não tratados (Larsen et al. 1998). A patogenia da infecção por *T. pallidum* no sistema nervoso central está relacionada com a multiplicação local dos treponemas (Fitzgerald 1981). Embora se possam desenvolver sintomas neurológicos de sífilis durante o estádio de sífilis secundária (meningite sífilítica), a neurossífilis é sobretudo uma complicação da sífilis tardia, apesar de, actualmente, poder ocorrer mais precocemente, nos primeiros anos após a infecção inicial, nomeadamente em indivíduos infectados por VIH (Larsen et al. 1998).

Muitos dos conhecimentos actuais da história natural da sífilis e das suas manifestações clínicas, baseiam-se nos estudos efectuados após a identificação de *T. pallidum* por Schaudinn e Hoffman em 1905 e, ainda nos realizados por outros autores já na era da penicilina como terapêutica eficaz, com o consequente declínio da incidência da infecção e da morbilidade (Hutchinson e Hook 1990).

Antes da utilização da penicilina a infecção era muito comum e a terapêutica, geralmente com arsenicais e ou bismuto, era tóxica deixando sequelas graves. Embora na época pré-penicilina a complicação com maior mortalidade e morbilidade fosse a sífilis cardiovascular, a neurossífilis era também uma complicação grave, originando, nos anos 20 do século passado, cerca de 20% das admissões nas instituições psiquiátricas. Nessa época foi descrito um grande número de casos de envolvimento do sistema nervoso central, desde as formas assintomáticas, reconhecidas, apenas, nas alterações dos exames laboratoriais do líquor até às formas sintomáticas e irreversíveis (Simon 1985, Hutchinson e Hook 1990, Hook e Marra 1992).

Após os estudos de Moore e Hopkins (1936 – citado por Hook e Marra 1992),...
defendendo que os doentes com sífilis assintomática e alterações do liquor (pleiocitose, aumento na concentração de proteínas ou teste serológico reactivo) apresentavam maior risco de desenvolvimento subsequente de neurossífilis sintomática do que os que não tinham aquelas alterações, foi tomada a decisão de tratar de acordo com os resultados da punção lombar (Hook 1994, Swartz et al. 1999).

Naquela época, como ainda hoje, os objectivos do estudo do liquor são os de orientar a terapêutica, de modo a prevenir o desenvolvimento da neurossífilis clinicamente aparente.

T. pallidum invade o sistema nervoso central precocemente no decorrer da infecção sífilítica em muitos doentes, apesar de nem todos desenvolverem alterações do liquor ou doença do sistema nervoso central (Lukehart et al. 1988, Katz e Berger 1989).

Após a invasão inicial do liquor, a infecção treponémica não tratada ou inadequadamente tratada, pode resolver espontaneamente ou evoluir para meningite assintomática ou meningite sífilítica aguda (Singh e Romanowski 1999, Swartz et al. 1999). A seguir a essa fase inicial, a doença pode manter-se assintomática ou progredir para os estádios tardios de sífilis meningo-vascular, tabes dorsalis ou paralisia.

Nas últimas décadas, as apresentações clínicas pouco usuais e de rápida progressão nos doentes com co-infecção pelo VIH, levou à colocar a hipótese desta infecção viral poder alterar a história natural da sífilis (Johns et al. 1987, Berry et al. 1987, Musher et al. 1990, Katz et al. 1993).

constatou-se a existência de um desvio na apresentação clínica da mesma, isto é, das formas tardias parenquimatosas de “tabes dorsalis” e de paralisia geral, para o tipo de manifestações que ocorrem mais precocemente, como é o caso da sífilis meníngea ou da sífilis meningovascular (Burke e Schaberg 1985, Mush et al. 1990, Dowell et al. 1992, Gordon et al. 1994, Flood et al. 1998).

O diagnóstico correcto de neurossífilis torna-se pois cada vez mais importante, sobretudo devido às implicações terapêuticas, sabendo-se que a penicilina G benzatínica não atinge concentrações bactericidas no liquor, sendo necessária a utilização de outras formulações de penicilina, como por exemplo, a penicilina G aquosa ou a penicilina procaínica em associação com o probenecid (Yoder 1975, Mohr et al. 1976, Polnikorn et al. 1980, Ducas e Robson 1981, Van der Valk et al. 1988, CDC 2002a).

Larsen et a. (1998) definem como critérios de diagnóstico definitivo de neurossífilis, a presença de um teste treponémico reactivo no soro associado a um teste VDRL reactivo no liquor ou à identificação de *T. pallidum* no mesmo. O diagnóstico presuntivo fundamenta-se na associação do teste treponémico reactivo no soro, com a presença de sintomas e sinais clínicos de neurossífilis, ou exame citoquímico do liquor alterado, como aumento do número de leucócitos (> 5 células mononucleadas/mm³) e/ou aumento na concentração de proteínas (> 45 mg/dl), não sendo identificadas outras causas para estas alterações.

No entanto, estes critérios colocam alguns problemas, já que não existe um teste padrão para o diagnóstico laboratorial da neurossífilis (Lukehart et al. 1988). O teste de VDRL apresenta grande especificidade, pelo que a sua reactividade no liquor se considera como evidência de neurossífilis (Larsen et al. 1998, CDC 2002a), mas, infelizmente, apresenta baixa sensibilidade (22 a 69%), mesmo nos casos de neurossífilis sintomática (Sparling 1971, Hooshmand et al. 1972, Jaffe e Kabins 1982, Burke e Scaberg 1985) podendo existir resultados falsamente negativos por aquele teste. Embora raramente, a falsa reactividade
pesquisa de anticorpos anti-*Treponema pallidum* no líquor

Por outro lado, as alterações do exame citoquímico do líquor são inespecíficas, relacionando-se com o processo inflamatório do sistema nervoso central e podem ser causadas por exemplo, pela infecção por VIH (Luger *et al.* 1981, Hook 1994, Larsen *et al.* 1998). Na co-infecção torna-se, assim, mais complicada a valorização por si só das alterações do exame citoquímico do líquor.

Alguns investigadores têm sugerido que os testes treponêmicos FTA-Abs e TPHA seriam mais sensíveis que o teste VDRL no diagnóstico de infecção a *T. pallidum* do sistema nervoso central, mas esse critério não é aceite por todos (Kasatiya e Birry 1980, Hart 1986, Davis e Schmitt 1989, Hook e Marra 1992), uma vez que a presença de anticorpos específicos reactivos no líquor poderia resultar da difusão passiva de anticorpos treponêmicos do sangue para o líquor, e não da infecção do sistema nervoso central (Jaffe e Kabins 1982). No entanto, um teste de FTA-Abs negativo no líquor tem sido utilizado para excluir o diagnóstico de neurossífilis (Sparling 1971, Jaffe *et al.* 1978b, Larsen *et al.* 1995, Marra *et al.* 1995), uma vez que é mais sensível embora menos específico do que o VDRL.

Todas estas questões e controvérsias fazem com que o diagnóstico de neurossífilis seja problemático, sobretudo nos indivíduos com infecção por VIH, nos quais, quando o VDRL é negativo, a inexistência de testes de diagnóstico dificulta a diferenciação entre doença neurológica por *T. pallidum*, por VIH ou, ainda, por outros agentes patogênicos do sistema nervoso central, que muitas vezes ocorrem nestes doentes.

A punção lombar está indicada em doentes com sífilis, na presença de sintomas e de sinais neurológicos e/ou oftálmológicos, na sífilis terciária, no insucesso terapêutico e na sífilis congênita (CDC 1998, 2002a). No caso de co-infecção por VIH e *T. pallidum* era recomendado, pelo CDC (1993a), punção lombar a todos os doentes para exclusão de diagnóstico de neurossífilis. No entanto, actualmente, recomenda-se que o exame do líquor seja praticado apenas, nos casos de sífilis latente tardia ou de sífilis com duração indeterminada (CDC 1998, 2002a), já que muitas vezes as alterações do líquor

Em indivíduos com sífilis primária e sífilis secundária as alterações no liquor podem ocorrer independentemente da co-infecção pelo VIH (Lukehart et al. 1988, Rolfs et al. 1997). Essas alterações nos co-infetados por VIH são de significado prognóstico desconhecido, porém, a maioria dos doentes responde à terapêutica correntemente utilizada (Rolfs et al. 1997). Por essa razão, o exame do liquor não é recomendado, por rotina, nos indivíduos infectados por VIH com sífilis recente.

Neste capítulo foram objectivos avaliar a eficácia de vários testes serológicos (incluindo os testes RPR e TP.PA, usualmente não recomendados para pesquisa de anticorpos anti-\textit{T. pallidum} no liquor), para o diagnóstico laboratorial de neurosífilis, através do estudo de amostras de liquor de doentes com suspeita de neurosífilis, utilizando como controlo negativo uma população de indivíduos sem sífilis, que efectuaram punção lombar devido a outras patologias.

\section*{2. Material e métodos}

\subsection*{2.1. População}

Neste estudo foram incluídos doentes provenientes das mesmas consultas e serviços hospitalares referidos no capítulo 2, os quais foram sujeitos a punção lombar para exclusão de diagnóstico de neurosífilis.

No total estudaram-se 188 indivíduos, 25 com sintomatologia para infecção por \textit{T. pallidum}, e 163 assintomáticos para a mesma.

No grupo de indivíduos sintomáticos (25), quatro tinham diagnóstico de sífilis primária, oito de sífilis secundária, nove de neurosífilis, um de uveíte e três apresentavam alterações neuropsíquicas. Todos apresentavam co-infecção pelo VIH com excepção de dois, um com o diagnóstico de uveíte e o outro com o de
neurossífilis (meningo-encefalite).
No grupo dos assintomáticos, 103 tinham diagnóstico de sífilis latente e os restantes 60 tinham sido tratados para sífilis. Relativamente à infecção por VIH, 100 apresentavam co-infeção, em 57 não se obteve informação e seis não se encontravam infectados, por aqueles vírus.
No estudo, foi incluído um grupo de 46 amostras de liquor provenientes de indivíduos sem reactividade nos testes serológicos, que constituíram o grupo controlo negativo.

2.2. Exame citoquímico do liquor

A determinação da contagem diferencial de células e a concentração de proteínas do liquor foi facilitada pelos médicos assistentes dos respectivos doentes. A contaminação sanguínea do liquor foi verificada pela concentração de eritrócitos, que deveria ser inferior a 0,001%, de modo a evitarem-se resultados falsamente reactivos nos testes serológicos (Izzat et al. 1971, Davis e Sperry 1979, Larsen e Johnson 1998).

A pleiocitose definiu-se pela presença de mais de cinco células sanguíneas mononucleadas por mm³, e considerou-se aumento da concentração de proteínas, quando o seu doseamento foi superior a 45mg/dl (Gordon et al. 1994, Larsen e Johnson 1998).

2.3. Testes serológicos

Os liquores foram estudados pelos testes não treponémicos (VDRL e RPR) e testes treponémicos (FTA-Abs, TPHA, TP.PA e Western blot), já descritos no capítulo 2, com as modificações aí referidas, necessárias para o estudo de amostras de liquor e de acordo com os respectivos protocolos.
3. Resultados

Os resultados obtidos nas amostras de líquor dos indivíduos com suspeita de neurossífilis encontram-se na Tabela 37. Todos os líquores do designado grupo de controlo negativo (46) foram não reactivos com todos os testes serológicos. O número de amostras reactivas nos diferentes testes serológicos dos indivíduos sintomáticos (25/188) foi a seguinte: 9/25 (36%) no VDRL, 10/25 (40%) no RPR, 11/25 (44%) no FTA-Abs e Western blot, 12/25 (48%) no TPHA, 13/25 (52%) no TP.PA. Em 13/25 (52%) observou-se pleiocitose e em 12/25 (48%) aumento da concentração de proteínas.

<table>
<thead>
<tr>
<th></th>
<th>VDR</th>
<th>RPR</th>
<th>FTA*</th>
<th>TPHA</th>
<th>TP.PA</th>
<th>WB*</th>
<th>Cél.</th>
<th>Prot.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+/vo/total (%)</td>
</tr>
<tr>
<td>Sintomáticos</td>
<td>9/25 (36%)</td>
<td>10/25 (40%)</td>
<td>11/25 (44%)</td>
<td>12/25 (48%)</td>
<td>13/25 (52%)</td>
<td>11/25 (44%)</td>
<td>13/25 (52%)</td>
<td>12/25 (48%)</td>
</tr>
<tr>
<td>Assintomáticos</td>
<td>12/163 (7,4%)</td>
<td>10/163 (6,1%)</td>
<td>31/163 (19%)</td>
<td>51/163 (31,3%)</td>
<td>40/127 (31,5%)</td>
<td>27/159 (17%)</td>
<td>26/163 (16%)</td>
<td>24/163 (14,7%)</td>
</tr>
</tbody>
</table>

* FTA – FTA-Abs, WB – Western blot

No grupo de indivíduos assintomáticos (163/188) obtiveram-se os seguintes resultados: 12/163 (7,4%) foram reactivos pelo teste VDRL, 10/163 (6,1%) pelo RPR, 31/163 (19%) pelo FTA-Abs, 51/163 (31,3%) pelo TPHA, tendo havido aumento de células mononucleadas em 26/163 (16%) e de concentração de proteínas em 24 (14,7%), tendo duas amostras resultados indeterminados com o teste FTA-Abs. Cento e vinte e sete e 159 destes líquores foram estudados, respectivamente, pelos testes TP.PA e Western blot, tendo 40/171 (31,5%) e 27/159 (17%) sido reactivos.
Grupo de indivíduos sintomáticos

Na comparação dos dois testes não treponémicos no estudo dos liquores (Tabela 38), os resultados foram coincidentes em 24 amostras, 15 não reactivas e nove reactivas por ambos os testes. Um dos resultados foi discrepante, correspondendo a uma amostra de um indivíduo sintomático para neurossífilis que, não tendo apresentado reactividade com o teste VDRL, a apresentou com o teste RPR, assim como, com os restantes testes treponémicos. O exame citoquímico desse liquor apresentava, também, aumento de células e da concentração de proteínas.

<table>
<thead>
<tr>
<th>VDRL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Não reativo</td>
<td>Reactivo</td>
</tr>
<tr>
<td>Não reativo</td>
<td>15</td>
</tr>
<tr>
<td>Reactivo</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

De acordo com o descrito nos materiais e métodos foi analisado o liquor de quatro doentes com sífilis primária, oito com sífilis secundária, nove com sintomas de neurossífilis, um com uveíte e três com alterações neuropsíquicas.

Nos doentes com sífilis primária (4), uveíte (1) e alterações neuropsíquicas (3) os resultados dos testes serológicos efectuados no liquor foram não reactivos.

Nos indivíduos com diagnóstico de sífilis secundária, tanto o RPR como o VDRL foram reactivos nas mesmas duas amostras de liquor, tendo sido não reactivos nas seis restantes. Nestas seis amostras, as proteínas e as células estavam aumentadas cada um destes parâmetros na sua amostra, uma tinha células e proteínas elevadas, duas apresentavam apenas reactividade no TPHA e TP.PA e
uma era totalmente negativa.
Sete das nove amostras de líquor de doentes com neurossífilis tiveram, simultaneamente, VDRL e RPR reactivos, assim como foram reactivas nos restantes parâmetros laboratoriais de infecção, exceptuando uma amostra com TPHA não reativo. Nas restantes amostras, o VDRL foi não reativo numa, noutra tanto o VDRL como o RPR foram não reactivos, sendo os resultados de todos os outros parâmetros reactivos.

Os resultados obtidos com os testes treponémicos e a sua inter-relação estão descritos na Tabela 39. Do total dos 25 indivíduos sintomáticos, a técnica FTA-Abs foi reactiva em 11 amostras de líquor, apresentando estas também o exame citocitocimico alterado e testes serológicos reactivos, com excepção de três, um RPR negativo, um VDRL negativo e outro TPHA negativo.

Tabela 39. Resultados obtidos com os testes FTA-Abs, TPHA, TP.PA e Western blot, nas amostras de líquor dos indivíduos do grupo sintomático

<table>
<thead>
<tr>
<th>WB</th>
<th>TPHA Não reativo</th>
<th>TP.PA</th>
<th>TPHA Reactivo</th>
<th>TPHA</th>
<th>FTA-Abs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Não reativo</td>
<td>Não reativo</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>TPHA</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>TPHA</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactivo</td>
<td>TPHA</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Todas as amostras reactivas com o teste TPHA (12/25) também o foram com o TP.PA. Destas, duas não apresentaram reactividade em nenhum dos restantes testes serológicos, enquanto que as outras 10 apresentaram reactividade em todos os outros, com excepção de duas amostras não reactivas, uma pelo teste RPR e outra em ambos os testes não treponémicos.
O TP.PA demonstrou reactividade em mais uma amostra que o TPHA, sendo de
referir que esta mesma amostra apresentava os restantes testes reactivos. Noutros dois liquores apenas o TPHA demonstrou reactividade simultaneamente.

Quando as amostras foram estudadas pela técnica de Western blot, a reactividade esteve presente em 11, coincidindo com a reactividade encontrada com o teste FTA-Abs.

Os resultados da pesquisa de anticorpos anti-*T. pallidum* da classe das imunoglobulinas IgM, pelas técnicas de FTA-Abs-M e Western blot M, não revelaram reactividade com a primeira técnica e foi numa amostra reactiva com a segunda, num doente com o diagnóstico de neurossífilis.

Grupo de individuos assintomáticos

Os testes não treponémicos foram avaliados em 163 amostras de liquor do grupo de indivíduos assintomáticos.

A comparação dos resultados obtidos com estes testes encontra-se na Tabela 40. Cento e cinquenta e sete das amostras apresentaram resultados coincidentes (149 não reactivas e oito reactivas em ambos os testes), enquanto que quatro amostras reactivas pelo teste VDRL foram negativas pelo RPR. O contrário observou-se em duas amostras.

<table>
<thead>
<tr>
<th>VDRL</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Não reativo</td>
<td>151</td>
</tr>
<tr>
<td>Reactivo</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RPR</th>
<th>Não reativo</th>
<th>Reactivo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Não reativo</td>
<td>149</td>
<td>4</td>
<td>153</td>
</tr>
<tr>
<td>Reactivo</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

As oito amostras reactivas por ambos os testes não treponémicos apresentaram
reactividade nos testes FTA.Abs e TPHA e alteração no exame citoquímico, com exceção de duas, uma não reactiva por aqueles testes treponémicos e outra com células e proteínas dentro dos parâmetros da normalidade. Quanto às duas amostras reactivas no teste RPR e negativas quando estudadas pelo teste VDRL, apresentaram reactividade nos testes treponémicos FTA.Abs e TPHA, e o resultado do estudo citoquímico estava alterado. As amostras reactivas pelo teste VDRL e negativas no teste RPR foram em número de quatro, uma delas apresentou os restantes parâmetros normais e as três restantes reactividade nos testes FTA.Abs e TPHA, com o resultado do exame citoquímico alterado numa. As 149 amostras com os dois testes não treponémicos não reactivos, foram sujeitas à avaliação, pela comparação dos resultados obtidos com os testes FTA.Abs, TPHA e exame citoquímico, os quais estão resumidos na Tabela 41.

Tabela 41. Discriminação dos resultados obtidos nos testes treponémicos e exame citoquímico das amostras de liquor nas quais os testes não treponémicos foram negativos

<table>
<thead>
<tr>
<th>Exame citoquímico</th>
<th>TPHA não reactivo</th>
<th>Reactivo</th>
<th>Indeterminado</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>103</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>alterado</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Cento e três liquores apresentaram resultados negativos coincidentes em todos os parâmetros, enquanto 46 tinham resultados discordantes. Em relação a
estes (46), em 27 o resultado do exame citoquímico não estava alterado, se bem que em 11 os testes treponémicos tenham sido reactivos, em 15 apenas o foi o TPHA e num apenas o FTA-Abs. Nos restantes 19/46 líquores, o exame citoquímico encontrava-se alterado, estando este resultado associado aos dois testes treponémicos reactivos em oito, reactividade apenas no TPHA em cinco, um dos quais com o FTA-Abs indeterminado e em seis os testes serológicos foram negativos.

A avaliação dos testes treponémicos foi efectuada pela comparação com o teste FTA-Abs. Foram estudadas 127 amostras, cujos resultados estão esquematizados nas Tabela 42, 43 e 44.

Na análise comparativa dos testes FTA-Abs e TPHA (Tabela 42) observou-se uma taxa de concordância de 89% (113/127).

<table>
<thead>
<tr>
<th>FTA</th>
<th>Não reativo</th>
<th>Reactivo</th>
<th>Indeterminado</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>não reativo</td>
<td>87</td>
<td>1</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>TPHA reativo</td>
<td>11</td>
<td>26</td>
<td>2</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>27</td>
<td>2</td>
<td>127</td>
</tr>
</tbody>
</table>

Em 14/127 (11%) das amostras estudadas, os resultados não foram concordantes, isto é uma amostra apenas apresentou reactividade no FTA-Abs, duas foram indeterminadas no mesmo teste e reactivas pelo TPHA e pelo TP.PA. Destas, apenas uma apresentava alterações no estudo citoquímico, sendo o Western blot reactivo, enquanto que a outra, embora com reactividade pelo teste VDRL, tinha os restantes parâmetros negativos.

Onze amostras foram reactivas pelo TPHA e negativas pelo FTA-Abs, tendo uma, os restantes parâmetros reactivos, em duas o exame citoquímico estava
alterado, destas uma com os outros testes negativos e a outra apenas o Western blot reactivo. Nas restantes 8/11 o exame citoquímico foi normal, e apenas seis apresentaram outras alterações, duas Western blot e TP.PA reactivos e quatro apenas reactividade no TP.PA.

Na comparação dos testes FTA-Abs e TP.PA obteve-se a taxa de concordância de 88,2% (112/127), correspondendo a 86 amostras negativas e 26 reactivas por ambos os testes (Tabela 43).

Tabela 43. Resultados obtidos com os testes FTA-Abs e TP.PA nas amostras de liquor dos indivíduos do grupo assintomáticos

<table>
<thead>
<tr>
<th>FTA G</th>
<th>Não reactivo</th>
<th>Reactivo</th>
<th>Indeterminado</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP.PA não reactivo</td>
<td>86</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TP.PA reactivo</td>
<td>12</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>27</td>
<td>2</td>
</tr>
</tbody>
</table>

Os resultados foram discrepantes em 15 amostras. Duas com resultado indeterminado com o teste FTA-Abs e reactivas com TP.PA e uma reactiva no FTA-Abs e TP.PA negativa, foram descritas anteriormente. Em relação às restantes 12 (reactivas pelo teste TP.PA e negativas pelo FTA-Abs), quatro com exame citoquímico normal resultaram negativas em todos os outros testes, uma apresentava testes não treponémicos negativos e restantes parâmetros alterados, outra apenas com o Western blot negativo e seis com exame citoquímico normal, testes não treponémicos negativos e TPHA reactivo (em duas das quais o Western blot foi também reactivo).

A discriminação dos resultados obtidos pela comparação dos testes FTA-Abs e Western blot no grupo de indivíduos assintomáticos encontra-se na Tabela 44. A taxa de concordância entre os dois testes foi de 90,6% (115/127).
Tabela 44. Resultados obtidos com os testes FTA-Abs e Western blot nas amostras de liquor dos indivíduos do grupo assintomáticos

<table>
<thead>
<tr>
<th></th>
<th>FTA G</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Não reactivo</td>
<td>Reactivo</td>
<td>Indeterminado</td>
<td>Total</td>
</tr>
<tr>
<td>WB não reactivo</td>
<td>95</td>
<td>7</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>WB reactivo</td>
<td>3</td>
<td>20</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>27</td>
<td>2</td>
<td>127</td>
</tr>
</tbody>
</table>

Quanto aos resultados não coincidentes (12), três amostras eram reactivas pela técnica de Western blot e negativas pelo teste FTA-Abs, as quais quando estudadas pelos testes não treponémicos foram negativas, apresentando reactividade com os outros testes treponémicos, apenas uma tendo exame citoquímico alterado. Das sete amostras de liquor reactivos pelo teste FTA-Abs e negativos pela técnica de Western blot, uma apresentou todos os parâmetros alterados, outra foi negativa em todos, duas apenas com o resultado do exame citoquímico anormal e TPHA e TP.PA reactivos e três apenas com o TPHA e TP.PA reactivos. Em relação às duas amostras com resultado indeterminado pela técnica de FTA-Abs e já anteriormente referidas, uma foi reactiva e outra não reactiva pelo método de Western blot.

As 162 amostras em que foram pesquisados anticorpos de tipo IgM anti-*Treponema pallidum* foi efectuada pela técnica de FTA-Abs-M apresentaram resultados negativos. Com a técnica de Western blot M estudaram-se 158 amostras de liquor, obtendo-se reactividade apenas em três amostras que foram, também, reactivos nos outros testes treponémicos efectuados, no exame citoquímico e no teste RPR, exceptuando duas, apenas reactivas no teste VDRL.
4. Discussão e conclusões

Tal como anteriormente referido, o diagnóstico de neurossífilis não é fácil, quer do ponto de vista clínico, quer do ponto de vista laboratorial. Este torna-se mais simples nos doentes com sintomas clássicos desta infecção do sistema nervoso central ou naqueles que apresentam alterações do liquor consideradas indicadoras da doença, como um teste VDRL reativo, aumento do número de células mononucleadas e da concentração de proteínas (Larsen et al. 1998, CDC 2002a).

Na impossibilidade de se recorrer a um teste padrão, o diagnóstico de
Pesquisa de anticorpos anti-*Treponema pallidum* no líquor

No presente estudo, diferentes tipos de testes serológicos (não treponémicos e treponémicos) foram aplicados ao estudo do líquor com a finalidade de se avaliar a sua utilidade no diagnóstico de neurossífilis. A avaliação destes testes foi feita em indivíduos com e sem sintomatologia sifilítica e num grupo de indivíduos sem sífilis (grupo controlo), de modo a verificar as diferenças na alteração dos parâmetros de diagnóstico de neurossífilis entre os vários estádios.

Analizando os resultados obtidos no grupo controlo torna-se óbvio que quando os testes serológicos para pesquisa de anticorpos anti-*T. pallidum* são não reactivos no sangue, são-no também no líquor, independentemente da infecção que os doentes possam ter, pelo que parece não existirem resultados de falsa reactividade no líquor de indivíduos sem sífilis. Este facto está de acordo com o recomendado por outros autores que preconizam que o estudo do líquor para exclusão de neurossífilis só deve ser efectuado quando os testes treponémicos no sangue são reactivos (Simon 1985, García-Rodrigues et al. 1990, Larsen et al. 1998), e de que as reacções de falsa reactividade são muitas vezes devidas, à passagem de anticorpos do sangue para o líquor ou da contaminação deste com aquele (Jaffé et al. 1978b, Marra et al. 1995.)

Ao comparar a globalidade dos resultados dos testes não treponémicos no grupo de indivíduos sintomáticos existiu coincidência em 24 amostras e discordância numa, reactiva com a técnica de RPR e nos testes treponémicos, que apresentava alterações citoquímicas.

O resultado discrepante encontrado entre os dois testes parece indicar que o VDRL apresentou pelo menos um resultado falso negativo, uma vez que os restantes parâmetros utilizados para diagnóstico de neurossífilis mostravam alterações compatíveis com esse diagnóstico, pelo que o RPR confirmou o diagnóstico em mais um doente.

A análise do desempenho dos testes não treponémicos nos diferentes estádios
Pesquisa de anticorpos anti-

Treponema pallidum

no líquor

de sífilis, permitiu verificar que no líquor de doentes com sífilis primária, uveite e alterações neuropsíquicas não existiram resultados falsamente reactivos, uma vez que em todos os doentes os resultados foram negativos. No estádio primário, os dois testes parecem, portanto, demonstrar boa especificidade. Na sífilis secundária os dois testes voltaram a ter resultados semelhantes, tendo confirmado o diagnóstico de todos os casos de neurosífilis, mesmo quando sem sintomatologia. Nesta fase, os indivíduos sem neurosífilis apresentaram os testes não treponémicos não reactivos, pelo que estes parecem oferecer boa sensibilidade e especificidade neste estádio da sífilis, apesar do pequeno número de indivíduos estudado. Por outro lado é importante referir que a sífilis secundária foi o estádio da doença em que se observaram mais vezes alterações de outros parâmetros utilizados no diagnóstico de neurosífilis (três amostras com aumento do número de células e/ou das proteínas e duas com alguns testes treponémicos dum total de seis doentes). Tal não é surpreendente, uma vez que é nesta fase que existe maior número de treponemas em circulação e em que estão descritas mais alterações do líquor (Lukerhart et al. 1988, Rolfs et al. 1997). Sendo assim, torna-se necessário maior cuidado na interpretação dos resultados do líquor em doentes com sífilis secundária.

Nos doentes com suspeita de neurosífilis sintomática, tanto o RPR como o VDRL não confirmaram um caso de neurosífilis, embora o RPR fosse reactivo num outro doente em que o VDRL foi negativo. Em parágrafos anteriores, foi referida a menor sensibilidade do teste VDRL em relação ao FTA-Abs em doentes com neurosífilis activa, nos quais, aquele pode ser não reactivo, em 22 a 66% das amostras de líquor (Hart 1986). No presente estudo e neste grupo de doentes a sua não reactividade foi observada em 22,2% (2/9) dos casos, enquanto que o RPR o foi em 11,1% (1/9). Assim, nos doentes com sinais de neurosífilis os dois testes não treponémicos apresentaram menor sensibilidade que os outros testes, embora a diferença fosse maior para o VDRL.

Que se saiba não existem publicados estudos de comparação entre o comportamento destes dois testes no líquor. No entanto, Larsen e Johnson (1998) recomendam que apenas o VDRL deve ser utilizado no líquor, o que tem sido a norma no diagnóstico de neurosífilis. Os resultados do presente estudo parecem indicar que o RPR, tal como o VDRL, pode ser utilizado para pesquisa
Pesquisa de anticorpos anti-*Treponema pallidum* no líquor

de anticorpos anti-*T. pallidum* no líquor, podendo aquele ser uma mais valia, uma vez que apresentou maior sensibilidade do que o VDRL, não se tendo observado resultados de falsa reactividade, permitindo confirmar o diagnóstico de maior número de casos de neurosífilis.

Em relação aos testes treponémicos, no grupo de indivíduos sintomáticos o FTA-Abs parece ser mais sensível que o TPHA e mesmo do que o VDRL e do que o RPR, uma vez que todos os doentes com reactividade naquele teste (11/25) tinham também alterações noutros parâmetros e melhoraram após se ter instituído terapêutica com penicilina. De notar que um doente cujo líquor foi não reactivo pelo TPHA era sintomático para neurosífilis.

Nas 12 amostras em que o TPHA foi reactivo, o resultado de 10 (coincidentes com o FTA-Abs) foi discutido no parágrafo anterior, parecendo as duas restantes correspondem a resultados falsos positivos dos testes TPHA e TP.PA, pelo que, para além do TPHA diagnosticar menos casos de neurosífilis, parece também, apresentar maior número de resultados falsamente reactivos. De notar que os dois casos referidos correspondem a doentes com sífilis secundária, cujos títulos de anticorpos no sangue eram muito elevados (1:20480) contrariamente aos do líquor em que os títulos eram baixos (1:8 e 1:32), e em que o estudo citoquímico foi normal. Como foi salientado anteriormente, neste estádio (Tramont 1995a) há grande circulação de anticorpos anti-*T. pallidum* no sangue e a contaminação do líquor, durante a punção lombar (Izzat *et al.* 1971, Hart 1986, Wicher *et al.* 1999), pode levar a resultados falsamente reactivos. Esta situação pode ter acontecido, se bem que se tenham eliminado todas as amostras que mostravam contaminação observável macroscopicamente e com concentração de eritrócitos superior a 0,001%.

O TP.PA parece ser semelhante ao TPHA uma vez que os dois testes apresentaram dois resultados de falsa reactividade coincidentes, tendo sido obtido mais um resultado falso com a técnica de TPHA. Não existem referências, nem outros trabalhos, em que o teste TP.PA tenha sido utilizado para a pesquisa de anticorpos anti-*T. pallidum* no líquor. No entanto, parece que, pelo menos, nos doentes sintomáticos e em relação à sensibilidade os resultados obtidos estão mais próximos do FTA-Abs, teste considerado mais sensível para pesquisa de anticorpos anti-*T. pallidum* no líquor (Birry e Kasatiya 1979,
Maclean e Luger 1996).
Ainda no grupo de doentes sintomáticos o Western blot parece ter o mesmo desempenho que o teste de FTA-Abs, pelo que, as recomendações de utilização deverão ser as mesmas para ambos os testes (Dettori et al. 1989, Pâris-Hamelin et al. 1999).

Vários autores têm referido a importância da pesquisa de anticorpos anti-*Treponema pallidum* da classe das imunoglobulinas IgM pelas técnicas de FTA-Abs e Western blot no diagnóstico de neurossífilis, tendo concluído que a sua reactividade poderia ajudar no diagnóstico de neurossífilis activa (Gschnait et al. 1981, Luger et al. 1981). Luger et al. (1981) demonstraram reactividade para anticorpos IgM por técnica de cromatografia no soro e liquor de todos os doentes com neurossífilis activa, excepto para um liquor de um doente inadequadamente tratado para sífilis, sugerindo os autores que as doses subcurativas de penicilina teriam negativado a reactividade para aqueles anticorpos. A mesma pesquisa utilizando a técnica de imunofluorescência indirecta detectou apenas três de 11 casos de neurossífilis.

Neste estudo, e embora se tivesse utilizado, também, uma técnica de imunofluorescência indirecta e uma de Western blot, as mesmas não demonstraram ser de utilidade, uma vez que apenas uma em nove das amostras de doentes com neurossífilis sintomática demonstrou reactividade pela técnica de Western blot.

No grupo dos indivíduos assintomáticos para infecção a *Treponema pallidum*, avaliado neste estudo, parece haver uma maior dificuldade em confirmar o diagnóstico de neurossífilis através da pesquisa de anticorpos anti-*Treponema pallidum* no liquor.

Em relação aos testes não treponémicos, dos oito casos reactivos em ambos os testes, apenas um não apresentava exame citológico alterado e noutro, apenas o FTA-Abs e TPHA eram não reactivos. Nestas amostras a diluição do teste não treponémico foi apenas de um dil. A dificuldade na interpretação destes resultados existiu essencialmente na segunda amostra, pois tendo os testes específicos normais e apenas VDRL e RPR reactivos, as alterações do exame citológico poderiam ser devidas a outras alterações concomitantes, nomeadamente a infecção pelo vírus VIH, presente neste doente. Este indivíduo fez terapêutica específica não tendo havido modificações das alterações do
exame citoquímico, o que parece confirmar a hipótese do doente não ter neurossífilis. O primeiro indivíduo, apesar de não ter alterações no exame citoquímico, foi considerado como provável neurossífilis, visto estar presente um teste de VDRL reativo no liquor qual é considerado como critério de diagnóstico de neurossífilis, além de apresentar também reactividade nos testes treponémicos (Larsen et al. 1998, Conde-Sendíu et al. 2002). Assim, o teste RPR parece ser mais útil do que o VDRL para o diagnóstico de neurossífilis, uma vez que duas amostras reactivas no primeiro teste e negativas no segundo, foram verdadeiros positivos, sendo de doentes com neurossífilis. Pelo contrário, das quatro amostras reactivas no VDRL, negativas no RPR, três eram de doentes já tratados e uma, apenas, com exame citológico anormal, de um doente com infecção por VIH, tendo as alterações citológicas regredido após a terapêutica.

Quando se compara os testes não treponémicos com os testes treponémicos, nos indivíduos do grupo assintomático, estes parecem ser mais sensíveis, uma vez que nove amostras de liquor com VDRL e RPR não reactivos, apresentaram exame citoquímico alterado e reactividade nos testes treponémicos, melhorando após a terapêutica. Tal está de acordo com vários estudos que consideram útil associar a pesquisa de anticorpos específicos quando do estudo de doentes com suspeita de neurossífilis (Al-Semari et al. 2001, Conde-Sandín et al. 2002, Marra et al 2004). No entanto, existiram 11 casos em que o TPHA e FTA-Abs foram reactivos, mas tanto o estudo citoquímico, como os testes não treponémicos não apresentaram alterações. Em sete destes o Western blot foi reativo, como não existiu monitorização do resultado da terapêutica, torna-se impossível analisar o significado destes resultados e concluir da existência de neurossífilis nestes doentes.

Quando se compararam os testes treponémicos entre si, a taxa de concordância dos testes mais utilizados no diagnóstico de sífilis, o FTA-Abs e o TPHA, foi de 89%. Analisando estes resultados verificou-se que nos 14 casos em que o FTA-Abs e o TPHA não eram concordantes, um correspondeu a um resultado falso positivo do teste FTA-Abs e seis a resultados falso positivos do teste TPHA. Em relação às duas amostras indeterminadas pelo teste FTA-Abs é difícil extrair conclusões, uma vez que numa existiam alterações citoquímicas e os restantes testes treponémicos eram reactivos, embora os testes não treponémicos fossem
negativos, e na outra apenas o TP.PA e o VDRL foram positivos. O mesmo se aplica às duas amostras com teste de FTA-Abs negativo, teste TPHA reactivo e com exame citoquímico alterado, atendendo a que não foi efectuada segunda colheita para controlo.

Estas são as situações em que a conjugação dos sinais e sintomas clínicos, em conjunto com a prova terapêutica são necessários para um diagnóstico correcto, tal como referido por MacLean e Luger (1996) e Luger et al. (2000). Assim, e de acordo com os resultados apresentados, o teste FTA-Abs parece ser mais específico do que o TPHA, para o diagnóstico de neurosífilis.

Na comparação do TP.PA, com o FTA-Abs, a taxa de concordância (88,2%) foi um pouco menor do que a obtida com o TPHA, parecendo apresentar maior número de reacções falso positivas que o FTA-Abs, sendo portanto menos específico.

A avaliação da técnica de Western blot foi também feita em relação com o teste FTA-Abs, tendo os dois concordado em 91%, taxa ligeiramente maior que para os dois testes anteriormente estudados. Tendo em conta os resultados em que se obteve um diagnóstico de certeza e a taxa de concordância entre os dois testes, o Western blot parece ser o teste treponémico que mais se assemelha ao FTA-Abs. Assim aquele teste parece ser bastante específico para o diagnóstico de sífilis no liquor, tal como referido para o soro (Dettori et al. 1989, Byern et al. 1992, Meyer et al. 1994, Larsen et al. 1995, Pâris-Hamelin et al. 1999, Sambri et al. 2001b), embora sejam necessários mais estudos para comprovar esta afirmação.
Capítulo 4. Pesquisa de ADN de Treponema pallidum
1. Introdução

Não sendo cultivável em meios artificiais, o isolamento e a identificação de *T. pallidum* tornam-se complicados, continuando a colocar problemas no diagnóstico laboratorial da sífilis.
Os métodos microscópicos são relativamente insensíveis (microscopia de fundo escuro aproximadamente 10⁵ microrganismos/ml - Tramont 1995a) e apenas podem ser aplicados quando existem lesões. O isolamento de *T. pallidum* conseguido por inoculação em animal (teste de infecciosidade no coelho), é considerado o método mais sensível de detecção de *T. pallidum*, bastando a presença de 10 microrganismos viáveis para resultar na seroconversão no coelho. No entanto, porque é uma técnica muito cara, necessitando da existência de um biotério e porque o período de incubação no coelho é prolongado, sobretudo quando existe um pequeno número de treponemas no inóculo, o método raramente é utilizado com propósitos de diagnóstico. Por estas razões, os testes serológicos têm-se mantido como o melhor método para o diagnóstico da infecção por *T. pallidum*. Contudo, estas técnicas não permitem a confirmação do diagnóstico, essencialmente em certos estádios da infecção, durante os quais apresentam pouca sensibilidade e/ou especificidade como no estádio primário, na sífilis congénita e na neurosífilis (Srinivasan 1983, Hart 1986, Jordan 1988, Tratmont 1990).
Como atrás referido, o principal fundamento da técnica da PCR consiste na síntese de um fragmento específico de ADN através de ciclos sucessivos de repetição, resultando na multiplicação exponencial do mesmo, até que quantidade suficiente do produto amplificado se acumule, podendo ser então detectado. Deste modo, uma única molécula de ADN pode gerar cerca de um bilião de cópias após 30 ciclos de replicação exponencial, apresentando este ensaio, alta sensibilidade e permitindo detectar, pelo menos teoricamente, até ao mínimo de um microrganismo.

Assim, o estudo de métodos de biologia molecular neste trabalho teve como objectivo avaliar a eficiência da técnica de PCR no diagnóstico laboratorial da infecção por *T. pallidum* em vários períodos da infecção e em diferentes tipos de amostras clínicas. Com essa finalidade, foi montada e optimizada uma técnica de PCR, que passará a ser designada como PCR-diagnóstica, baseado nos ensaios e nos resultados descritos por Orle *et al.* (1996) e Liu *et al.* (2001). Orle *et al.* (1996) desenvolveram um método de PCR para o diagnóstico
diferencial de úlceras genitais, que inclui a pesquisa simultânea de ADN dos três agentes mais comuns de úlceras genital: *Haemophilus ducreyi*, *Treponema pallidum* e o vírus Herpes simplex, utilizando na mesma reacção três pares de sequências iniciadoras, uma para cada um dos referidos microrganismos (PCR multiplex). Para *T. pallidum* foram utilizadas sequências iniciadoras tendo como alvo de amplificação o gene da lipoproteína de 47 kDa (Hsu 1989). Numa primeira fase era efectuada a amplificação, sendo em seguida os produtos detectados e identificados pela utilização de oligonucleotídos individuais (sondas), específicos para cada um dos microrganismos em causa. Os autores demonstraram tratar-se de uma técnica sensível e específica, permitindo o diagnóstico diferencial entre os referidos agentes etiológicos de úlceras genital e tendo estabelecido a presença de um agente etiológico em 80% das amostras estudadas. Relativamente à pesquisa de ADN de *T. pallidum*, a técnica de PCR multiplex foi negativa em sete amostras, positivas na microscopia de fundo escuro, tendo sido detectado ADN de *T. pallidum* em 15 amostras negativas na técnica microscópica. Morse *et al.* (1997), utilizando esta mesma técnica encontraram uma percentagem de 26% de úlceras genitais positivas para ADN de *T. pallidum*, nos 105 doentes estudados. Contudo, não determinaram a sua sensibilidade e especificidade, por não ter sido possível utilizar outro método de diagnóstico que não os testes serológicos, os quais são relativamente insensíveis e inespecíficos em determinados estádios da infecção. Por outro lado, Behets *et al.* (1999), ao utilizarem este tipo de técnica de PCR em amostras de doentes com úlceras genitais e comparando a serologia para sifilis com esta, encontraram sensibilidade de 72% e especificidade de 83%, enquanto que na comparação do diagnóstico clínico com a PCR aquelas percentagens foram de 93% e 20%, respectivamente.

Por outro lado, Liu *et al.* (2001) descreveram uma técnica de PCR para o diagnóstico de infecção a *T. pallidum*, na qual utilizaram sequências iniciadoras para amplificar um fragmento do gene da enzima, ADN polimerase I (Rodes 2000). Os autores testaram a técnica com um painel de outros microrganismos e estudaram amostras clínicas provenientes de úlceras genitais. Nesta experiência obtiveram especificidade de 95,7% e sensibilidade de 95,8%, na comparação com a técnica de PCR multiplex. Embora estes autores tenham
executado a técnica apenas no estudo de amostras de úlceras genitais, a mesma foi aplicada noutros estudos, não só para a pesquisa de ADN de *T. pallidum* de amostras de úlceras genitais como em amostras de sangue (Marfin et al. 2001, Sutton et al. 2001, Orton et al. 2002). Marfin et al. (2001) efectuaram a pesquisa de ADN de *T. pallidum* amplificando um fragmento do gene da ADN polimerase I para o estudo de amostras de sangue de 32 indivíduos. Destes, oito supostamente em período de incubação para sífilis, sete com sífilis primária, um com sífilis secundária, 12 com sífilis latente e quatro com úlceras genitais de outras etiologias, tendo obtido a percentagem de positividade de 40% (13/32).

Os problemas no diagnóstico laboratorial de sífilis dificultam, também, a compreensão da sua epidemiologia.
Os estudos epidemiológicos da sífilis são, em geral, baseados em testes serológicos, após o diagnóstico do caso índice, sendo os contactos notificados e tratados. Apesar de estas acções serem uma boa metodologia para prevenção e controlo, não dão informações sobre o agente etiológico. Porém, sabe-se, que em estudos epidemiológicos as informações sobre o agente são importantes para se conhecer a estirpe prevalente numa dada região geográfica, a sua prevalência nas áreas endémicas e não endémicas, e no caso de epidemias, qual a estirpe que originou um surto epidémico. Por outro lado, a identificação da estirpe pode ajudar na diferenciação entre reinfeccção e recidiva e na determinação da possibilidade de relação entre determinado genótipo e a progressão da infecção para os estádios tardios.
Pillay et al. (1998) desenvolveram um sistema de tipagem molecular para *T. pallidum*, com o objectivo de esclarecer algumas destas questões. Os sistemas de tipagem anteriormente utilizados não apresentaram resultados, por não permitirem diferenciar *Treponema pallidum* subespécie *pallidum* dos outros treponemas patogénicos para o homem (Centurion-Lara 1996), visto estudarem genes conservados. Pillay et al. (1998), baseados em estudos efectuados para outras bactérias (O’Rourke et al. 1995, Andersen et al. 1996), escolheram genes com uma maior probabilidade de possuírem variações ou apresentarem heterogeneidade entre estirpes, como os genes com sequências repetidas ou
família multigénicas.

Para determinar o número de repetições do elemento repetitivo de 60 pares de bases no gene *arp*, efectua-se a amplificação do fragmento que o contém, seguida de visualização por electroforese dos produtos e análise dos mesmos, em sequenciador automático ABI 310 – ByoSystem, com “software GeneScan 672, de modo a determinar o número de repetições.

Para o gene *tpr* o método de estudo consiste numa primeira amplificação de um fragmento do gene, seguido de uma segunda amplificação de um fragmento interno ao primeiro (“nested-PCR”). O produto final é, em seguida, submetido à técnica de RFLP “Restriction Fragment Length Polymorphisms” com a utilização da enzima de restrição *Msei*. A utilização das enzimas de restrição permite detectar variações nas sequências do ADN genómico, pela análise dos polimorfismos nos perfis electroforéticos dos fragmentos resultantes. A maioria destas enzimas reconhece sequências específicas de ADN e hidrolizam a molécula de ácido nucleico no local de reconhecimento ou na sua vizinhança. A presença de alterações nas sequências impeditiva da acção da enzima, resulta na alteração do padrão de fragmentos esperados, quando da sua visualização por electroforese. Para a determinação com melhor acuidade da dimensão dos fragmentos a leitura pode ser efectuada no sequenciador automático de ADN.

O padrão de RFLP, com *Msei* para o gene *tpr* combinado com o número de repetições de 60 pb do gene *arp*, permitiu o desenvolvimento do esquema de genotipagem. Assim, o genótipo é designado pelo número de sequências
repetidas do gene *arp* seguido de uma letra minúscula (a, b, etc.) correspondente ao padrão de RFLP do gene *tpr* correspondente. Por exemplo, o gene da estirpe de Nichols de *T. pallidum* apresenta um produto de amplificação de 1155 pb correspondente a 14 sequências de repetição, sendo por isso referido como subtipo 14. A este número é em seguida associada uma letra (a, b, c, d, etc.) correspondente ao padrão obtido pela utilização da técnica de RFLP, após tratamento com a enzima *Mse*I dos produtos amplificados por PCR de um fragmento do gene *tpr*. Assim, na estirpe de Nichols, o padrão de RFLP obtido com o estudo do gene *tpr* foi designado pela letra a, pelo que o subtipo da estirpe de Nichols se designa subtipo 14a.

Pillay *et al.* (1998), no estudo de amostras de úlceras genitais obtidas de doentes com sífilis de Madagáscar, Estados Unidos e África do Sul determinou 12 subtipos *arp* designados como 7, 9, 10, 11, 12, 13, 14, 15, 16, 19 e 20, de acordo com o número de repetições, enquanto que em relação ao gene *tpr* diferenciou sete subtipos, designados pelas letras de a a g. Combinando os dois sistemas discriminou um total de 16 genótipos (10 b e d, 11d, 12 a e g, 13d, 14 a-f, 15d, 16 d-f, 20b). A estirpe mais prevalente na população estudada correspondeu ao subtipo 14d.

Posteriormente, o método foi utilizado noutros estudos (Sutton *et al.* 2001, Pillay *et al.* 2002), tendo os autores conseguido não só subtipar ADN de *T. pallidum* de amostras de exsudados de úlceras, mas também de algumas amostras de sangue, embora em pequeno número. No estudo efectuado por Sutton *et al.* (2001), em doentes com sífilis dos Estados Unidos (Região de Arizona), o subtipo mais prevalente foi o 14f (53% das amostras tipadas), e para além da detecção de outros subtipos já conhecidos, nomeadamente 12a, 14a, 14d, foram identificadas novos subtipos designados 4f, 4i, 4m, 5f, 12f, 14e e 14i.

Com base nestes trabalhos procedeu-se à montagem da técnica de PCR-diagnóstica e de tipagem molecular no laboratório de DST do IHMT, iniciando a sua optimização relativamente às condições existentes. Em primeiro lugar, efectuou-se a pesquisa do ADN de *T. pallidum* com sequências iniciadoras para dois genes codificadores um da lipoproteína de 47 kDa e outro da ADN polimerase I, inicialmente em reacções de PCR separadas e, posteriormente, na
mesma mistura de reacção. Após estabelecidas as melhores condições de amplificação, realizou-se o estudo de diferentes tipos de amostras provenientes de doentes em vários estádios da infecção, já que seria particularmente útil o desenvolvimento de uma técnica de biologia molecular que pudesse ser utilizada no estudo dos casos de mais difícil diagnóstico laboratorial, como sejam a sífilis latente e a neurossífilis. Algumas das amostras positivas pela técnica de PCR-diagnóstica, foram em seguida genotipadas utilizando-se para tal o sistema desenvolvido por Pillay et al. (1998) atrás descrito.

Com este trabalho pertendeu-se:

1. Desenvolver e optimizar uma técnica de PCR sensível e específica para o diagnóstico de infecção a *T. pallidum*, através da
 a. Definição do tipo de amostra adequada a esta técnica
 b. Confirmação da presença de *T. pallidum* em circulação na fase de sífilis latente
 c. Verificação da utilidade desta técnica no diagnóstico de neurossífilis
2. Implementar e determinar a especificidade da técnica de genotipagem
3. Conhecer os subtipos de *T. pallidum* provenientes de algumas amostras de doentes envolvidos neste estudo.
2. Material e métodos

2.1. População

Neste estudo foram incluídas amostras de material colhido em doentes dos mesmos serviços hospitalares e consultas referidos no capítulo de pesquisa de anticorpos anti-*T. pallidum*. Para a pesquisa de anticorpos os procedimentos foram idênticos aos descritos no capítulo 2, com exceção das colheitas para pesquisa de ADN, que teve um procedimento diferente. Para a pesquisa de ADN colheu-se sangue periférico total para tubo com EDTA, e quando possível procedeu-se à colheita do exsudado de escarificação do lóbulo da orelha (de modo semelhante à colheita para pesquisa de *Mycobacterium leprae*), colocando-o em tubo com meio de transporte (PBS estéril). A colheita de liquor foi feita sempre que se suspeitava de neurosífilis ou para exclusão deste diagnóstico. Na presença de úlcera genital e/ou lesões de secundarismo foi efectuada colheita de exsudado para o mesmo meio de transporte. As amostras colhidas foram mantidas a 4º C até envio para o laboratório de DST do IHMT.

No laboratório, aproximadamente 500 µl de sangue total com EDTA foi centrifugado para obtenção de plasma sendo aliquotado e congelado a – 80º C. Os exsudados das lesões e das escarificações do lóbulo da orelha foram aliquotados e armazenados a – 80º C, sendo utilizado o mesmo procedimento para as amostras de liquor.

Pela técnica de PCR-diagnóstica foram estudados amostras de 176 doentes. Em 128/176 doentes analisaram-se três tipos de amostras: sangue total, plasma e soro. Em 49 destes também se colheu amostra de exsudado de lóbulo da orelha. Em 48/176 doentes apenas foi possível estudar amostras de soro, com exceção de três em que se obtiveram também amostras de exsudados de lóbulo de orelha. Estudaram-se 161 amostras de liquor, pertencendo 124 delas aos doentes acima mencionados.

Oito exsudados de úlceras genitais, dez de lesões cutâneas e dois de lesões mucosas, provenientes de 13 doentes, foram, também, avaliados. A um dos doentes com úlcera genital foram também colhidas duas amostras de lesões
cutâneas com localização diferente. As duas amostras de lesões mucosas e outras duas de lesões cutâneas foram colhidas de locais diferentes do mesmo indivíduo. Dois exsudados de lesões cutâneas de localização diferente foram colhidos de dois doentes, enquanto que dos nove doentes restantes apenas se recebeu uma única amostra de lesão cutânea em dois ou de úlcera em sete. Das amostras que resultaram positivas pela técnica PCR-diagnóstica, foram estudadas quatro amostras de úlceras, seis de lesões de secundarismo (duas de cada doente), 26 de sangue total, plasma e soro, 22 de exsudado de escarificação do lóbulo da orelha, e 13 de liquor, pela técnica de subtipagem, com o objectivo de determinar o subtipo de *Treponema pallidum* subespécie *pallidum*.

2.2. Amplificação de ADN de *Treponema pallidum* (PCR – diagnóstica)

Extracção de ADN total

Em todas as amostras estudadas pela técnica da PCR, o ADN cromossómico foi isolado utilizando-se o kit comercial Mini-Kit –QIAamp Blood Qiagen Blood/Tissue Kit – Qiagen. A extracção efectuou-se a partir de 200 µl de amostra descongelado à temperatura ambiente. As amostras foram pipetadas para tubos estéreis de microcentrífuga de 1,5 ml, onde se tinham previamente colocado 20 µl (40 µl no caso de sangue total) de proteinase K, colocando-se em seguida 200 µl de tampão AL. Os conteúdos dos tubos foram então misturados no vortex durante cerca de três a cinco segundos e incubados a 56°C em banho seco, durante 20 minutos (duas horas para o sangue total). Em seguida deixou-se arrefecer e centrifugou-se para remoção das gotas de condensação no interior do tubo, de modo a prevenir contaminação cruzada do ADN. Após cuidadosa abertura dos tubos, com exceção das amostras de sangue, adicionara m-se 3 µl de ADN de timo de vitela (10.5 µg/µl, Sigma) diluído a 1:10, e de seguida 200 µl de etanol (96-100%) misturando-se no vortex durante
15 segundos. As misturas permaneceram em repouso durante cinco minutos à temperatura ambiente.

As colunas QIAamp fornecidas foram então colocadas em tubos colectores de 2 ml, as misturas foram colocadas na coluna, sem molhar os bordos da mesma. Os tubos com as colunas foram centrifugados a 8.000 rpm durante 1 minuto, colocando-se estas em novos tubos colectores e rejeitando os anteriores com o filtrado. Após cuidadosa abertura das colunas adicionaram-se 500 µl de tampão AW1, e centrifugou-se de novo a 8000 rpm durante um minuto. Repetiu-se esta operação de lavagem mais duas vezes no caso das amostras de sangue.

Seguiu-se uma segunda lavagem das colunas com 500 µl de tampão AW2 e centrifugação a 14000 rpm durante três minutos, mudando-se sempre o tubo colector. Esta lavagem foi também repetida três vezes para as amostras de sangue. Em seguida, e de modo a assegurar a eliminação total do tampão AW2, efectuou-se uma nova centrifugação das colunas a 12000 rpm durante um minuto.

Antes de efectuar a eluição, e com auxílio de uma ponta de pipeta, foram retirados quaisquer resíduos de tampão AW2 que tivessem permanecido no interior da coluna.

Para eluição as colunas foram colocadas em tubos de microcentrífuga de 1,5 ml e adicionados 80 µl (50 µl para a extracção a partir do sangue total) de tampão de eluição. Após cinco minutos à temperatura ambiente as colunas foram centrifugadas a 14000 rpm durante um minuto e a solução de ADN eluída foi dividida em alíquotas e guardadas a –20º C até utilização posterior.

O mesmo protocolo foi utilizado na extracção de ADN a partir de 200 µl de extracto testicular (5x10^3 treponemas/µl) de coelho infectado com *T. pallidum*. Esta ADN foi utilizado como controlo positivo e a sua preparação nunca decorreu em paralelo com a das amostras.

PCR-diagnóstica

Usaram-se os termocicladores DNA-Amplifier MIR-D30 (Sanyo) e PCR Express (HYBAID).

Diferentes sequências iniciadoras foram ensaiadas e para cada uma delas testaram-se várias concentrações dos reagentes da mistura de PCR, diferentes
enzyimas e condições físicas da PCR, nomeadamente temperatura e tempos para cada um dos diferentes passos dos ciclos da PCR.

As sequências anteriormente usadas por Orle et al. (1996) e Liu et al. (2001) e também novas sequências iniciadoras desenhadas no âmbito deste estudo no programa Primer-Express a partir da sequência dos respectivos genes (Tabela 45), foram testadas, tentando obter sequências mais específicas do que as descritas anteriormente. Inicialmente, cada uma das sequências iniciadoras foi experimentada isoladamente e após estabelecimento das condições de amplificação mais adequadas, experimentou-se a utilização de dois pares daquelas (um para cada gene alvo) numa mistura de reacção única.

<table>
<thead>
<tr>
<th>Sequências iniciadoras</th>
<th>Oligonucleótidos</th>
<th>Dimensão do produto PCR amplificado</th>
<th>Gene alvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>K03A-F</td>
<td>5'-AAGTTTGTTCCCATGGCTTTGG-3'</td>
<td>260 pb</td>
<td>Liporoteina 47 kDa</td>
</tr>
<tr>
<td>KO4-R</td>
<td>5'-AGAGCCATCAGCCCTTTTCA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-F3</td>
<td>5'-ACGGCCTTAAGACAATGCTCA-3'</td>
<td>301 pb</td>
<td></td>
</tr>
<tr>
<td>47-R3</td>
<td>5'-TTCCACCAGGAGTCAGCAGAG-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polA-F2</td>
<td>5'-TGCGCGTGTGCAGATGGGTTTC-3'</td>
<td>378 pb</td>
<td>ADN polimerase I</td>
</tr>
<tr>
<td>polA-R2</td>
<td>5'-CACAGTGCTCAGCAGCTGACG-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polA-F (PE)3</td>
<td>5'-ACCGGAGGTGACTCCGTATT-3'</td>
<td>460 pb</td>
<td></td>
</tr>
<tr>
<td>polA-R (PE)3</td>
<td>5'-AGACCGTCAAGGCTGTCGAT-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Descrito em Orler et al. (1996)
2. Descrito em Liu et al. (2001)
3. Desenhados no programa “Primer-express”
F – sequência a montante da região a estudar
R – sequência a jusante da região a estudar
Misturas de reacção para PCR

Para cada reacção de amplificação preparou-se, num volume total de 20 µl, uma solução em água ultra pura de Tampão PCR1x (tampão fornecido com a enzima utilizada), cloreto de magnésio (MgCl₂) na concentração variável de 3,5 a 2 mM, 1mM de cada dNTP (dATP, dCTP, dCGT, dTTP – Amersham Pharmacia Biotech), 100, 50 ou 25 pmol de cada um dos pares de sequências iniciadoras e 2 U da enzima ADN polimerase. Recorreu-se a duas enzimas termoestáveis: a ADN polimerase “Taq” (*Thermus aquaticus* - Fermentas) e a ADN polimerase – Immolase (Bioline).

A mistura de reacção foi preparada e distribuída por tubos de PCR estéreis de 0,5 ml. As amostras de ADN a amplificar ou correspondente controlo negativo foram adicionadas numa área fisicamente distinta da utilizada na preparação da mistura de reacção. Aquando da utilização do termociclador “DNA-Amplifier MIR-D30” (Sanyo) adicionaram-se 20 µl de óleo mineral estéril (Sigma), a fim de evitar a evaporação da amostra.

Os termocicladores usados foram programados segundo o tipo de enzima e as sequências iniciadoras utilizadas tendo-se variado tempos e temperaturas das diferentes fases da amplificação de modo a determinar as condições mais adequadas da mesma. Após uma desnaturação inicial de quatro minutos a 94ºC quando presente a enzima Taq-ADN polimerase e de cinco minutos a 95ºC para a enzima Immolase, seguiram-se os ciclos de amplificação. Foram testados um total de 30 e 45 ciclos de amplificação, os quais consistiram em desnaturação a 94ºC durante 20/30 segundos, ligação das sequências iniciadoras com a sequência alvo entre 55ºC e 62ºC, durante 30 a 40 segundos, seguidos de uma extensão a 72ºC durante 30 a 40 segundos, com uma extensão final a 72ºC durante cinco a 15 minutos, consoante o gene alvo.

Visualização do ADN

As amostras do ADN amplificado foram visualizadas após electroforese em gel de agarose a 1,5% com brometo de etídio. O gel com 1,5 g de agarose (Biorad 162-0100) dissolvida em 100 ml de tampão TBE 1x efectuado a partir de
tampão TBE 10X (Tris-base 108 g, ácido bórico 55 g, EDTA 0,6M 9,36 g em 100 ml de água) foi preparado. Após fusão da agarose adicionou-se 0,5µg/ml de brometo de etidio (Sigma).

O gel solidificado em suporte próprio equipado com um pente, foi colocado na tina de electroforese (GNA-100 – Amersham Pharmacia Biotech) com tampão TBE 1x como electrólito. Para a electroforese misturaram-se 10 µl de cada produto de amplificação a 3 µl de uma solução de aplicação (0,1 g de azul de bromofenol, 16 g de sacarose e H2O estéril a perfazer 40 ml, distribuída em aliquotas e esterilizada). As amostras foram sujeitas a um campo eléctrico de 100 V durante 60 minutos a partir de um aparelho EPS 301 – Amersham Pharmacia Biotech.

Em simultâneo, aplicou-se um marcador de pesos moleculares, pUC MixMarker8 ou GeneRuler 50 pb Ladder (Fermentas) e os vários controlos. A visualização foi efectuada em transiluminador e fotografado em aparelho Eagle Eye II (Stratagene).

2.3. Subtipagem genómica de *Treponema pallidum*

2.3.1. Análise de gene *tpr* por nested PCR – RFLP

A montagem da técnica baseou-se na executada por Pillay *et al* (1998), tendo sido optimizada para as condições e equipamento existentes na unidade de DST. Utilizaram-se as sequências iniciadoras descritas pelos mesmos autores: B1 e A2 para a primeira amplificação e IP6 e IP7 para a segunda (Tabela 46).

Para a optimização da técnica, utilizou-se o ADN extraído de coelho inoculado com estirpe de Nichols de *Treponema pallidum* subespécie *pallidum*.

Amplificação de um fragmento do gene *tpr*

Para a primeira amplificação foi efectuada uma mistura de reacção com um volume final de 100 µl, uma solução em água pura contendo 10 µl de Tampão PCR 1x (fornecido com a enzima utilizada), 1mM de cada dNTP (dATP, dCTP,
dCGT, dTTP - Amersham Pharmacia Biotech), diferentes concentrações de cloreto de magnésio de 1,5 mM a 4 mM, concentração de 100, 50, ou 25 pmol de cada uma das sequências iniciadoras B1 e A2 e 5 U/µl da enzima ADN polimerase Immolase (Bioline).

O produto da primeira amplificação de PCR foi usado para uma segunda amplificação, sendo a mistura de reacção idêntica à primeira, com excepção das sequências iniciadoras, em que se utilizou IP6/IP7 (Tabela 46), e efectuadas variações nas concentrações dos reagentes, a fim de obter as melhores condições de amplificação.

Tabela 46. Sequências iniciadoras para amplificação do gene *tpr*

<table>
<thead>
<tr>
<th>Sequência iniciadoras</th>
<th>Oligonucléotidos</th>
<th>Gene alvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1-F*</td>
<td>5'- ACTGGCTCTGCCACACTTGGA - 3'</td>
<td></td>
</tr>
<tr>
<td>A2-R*</td>
<td>5'- CTACCAGGAGGAGTTGACGC - 3'</td>
<td></td>
</tr>
<tr>
<td>IP6-F*</td>
<td>5’-CAGGTTTTGCGTTAAGC - 3’</td>
<td>tpr</td>
</tr>
<tr>
<td>IP7-R*</td>
<td>5’- AATCAAGGGAATACCCTGC - 3</td>
<td></td>
</tr>
</tbody>
</table>

F – "forward" – sequência a montante da região a estudar
R – "reverse" – sequência a jusante da região a estudar
* descritos em Pillay et al. (1998)

As condições da primeira amplificação consistiram num passo inicial de activação da enzima utilizada e desnaturação dos ácidos nucleicos a 95°C durante sete minutos, seguida de 40 ciclos de amplificação com desnaturação a 94°C durante um minuto, hibridação das sequências iniciadoras de 55°C a 62°C durante um minuto e extensão a 72°C durante dois minutos, com uma extensão final de 15 minutos a 72°C. Para a segunda amplificação foram experimentadas as mesmas condições, com variações na temperatura de hibridação das sequências iniciadoras.

A visualização dos produtos de amplificação foi efectuada do modo descrito para
a PCR diagnóstica, com exceção de se ter utilizado agarose a 1% e, como marcador de peso molecular, o GeneRuler 100 pb DNA Ladder Plus (Fermentas). Quando amplificado o ADN extraído de *T. pallidum* estirpe de Nichols, o produto da primeira amplificação foi visualizado ao nível de 2186 pb e o da segunda amplificação a 1836 pb.

A quantidade de produto da primeira amplificação a ser utilizado na segunda, foi calculada, pela observação da intensidade de fluorescência do fragmento. O mesmo procedimento foi utilizado para determinar a quantidade de produto da segunda amplificação a hidrolizar com a enzima de restrição *MseI*.

Após a obtenção das condições mais adequadas, estas foram aplicadas ao estudo do ADN de amostras positivas pela técnica PCR-diagnóstica.

Análise de restrição dos produtos de amplificação do gene *tpr*-RFLP

Os produtos de PCR atrás obtidos foram em seguida analisados pela técnica de RFLP, sendo submetidos à acção da enzima *Mse* I (GIBCO/Life Technologies) na concentração de 5 U/µl. A mistura de digestão foi constituída por uma quantidade de produto variável, consoante o rendimento da amplificação, 0,5 µl da enzima *MseI*, 1,5 µl de Tampão da enzima 10x 1,5 µl e água até perfazer um volume total de 15 µl por reacção. Os microtubos, com as misturas de digestão, foram incubados em banho-maria a 37°C durante a noite.

A separação dos fragmentos de restrição foi feita em gel de agarose a 1,5%, preparado como referido anteriormente, utilizando o marcador GeneRuler 100 pb DNA Ladder Plus (Fermentas), e aplicado um campo eléctrico de 100 V durante uma hora, sendo em seguida visualizado e fotografado em aparelho Eagle Eye II (Stratagene).

2.3.2. Análise de gene *arp* por PCR

A técnica foi de início, optimizada, utilizando-se o ADN extraído de extracto de *T. pallidum* obtido de coelho inoculado com estirpe de Nichols de *T. pallidum*, de modo a ser em seguida aplicada ao estudo das amostras positivas por PCR diagnóstica.
As sequências iniciadoras ARP-1 e ARP-2 (Tabela 47), referidas em Pillay et al. (1998), que amplificam fragmentos de várias dimensões, dependendo do número de repetições existentes no gene, foram utilizadas. Para o gene da estirpe de Nichols de T. pallidum o fragmento amplificado é de 1155 pb.

<table>
<thead>
<tr>
<th>Sequências iniciadoras</th>
<th>Oligonucléotídos</th>
<th>Gene alvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP-1 F*</td>
<td>5'-CAAGTCAGGACGGACTGCTCC-3'</td>
<td>arp</td>
</tr>
<tr>
<td>ARP-2 R*</td>
<td>5'-CTACCAGGAGGGTGACGC-3'</td>
<td></td>
</tr>
</tbody>
</table>

F – “forward”= sequência a montante da região a estudar
R – “reverse”= sequência a jusante da região a estudar
* descritos por Pillay et al. (1998)

A mistura para a reacção da PCR em água pura, foi efetuada com os diferentes reagentes em concentrações variáveis: 1mM de cada dNTP (dATP, dCTP, dCGT, dTTP - Amersham Pharmacia Bbiotech), diferentes concentrações – 1,5 mM a 4 mM – de cloreto de magnésio, concentração de 100 pmol, 50 pmol, ou 25 pmol das sequências iniciadoras ARP-1 e ARP-2, 10 µl de Tampão PCR 10x (da enzima utilizada), 1 U/µl de Immolase ADN polimerase (Bioline) para um volume final de 100 µl, por reacção.

Para a amplificação usou-se o termociclador PCR Express (HYBAID), tendo-se programado o mesmo com temperatura inicial de 95°C durante cinco minutos a fim de activar a enzima ADN polimerase, seguida de 35 a 45 ciclos com uma fase de desnaturação a 94°C durante um minuto, ligação das sequências iniciadoras de 57°C a 62°C e extensão a 72°C durante dois minutos e 30 segundos. Aos ciclos seguiam-se uma extensão final a 72°C durante 15 minutos.

A visualização dos produtos de amplificação, foi efectuado do modo anteriormente descrito. Sempre que se amplificou ADN de T. pallidum estirpe de Nichols o produto obtido era visualizado ao nível de 1155 pb.
2.4. Prevenção de contaminações nas reacções da PCR

A fim de prevenir contaminações nas reacções de PCR tiveram-se em conta os seguintes cuidados:

1. A extracção de ADN, preparação das misturas de reacção e a pipetagem de ADN para a técnica PCR realizaram-se em espaços diferentes.
2. Antes da sua utilização todos os tubos “Eppendorf” contendo amostras de ADN, produtos de amplificação e reagentes foram centrifugados em microcentrífuga para retirar gotas de condensação das tampas.
3. Utilização generalizada em todas as manipulações de pontas com filtro.
4. Todas as micropipetas foram limpas, após utilização, com papel humidificado com etanol a 70%.
5. Antes de qualquer reagente ser colocado nas bancadas estas foram limpas com mistura de hipoclorito de sódio a 10%.
6. As experiências com utilização da enzima de restrição executaram-se em laboratório diferente do utilizado para os ensaios da PCR.
7. As câmaras utilizadas nas diferentes manipulações e as micropipetas eram após utilização submetidas à acção de ultra-violetas.

2.5. Estudo de amostras clínicas

Após a obtenção das melhores condições de amplificação para a técnica de PCR-diagnóstica, relativamente a cada um dos pares de sequências iniciadoras, efectuou-se o estudo de vários tipos de amostras clínicas.

Embora as diferentes técnicas de PCR-diagnóstica resultassem satisfatoriamente quando da utilização do ADN de Treponema pallidum e com a maioria das amostras de ADN extraído de exsudados de lesões sifilíticas, o mesmo não sucedeu em relação às amostras de sangue total, soro ou liquor. Em relação à técnica de multiplex-PCR (M-PCR) esse facto tornou-se ainda mais evidente, sendo o par KO3A/KO4 e polA-F/polA-R aquele com que se obtiveram melhores resultados.

Assim, e também por uma questão de uniformização, os diferentes tipos de amostras (sangue, soro, plasma, exsudado de lóbulo de orelha, liquor e lesões)
foram estudadas por três técnicas de PCR-diagnóstica, utilizando-se o par de sequências iniciadoras KO3A/KO4 para o gene \(Tp47 \), o par de sequências iniciadoras \(polA-F/polA-R \) para o gene \(polA \) e a sua associação na mesma mistura de reacção para a PCR multiplex, os quais passaram a designar-se por PCR-47, PCR-\(polA \) e PCR-M, respectivamente.

Após a obtenção das melhores condições para o estudo de genotipagem de \(T. \ pallidum \), efectuou-se o estudo de algumas das amostras positivas pela técnica de PCR-diagnóstica com o objectivo de se determinar o seu genótipo.
3. Resultados

3.1. Optimização da PCR-diagnóstica

Gene da lipoproteína de 47 kDa (T_p47)

A amplificação de um fragmento do gene da lipoproteína de 47 kDa (T_p47) com o par de sequências iniciadoras KO3A/KO4 foi controlada pela presença de uma banda de 260 pb.

As melhores condições de amplificação para este par de sequências iniciadoras obtiveram-se com as concentrações de 1,5 µM e 3 mM para as sequências iniciadoras e MgCl₂, respectivamente, e para ambas as enzimas utilizadas (ADN polimerase “Taq” e “Immolase”). No que se refere aos ciclos de amplificação conseguiram-se melhores resultados com 40 ciclos e uma temperatura de ligação de 62°C durante 20 segundos, seguidos de extensão final de 72°C durante cinco minutos. Na Figura 15 apresenta-se uma fotografia das resultantes das experiências de optimização, tratando-se de um gel de agarose a 1,5%, em que existem controlos, negativo de reacção e positivo, com diferentes concentrações de MgCl₂ utilizando a enzima ADN polimerase “Immolase” com as condições de temperatura já optimizadas.

Figura 15. Optimização das condições de amplificação de um fragmento do gene T_p47 com as sequências iniciadoras KO3A/KO4. 1 – Controlo negativo (CN), 2 e 3 – Controlo positivo (CP) com 2 mM MgCl₂, 4 e 5 – CP com 2,5 mM MgCl₂, 6 e 7 – CP com 3 mM MgCl₂, 8 e 9 – CP com 3,5 mM MgCl₂, 10 – CN
As condições optimizadas, foram experimentadas na amplificação de ADN extraído de amostras clínicas, provenientes dos doentes. Na Figura 16 pode observar-se a fotografia de um gel efectuado para a visualização de produtos amplificados, a partir de ADN extraído de diferentes tipos de amostras: exsudados de úlcera genital e de lesão cutânea, sangue total, líquor e exsudado de biopsia do lóbulo de orelha.

A técnica aplicada aos diferentes tipos de amostras permitiu amplificar banda do dimensão esperado, sendo de realçar que as amostras com melhor amplificação foram as de ADN extraído de úlcera genital e lesão cutânea, enquanto que a de menor produção foi a de líquor.

![Figura 16. Visualização dos produtos de amplificação de ADN de amostras clínicas com a utilização das sequências iniciadoras KO4A/KO3. 1 – CN, 2 – CP, 3 – ADN de exsudado de úlcera genital, 4 – ADN de exsudado de lesão cutânea, 5 – ADN de controlo negativo de exsudado de úlcera genital, 6 – ADN de exsudado de lóbulo de orelha, 7 – ADN de controlo negativo de sangue total, 8 – ADN de amostra de LCR, 9 – ADN de amostra de sangue total, 10 – controlo negativo de LCR](image)

A amplificação de um fragmento do mesmo gene (*Tp47*), utilizando as sequências iniciadoras 47-F/47-R desenhadas no programa “Primer Express”, levou à produção de um fragmento de ADN com 301 pb. As melhores condições de amplificação com a utilização deste par de sequências iniciadoras e para ambas as enzimas foram as obtidas com as concentrações de 0,5 μM para as sequências iniciadoras e de 2,5 mM para o MgCl₂, com 35 ciclos com temperatura de ligação de 57°C, durante 20 segundos, seguidos de uma extensão final de cinco minutos a 72°C.
Na Figura 17 mostra-se uma das fotografias das experiências efectuadas com estas sequências iniciadoras, isto é, um gel de agarose a 1,5%, após corrida electroforética dos produtos de amplificação dos controlos negativo de reacção e positivo, com as condições de temperatura optimizadas e diferentes concentrações de MgCl₂: 1,5 mM, 2 mM, 2,5 mM e 3 mM.

Figura 17. Optimização das condições de amplificação de um fragmento do gene *Tp47* de *T. pallidum* com as sequências iniciadoras 47–F/47–R. 1 – CN, 2 – CP com 1,5 mM MgCl₂, 3 – CP com 2 mM MgCl₂, 4 – CP com 2,5 mM MgCl₂, 5 – CP com 3 mM MgCl₂.

Gene da enzima ADN polimerase I (*polA*)

A amplificação de um fragmento do gene da ADN polimerase I efectuada com as sequências iniciadoras *polA*-F/*polA*-R produz um produto com 378 pb. Os melhores resultados foram obtidos pela utilização da enzima ADN polimerase “Immolase” com as sequências iniciadoras na concentração de 1,25 µM e MgCl₂ 3 mM. Relativamente às condições de amplificação, os melhores resultados foram alcançados com a temperatura de ligação de 62°C durante 30 segundos, por 45 ciclos e extensão final de 15 minutos a 72°C.

Na Figura 18 pode observar-se a fotografia de dois géis onde se efectuou a electroforese dos produtos de amplificação do controlo positivo, utilizando-se as condições referidas no parágrafo anterior para optimização da técnica, com diferentes concentrações de MgCl₂.
Figura 18. Optimização da técnica de PCR-diagnóstica com as sequências iniciadoras polA-F/polA-R utilizando-se controlo positivo e diferentes concentrações de MgCl₂. 1 e 2 – 1,5 mM de MgCl₂; 3 e 4 – 2 mM de MgCl₂, 6 e 7 – 3 mM, 8 e 9 – 3,5 mM.

As condições optimizadas foram em seguida aplicadas para a amplificação de ADN extraído de amostras clínicas. Na Figura 19 encontra-se um exemplo da aplicação desta PCR-diagnóstica (PCR-polA) ao estudo do ADN extraído de diferentes tipos de amostras clínicas. Na fotografia do gel pode visualizar-se os resultados obtidos pela aplicação da técnica a controlos, positivo e negativo, ao ADN extraído de amostras, isto é, úlcera genital, lesão cutânea, sangue total, líquor e ADN de duas amostras (sangue total e exsudado de lesão cutânea) de indivíduos sem infecção a *T. pallidum*. A aplicação destas sequências iniciadoras à amplificação de ADN, extraído de amostras clínicas, permitiu a produção de banda de dimensão esperada (378pb), sendo de salientar que a melhor produção foi obtida quando da amplificação a partir de amostras de úlcera genital e lesões cutâneas específicas, e a menor a partir de líquor.

A utilização das sequências iniciadoras desenhadas no programa “Primer Express” polA-F/polA-R (PE) amplifica um fragmento de 460 pb. Relativamente a este par de sequências iniciadoras foram obtidas como as melhores condições de amplificação as concentrações de 0,5µM para as sequências iniciadoras e 3 mM para o MgCl\textsubscript{2}, com a temperatura de ligação de 57ºC durante 30 segundos e 35 ciclos, seguidos de uma extensão final de cinco minutos 72ºC.

A Figura 20 ilustra a fotografia de um gel de agarose a 1,5%, onde se efectuou elecroforese simultânea dos produtos de amplificação por PCR, do ADN extraído do controlo positivo e de diferentes tipos de amostras (exsudado de úlcera genital e lesão cutânea, sangue total) usando os dois pares de sequências iniciadoras polA-F/polA-R – PE e polA-F/polA-R que amplificam fragmentos do gene polA.

A utilização das sequências iniciadoras polA-F/polA-R (PE) e polA-F/polA-R, para amplificação de um fragmento do gene polA, permitiu a produção de um fragmento de 406 e 378 pb, respectivamente, quer na utilização de ADN do controlo positivo quer do extraído de amostras clínicas. No entanto, é de salientar que essa produção foi baixa quando se utilizaram as sequências iniciadoras polA-F/polA-R (PE) para a amplificação do ADN extraído de amostras clínicas sobretudo de sangue total, sendo a mesma boa quando se utilizaram as sequências iniciadoras polA-F/polA-R. As variações na concentração do MgCl\textsubscript{2}
de 3,5 para 3 mM melhoram a produção de produto de amplificação quando utilizadas as sequências iniciadoras polA-F/polA-R, mas o mesmo não se verificou com as sequências iniciadoras polA-F/polA-R (PE).

PCR-multiplex (PCR-M)

A associação entre as sequências iniciadoras 47-R/47-F para o gene da lipoproteína de 47kDa (), e polA-F/polA-R (PE), para o gene da enzima ADN polimerase I (polA), ambas desenhadas no programa “Primer Express” não resultou, em diferentes condições experimentadas, tendo-se obtido baixa ou nenhuma produção de amplificação com o controlo positivo, sobretudo para o gene polA.

Associando-se as sequências iniciadoras 47-R/47-F para o gene desenhadas no programa “primer Express” e o par polA-F/polA-R para o gene polA, com base na descrição de Liu et al. (2001) na mesma mistura de reacção, obteve-se a produção de fragmentos de ADN visualizáveis ao nível de 301 e 378 pb.

Para estas sequências iniciadoras as melhores condições de amplificação conseguiram-se com a utilização da enzima ADN polimerase “Immolase”, com as concentrações de 0,5 μM para as sequências iniciadoras 47-R/47-F e de 1,25 μM polA F/polA-R e uma concentração de MgCl₂ de 2,5 mM, temperatura de ligação de 60°C durante 30 segundos em 40 ciclos.

Na Figura 21 pode observar-se um exemplo das experiências efectuadas com as sequências iniciadoras anteriormente referidas (47-R/47-F e polA F/polA-R). A
utilização das duas sequências iniciadoras na mesma mistura de reacção permitiu a produção de duas bandas do tamanho esperado (301 e 378 pb) quando amplificado ADN de controlo positivo e para as diferentes concentrações de MgCl₂ (1,5mM, 2 mM, 2,5 mM e 3M) com melhores resultados quando utilizado 2,5 ou 3 mM de MgCl₂. A produção das duas bandas esperadas quando da amplificação de ADN extraído de amostras clínicas com as mesmas sequências iniciadoras só foi obtida com as concentrações de 2,5 ou 3 mM de MgCl₂, sendo melhor com a primeira e apenas para úlcera genital. As experiências com outros tipos de amostras resultaram com baixa amplificação do gene Tp47.

Figura 21. Optimização da PCR-M, com as sequências iniciadoras 47-R/47-F e polA-F/polA-R. 1 – CN, 2 – CP, 3, 6, 8 e 10 – ADN de uma amostra de úlcera genital, 4 – ADN de amostra de lesão cutânea, com as variações na concentração de MgCl₂ de 1,5 mM (1 a 4), 2 mM (5 e 6), 2,5 mM (7 e 8) e 3 mM (9 e 10).

A associação entre as sequências iniciadoras KO3A/KO4 e o polA-F/polA-R, com as quais se obtêm fragmentos de ADN de 260 e 378 pb, respectivamente, foi experimentada. Os melhores resultados da utilização destas sequências iniciadoras alcançaram-se com as concentrações de 1,25 µM para ambas as sequências iniciadoras, concentração de MgCl₂ de 3mM e temperatura de ligação de 62°C com 45 ciclos de 30 segundos.

A fotografia da Figura 22 corresponde a um gel efectuado de acordo com as condições referidas no parágrafo anterior, com variações na concentração de MgCl₂ aplicadas ao ADN extraído de diferentes tipos de amostras. A produção de fragmentos da dimensão esperada (260 e 378 pb) foi possível com as sequências iniciadoras KO3A/KO4 e o pol A-F/polA-R, quando utilizado ADN do
controlo positivo e do extraído de amostras clínicas sobretudo de úlceras e lesões, sendo a mesma mais evidente quando utilizado 3 mM de MgCl₂.

Figura 22. Optimização da técnica de PCR-M com as sequências iniciadoras KO4A/KO3 e polA-F/polA-R. 1 – CN, 2 e 6 – CP, 3 e 7 – ADN de amostra de úlcera genital, 4 e 8 – ADN de amostra de lesão cutânea, 5 e 9 – ADN de uma amostra de soro. Variações na concentração de MgCl₂ de 2,5 mM (1 a 4), e de 3 mM (5 a 9).

De todas as associações utilizadas, esta última (sequências iniciadoras KO4A/KO3 e polA/polA) foi a que originou melhores resultados ou seja uma visualização mais clara dos produtos de amplificação, pelo que foi a única efectuada no estudo das amostras clínicas.

3.2. Resultados PCR-diagnóstica das amostras clínicas

Para apresentação dos resultados obtidos pela aplicação da técnica de PCR-diagnóstica aos diversos tipos de amostras, subdividiram-se os doentes estudados em dois grupos: um grupo de doentes com sífilis em curso (sífilis primária, secundária, latente e neurosífilis - Grupo I) e outro de doentes sem sífilis em curso (Grupo II) esquematizados na Tabela 48. As seguintes amostras foram analisadas: sangue com EDTA e plasma (128), soro (176), de exsudado de biopsia de lóbulo de orelha (52), de exsudados de úlcera genital (8) e lesões cutâneas (6), pelas três técnicas de PCR-diagnóstica (PCR-47, PCR-polA e PCR-M) cujos resultados se encontram resumidos na Tabela 48.

Das 91 amostras de sangue total e plasma dos doentes do Grupo I estudadas
pelas técnicas de PCR-47, PCR-
pol A e PCR-M obteve-se uma percentagem de positividade de 45,1% (41/91), 34,1% (31/91) e 31,9% (29/91) para as primeiras e 51,6% (47/91), 44,0 % (40/91) e 36,3% (33/91) para as segundas, pelas técnicas de PCR-47, PCR-
pol A e PCR-M, respectivamente, verificando-se que o plasma parece ser mais sensível que o sangue total.

Tabela 48. Resultados obtidos nas diversas amostras clínicas analisadas pelas técnicas de PCR-diagnóstica

<table>
<thead>
<tr>
<th></th>
<th>Grupo I</th>
<th></th>
<th>Grupo II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCR-47 N° + /total</td>
<td>% (N° +/total)</td>
<td>PCR-47 N° + /total</td>
<td>% (N° +/total)</td>
</tr>
<tr>
<td>Sangue</td>
<td>41/91 (45,1%)</td>
<td></td>
<td>1/37 (2,7%)</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>47/91 (51,6%)</td>
<td></td>
<td>1/37 (2,7%)</td>
<td></td>
</tr>
<tr>
<td>Soro</td>
<td>37/128 (28,9%)</td>
<td></td>
<td>0/48 (0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCR-pol A N° + /total</td>
<td>% (N° +/total)</td>
<td>PCR-pol A N° + /total</td>
<td>% (N° +/total)</td>
</tr>
<tr>
<td>Sangue</td>
<td>31/91 (34,1%)</td>
<td></td>
<td>1/37 (2,7%)</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>40/91 (44,0%)</td>
<td></td>
<td>1/37 (2,7%)</td>
<td></td>
</tr>
<tr>
<td>Soro</td>
<td>29/127 (22,8%)</td>
<td></td>
<td>0/48 (0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCR-M N° + /total</td>
<td>% (N° +/total)</td>
<td>PCR-M N° + /total</td>
<td>% (N° +/total)</td>
</tr>
<tr>
<td>Sangue</td>
<td>29/91 (31,9%)</td>
<td></td>
<td>0/48 (0%)</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>33/91 (36,3%)</td>
<td></td>
<td>0/48 (0%)</td>
<td></td>
</tr>
<tr>
<td>Soro</td>
<td>21/120 (17,5%)</td>
<td></td>
<td>0/48 (0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. lób or. **</td>
<td>24/39 (61,5%)</td>
<td></td>
<td>1/13 (7,7%)</td>
<td></td>
</tr>
<tr>
<td>Exs. úlcera</td>
<td>4/4 (100%)</td>
<td></td>
<td>0/4 (0%)</td>
<td></td>
</tr>
<tr>
<td>Exs. lesão</td>
<td>2/3 (66,7%)</td>
<td></td>
<td>0/3 (0%)</td>
<td></td>
</tr>
</tbody>
</table>

*- (%+vos) – N° de positivos/total estudado
**- Ex. lób. or. - Exsudado de biopsia de lóbulo de orelha

A totalidade das amostras de soros estudados neste grupo foi de 128, verificando-se que a técnica de PCR-47 detectou 28,9% (37/128) de amostras positivas, a PCR-
pol A 22,8% (29/127) e a PCR-M 17,5% (21/120). Nas amostras de exsudados do lóbulo da orelha (39) observou-se uma banda de amplificação específica em 61,5% (24/39) pela técnica de PCR-47, em 59% (23/39) pela
técnica de PCR-polA e em 56,4% (22/39) pela técnica de PCR-M.

As amostras de exsudado de úlceras genitais foram todas positivas 100% (4/4), enquanto que as de lesões cutâneas foram 66,7% (2/3), sendo estes resultados iguais para todas as técnicas de PCR estudadas.

Para verificar se o facto de se efectuarem, simultaneamente, várias técnicas de PCR em vários tipos de amostras (sangue total, plasma, soro e exsudado de biopsia de lóbulo de orelha) aumentaria a detecção de casos positivos analisou-se, um conjunto de amostras constituído por esses quatro tipos de amostras provenientes de 35 doentes deste grupo.

Nas amostras estudadas (140 - quatro tipos de amostras x 35 indivíduos), 74/140 (52,9%) foram negativas com todas as técnicas utilizadas, enquanto que 66/140 (47,1%) resultaram positivas, pelo menos por uma das técnicas PCR-diagnóstica (Tabela 49).

Em relação a estas amostras em que pelo menos uma das técnicas resultou positiva (66), 46/140 (32,9%) apresentaram resultados positivos pelos três métodos e em 20/140 (14,3%) existiu discrepância, observando-se que em 9/140 (6,4%) das amostras foram positivas pelos métodos PCR-polA e PCR-47, em 2/140 (1,4%) pelas técnicas PCR-47 e PCR-M, 7/140 (5%) pela PCR-47 e em 2/140 (1,4%) pela PCR-polA.

<table>
<thead>
<tr>
<th>Tabela 49. Resultados obtidos no total de amostras (140) estudadas por todas as técnicas de PCR-diagnóstica</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-47</td>
</tr>
<tr>
<td>PCR-M -vo</td>
</tr>
<tr>
<td>PCR-polA +vo</td>
</tr>
<tr>
<td>PCR-polA +vo</td>
</tr>
<tr>
<td>PCR-M +vo</td>
</tr>
</tbody>
</table>

Em seguida, efectuou-se a análise dos resultados obtidos por cada tipo de técnica de PCR-diagnóstica em relação com o tipo de amostra (Tabela 50, 51 e
Pesquisa de ADN de *Treponema pallidum*

52), tendo-se verificado a existência de 11/35 (31,4%), 12/35 (34,3%) e 13/35 (37,1) resultados em que todas as amostras foram negativas, 9/35 (25,7%), 7/35 (20%) e 6/35 (17,1%) em que foram todas positivas e 15/35 (42,9%), 16/35 (45,7%) e 16/35 (45,7%) em que os resultados demonstraram ser discrepantes, pela PCR-47 (Tabela 50), PCR-polA (Tabela 51) e PCR-M (Tabela 52), respectivamente.

Tabela 50. Resultados obtidos pela técnica de PCR-47 nos diferentes tipos de amostras

<table>
<thead>
<tr>
<th>PCR-47 -vo (exs. lob. orelha)</th>
<th>PCR-47 -vo (plasma)</th>
<th>PCR-47 -vo (sangue)</th>
<th>PCR-47 + vo (plasma)</th>
<th>PCR-47 + vo (sangue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-47 -vo (soro)</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-47 +vo (soro)</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-47 -vo (exs. lob. orelha)</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-47 -vo (soro)</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-47 -vo (soro)</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-47 +vo (soro)</td>
<td>0</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 51. Resultados obtidos pela técnica de PCR-polA nos diferentes tipos de amostras

<table>
<thead>
<tr>
<th>PCR-polA -vo (exs. lob. orelha)</th>
<th>PCR-polA -vo (plasma)</th>
<th>PCR-polA -vo (sangue)</th>
<th>PCR-polA +vo (plasma)</th>
<th>PCR-polA +vo (sangue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-polA -vo (soro)</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-polA +vo (soro)</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-polA -vo (sangue)</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-polA +vo (sangue)</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-polA -vo (sangue)</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR-polA +vo (sangue)</td>
<td>0</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 52. Resultados obtidos pela técnica de PCR-M nos diferentes tipos de amostras

<table>
<thead>
<tr>
<th>PCR-M -vo (exs. lob. orelha)</th>
<th>PCR-M -vo (soro)</th>
<th>PCR-M +vo (plasma)</th>
<th>PCR-M +vo (plasma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pela análise dos resultados discrepantes verificou-se que com a técnica PCR-47, as amostras de exsudado de biopsia de lóbulo de orelha e plasma, quando estudadas em simultâneo, identificaram, em todos os casos, resultados positivos enquanto que, na PCR-polA e PCR-M estes dois tipos de amostra não identificaram senão um positivo cada.

A análise dos resultados obtidos com os três métodos de PCR-diagnóstica foi, também, feita de acordo com o diagnóstico clínico e laboratorial, isto é, sífilis primária, secundária e latente, estando os resultados esquematizados respectivamente nas Tabela 53, 54 e 55

Tabela 53. Resultados obtidos com a técnica de PCR-47 nas várias amostras, de acordo com o diagnóstico clínico e laboratorial do grupo I

<table>
<thead>
<tr>
<th></th>
<th>Sangue N° + / total (% positivos)</th>
<th>Plasma N° + / total (% positivos)</th>
<th>Soro N° + / total (% positivos)</th>
<th>Exs. lob. orelha N° + / total (% positivos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sífilis recente</td>
<td>10/15 (66,7%)</td>
<td>11/15 (73,3%)</td>
<td>9/17 (52,9%)</td>
<td>5/6 (83,3%)</td>
</tr>
<tr>
<td>Sífilis secundária</td>
<td>4/7 (57,1%)</td>
<td>5/7 (71,4%)</td>
<td>6/19 (31,6%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>Sífilis latente</td>
<td>27/69 (39,1%)</td>
<td>31/69 (44,9%)</td>
<td>19/84 (22,6%)</td>
<td>16/29 (55,2%)</td>
</tr>
</tbody>
</table>
No grupo de doentes com sífilis primária observou-se positividade em 66,7% (10/15), das amostras de sangue pela técnica de PCR-47 e em 53,3% (8/15) quando a amplificação foi efectuada por PCR-polA e PCR-M.

Na sífilis secundária e no mesmo tipo de amostra, a positividade foi de 57,1% (4/7), para as duas primeiras técnicas e de 28,6% (2/7) para a terceira. Obtiveram-se 73,3% (11/15) de resultados positivos nas amostras de plasma dos doentes com sífilis primária com a técnica de PCR-47, sendo essa percentagem de 66,7% (10/15) no estudo pelas técnicas pol-A e PCR-M. Relativamente ao grupo de doentes com sífilis secundária e no mesmo tipo de amostra, a positividade foi de 71,4% (5/7) para as três técnicas efectuadas.
Nas amostras de soro, a positividade encontrada foi de 52,9% (9/17), 35,3% (6/17) e 29,4% (5/17) respectivamente pelas técnicas PCR-47, PCR-polA e PCR-M nos doentes com sífilis primária, enquanto que nos doentes com sífilis secundária foi de 31,6% (6/19) para as duas primeiras técnicas e de 27,8% (5/18) para a última.

Nos grupos de doentes com sífilis primária e sífilis secundária a percentagem de positividade encontrada nas amostras de exsudado de biopsia de lóbulo de orelha foi respectivamente de 83,3% (5/6) e 75% (3/4) para os três métodos estudados.

Nos indivíduos com sífilis latente, a percentagem de amostras positivas foi de 39,1% (27/69) pela técnica PCR-47 e de 27,5% (19/69) para as outras duas nas amostras de sangue, sendo de 44,9% (31/69), 36,2% (25/69) e 26,1% (18/69) no plasma, 22,6% (19/84), 18,1% (15/83) e 13% (10/77) no soro e 55,2% (16/29), 51,7% (15/29) e 48,3% (14/29) no exsudado de biopsia de lóbulo de orelha respectivamente, para cada técnica estudada.

No que se refere ao grupo II (Tabela 48), apenas as seguintes amostras foram positivas: uma de soro e outra de exsudado de biopsia de lóbulo de orelha, as únicas obtidas de um doente com sífilis, tratado cerca de um mês antes da colheita, nas quais apenas a técnica de PCR-47 foi positiva e uma amostra de sangue e outra de plasma das quatro estudadas (sangue, plasma, soro e exsudado de lóbulo de orelha) provenientes de um indivíduo que tinha tido contacto, com um doente com sífilis, nas quais todas as técnicas de PCR foram positivas.

Todas as técnicas de PCR utilizadas foram negativas nos exsudados de úlceras genitais e de lesões cutâneas nos doentes do Grupo II.

A técnica de PCR-diagnóstica foi, também, aplicada ao estudo de amostras de líquor. Foram estudados 124 amostras de líquor provenientes de indivíduos com sífilis, aos quais foi efectuada punção lombar com o objectivo de exclusão de diagnóstico de neurosisfilis e 37 do grupo controlo negativo, referido no
capítulo 3 deste trabalho, provenientes de indivíduos sem sífilis e nos quais todos os testes serológicos para diagnóstico de sífilis executados no soro e líquor, foram negativos. Todos as amostras deste grupo resultaram negativos pelas três técnicas de PCR em estudo.

Os resultados obtidos com as técnicas de PCR-diagnóstica nas 124 amostras de líquor, de doentes com sífilis, estão descritos na Tabela 56, tendo-se encontrado uma positividade de 29,8% (37/124), 24,2% (30/124) e de 16,1% (20/124), respectivamente, pelas técnicas de PCR-47, PCR-polA e PCR-M.

Tabela 56. Resultados obtidos com as várias técnicas PCR-diagnóstica nas amostras de líquor

<table>
<thead>
<tr>
<th>PCR-diagnóstica</th>
<th>PCR-47</th>
<th>PCR-polA</th>
<th>PCR-M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº + / total (%+vos)</td>
<td>37/124 (29,8%)</td>
<td>30/124 (24,2%)</td>
<td>20/124 (16,1%)</td>
</tr>
</tbody>
</table>

A discriminação dos resultados encontra-se esquematizada na Tabela 57, onde se verifica que todas as técnicas PCR-diagnóstica resultaram negativas em 85 amostras, positivas em 19, enquanto que em 20 os resultados foram discordantes.

Tabela 57. Resultados obtidos nas amostras de líquor de acordo com o tipo de técnica PCR-diagnóstica utilizada

<table>
<thead>
<tr>
<th>PCR polA -vo</th>
<th>PCR polA +vo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-M -vo</td>
<td>PCR-47 -vo</td>
</tr>
<tr>
<td>PCR-47 +vo</td>
<td>8</td>
</tr>
<tr>
<td>PCR-M +vo</td>
<td>PCR-47 +vo</td>
</tr>
</tbody>
</table>
Com o objectivo de melhor se compreender estes resultados, efectuou-se a sua análise (Tabela 58, 59 e 60), relacionando-os com os resultados obtidos nos outros parâmetros estudados no liquor, como o exame citoquímico e os testes de pesquisa de anticorpos específicos e inespecíficos para infecção por *T. pallidum*.

Em relação às 85 amostras com todas as técnicas de PCR-diagnóstica negativas (Tabela 58), em 58/85 (68,2%) todos os outros parâmetros de diagnóstico de neurossífilis foram também negativos. Em 12, o exame citoquímico apresentou-se alterado, verificando-se que em seis os testes treponémicos eram reactivos, sendo apenas num deles, os testes não treponémicos reactivos. Nas restantes 6/13 todos os testes serológicos foram negativos, excepto o TPHA para três amostras.

Tabela 58. Resultados obtidos nos testes serológicos e exame citoquímico das amostras de liquor em que todas as técnicas de PCR-diagnóstica foram negativas

<table>
<thead>
<tr>
<th>Exame citoquímico</th>
<th>Sem alterações</th>
<th>Com alterações</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTA-Abs -vo</td>
<td>TPHA -vo</td>
<td>TNT* -vos</td>
</tr>
<tr>
<td></td>
<td>TPHA +vo</td>
<td>TNT - vos</td>
</tr>
<tr>
<td>FTA-Abs +vo</td>
<td>TPHA +vo</td>
<td>TNT - vos</td>
</tr>
<tr>
<td></td>
<td>TNT +vos</td>
<td></td>
</tr>
<tr>
<td>FTA-Abs duv*</td>
<td>TPHA +vo</td>
<td>TNT +vos</td>
</tr>
</tbody>
</table>

* TNT* – Testes não treponémicos, duv. – duvidoso

Em 15 amostras o exame citoquímico foi normal, destas duas apresentaram todos os testes serológicos reactivos, em 13 os testes não treponémicos foram negativos, com TPHA reactivo em todas, enquanto que o FTA-Abs o foi apenas em cinco.

Das 19 amostras de liquor com todos os testes PCR-diagnóstica positivos
discriminados na Tabela 59, quatro apresentavam exame citoquímico normal, dos quais apenas numa se observou alteração nos testes treponémicos, enquanto que nas 15 com aumento no número de células, 12 apresentaram também testes serológicos reactivos excepto uma em relação ao TPHA, e noutras duas os teste não treponémico foram negativos, uma delas com os testes treponémicos reactivos sendo o FTA-Abs duvidoso noutra.

Tabela 59. Resultados obtidos nos testes serológicos e exame citoquímico das amostras de liquor em que todas as técnicas de PCR-diagnóstica foram positivas

<table>
<thead>
<tr>
<th></th>
<th>Sem alterações</th>
<th>Sem alterações</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTA-Abs -vo</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>TPHA -vo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT* -vos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPHA -vo</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TNT +vos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTA-Abs +vo</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TPHA +vo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT -vos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT +vos</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>FTA-Abs duv*</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TPHA +vo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNT -vos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* TNT – Testes não treponémicos, duv. - duvidoso

Nas 20 amostras em que os resultados obtidos com as técnicas de PCR-diagnóstica foram discrepantes (Tabela 60), a PCR-47 foi positiva em 18 amostras seguida da PCR-polA em 11 e a PCR-M numa. Com as técnicas PCR-47 e PCR-polA obtiveram-se mais 10 amostras positivas do que quando apenas uma das técnicas foi realizada individualmente. As técnicas de PCR foram todas positivas em todos os casos de neurossífilis sintomática (nove), com excepção da PCR-M que foi negativa em dois casos.
Tabela 60. Discriminação dos resultados discordantes obtidos nas amostras de liquor, com as técnicas PCR-diagnóstica

<table>
<thead>
<tr>
<th></th>
<th>PCR polA -vo</th>
<th>PCR polA +vo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-M -vo</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>PCR-M +vo</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

Relativamente às oito amostras com positividade apenas pela técnica de PCR-47, verificou-se que em sete o exame citoquímico foi normal, estando em cinco destas os restantes parâmetros também normais, enquanto que nas outras duas apenas os testes treponêmicos foram reactivos. Na restante amostra, das oito em que apenas a técnica de PCR-47 foi positiva, observou-se alteração no exame citoquímico, sendo os testes não treponêmicos reactivos. Em duas amostras apenas a técnica de PCR-polA foi positiva, uma com os restantes parâmetros negativos e a outra apenas alterações no exame citoquímico.

As técnicas de PCR-47 e PCR-M, foram positivas simultaneamente numa amostra que apresentou exame citoquímico normal e todos testes serológicos reactivos. Nove amostras foram positivas em simultâneo com as técnicas PCR-47 e PCR-polA, sendo o exame citoquímico normal em três, uma com todos os testes alterados e duas apenas com os testes treponêmicos. Nas seis com alterações no exame citoquímico, três apresentavam todos os outros testes serológicos reactivos, uma apenas os testes específicos, outra unicamente o TPHA e na última não houve reactividade em nenhum dos testes.
3.3. Subtipagem de *Treponema pallidum*

3.3.1. Análise do gene *tpr* por “nested PCR – RFLP”

Para a obtenção das melhores condições de amplificação de um fragmento do gene *tpr* pela técnica de “nested-PCR” e estudo com a técnica de RFLP do produto resultante, utilizou-se o ADN extraído de *T. pallidum*, obtido a partir de coelhos inoculados e já anteriormente referido, como controlo positivo (CP).

A amplificação do gene *tpr* de *T. pallidum*, estirpe de Nichols, utilizando-se as sequências iniciadoras B1/A2, resulta na produção de um fragmento de ADN de 2186 pb. Os melhores resultados foram obtidos com as seguintes condições: concentrações de 6,25 µM para as sequências iniciadoras e 3 mM para o MgCl₂, temperatura de ligação de 59º C, durante dois minutos, por 35 ciclos.

Na Figura 23 mostra-se a fotografia de um gel de agarose a 1,5 %, onde foi efectuada a electroforese dos produtos de amplificação do ADN de *T. pallidum*, com as sequências iniciadoras B1/A2, as condições referidas no parágrafo anterior e variações apenas na temperatura de ligação. Com esta metodologia observou-se a produção de uma banda correspondente a um fragmento do gene *tpr* da dimensão esperada para as sequências iniciadoras utilizadas, sendo mais visível quando na amplificação PCR se utilizou temperatura de ligação de 59º C.

![Figura 23. Optimização da primeira amplificação da técnica de “nested-PCR” do gene *tpr*.](image)

1 – CN; 2 e 3 – CP amplificação com temperatura de ligação de 59º C; 4 e 5 – CP amplificação com temperatura de ligação de 60º C; 6 e 7 – CP amplificação com temperatura de ligação de 62º C.
Para a segunda amplificação da técnica de “nested-PCR” utilizaram-se as sequências iniciadoras IP6/IP7, as quais deram origem a um fragmento 1836 pb, quando amplificado ADN de *T. pallidum*, estirpe de Nichols. As melhores condições para esta amplificação foram obtidas com as concentrações de 6,25 µM para as sequências iniciadoras e de 3mM para o MgCl₂, com uma temperatura de ligação de 60º C, durante um minuto e quarenta ciclos, seguidos de uma extensão final de dez minutos a 72ºC.

A fotografia da Figura 24 foi efectuada a um gel de agarose a 1,5 %, após a electroforese dos produtos de amplificação dos controlos negativo e positivo, submetidos a “nested-PCR” com as condições optimizadas e variações na temperatura de ligação da segunda amplificação, e na quantidade de produto da primeira amplificação de 5 µl e 2,5 µl. Deste modo obteve-se um fragmento da dimensão esperada a partir de 5 µl do ADN obtido na primeira amplificação, quando utilizado o controlo positivo com melhor produção quando a temperatura de ligação utilizada foi de 60ºC.

Figura 24. Optimização da segunda amplificação da técnica de “Nested-PCR” para o gene *tpr*. 1 e 5 – CN com 5 µl do produto da primeira amplificação do CN; 3 e 7 – CN com 2,5 µl do produto da primeira amplificação do CN; 2 e 6 – CP com 5 µl do produto da primeira amplificação do ADN do CP; 4 e 8 – CP com 2,5 µl do produto da primeira amplificação do ADN do CP. Variação na temperatura de ligação de 60º C (1 a 5) e 58º C (6 a 8).

Após a segunda amplificação do ADN do controlo positivo, utilizaram-se 6 µl do produto amplificado para análise de restrição com a enzima *Mse I*, tendo-se obtido a produção do padrão de RFLP exemplificado na Figura 25, e que
Pesquisa de ADN de *Treponema pallidum*

compreende a presença de fragmentos de ADN com 911, 722, 524, 425 e 382 pb, correspondente ao subtipo *a* de Pillay *et al.* (1998).

Figura 25. Padrão de RFLP obtido com a enzima de restrição *MseI* aplicada ao produto de nested-PCR do ADN de *T. pallidum* (1).

3.3.2. Análise do gene *arp* por técnica de amplificação

O gene *arp* contém uma região com uma sequência de 60 pb, a qual apresenta um número variável de repetições. A amplificação desta região do ADN de *Treponema pallidum* subespécie *pallidum* (Nichols) com as sequências iniciadoras ARP1/ARP2 leva à produção de um fragmento com 1155 pb, correspondendo a 14 repetições dessa sequência.

As melhores condições de amplificação foram obtidas pela utilização das concentrações de 6,25 µM para as sequências iniciadoras e de 2 mM para o MgCl₂, com uma temperatura de ligação de 61ºC, durante um minuto, por 45 ciclos. Os resultados da optimização efectuada podem ser observados na Figura 26, correspondente à fotografia de um gel de agarose de 1,5 %, efectuado para visualizar os produtos de amplificação de ADN do controlo positivo, com as sequências iniciadoras ARP1/ARP2, e variações na concentração de MgCl₂ (2mM a 3,5mM) e temperaturas de ligação de 60ºC e 58ºC. Se bem que se tenha obtido produto da dimensão esperada com as diferentes condições testadas a produção foi melhorada quando se utilizou a concentração de 2mM de MgCl₂ e temperatura de ligação de 60ºC.
3.4. Subtipagem de *Treponema pallidum* em amostras clínicas

A técnica de subtipagem optimizada foi em seguida aplicada ao estudo de ADN de *T. pallidum* obtido nas amostras clínicas. Foram estudadas 119 amostras, tendo-se conseguido determinar o subtipo em 10/26 (38,5%) amostras de sangue, 12/26 (46,2%) de plasma, 3/26 (11,5%) de soro, 13/22 (59,1%) de exsudado de biopsia de lóbulo de orelha e 0/13 (0%) de liquor. As amostras de exsudado de úlcera genital e de lesões de secundarismo positivas pela técnica de PCR-diagnóstica, foram todas 6/6 (100%) tipadas.

A amplificação do gene *tpr* das diferentes amostras clínicas, utilizando a técnica de “nested-PCR”, anteriormente optimizada para as sequências iniciadoras B1/A2 e IP6/IP7 foi seguida de clivagem dos produtos obtidos pela enzima *Mse* I, tendo-se obtido os padrões de restrição, a, c, f, g e n, de acordo com Pillay *et al.* (1998).

Por outro lado, a amplificação do gene *arp* pela técnica de PCR optimizada para as sequências iniciadoras ARP1/ARP2, resultou em três subtipos, isto é, 10, 11 e 14, com base no número de repetições (Pillay *et al.* 1998).

Os resultados de tipagem obtidos encontram-se esquematizados na Tabela 61, tendo sido possível efectuar tipagem de ADN de *T. pallidum* extraído de amostras de sangue total, de plasma, de soro, de exsudado de biopsia de lóbulo
de orelha e de exsudados de úlceras genitais e lesões de secundarismo. Sempre que a amplificação foi possível, todas as amostras do mesmo doente apresentaram o mesmo subtipo. Os subtipos encontrados foram o 10a, 14a, 14c, 14f e 14g, havendo duas amostras, uma subtipo 11 arp, em que não foi possível discriminar o subtipo tpr e outra subtipo tpr (n) em que o inverso foi verdadeiro. O subtipo mais frequente foi o 14c sendo o subtipo 10a o menos frequente. Todas as amostras de exsudados de úlceras genitais e de lesões positivas foram tipadas. As amostras, com maior número de colheitas tipadas foram as de exsudados de biopsia de lóbulo de orelha (13/22), seguindo-se as de plasma (12/26), sangue (10/10) e por último as de soro (3/10) de acordo com a taxa de êxito da PCR-diagnóstica.

Tabela 61. Resultados obtidos na subtipagem de *Treponema pallidum* de amostras sangue, plasma, soro e de exsudados de biopsia de lóbulo de orelha e de lesões

<table>
<thead>
<tr>
<th>Subtipo</th>
<th>Tipo de Amostras</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sangue</td>
</tr>
<tr>
<td>10a</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>14a</td>
<td>3</td>
</tr>
<tr>
<td>14c</td>
<td>3</td>
</tr>
<tr>
<td>14f</td>
<td>1</td>
</tr>
<tr>
<td>14g</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>-</td>
</tr>
</tbody>
</table>

* Exs. lób. orelha = exsudado de biopsia de lóbulo de orelha
4. Discussão e conclusões

O isolamento de *T. pallidum* nos líquidos ou em tecidos de um indivíduo com suspeita de infecção seria a melhor estratégia para o diagnóstico da mesma, já que permitiria evidenciar inequivocamente a presença de infecção activa. No entanto, esta estratégia é dificultada pela incapacidade de isolamento de *T. pallidum* em meios de cultura artificiais e pelas limitações dos métodos convencionais na detecção directa de treponemas patogénicos nas amostras clínicas (Turner et al. 1969, Tratmont 1990). Por isso, as decisões dos clínicos baseiam-se, com frequência nos resultados obtidos com os testes serológicos, apesar de nem sempre estarem relacionados com a actividade de infecção (Srinivasan et al. 1983, Hart 1986).

Devido à sua grande sensibilidade e especificidade, a técnica de PCR tem sido cada vez mais utilizada no diagnóstico das doenças infecciosas, sendo sobretudo útil quando estão em causa microrganismos não cultiváveis em meios artificiais. Para maximizar a eficiência da técnica de PCR é necessária a optimização cuidadosa dos diferentes parâmetros da reacção (Innis e Gelfand 1990). Neste estudo tal foi efectuado, utilizando um controlo positivo constituído por ADN extraído de uma suspensão de *T. pallidum*, estirpe de Nichols, obtida de coelho inoculado com o mesmo, pela técnica descrita no capítulo 2 deste trabalho.

Quando se pretende utilizar uma técnica deste tipo, antes da amplificação, é necessário o tratamento das amostras para obtenção de ADN separado de proteínas, lipidos, açúcares e partículas celulares, removendo-se também todas as substâncias que possam inibir a reacção de amplificação (Barbeyrac 1996). Assim, efectuou-se o isolamento do ADN total, quer dos controlos quer das amostras clínicas, usando-se o kit comercial “minikit-Qiamp” da Quiagen, seguindo-se o protocolo do mesmo com algumas modificações, a fim de aumentar a eficácia da técnica. Estas consistiram no aumento do volume de proteinase K e do tempo de incubação na fase inicial da extracção, quando se utilizaram amostras de sangue total, assim como num aumento do número de lavagens das colunas com os tampões de lavagem, para eliminação do excesso de proteínas e sais. Por outro lado, para todas as amostras extraídas, com
exceptão do sangue, após a etapa inicial de incubação a 56°C com a proteinase K e antes da adição do etanol, foram adicionados 3 µl de ADN de timo de vitela a 10 mg/ml à mistura com o objectivo de servir de veículo de precipitação.

Em todas as amostras extraídas e antes da etapa de eluição foi incluída uma centrifugação suplementar, com a finalidade de remover o tampão de lavagem AW residual. Este tampão contém etanol, inibidor da técnica de PCR, pelo que além desta centrifugação suplementar também se efectuou um passo de limpeza de todos os resíduos com uma ponta de pipeta estéril.

Embora o princípio da técnica de PCR seja constante, as condições experimentais podem variar, pelo que se torna necessária a optimização de alguns parâmetros, como a composição da mistura de reacção e os parâmetros físicos dos ciclos de amplificação. Com base em estudos efectuados por outros investigadores e com a experiência adquirida no estágio no CDC de Atlanta, optimizou-se a técnica de PCR-diagnóstica no laboratório de DST do IHMT. As técnicas de PCR-diagnóstica montadas e optimizadas tiveram como genes alvo de amplificação o gene TpN47 da lipoproteína de 47 kDa (PCR-47) e o gene da enzima ADN polimerase I polA (PCR-polA).

Relativamente ao gene polA da enzima ADN polimerase I a descrição a sua sequência foi descrita por Rodes et al. (2000), tendo Liu et al. (2001) desenvolvido uma técnica de PCR que o utiliza como alvo de amplificação. Estes autores desenharam sequências iniciadoras de modo a seleccionar uma região característica de *Treponema pallidum* possuidora de 24 resíduos de cisteína, tendo demonstrado que a técnica era bastante sensível e específica, quando utilizada.
para amplificação de ADN extraído de amostras de úlceras genitais e de estirpes padrão de outros microrganismos (Rodes et al. 2000, Liu et al. 2001, Orton et al. 2002).

No presente estudo efectuou-se a optimização de uma técnica de PCR-diagnóstica utilizando sequências iniciadoras, que amplificam um fragmento destes dois genes alvo, já descritas por outros autores (Orle et al. 1996, Liu et al. 2001) e cuja sensibilidade está longe de ser óptima, sobretudo em amostras de sangue. Também, dois pares de sequências iniciadoras foram testadas, para os mesmos genes desenhadas no âmbito deste estudo no programa “Primer Express”, com o objectivo de obter maior sensibilidade.

Os vários componentes da mistura da reacção de PCR como sejam a concentração de magnésio, a concentração das sequências iniciadoras e o tipo de enzima ADN polimerase, podem influenciar a eficácia final da técnica. Assim, para cada uma das sequências iniciadoras variaram-se estes parâmetros, de modo a encontrarem-se condições óptimas de amplificação.

Dois tipos de enzima ADN polimerase, foram experimentadas, uma Taq ADN polimerase e uma enzima ADN polimerase activável a temperatura elevada. Os resultados com qualquer uma destas enzimas foram satisfatórios, quando da amplificação com as sequências iniciadoras KO4A/KO3 e 47-F/47-R, mas o mesmo não se verificou com as sequências iniciadoras ensaiadas para o gene polA. Neste caso, a utilização da Taq ADN polimerase levou à produção de grande número de bandas inespecíficas, as quais diminuíram ou desapareceram com a utilização da “Immolase”, pelo que se passou a utilizar esta enzima nos estudos subsequentes. A “Immolase” é uma enzima termoestável que permanece inactiva até que exista um aquecimento a 95°C, resultando num efeito “hot start” (Zangerberg et al. 1999). A esta temperatura não há formação de “primer-dimer”, os quais podem competir com a amplificação do produto específico. A utilização da enzima “Immolase” permitiu a eliminação da maior parte das bandas inespecíficas que se obtinham com a utilização com da Taq polimerase na amplificação do gene polA, aumentando assim a especificidade da técnica.

O magnésio é um catião que ligando-se à polimerase constitui um cofactor para a actividade da mesma, pelo que a concentração do MgCl₂ influencia parâmetros
como a temperatura de ligação, a temperatura de dissociação das cadeias de ADN a amplificar ou dos produtos amplificados, a formação de produtos inespecíficos e a actividade da enzima, sendo por isso importante titular a concentração ideal para cada tipo de reacção. Isto foi efectuado para cada tipo de PCR-diagnóstica montada, tendo-se associado variações na concentração de cada uma das sequências iniciadoras a variações na concentração de MgCl₂. Cada ciclo de amplificação consistiu em três passos com diferentes temperaturas e tempos distintos. No primeiro passo pretendeu-se a desnaturação do ADN de modo a permitir a hibridização das sequências iniciadoras às suas sequências complementares, tendo sido utilizada a temperatura de 94°C, que se encontra dentro dos valores aconselhados (Saiki 1989). A temperatura do passo seguinte, referente à ligação, foi calculada com base na composição de bases das sequências iniciadoras e em seguida efectuadas variações empíricas, de modo a encontrar a mais apropriada. Verificou-se serem de 57°C para as sequências iniciadoras desenhadas no programa “Primer Express” e de 62°C para as outras. O último passo do ciclo refere-se à extensão, durante a qual a polimerase replica a região alvo. Utilizou-se a temperatura de 72°C, tradicionalmente recomendada para essa actividade.

O número de ciclos influencia a quantidade de produto formado e consequentemente a sensibilidade da técnica. Efectuaram-se experiências com números diferentes de ciclos, de 30 a 45, de modo a obter-se um equilíbrio entre o produto formado e a presença de inespecificidades, sendo estes de 35 para as sequências iniciadoras 47-F/47-R e polA-F/polA-R (PE), de 40 para o par KO3A/KO4 e de 45 para o par polA-F/polA-R.

A optimização da técnica de PCR-diagnóstica foi realizada recorrendo-se ao ADN de uma estirpe de referência (controlo positivo). As condições óptimas assim estabelecidas foram aplicadas para amplificação do ADN extraído de diferentes tipos de amostras clínicas. No referente à amplificação de um fragmento do gene TpN47 ela foi possível com os dois tipos de sequências iniciadoras, se bem que com uma menor sensibilidade em relação ao ADN extraído de amostras de sangue, plasma ou soro. Em relação à amplificação de um fragmento do gene polA este foi obtido com as sequências iniciadoras polA-F/polA-R para os vários tipos de amostras, enquanto que a amplificação das mesmas com o par polA-
Pesquisa de ADN de Treponema pallidum

F/polA-R (PE) foi fraca ou mesmo nula. Como as sequências iniciadoras descritas por Liu et al. (2001) apresentaram boa sensibilidade, não se tornou necessária a pesquisa de um novo par, utilizando-se este nos estudos posteriores.

Uma vez que uma técnica deste tipo tornaria o estudo mais específico e sensível, de execução mais rápida e com menores custos, foi tentado o desenvolvimento de um método PCR-multiplex (PCR-M), com os dois pares de sequências iniciadoras para os genes polA e TpN-47 na mesma mistura de reacção de PCR. Também neste caso os vários reagentes a utilizar e as condições dos ciclos influenciaram a amplificação. Com base nas condições obtidas com as sequências iniciadoras isoladas, efectuou-se a associação das mesmas, tendo-se variado as suas concentrações, de modo a determinar qual a melhor nestas condições.

O principal desafio no desenvolvimento de uma técnica de PCR-M é o de evitar a formação de “primer-dimer”, sendo aconselhado utilizar um sistema “hot start” (Zangerberg 1999), razão pela qual, na montagem e desenvolvimento desta técnica, apenas se utilizou a enzima “Immolase”, tanto mais que foi esta a enzima com a qual se obtiveram os melhores resultados na PCR-47 e PCR-polA.

Uma vez mais, as melhores condições a utilizar foram estudadas para o controlo positivo, tendo-se conseguido resultados aceitáveis com as associações das sequências iniciadoras KO3A/KO4 mais polA-F/polA-R e 47-F/47-R mais polA-F/polA-R. Contudo, a aplicação das condições optimizadas ao estudo do ADN das amostras clínicas resultou melhor para a associação das sequências iniciadoras KO3A/KO4 e polA-F/polA-R do que para a associação das sequências iniciadoras 47-F/47-R e polA-F/polA-R, provavelmente porque estas apresentavam temperaturas ótimas de ligação bastante diferentes, sendo de 57ºC para 47-F/47-R e de 62ºC para polA-F/polA-R.

O estudo pela técnica de PCR-diagnóstica, de diferentes tipos de amostras clínicas de doentes com suspeita de sífilis, foi efectuado utilizando as
Pesquisa de ADN de *Treponema pallidum*

sequências iniciadoras KO3A/KO4 e polA-F/polA-R isoladamente e associadas na mesma mistura de reacção, com base nas melhores condições obtidas quando da optimização das técnicas e nos resultados preliminares dos diferentes tipos de amostras.

Em cada doente estudaram-se sangue total com EDTA, do qual se obteve plasma, sangue total coagulado para obtenção de soro e liquor, sendo este último colhido quando era necessário excluir diagnóstico de neurossífilis. Quando possível, foi colhido exsudado de biopsia do lóbulo da orelha, de modo semelhante ao praticado para o diagnóstico de lepra, tendo como pressuposto que o sangue e o liquor podem conter baixa concentração de treponemas (Turner *et al.* 1969, Tramont 1990). Como *T. pallidum* apresenta um marcado tropismo para as arteríolas (Tramont 1995b), tem-se postulado que tal como no caso de *Borrellia* sp, aquele poderia “ocultar-se” a nível dos vasos capilares nas fases assintomáticas. Como o lóbulo de orelha é uma região rica em vasos sanguíneos capilares, pobre em terminações nervosas e de fácil acesso, poderia tornar-se um bom local de colheita. Assim pretendia-se verificar qual o tipo de amostra mais útil para aplicação em estudos posteriores.

Como supracitado, as técnicas de PCR experimentadas nesta tese tiveram como base as efectuadas por Orle *et al.* (1996) e Liu *et al.* (2001). Estes investigadores utilizaram-nas para amplificação de ADN de *T. pallidum* a partir de ADN extraído de amostras clínicas de exsudado de úlceras genitais. Ao compararem a técnica de PCR com a da microscopia de fundo escuro (MFE) Orle *et al.* (1996) obtiveram sensibilidade de detecção de 91% pelo método PCR e de 81% pela MFE. Por outro lado, Liu *et al.* (2001) obtiveram sensibilidade de 95,8% e especificidade de 95,7% quando compararam a técnica por eles efectuada com a de Orle *et al.* (1996) no estudo de amostras de úlceras genitais. Por outro lado, Marfin *et al.* (2001), ao utilizarem a técnica de Liu *et al.* (2001) no estudo de amostras de sangue de indivíduos com sífilis ou que tinham tido contacto com doentes com sífilis infecciosa, obtiveram amplificação de produto específico em 40%.

Os resultados obtidos com as várias técnicas e tendo em conta o grupo de doentes com sífilis activa (Grupo I), parecem indicar que a técnica de PCR-47 é a que apresenta maior percentagem de casos positivos em todos os tipos de
amostras, seguida da PCR-polA e da PCR-M, excepto nos exsudados de lesões, em que os resultados das várias técnicas foram iguais. Apesar de não existirem trabalhos de comparação das técnicas executadas, os resultados obtidos no sangue e pela técnica de PCR-polA (34,1%) foram inferiores aos 46,6% (13/28) obtidos por Marfin et al. (2001), mas superiores aos 36,5% (15/41) obtidos por Sutton et al. (2001) nas amostras de sangue de um grupo de doentes com as características do Grupo I do presente estudo. Contudo, com a técnica de PCR-47, obteve-se uma percentagem maior de amostras positivas no sangue (45,1%).

Por outro lado, a utilização em exclusivo do método de PCR-47, identificou 97% (64/66) dos casos positivos obtidos com todas as técnicas de biologia molecular aqui utilizadas. A técnica de PCR-polA identificou 86,4% (57/66) e a PCR-M 72,7% (48/66), pelo que dependendo das circunstâncias, a técnica PCR-47 poderá ser utilizada como técnica única ou em conjunto com a PCR-polA, uma vez que esta foi positiva em mais duas amostras e a PCR-47 em sete, enquanto que a técnica de PCR-M nunca foi positiva, isoladamente.

No que diz respeito ao tipo de amostra e a cada uma das técnicas testadas, verificou-se que com a utilização das amostras de exsudado de biopsia do lóbulo de orelha e de plasma se identificaram todos os casos positivos, quando utilizada a técnica de PCR-47, não se identificando apenas um caso para cada uma, quando utilizadas as técnicas PCR-polA e PCR-M. Se bem que o número de casos apresentado seja pequeno, parece recomendável a utilização destes dois tipos de amostras, sobretudo quando não existem lesões, uma vez que parecem ser as melhores amostras para a execução da técnica de PCR. Todos os exsudados de úlceras genitais de doentes com diagnóstico de sífilis primária foram positivos pelos métodos de PCR, tendo havido um caso de úlcera genital clinicamente correspondente a sífilis primária com microscopia de fundo escuro positiva que foi negativo em todos os testes serológicos e positivo por todas as técnicas de PCR, assim como em todos os outros tipos de amostras (sangue, plasma e exsudado de biopsia do lóbulo de orelha). Jethwa et al. (1995) efectuaram a comparação de uma técnica de PCR com a técnica de imunofluorescência directa em úlceras genitais, tendo encontrado uma taxa de concordância de 95,5%. Por outro lado, outros investigadores (Morse et al. 1997, Mertz et al. 1998, Beyer et al. 1998, Behets et al. 1999, Bruisten et al.
2001, Palmer et al. 2003) efectuaram pesquisa de ADN de *T. pallidum* em úlceras genitais, utilizando uma técnica de PCR multiplex para pesquisa simultânea dos três agentes mais frequentes de úlceras genitais (vírus herpes simplex, *T. pallidum* e *H. ducreyi*) e verificaram que esta técnica era mais eficaz para o diagnóstico de infecção sifilítica do que as classicamente utilizadas. Bruisten et al. (2001) encontraram positividade de 3,3% na pesquisa de ADN de *T. pallidum* na totalidade das amostras de úlceras genitais que estudaram, e de 1,9% quando nos mesmos indivíduos efectuaram diagnóstico de sífilis activa pela utilização dos testes serológicos. Behets et al. (1999), ao compararem a técnica de PCR (em úlceras genitais) com a serologia para o diagnóstico de sífilis primária, encontraram sensibilidade de 72% e especificidade de 83%, sendo as mesmas de 53% e de 52% quando a comparação foi efectuada com o diagnóstico clínico, tendo como base a história clínica do doente e o exame objectivo. Por outro lado, também Palmer et al. (2003) num estudo efectuado de pesquisa de ADN de *T. pallidum*, por técnica de PCR, a partir de zaragatoas de úlceras (anogenitais e orais), encontraram sensibilidades de 94,7% e 80,0% para sífilis primária e sífilis secundária, respectivamente.

No referente aos exsudados de lesões cutâneas de indivíduos com sífilis secundária incluídos neste estudo, só foi possível analisar um pequeníssimo número de amostras, pelo que se torna difícil extrair conclusões, embora seja conhecido que este tipo de lesões deverá conter grande número de treponemas (Tratmont 1995b, Larsen et al. 1998, Musher 1999). Amostras de lesões cutâneas e mucosas de três doentes com sífilis secundária foram estudadas, verificando-se que em dois casos todas as amostras de lesões e de colheitas sistémicas foram positivas por todas as técnicas de PCR-diagnóstica efectuadas. No terceiro doente com sífilis secundária, a amostra de lesão cutânea (lesão não exsudativa) e a de sangue total foram negativas, enquanto que se observou positividade no plasma e no soro (neste doente não foi efectuada colheita por biopsia). Estes resultados parecem indicar que as técnicas de biologia molecular utilizadas no estudo parecem ser sensíveis para o diagnóstico de sífilis secundária a partir de lesões cutâneas, desde que estas estejam na fase húmida e não escamosa, quando provavelmente os treponemas podem não estar presentes no local.
Os resultados obtidos com as técnicas de PCR-diagnóstica no grupo de doentes sem sífilis actual (Grupo II - individuos tratados para sífilis e/ou com serologia para sífilis negativa) parecem indicar que estas técnicas têm boa especificidade, tendo sido negativas nos indivíduos que não apresentavam infecção, ou que a tendo adquirido, tinham efectuado terapêutica específica, com excepção de um caso, para cada uma destas possibilidades. Um doente tinha efectuado terapêutica e outro tinha serologia para sífilis negativa, tendo neste a técnica de PCR sido negativa na amostra de soro e positiva nas amostras de sangue total e plasma. Este era o caso de um indivíduo com contacto de risco com um doente com infecção a *T. pallidum*, que não apresentava qualquer sintomatologia e que provavelmente se encontrava em período de incubação, uma vez que mais tarde apresentou reactividade nos testes serológicos. Embora reportando-se apenas a um caso, este resultado é interessante, já que coloca a hipótese da técnica poder vir a ser utilizada para o rastreio de indivíduos com contactos de risco, permitindo o diagnóstico em fase de incubação. O mesmo tinha já sido verificado por Marfin *et al.* (2001) que obtiveram percentagem de 25% de positividade nos (oito) doentes em período de incubação que estudaram.

Uma boa especificidade do método de PCR foi também encontrada por Orton *et al.* (2002), os quais efectuaram um estudo de prevalência de *T. pallidum* em dadores de sangue, utilizando os mesmos genes alvos de amplificação do presente estudo e uma técnica de RT–PCR (transcriptase reversa-PCR). Em estudos anteriores, recorrendo a amostras de indivíduos com sífilis e de animais infectados experimentalmente (Grimm *et al.* 1991, Wicher *et al.* 1996, Wicher *et al.* 1998) foi possível determinar a correlação entre a amplificação pela técnica de PCR e o teste de infecciosidade no coelho, tendo ainda sido demonstrado que o ADN de *T. pallidum* desaparece rapidamente. Por outro lado, também Pietravalle *et al.* (1999), ao utilizarem uma técnica de PCR para estudo de amostras de soro de indivíduos em diferentes estádios de sífilis com testes serológicos reactivos que tinham efectuado terapêutica para sífilis e de indivíduos sem sífilis, encontraram uma boa especificidade já que, quer no grupo de seronegativos para infecção a *T. pallidum* quer no dos previamente tratados para esta infecção, a pesquisa por PCR foi negativa.

Também no grupo II foram incluídas amostras de lesões, quatro de úlceras
genitais e três de lesões cutâneas, as quais foram negativas por todas as técnicas PCR-diagnóstica. As amostras de úlceras genitais provieram de indivíduos cujos testes serológicos foram negativos na altura da colheita e que assim se mantiveram na segunda colheita, cerca de três a quatro semanas mais tarde. As amostras de lesões cutâneas foram colhidas em doentes com diagnóstico de sífilis secundária que tinham efectuado terapêutica específica para sífilis antes da colheita. Nestes, as lesões encontravam-se em vias de resolução e todos os outros tipos de amostras (sangue, plasma, soro e exsudado de biopsia de lóbulo de orelha) foram negativas pelas três técnicas de PCR-diagnóstica.

Analisando-se os resultados obtidos relativamente aos diferentes estádios de sífilis, as técnicas de PCR foram mais sensíveis no estádio de sífilis primária e secundária, sobretudo na primária, sendo a sífilis latente o estádio em que a percentagem de positividade encontrada foi mais baixa. Estes resultados estão de acordo com a presença de um maior número de microrganismos naqueles estádios, assim como com a presença precoce de *T. pallidum*, no sangue, o qual dissemina rapidamente após a inoculação, podendo ser encontrado no sangue de indivíduos no período de incubação e de sífilis recente (Tratmont 1995b). A presença de ADN de *T. pallidum* em indivíduos com sífilis latente foi também verificada no trabalho efectuado por Marfin *et al.* (2001). Estes autores estudaram amostras de sangue total de 28 indivíduos com sífilis, tendo amplificado ADN de *T. pallidum* por PCR-*polA* em 13 (46,6%), dos quais 4/8 (50%) se encontravam em período de incubação, 1/7 (14,2%) com diagnóstico de sífilis primária, 1/1 (100%) com sífilis secundária e 7/12 (58,3%) com sífilis latente. No presente estudo e para o mesmo tipo de amostra (sangue total) e técnica de PCR (PCR-*polA*) obtiveram-se as percentagens de 53,3% (8/15), 57,1% (4/7) e 27,6% (16/69) para sífilis primária, secundária e latente respectivamente.

Quanto ao tipo de amostra e relacionando-o com os estádios da sífilis, as amostras mais sensíveis foram sempre as provenientes dos exsudados de biopsia de lóbulo de orelha, seguidas pelas amostras de plasma, sangue total e soro. Se bem que não haja referências a estudos de comparação de diferentes tipos de amostras, outros autores efectuaram pesquisas de ADN de *T. pallidum*
em amostras de sangue, de liquor e de soro (Grimpel et al. 1991, Centurioni-Lara et al. 1997, Pietravalle et al. 1999, Marfin et al. 2001, Sutton et al. 2001), e embora tenham obtido resultados positivos nos indivíduos com doença activa, não compararam os resultados. Assim, e quer em relação ao tipo de PCR-diagnóstica, quer ao tipo de amostra, parece que qualquer que seja o estádio da infecção, a amostra ideal será o exsudado de biopsia do lóbulo de orelha, com a qual se obteve os melhores resultados, em conjunto com a técnica de PCR-47 e se necessário em associação com a PCR-polA.

A dificuldade em diagnosticar neurossífilis, sobretudo neurossífilis assintomática, foi mencionada no capítulo 3 deste trabalho, onde ficou evidente a necessidade na associação entre os diversos parâmetros laboratoriais e a clínica, embora muitas vezes continuem a subsistir dúvidas de diagnóstico. O teste de infecciosidade por inoculação de liquor no coelho é considerado como o teste mais sensível para a identificação da neurossífilis (Turner et al. 1969, Conde-Sendín et al. 2002). Contudo, para a execução deste teste, é essencial a existência de um biotério, sendo ainda necessários, três a seis meses para obtenção de resultados, o que torna o teste impraticável na prática corrente. Assim, uma técnica de PCR específica e sensível poderá ser um teste alternativo rápido para a detecção de *T. pallidum* no liquor, contribuindo para o esclarecimento do diagnóstico. Hay et al. (1990a) identificaram ADN de *T. pallidum* no liquor de doentes com sífilis latente tardia e terciária, enquanto que Grimpel et al. (1991) obtiveram resultados positivos no líquido amniótico, sangue fetal e no liquor.

No presente trabalho aplicou-se a técnica de PCR-diagnóstica para a detecção de ADN de *T. pallidum* no liquor de um grupo de doentes com sífilis activa, em vários estádios de infecção e num grupo de indivíduos sem infecção por *T. pallidum*, considerado como grupo controlo negativo, para verificar a utilidade daquele método no diagnóstico de neurossífilis.

No estudo das amostras do grupo controlo negativo nenhuma resultou positiva, pelo que as técnicas de PCR-diagnóstica, parecem ter boa especificidade, quando aplicadas a este tipo de amostra. O mesmo não foi observado em estudo efectuado por Hay et al. (1990a) que encontraram uma especificidade de 96,6%
Pesquisa de ADN de Treponema pallidum

(1/30) no estudo de líquores de um grupo de indivíduos sem infecção a T. pallidum.

No estudo das amostras de líquor de indivíduos com sífilis, verificou-se que a técnica com maior número de resultados positivos foi a PCR-47 (29,8%), seguida pela PCR-polA (24,2%) e PCR-M (16,1%). Ao considerar-se a totalidade de resultados positivos (39) simultaneamente ou não pelos três métodos, a técnica de PCR-47 identificou todas as amostras positivas com as outras técnicas, com exceção de duas, apenas identificadas pela PCR-polA, enquanto que esta técnica identificou menos 10 e a PCR-M menos 17 do que a PCR-47. Embora seja grande a dificuldade em analisar a sensibilidade e especificidade de qualquer técnica no diagnóstico de neurossífilis, como já mencionado, pela inexistência de um teste padrão, os resultados descritos sugerem que a técnica de PCR-47 pode ser a que apresenta maior sensibilidade. Futuros estudos são necessários para o confirmar.

O relacionamento dos resultados das técnicas de PCR-diagnóstica entre si, permitiu verificar que 85 casos foram negativos e 19 positivos por todas as técnicas, havendo 20 amostras em que os resultados não coincidiram.

Sendo importante um melhor esclarecimento do significado destes resultados efectuou-se a sua análise, comparando-os com os resultados obtidos nos restantes parâmetros utilizados no diagnóstico de neurossífilis (exame citoquímico, testes não treponémicos e testes treponémicos).

Das 85 amostras em que todas as PCR-diagnóstica foram negativas, em 68,2% (58/85) os resultados dos outros parâmetros foram também negativos, considerando-se portanto de verdadeiros casos de negatividade, enquanto que em 27 tal não se verificou. Em 5,8% (5/85) destas, verificou-se terem exame citoquímico alterado, testes treponémicos reactivos e testes não treponémicos negativos, pelo que como aqueles parecem ter uma maior sensibilidade, sobretudo o FTA-Abs, poderão eventualmente ser considerados casos de falsa negatividade pela técnica de PCR. Uma amostra, era sem duvida de um caso de neurossífilis visto apresentar exame citoquímico anormal assim como todos os testes reactivos. Este liquor era proveniente de um doente com infecção por VIH, e diagnóstico inicial de sífilis latente de duração indeterminada, o qual efectuou terapêutica específica para neurossífilis, tendo-se observado melhoria
no exame citoquímico na monitorização do resultado após a terapêutica. Em outros 6/85 (7,1%) (com diagnóstico inicial de sífilis latente), embora o exame citoquímico se tenha apresentado com alterações, tanto os testes treponémicos, com excepção do TPHA em três casos, como os testes não treponémicos e todas as PCR-diagnóstica foram negativas, pelo que os resultados provavelmente reflectem casos negativos. Ainda neste grupo de líquores com todas as técnicas PCR-diagnóstica negativas, 15 estavam associadas a um exame citoquímico normal. Em duas destas todos os testes serológicos foram reactivos, pelo que poderiam ser verdadeiros positivos e consequentemente a técnica de PCR-diagnóstica ter resultado falsamente negativa. Noutros cinco líquores em que os testes treponémicos foram reactivos e os não treponémicos negativos, torna-se difícil tirar ilações no que diz respeito ao diagnóstico de neurossífilis. Nos restantes oito, em que todos os testes, excepto o TPHA foram negativos, assim como a PCR-diagnóstica, deverão tratar-se de verdadeiros negativos, tanto mais que, como já referido na discussão do capítulo 3, o TPHA parece apresentar alguma falsa positividade. Em resumo, as técnicas de PCR-diagnóstica aplicadas ao estudo de líquor originaram no máximo 8/73 (11%) resultados de falsa negatividade, podendo auxiliar no esclarecimento de alguns casos duvidosos, para os quais os resultados dos outros testes não permitem um diagnóstico correcto. De qualquer modo, outros estudos com monitorização adequada dos doentes, poderão esclarecer alguns resultados obtidos nesta tese. Entre as amostras de líquor com todas as técnicas de PCR-diagnóstica positivas (19/124), 11 apresentaram todos os outros parâmetros alterados, correspondendo assim a verdadeiros casos positivos de neurossífilis. No entanto, em 8 amostras de líquor os resultados não foram concordantes. Em relação a estes, quatro apresentaram exame citoquímico alterado, uma proveniente de um doente com sífilis secundária, em que apenas o exame citoquímico apresentou alterações, o que poderá corresponder a invasão do sistema nervoso central por *T. pallidum*, tal como descrito por Lukehart *et al.* (1988). Nas outras três, os testes não treponémicos eram negativos, sendo que em duas os testes treponémicos eram reactivos e apenas numa o FTA-Abs, existindo co-infecção pelo VIH, pelo que poderiam tratar-se de verdadeiros positivos da técnica de PCR. Nas outras quatro amostras de líquor, todas
apresentaram o exame citoquímico normal, uma tinha testes treponémicos reactivos e testes não treponémicos negativos, sendo um caso de neurossífilis sintomática, que melhorou após terapêutica específica. As outras três amostras, pertenciam a doentes com diagnóstico de sífilis latente e nelas todos os outros parâmetros estudados negativos, colocando-se a questão de falsa positividade pelas técnicas de PCR. No seu estudo, Lukehart et al. (1988) observaram a presença de *T. pallidum* no liquor de 4/58 indivíduos sem outras alterações, tendo o mesmo sido encontrado por Chung et al. (1994) em 4/26, enquanto que no presente estudo esse tipo de resultado se verificou em 3/124 amostras de liquor dos doentes infectados por *T. pallidum*. Estes doentes podem representar indivíduos nos quais se observa invasão do sistema nervoso central sem patologia, ou em que a invasão é recente, não se tendo ainda desenvolvido alterações no liquor, ou ter sido efectuada terapêutica antibiótica por outras razões que não sífilis. Para se conhecer a verdadeira causa desta falta de concordância de resultados seria necessário efectuar a monitorização destes doentes.

Resta descrever 20 amostras nas quais os resultados das técnicas PCR-diagnóstica foram discrepantes, tendo a técnica de PCR-47 sido positiva num maior número de amostras (18/20). Quando associada à técnica de PCR-polA, identificaram ADN de *T. pallidum* em mais 10 amostras, enquanto que com a PCR-M não se observou nenhum acréscimo. Os resultados obtidos neste grupo confirmam os anteriores, podendo colocar-se a dúvida sobre se a presença de *T. pallidum* significa infecção, devendo ser tratado como neurossífilis, assim como se a técnica de PCR-47 é muito sensível mas pouco específica. Se em estudos posteriores se comprovar, através da monitorização dos doentes, que estes casos são verdadeiros positivos, a técnica de PCR-47 e/ou a PCR-polA poderá permitir a clarificação do diagnóstico em alguns indivíduos, nos quais os resultados obtidos com os outros testes são de difícil interpretação.

Embora conhecida e com terapêutica eficaz desde há longo tempo, a sífilis mantém ainda hoje em dia distribuição mundial e apesar de mais prevalente nos países em desenvolvimento continuam a surgir surtos quer na Europa, quer nos Estados Unidos da América do Norte (Ratcliffe et al. 1998, Wheater et
al. 2003, CDC 2003). Se bem que no nosso país aparentemente os dados nacionais de notificação não pareçam alarmantes, sabe-se que se trata de uma infecção que nem sempre é notificada, mas mesmo assim o número de casos relatados de sífilis congénita é alarmante e demonstram que estará presente também nos adultos.

Tal como anteriormente explicado esta infecção mantém a sua importância devido à sua associação com a infecção por VIH (Flemming e Wasserheit 1999), à morbilidade e mortalidade da sífilis congénita (Musher 1999), assim como à relativa frequência em que existe evolução para neurosífilis, sobretudo nos indivíduos infectados pelo VIH (Swartz et al. 1999, Marra et al. 2000,).

Os estudos epidemiológicos são importantes com vista à prevenção e ao controlo das infecções. Em relação à infecção por *T. pallidum*, os estudos epidemiológicos têm sido sobretudo baseados em dados serológicos, sem informações sobre o agente. No entanto, o conhecimento das suas características, nomeadamente a sua caracterização genética, é essencial para a prossecução destes objectivos.

As técnicas de biologia molecular, como a técnica de PCR (Saiki et al. 1988) e o novo sistema de subtipagem molecular das estirpes de *T. pallidum* (Pillay et al. 1998) poderão responder a questões importantes sobre a epidemiologia da sífilis, tais como, subtipos de *T. pallidum* prevalentes nas diferentes áreas geográficas, a maior ou menor capacidade de virulência de determinadas estirpes, a sua maior ou menor transmissibilidade, a monitorização da cadeia de transmissão e a possível diferenciação entre falência terapêutica e reinfecção. Para isso, torna-se necessário que a técnica de subtipagem seja sensível e reprodutível.

Tendo em conta o anteriormente referido, efectuou-se a montagem e a optimização da técnica de subtipagem molecular com base no trabalho de Pillay et al. (1998). O sistema de tipagem utilizado para a detecção da diversidade de *T. pallidum* (Pillay et al. 1998) baseia-se na amplificação por técnica de PCR de um fragmento do gene que codifica a proteína putativa acidica com repetições (*arp*) e no estudo por RFLP de um fragmento amplificado por “nested-PCR” do gene “*Treponema pallidum* repeat” (*tpr*). A optimização das técnicas foi efectuada com o controlo positivo de ADN de *T. pallidum* estirpe de Nichols, efectuando-se
variações nos diferentes parâmetros das técnicas, de modo a obter as melhores condições de amplificação, a serem aplicadas no estudo do ADN de *T. pallidum* extraído das amostras clínicas do presente estudo.

As melhores condições de amplificação obtidas foram ligeiramente diferentes às de Pillay *et al.* (1998), sobretudo no que se refere às temperaturas óptimas de ligação 59ºC, 60ºC, 61ºC, obtidas neste estudo, inferiores às de Pillay *et al.* (1998) de 64ºC, 63ºC e 62ºC, respectivamente, para a primeira e segunda amplificação da “nested-PCR” e para a amplificação do gene *arp*. Muito provavelmente estas alterações resultam de diferenças nos reagentes e termociclador utilizados, sabendo-se que sempre que qualquer uma das condições se modifica, é necessária a optimização das mesmas (Saiki 1989).

A combinação dos dois sistemas de tipagem foi aplicado ao estudo do ADN de *T. pallidum* extraído das diferentes amostras clínicas, tendo a amplificação sido conseguida em todos os tipos de produtos colhidos, com exceção do liquor. Esta situação resultou provavelmente do baixo número de treponemas existentes nestas amostras, conforme se observou pelo baixo nível de amplificação obtida quando as mesmas foram estudadas pelas técnicas de PCR-diagnóstica, ou por degradação do ADN durante o armazenamento, uma vez que mediou algum tempo entre a técnica de PCR-diagnóstica e o estudo para subtipagem, ou ainda da existência de factores inibidores da amplificação.

Experiências futuras serão efectuadas encurtando o tempo entre as duas técnicas, o que poderá aumentar a sensibilidade da técnica de subtipagem.

O facto de neste estudo se ter detectado *T. pallidum* em vários tipos de amostras, nomeadamente no sangue, faz com que em futuros estudos se possa incluir a tipagem de amostras de indivíduos com sífilis latente, estender esta análise ao estudo de contactos e seguir a cadeia de transmissão.

amostras de sangue total positivas pela técnica PCR-polA. Estes investigadores não utilizaram amostras de exsudado de biopsia de orelha.

No presente estudo foi possível efectuar amplificação dos genes *tpr* e *arp* em 13/22 amostras de exsudado de biopsia de lóbulo de orelha, 10/26 de sangue, 12/26 de plasma, 3/26 de soro e em todas as amostras (6) de exsudado de úlcera genital e lesões de secundarismo. Embora estes números sejam pequenos e tal como para a técnica de PCR-diagnóstica o exsudado de biopsia de lóbulo de orelha e de plasma, parecem ser o tipo de amostra com o qual se obtêm melhores resultados, para além das de exsudado de úlcera ou lesões, considerados os tipo de amostra de eleição. Mais uma vez, estes resultados parecem estar relacionados com a quantidade de treponemas. *T. pallidum* existe em grande número nas amostras de lesões, e provavelmente a nível dos capilares do lóbulo da orelha estes microrganismos são também mais frequentes. Por outro lado, os maus resultados no soro podem dever-se à retenção destes microrganismos no coágulo. Ainda em relação às amostras de lesões deve ser aqui realçada a importância da grande sensibilidade desta técnica, tal como descrito por Pillay *et al.* (1998, 2002) e Sutton *et al.* (2001). Estes investigadores efectuaram subtipagem em amostras de úlceras genitais e sangue total, sendo que as amostras mais sensíveis foram as de úlceras genitais, tal como sucedeu no presente estudo. Sutton *et al.* (2001) subtiparam 100% (41/41) das amostras de úlceras genitais positivas pela técnica de PCR, enquanto que essa percentagem foi de 80,1% (161/201) no estudo de Pillay *et al.* (2002). Em relação às amostras de sangue total apenas os primeiros investigadores o efectuaram, tendo subtipado 26,6% (4/15) das amostras em que tinham conseguido identificar *T. pallidum* por PCR (15/68), percentagem inferior à obtida neste trabalho (38,4%).

Por outro lado, em todas as amostras do mesmo indivíduo que amplificaram, foi identificado o mesmo subtipo de *T. pallidum*, o que demonstra a reprodutibilidade da técnica. Este facto é extremamente importante pois permitirá, principalmente em epidemias de sífilis, identificar os contactos de modo a possibilitar um controlo eficaz da doença. Assim, parece evidente que a técnica de subtipagem precisa de ser melhorada no que diz respeito à sua sensibilidade para que possa ser rentável com vista a ser aplicada em estudos
Pesquisa de ADN de Treponema pallidum

de epidemiologia.
A aplicação deste sistema permitiu a subtipagem de todas as amostras amplificadas com excepção de duas, uma para o gene *arp* e outra para o gene *tpr*, o que poderá dever-se ao não ligação das sequências iniciadoras de PCR com as sequências de ADN presentes nas amostras ou à quantidade insuficiente do ácido nucleico. O mesmo tipo de dificuldade foi encontrado por Pillay *et al.* (1998, 2002), relativamente ao gene *arp*.

Embora o número de amostras subtipadas seja demasiado pequeno para que se possa concluir relativamente à prevalência de subtipos, foi possível verificar a existência de múltiplos genótipos na população estudada, sendo o 14c o subtipo mais frequente e 10a o menos prevalente. Sutton *et al.* (2001), no estudo de 45 amostras (quatro de sangue e as restantes de úlceras genitais) de doentes da região de Arizona nos Estados Unidos, identificaram dez subtipos, sendo o subtipo 14f o mais frequentemente encontrado. Por outro lado, nos estudos efectuados por Pillay *et al.* (1998 e 2002) e diferentemente dos presentes resultados e dos de Sutton *et al.* (2001), o subtipo mais frequente foi o 14d, o qual dominou nas amostras provenientes de doentes da África do Sul.

Todos os subtipos identificados neste trabalho, com excepção do subtipo 10a, tinham já sido descritos noutros estudos (Pillay *et al.* 1998, 2002, Sutton *et al.* 2001). A confirmar-se a existência deste subtipo apenas em Portugal ou em regiões muito específicas poderá ser o reflexo de diferenças geográficas, uma vez que também no estudo efectuado por Pillay *et al.* (1998) o subtipo 14c foi apenas encontrado em doentes da África do Sul. As diferenças geográficas, por sua vez, sofreriam a influência da proximidade de contactos com outros regiões do globo. No caso do nosso país, o fluxo de populações migrantes entre Portugal e os países africanos de expressão portuguesa, poderia ser um factor muito útil a ter em conta em futuros programas de prevenção e controlo desta doença, se por acaso os subtipos únicos ou mais frequentes em Portugal forem os mesmos desses países.
Capítulo 5. Conclusões gerais e perspectivas futuras
1. Discussão e conclusões finais

Sendo um dos objectivos desta tese a avaliação de testes serológicos no diagnóstico de sífilis e tendo em conta que o VDRL tem sido o teste mais utilizado e recomendado para esse fim, compararam-se os dois testes não treponémicos mais utilizados, o VDRL e o RPR. Os resultados obtidos foram idênticos para os dois testes não treponémicos, tendo o RPR demonstrado ser o mais indicado quando se pretende conhecer o efeito da terapêutica prescrita, num doente em que foi diagnosticada infecção a *T. pallidum*.

A sensibilidade dos dois testes não treponémicos foi semelhante, variando entre 91,9% e 100%, dependendo do estádio da sífilis. Estes resultados estão de acordo com outros autores (Parhamm *et al.* 1984, Hambie *et al.* 1983, Larsen *et al.* 1995) que obtiveram uma sensibilidade baixa na infecção primária por *T. pallidum*, embora seja um pouco surpreendente a sensibilidade elevada obtida neste estudo para o estádio de sífilis latente. De qualquer modo, ficou demonstrado que, principalmente, na sífilis primária, existe a necessidade de se desenvolverem novos testes, mais sensíveis, que possam servir de técnica padrão para uma melhor avaliação, sempre que se pretenda conhecer a eficácia de uma técnica no diagnóstico de sífilis.

Também foi verificado que a diminuição do título de anticorpos após a terapêutica, foi mais precoce para as amostras de doentes com sífilis primária, pelo que se devem seguir as recomendações anteriores (WHO 2001, CDC 2002a, Brown *et al.* 2003), nas quais se recomenda que os doentes com sífilis latente tardia ou de duração indeterminada devem ser monitorizados durante mais tempo (24 meses) em relação aos que apresentam estádios mais recentes (12 meses).

Ao estudar a co-infecção VIH/*T. pallidum*, verificou-se que a infecção por *T. pallidum* foi mais frequente nos indivíduos com infecção por VIH. Por sua vez, existiu associação estatisticamente significativa entre aquela infecção viral e o aparecimento de resultados falsamente reactivos nos testes não treponémicos, tendo esta associação, no presente estudo, demonstrado ser independente da
existência de toxicodependência. A infecção por VIH parece pois ser o factor que mais contribui para o aparecimento de resultados de falsa reactividade. Assim, no indivíduo cujo soro apresenta falsa reactividade num teste não treponémico deve ser efectuada pesquisa de anticorpo anti-VIH.

Na avaliação dos testes treponémicos ficou claro que o FTA-Abs é o que primeiro a reactivar após a infecção, tal como referido por outros autores (Larsen et al. 1998, Wicher et al. 1999) e que os testes treponémicos não devem ser utilizados para monitorizar o resultado da terapêutica, com excepção do TP.PA, que parece apresentar diminuição dos seus títulos após tratamento adequado.

O facto de se terem obtido resultados de falsa negatividade com a técnica de TPHA em indivíduos com sífilis latente, coloca o problema de alguns resultados deverem obrigatoriamente ser confirmados pelo FTA-Abs. Quando se estudou outra técnica treponémica, o TP.PA, verificou-se que é mais sensível que o TPHA, embora menos quando comparado com o FTA-Abs, sendo tão específico como este último. De notar que, ao contrário do TPHA, o teste TP.PA diagnosticou todos os casos de sífilis primária, pelo que parece pode ser utilizado tal como o FTA-Abs, nas fases mais precoces da infecção.

O teste EIA, avaliado neste trabalho, parece ser sensível e específico detectando menos casos de sífilis tratada do que o FTA-Abs, embora não seja um teste que possa ser utilizado na monitorização do resultado da terapêutica. A sensibilidade do teste EIA na sífilis primária foi maior que a do RPR e do TPHA.

O Western blot, por sua vez, parece também ser comparável ao FTA-Abs, embora não reactivo num maior número de amostras de doentes que efectuaram terapêutica.

Em relação ao estudo de anticorpos de tipo IgM específicos, tanto o teste EIA M como o Western blot M parecem ser mais sensíveis que o FTA-Abs M na detecção de IgM nas fases precoces da doença, esclarecendo casos indeterminados desta última técnica. Embora estes anticorpos apareçam mais frequentemente na sífilis recente, existiram neste estudo muitas amostras de doentes neste estádio da doença em que os anticorpos específicos de tipo IgM não foram reactivos, pelo que, não parecem de grande utilidade na diferenciação entre fase recente e tardia.
Conclusões finais e perspectivas futuras

No presente estudo foi avaliado o significado da reactividade dos testes serológicos e de outras alterações a nível do liquor, tentando compará-los entre si e estudando-os em diversas fases da infecção a *T. pallidum*. Esta decisão deveu-se ao facto sobejamente conhecido de que, se o diagnóstico de sífilis é por vezes difícil, se torna extremamente complicado quando o doente apresenta suspeita de neurossífilis, especialmente quando assintomática. Nesta situação, não existe nenhum teste padrão, uma vez que segundo vários autores um VDRL (Larsen et al. 1998; CDC 2002a) reativo no liquor é muito específico, mas pouco sensível (Sparling 1971, Hooshmond et al. 1972, Jaffe e Kabins 1982, Burke e Scaberg 1985). Nos doentes com infecção por VIH a evolução para neurossífilis é frequente e precoce (Johns et al. 1987, Flood et al. 1992, Berger 1991), pelo que um diagnóstico correcto e atempado é cada vez mais necessário. Nesta parte do estudo foi evidenciado que, quando um indivíduo é não reativo para pesquisa de anticorpos anti-*T. pallidum* no sangue, também o será, a nível do liquor.

De acordo com os resultados obtidos parece claro que o RPR, ao contrário do preconizado por outros autores (Larsen e Johnson 1998), poderá ser utilizado no diagnóstico laboratorial de neurossífilis. Os dois testes diagnosticaram todos os verdadeiros positivos de neurossífilis e todos os verdadeiros negativos nos doentes com sífilis secundária.

Em relação aos testes treponémicos, o TPHA e o TP.PA parecem comportar-se de forma semelhante, sendo os que mais resultados falso reactivos apresentam no diagnóstico de neurossífilis na globalidade. Pelo contrário, o FTA-Abs e o Western blot são os que parecem mais sensíveis na pesquisa de anticorpo anti-*T. pallidum* no liquor. Por outro lado a pesquisa de anticorpos específicos, de tipo IgM, não demonstrou ser útil no diagnóstico de neurossífilis.

No que diz respeito às técnicas de biologia molecular, estudaram-se várias condições duma técnica de PCR que, pudesse vir a ser utilizada no diagnóstico de sífilis nos vários estádios da infecção.

Conclusões finais e perspectivas futuras

na mesma mistura de reacção, pelo que foram estas as utilizadas no estudo das amostras clínicas.

Em relação aos vários tipos de produtos estudados (sangue, plasma, soro e exsudado de lóbulo de orelha), a técnica de PCR-47 foi a que identificou maior número de amostras contendo ADN de \textit{T. pallidum}, tendo por si só, identificado 97\% dos casos positivos com todas as técnicas de biologia molecular utilizadas. A mesma técnica, quando analisada em conjunto com a técnica de PCR-\textit{polA}, identificou todas as amostras positivas. Por outro lado, a utilização da técnica de PCR-47 em amostras de exsudado de biopsia de lóbulo de orelha, contribuiu para os melhores resultados obtidos, sendo que a utilização deste tipo de amostra e de plasma com a técnica de PCR-47 identificaram todos os casos positivos.

As técnicas de PCR-diagnóstica estudadas parecem ser muito sensíveis e específicas no diagnóstico de sífilis primária e secundária, quando executadas em amostras de lesões, devendo as lesões estarem húmidas tal como acontece para o exame de microscopia de fundo escuro. A sua especificidade parece também ser elevada nos outros tipos de amostras estudadas, embora a sensibilidade em relação a estas, precise de ser melhorada, essencialmente quando se pretende efectuar o diagnóstico de sífilis latente. Uma vez que não existem lesões neste estádio, a pesquisa de \textit{T. pallidum} tem obrigatoriamente que ser efectuada no sangue.

Marfin\textit{et al.} (2001) demonstraram, pela primeira vez, a possibilidade de existência de \textit{T. pallidum} a nível do sangue no estádio de sífilis latente, o que foi, também, observado neste estudo, uma vez que o ADN de \textit{T. pallidum} foi identificado em cerca de 39\% dos doentes estudados que se encontravam nesta fase da doença. Embora há muito tempo se tenha assumido que \textit{T. pallidum} dissemina rapidamente e Tramont (1995b) o tivesse referido, o facto de neste trabalho se ter identificado ADN de \textit{T. pallidum} em amostras de sangue de
indivíduos com sífilis primária e secundária são disso confirmação.
Um resultado positivo pelas três técnicas de PCR-diagnóstica, foi observado, numa amostra proveniente de um parceiro sexual de indivíduo infectado com sífilis. Este posteriormente tornou-se serologicamente reactivo, significando que provavelmente, o indivíduo estaria em período de incubação. Tal situação foi referida por Marfin et al. (2001), que demonstraram ADN de *T. pallidum* em quatro de oito doentes em período de incubação, por uma técnica de PCR com sequências iniciadoras tendo como alvo de amplificação o gene *polA* I, pelo que, se outros autores o confirmarem, as técnicas de PCR poderão vir a ser indicadas no estudo de contactos de indivíduos com sífilis, antes de apresentarem sintomatologia.

Em relação à aplicabilidade da técnica de PCR no diagnóstico de neurossífilis, esta parece ter uma boa especificidade nos indivíduos sem sífilis, pois não foi identificado ADN de *T. pallidum* em nenhuma amostra de liquor proveniente dos indivíduos do grupo controlo negativo.

Nas amostras de indivíduos com serologia reactiva no soro, o maior número de amostras positivas no liquor foi obtido com a técnica de PCR-47, que, em conjunto com a PCR-*polA* identificou todas as amostras positivas pelas três técnicas de biologia molecular. Além disso, estas técnicas poderão ser de utilidade nos indivíduos em que a invasão do sistema nervoso central é recente, ou em que por qualquer outro motivo, não existam alterações a nível do sistema nervoso central ou reactividade nos testes serológicos. Nestas amostras, a técnica de PCR poderá ter originado, quando muito, cerca de 11% de resultados de falsa negatividade no liquor, pelo que parece ter uma sensibilidade aceitável. De acordo com os resultados do presente estudo as técnicas de biologia molecular são provavelmente úteis no diagnóstico de alguns casos de neurossífilis, em que após execução dos testes serológicos as dúvidas de diagnóstico persistem.

A genotipagem de *T. pallidum*, se reproduzível e sensível, será de grande ajuda na compreensão da epidemiologia e patogenia da sífilis. Nesta tese, a técnica de subtipagem utilizada parece ser sensível na sífilis primária e secundária, tendo sido reproduzível em todas as amostras do mesmo doente. Infelizmente, o número de produtos recebidos do mesmo doente foi em pequena quantidade. A
técnica foi, no entanto, pouco sensível, sendo necessário torna-la mais eficaz.
Na população estudada encontraram-se, tal como noutros estudos (Pillay et al. 1998, 2002, Sutton et al. 2001), génotipos múltiplos, tendo o 14c sido o subtipo mais frequentemente encontrado. O subtipo 10a foi o único subtipo ainda não identificado, sendo necessários mais estudos epidemiológicos para esclarecer se este é um subtipo apenas existente em Portugal ou proveniente de países com os quais se mantêm relações de proximidade, nomeadamente a nível de imigração.

Dos resultados desta tese e da sua comparação com o preconizado por outros autores, pode assim concluir-se que:

- O RPR é o teste não treponémico que deve ser utilizado sempre que se suspeita de sífilis e na monitorização terapêutica.
- Existe uma necessidade premente de desenvolver testes mais sensíveis e específicos para o diagnóstico de sífilis, essencialmente para os estádios de sífilis primária, neurosífilis e sífilis latente.
- A co-infeccção VIH dá origem a resultados de falsa reactividade com os testes não treponémicos, o que é independente da existência de toxicodependência. Assim, nos doentes com VIH e sífilis torna-se necessária uma criteriosa avaliação dos testes laboratoriais, nomeadamente com confirmação pelos testes treponémicos. De notar que em muitos países em desenvolvimento, em que a infecção pelo VIH e a sífilis são prevalentes, se tem proposto apenas a utilização do RPR.
- Indivíduos com testes não treponémicos com falsa reactividade devem ser avaliados para a presença de anticorpos contra o Vírus da Imunodeficiência Humana
- No que se refere aos testes treponémicos, apenas o TP.PA parece poder utilizar-se na monitorização do resultado da terapêutica. Os resultados obtidos neste estudo indicam que este treponémico poderá ser utilizado no diagnóstico no diagnóstico laboratorial de sífilis.
- O teste EIA é o teste treponémico que mais se adapta à rotina laboratorial, uma vez que se obtiveram resultados semelhantes aos dos testes treponêmicos usualmente recomendados (TPHA e FTA-Abs), com a vantagem de ser automatizável e de leitura objectiva.
- A pesquisa de anticorpos específicos de tipo IgM, no sangue ou no liquor, não parece ser de grande valor no diagnóstico de sífilis precoce ou da neurossífilis, respectivamente.
- O RPR parece comportar-se de modo semelhante ao VDRL, quando se pretende efectuar o diagnóstico de neurossífilis.
- Os resultados obtidos com o TP.PA no liquor indicam que este pode ser utilizado para o diagnóstico de neurossífilis de modo idêntico ao TPHA e FTA-Abs.
- As técnicas de Western blot parecem ser as mais sensíveis e específicas para o diagnóstico de neurossífilis.
- As técnicas de biologia molecular parecem ser mais sensíveis e específicas no diagnóstico de sífilis primária e sífilis secundária. Precisam, no entanto, de ser aperfeiçoadas, de modo a tornarem-se mais sensíveis no que diz respeito à sífilis latente e neurossífilis. A técnica de PCR-47 foi a que melhores resultados apresentou, enquanto que o tipo de amostra indicada parece ser o exsudado de biopsia de lóbulo de orelha, seguida do plasma.
- Neste estudo ficou demonstrada a existência de *T. pallidum* no sangue de doentes com sífilis latente e no período de incubação.
- As técnicas de biologia molecular podem eventualmente ser úteis no diagnóstico de casos especiais de neurossífilis, nomeadamente quando a invasão do sistema nervoso central é recente ou quando por qualquer motivo não existem outros parâmetros indicativos dessa infecção.
- A técnica de subtipagem utilizada identificou todos os subtipos das amostras de úlceras genitais e de lesões de secundarismo, tendo sido reprodutível.
- Embora o subtipo 14c tenha sido o mais frequentemente encontrado, o subtipo 10a foi pela primeira vez identificado no presente estudo.
5.2. Perspectivas futuras

Tendo em conta as dificuldades por vezes encontradas no diagnóstico laboratorial de sífilis e confirmadas nesta tese, torna-se evidente que muito há ainda a fazer para que o diagnóstico desta infecção seja cada vez mais eficaz. Na generalidade e depois da sequenciamento do genoma de *T. pallidum* (Frazer *et al.* 1998), a comunidade científica está de acordo em que existe necessidade de:

- Estabelecer um sistema de isolamento de *T. pallidum* “in vitro” que permita a sua sobrevivência de modo contínuo.
- Desenvolver vacinas.
- Desenvolver novos testes diagnósticos que sejam rápidos, eficazes, baratos e que se possam efectuar sem equipamento laboratorial, tal como existem presentemente para a pesquisa de anticorpos anti-VIH
- Melhorar o conhecimento sobre a patogénese e epidemiologia da infecção.

Como perspectivas de trabalho futuro resultantes da presente tese importa realçar:

- A necessidade do desenvolvimento de um teste treponémico sensível e específico, que ao mesmo tempo permita a monitorização terapêutica, e que não seja reactivo nos doentes com sífilis correctamente tratada. O mesmo se aplica ao desenvolvimento de testes para pesquisa de anticorpos de tipo IgM que sejam reactivos na sífilis recente.

- A associação com outras patologias de resultados de falsa reactividade dos testes não treponémicos deve ser estudada na população portuguesa, essencialmente em grupos especiais como os portadores do vírus da hepatite C e migrantes.

- Estudos de comparação entre as técnicas de RPR e VDRL para o diagnóstico de neurossífilis devem ser efectuados, num número maior de indivíduos, uma
vez que os resultados deste estudo foram contraditórios às recomendações de diversos autores.

- Em relação ao diagnóstico de neurossífilis, será interessante monitorizar os doentes após a terapêutica, para verificar a normalização dos parâmetros citológicos e dos testes serológicos, de modo a avaliar o seu significado. A monitorização de indivíduos em cujas amostras as técnicas de PCR são positivas e os restantes parâmetros negativos é também importante, para se verificar a existência de invasão recente, invasão do sistema nervoso central sem desenvolvimento de alterações patológicas aparentes no liquor ou ainda, se serão devidas a infecção tratada com terapêutica antibiótica efectuada por outras razões que não a sífilis. A utilização simultânea da técnica de cultura por inoculação em coelho poderá ser, também, uma ajuda no esclarecimento destas questões.

- Relativamente à utilização das técnicas de biologia molecular no diagnóstico de sífilis ficou clara a necessidade de melhorar a sensibilidade da técnica, quando utilizadas amostras que não sejam de exsudados de lesões, quer estudando diferentes métodos de extracção, com quantificação ao longo de tempo, quer utilizando técnicas mais recentes, como por exemplo, a técnica de “Real Time PCR”. Esta é uma técnica que utiliza sondas “Taqman”, permitindo aumentar a sensibilidade de detecção obtida, quando se utiliza um gel de agarose adicionado de brometo de etídio.

- Num maior número de amostras é necessário confirmar, que o exsudado de biopsia de lóbulo de orelha é o melhor tipo de amostra a utilizar, para pesquisa de ADN de T. pallidum em doentes com sífilis latente e indivíduos em período de incubação.

- Futuros estudos de genotipagem de T. pallidum deverão ter como base a execução imediata da mesma, no seguimento da extracção de ADN, para evitar o armazenamento, o qual parece diminuir a sensibilidade da técnica.
- A tentativa de desenvolver uma técnica de subtipagem mais sensível será importante para se compreender melhor a epidemiologia e patogénese da infecção a *T. pallidum*. Um vez desenvolvidas técnicas de biologia molecular diagnóstica e de genotipagem mais sensíveis, será útil a sua aplicação em amostras de indivíduos com sífilis, residentes em Portugal e nos países de expressão portuguesa, assim como nos seus contactos, com o fim de determinar a existência de estirpes comuns.

Fica assim demonstrado que a sífilis é ainda hoje uma doença que entusiasma quem a ela se dedica, seja no campo epidemiológico, clínico, laboratorial ou de investigação e que provavelmente assim continuará durante alguns anos. No entanto, passo a passo, novas perspectivas se vão abrindo, como por exemplo as consequentes à sequenciação do seu genoma, que poderão contribuir para o controlo e prevenção desta infecção.

Bibliografia

Blanco DR, Radolf JD, Lovett MA, Miller JN (1986). Correlation of treponemicidal activity in normal human serum with the presence of IgG antibody directed against polypeptides of *Treponema phagedenis* biotype Reiter and *Treponema pallidum*, Nichols strain. *J. Immunol.* 137:2031-2036.

Centers for Disease Control and Prevention (1988). Relationship of syphilis to drug use and

Chamberlain RN, Brandt ME, Erwin AL, Radolf JD, Nogard MV (1989). Major integral membrane protein immunogens of *Treponema pallidum* are proteolipids. *Infect. Immun.* **57**:2872-2877.

Chen SY, Gibson S, Katz MH, Klausner JD, Dilley JW, Schwarz SK, Kellogg TA, McFarland W (2002). Continuing increases in sexual risk behaviour and sexually transmitted diseases among men who have sex with men: San Francisco, California.

Don PC, Rubinstein R, Christie S (1995). Malignant syphilis (lues maligna) and concurrent infection with HIV. *Int. J.Dermatol.* **34:**403-407.

Escobar MR, Dalton HP, Allison MJ (1970). Fluorescent antibody tests for syphilis using

Gourevitch MN, Selwyn PA, Davenony D, Buono D, Schoenbaum EE, Kleins RS, Friedland FH

Izzat NN, Bartruf JK, Glicksman JM, Holder WR, Knox JM (1971). Validity of the VDRL test on

Mahoney JF, Arnold RC, Harris A (1949). Penicillin treatment of early syphilis- first four patient

Bibliografia

Microbiol. **20:**434-437.

Bibliografía

Ratcliffe L, Nicoll A, Carrington D, Wong H, Egglestone SI, Lightfoot NF, Pennington JH,

Bibliografía

Simonsen JN, Cameron DW, Gakinya MN, Ndinya-Achola JO, D’Costa LJ, Karasira P, Cheang
Bibliografia

Swancutt MA, Radolf JD, Nogard MV (1990). The 34-kilodalton membrane immunogen of *Treponema pallidum* is a lipoprotein. *Infect. Immun.* **58**:384-392.

Tramont EC (1995a). Syphilis in adults: From Christopher Columbus to Sir Alexander Fleming
Bibliografía

291
Bibliografia

Young EJ, Weingarten NM, Baughn RE, Ducan WC (1982). Studies on the pathogenesis of the

