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Abstract 

In a time when algorithmic trading accounts for over 50% of US equities’ traded volume, this 

work project proposes a holistic approach to the implementation of Machine Learning in the 

Stock Picking process of the Nova Students Portfolio. The presented algorithms can help 

investors in the identification of the features that drive stock returns and results show that our 

predictive algorithm provides an edge in the selection of outperforming stocks. An investor 

using our method from 2006 to 2019 would have achieved an annualized return of 4.8% in 

excess of the S&P 500 and an Info Sharpe gain of 0.2. 
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1. Introduction 

For many decades, well-known investors like Benjamin Graham, Warren Buffett, Peter 

Lynch, amongst others, were able to build-up their fortunes through the “Art of Stock-Picking"1 

(Munger 2008). Despite what has been accomplished by these successful investment managers, 

over the past few years there has been an increase in the belief that, going forward, humans will 

no longer be able to “beat the market” on their own due to the rise of machines, which are able 

to process a much larger amount of data in a much shorter period, giving them an edge over 

humans (The Economist 2019). 

We acknowledge the many advantages that machines can bring to the stock picking 

process but also defend the need to exist humans alongside the machines to validate investment 

decisions.  As such, we propose several ways by which Machine Learning algorithms can be 

introduced in the Nova Students Portfolio, a Master’s in Finance course at Nova SBE where 

students manage a real portfolio worth 370,000 USD.  

At Nova Students Portfolio (NSP), students’ goal is to outperform the benchmark 

performance, which consists of a portfolio composed by 40% of the S&P 500 Index and 60% 

of the ICE US Treasury 3-7y Total Return Index. At the start of each academic year, the NSP 

portfolio starts with 40% invested in the SPY ETF, which tracks the S&P 500 performance, and 

60% invested in the IEI ETF, which tracks the ICE US Treasury 3-7y Total Return Index. 

Throughout the year, students can outperform the benchmark in two ways: 1) by deviating from 

the original asset allocation, i.e., by investing a higher proportion of the portfolio in equities or 

bonds, depending on their assessment of the general macroeconomic conditions; 2) by replacing 

the exposure of the SPY ETF by exposure to stock picks which they believe will outperform 

the benchmark during the following months. Knowing that the academic year starts in 

September and finishes in May, students are advised to have a time-horizon of 6 to 12 months 

                                                 
1 The “Art of Stock Picking” was advocated by Charlie Munger in 2008 as a very selective process by which investment 

managers provide a value-added to clients by picking companies that will be winners over a long-term period. 
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when making their stock picks. This work project aims to improve the stock picking process 

within the NSP by implementing Machine Learning algorithms that can help students make 

better decisions and improve the alpha2 generated by their stock picks.  

In Section 2, the Literature Review provides some background on Stock Picking, 

Machine Learning, and how the two can be integrated. Section 3 regards the Methodology used 

throughout the work, namely how data was curated, and Section 4 discusses the Machine 

Learning algorithms that were used. Section 5 presents the results of our work, as well as a 

backtesting of some strategies based on the algorithms’ output. Finally, Section 6 contains the 

conclusion and practical applications of this work, as well as some limitations and guidelines 

for future research. 

 

2. Literature Review 

The Efficient Market Hypothesis (Fama 1970), dictates that the price of an asset should 

reflect all the available information at a given point in time, implying that it should not be 

possible to consistently earn abnormal excess returns through stock selection. Nonetheless, 

several well-known success stories, such as the case of Warren Buffett, Peter Lynch, or 

Benjamin Graham, are real-life case studies of individuals who defy the proposition of the 

Efficient Market Hypothesis, by consistently investing in outperforming stocks. 

A lot of research has been conducted around strategies and factors capable of delivering 

abnormal excess return. Fama and French (1992) firstly argued that factors such as size 

premium (SMB) and value premium (HML) could be added to the traditional Capital Asset 

Pricing Model, since the exposure to these factors helps explaining individual stock returns. 

The Fama-French three-factor model was later expanded by Carhart (1997) with the addition 

of a momentum factor, which reflected the tendency of past winners to keep their 

                                                 
2 Throughout this report, we denote by alpha the excess return of a stock over the benchmark (S&P 500) over a 

certain timespan. 
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outperformance and past losers to continue their underperformance. Other practitioners, such 

as Joel Greenblatt and William O’Neill, propose screening strategies for selecting stocks that 

are likely to outperform the broad market. Greenblatt (2005) proposed the use of a “magic 

formula” to select 30 stocks with high earnings yield and high return on capital, whereas O’Neill 

(2009) suggested a CAN SLIM investment strategy which consists of combining seven 

qualitative and quantitative investment criteria to select stocks based on value and momentum 

factors. Similarly, Joseph Piotrosky (2000) examined how an accounting-based fundamental 

analysis can shift the distribution of returns earned by an investor and developed a score that 

uses nine criteria to evaluate the financial strength of a firm. O’Shaugnessy (1997) followed a 

statistical approach to rank companies based on growth and value-focused criteria to select the 

best-ranked stocks, which are statistically more likely to outperform the others. 

With the rise of computational power, some of the above cited rule-based strategies 

evolved to become more complex and difficult to implement by humans. As a result, academics 

and practitioners have turned to Machine Learning Algorithms (MLAs) instead of traditional 

statistical techniques like the Ordinary Least Squares (OLS) regression given that MLAs 

impose little structure to the analysis, enabling them to uncover complex nonlinear patterns, 

which are harder to explore with OLS (Rasekhschaffe and Jones 2019).  

Machine Leaning (ML) can be defined as “the field of study that gives computers the 

ability to learn without being explicitly programmed” (Samuel 1959). Tom Mitchell (1997), 

computer scientist and professor at Carnegie Mellon University, defined the field in a more 

formal fashion: “A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E”. These definitions state two main characteristics of ML – the 

capability of detecting patterns without having been programmed with explicit rules and the 

ability to improve performance as the amount of available information increases. 
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Despite being a fairly new field of investigation, Machine Learning applications in 

financial markets have been well regarded both by academics and practitioners given the non-

linearity and non-stationarity of the data, two issues that MLAs can address better than 

conventional linear regressions (Geron 2017). As a result, quantitative Hedge Funds such as 

D.E. Shaw, Citadel, or Bridgewater are increasingly employing ML techniques to make 

investment decisions (Patterson 2010). Tabb Group (2018) estimates that High-Frequency 

Trading, which is largely operated by algorithms, accounted for circa 52% of US equities daily 

volume in 2018. 

A wide body of research has been conducted around the deployment of MLAs to 

forecast financial markets within the last two decades. Quah (2008) was one of the first to write 

about the use of Neural Networks for stock selection within the Dow Jones Industrial Average 

and Krauss, et al. (2017) showed how an equal-weighted ensemble of Deep Neural Networks, 

Gradient-Boosted Trees and Random Forests produced the best performance in an intraday 

trading statistical arbitrage context of the S&P 500. Gerlein et al. (2016) analyzed the role of 

simple ML models to achieve profitable trading in the FX market, whilst Patel, et al. (2015) 

focused on using ML techniques to foresee stock market indices. Takeuchi and Lee (2013) 

applied Deep Learning to enhance momentum trading strategies in stocks and Khaidem, Saha 

and Dey (2016) studied the use of Random Forests to forecast the direction of the stock market. 

Gu, Kelly and Xiu (2019) undertook a comparative analysis of Machine Learning methods for 

empirical asset pricing and identified decision trees and neural networks as the best performing 

methods, since these models allow nonlinear predictor interactions that are missed by other 

methods. 

This paper builds upon the work of Rasekhschaffe and Jones (2019), who discuss how 

practitioners can use ML techniques to forecast the cross-section of stock returns while avoiding 

overfitting, the primary problem of these techniques. We follow the approach taken by Morgan 
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Stanley in their Global Factor Guide (2019), which identifies fundamental and technical factors 

with strong links to stock performance globally, and incorporate both value, growth, momentum 

and quality factors in our model to predict the performance of stocks in the United States. 

 

3. Data and Methodology 

The goal of this work project is to develop an algorithm capable of taking financial data 

as inputs, processing these data, and predicting if a given stock will outperform the broad 

market over a given time-frame. Although the models developed throughout this project can be 

applied in various markets and can be optimized for different holding periods, we focused on 

their application in the Nova Students Portfolio, where students can only invest in stocks quoted 

in the US market. As such, we conducted our research for stocks that are part of the Russell 

1000, an index that comprises the 1000 largest companies in the US market, representing around 

90% of the total US market capitalization. The Russell 1000 was used instead of the S&P 500 

to have more data observations per year (1000 instead of 500). However, we did not choose a 

broader index like the Russell 3000 because several stocks in this index are small-caps with 

very limited liquidity, which makes them difficult to trade. Furthermore, the data available for 

this small, unknown companies is often scarce, which would jeopardize the quality of the 

model. All financial data used in this report was collected from a Bloomberg Terminal. 

3.1.  Data Curation  

Throughout the process of gathering and cleaning the data, we followed the rules of 

Machine Learning outlined by Martin Zinkevich (2019), data scientist at Google, who talks 

about the best practices for Machine Learning Engineering. 

We started by collecting the necessary data for the construction of the 51 features 

described in Appendix 1, which will be used as inputs for our model. These features were 

carefully selected in order to include characteristics related to Value, Growth, Momentum and 
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Quality factors. The following step involved conducting an Initial Data Analysis (IDA) to verify 

the structure and quality of the raw data. The IDA process revealed several issues in terms of 

missing values and poor data quality of some figures, which were solved in different ways. In 

the presence of missing values, practitioners usually opt for one of three options (Batista and 

Monard 2003): 1) dropping the whole line of data, which in our case implies dropping one stock 

from the analysis; 2) dropping the whole column of data, which in our case implies dropping 

one feature; or 3) replacing the missing value for a proxy. Whenever possible, we decided to 

fill the missing value by a proxy, as the major advantage of this solution is that we do not 

decrease our sample (Donders, et al. 2006). As an example, in the cases where certain years 

used to calculate sales growth rates were not available, we used the closest years for which 

information was available. Another example includes filling the missing value by the industry 

average. Nevertheless, given that we want our sample to have the most accurate possible picture 

of each company, we dropped the companies for which most of the values were missing. 

Initially, we had more than 70 features, but we decided to drop the ones for which less than 

50% of companies had information available. After filling missing values with proxies and 

eliminating the stocks for which less than 75% of the features were available, we ended up with 

a sample of 51 features and over 10,000 stocks spread over a 14-year period. 

After dropping data points and filling missing values, all data was scaled to a common 

benchmark. This was a three-step process which aimed to improve the comparability across 

features and reduce noise. The first step included winsorizing the data. As explained by 

Hellerstein (2008), the winsorization process is used to eliminate the effect of having outliers 

that can bias the sample. This process includes replacing the outliers by the number closest to 

the percentile interval we find adequate. In our case, we replaced every number above the 95th 

percentile and below the 5th percentile by the numbers that fall on these percentiles. This process 
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reduces the impact of having outliers without reducing the quality or meaningfulness of the 

data.  

The second step included the standardization of the numbers. As outlined by Osborne 

(2013), Machine Learning algorithms are prone to be tilted by larger numbers. Our dataset 

contains figures that are represented in percentages, such as growth rates, but also ratios which 

are represented by integers, like the P/E Ratio. If one does not standardize the data, the model 

is likely to be more impacted by ratios than by percentages. The standardization process 

consisted of scaling each data point to unit variance through the calculation of its z-score. 

 The final step of the data curation process consisted of scaling the values relative to their 

industries averages. As discussed by Asness, Porter and Stevens (2000), different sectors can 

have very different characteristics. For instance, technological companies usually have higher 

growth rates and higher P/E ratio than Utilities, due to structural differences in their industries. 

For investors looking to compare companies across sectors, it is important to acknowledge these 

differences and find a way to make companies in different sectors comparable. As such, firstly 

we classified the companies according to their GICS3 sector and then calculated the sector 

average by taking the average of the companies within that sector. After that, we divided the 

company’s value by the sector’s average, which gave us a ratio that compares how the company 

performs against its sector. This largely offsets the previously mentioned problem of not being 

able to compare growth rates between Technology companies and Utilities, since all numbers 

now reflect how companies perform relative to their industries. As an example, a value of 1.1x 

for 1Y Sales Growth Rate means the company has a 1Y Sales Growth Rate 1.1 times higher 

than the average of its sector. 

 

                                                 
3 The Global Industry Classification Standard (GICS) is a classification system developed by MSCI and Standard & Poor’s 

that classifies companies across 11 different sectors: Materials, Energy, Financials, Industrials, Consumer Discretionary, 

Consumer Staples, Real Estate, Health Care, Information Technology, Utilities, and Communication Services.  
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4. Models 

This paper aims to develop an algorithm capable of predicting which stocks will 

outperform the benchmark (S&P 500), with the objective of implementing it in the NSP 

investment process through various forms. Throughout the process of developing the mentioned 

predictive algorithm, several questions arose, such as “Which years/features shall we take as 

inputs to train our model?”.  

To answer these questions, we had to recur to other Machine Learning algorithms. This 

section describes the steps taken and the algorithms used throughout the process. In summary, 

we used four different models with distinct purposes:  

i. A clustering algorithm was used to check whether outperforming stocks have 

common characteristics that differentiate them from underperforming stocks, and 

to confirm if the disparity between the characteristics of outperforming and the 

characteristics of underperforming stocks was statistically significant;  

ii. A cosine similarity algorithm was used to check which years were most similar to 

the year under analysis, and therefore should be used to train the predictive model;  

iii. A feature elimination algorithm was used to select the right features to feed into 

the model; 

iv. A predictive algorithm was applied to forecast which stocks would outperform the 

market.  

Each of these models is further explained in the subsections below. 

4.1. Clustering Algorithm 

This thesis is built upon the hypothesis that stocks’ returns can be predicted based on 

the features identified in Appendix 1. However, before developing an algorithm that take these 

features as inputs, we found it essential to perform a preliminary validation of our thesis. As 

such, we took a statistical approach to understand whether the characteristics of top-performing 
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stocks are statistically significant from the characteristics of the bottom-performing stocks. To 

do this analysis, we used the K-Means algorithm, a Python algorithm that is part of the Scikit-

Learn library. The K-Means algorithm is an unsupervised4 learning classification algorithm, 

whose function is to classify the data into a number of clusters defined by the user. The 

algorithm operates by looking at the characteristics of each stock and grouping stocks with 

similar characteristics, allowing the user to find hidden patterns in the unlabeled data. Figure 1 

exemplifies how 23 observations are grouped into 4 clusters according to two features.  

 
Figure 1 - Clustering representation (Source: Hands-On Machine Learning with Scikit-Learn & TensorFlow) 

Mathematically, the algorithm operates by randomly picking n points, called centroids, 

within the dataset, where n is the user-defined number of clusters. Then, it calculates the 

Euclidean distance between every point in the dataset and these n points (cluster centroids). The 

Euclidean distance between 𝑝 = (𝑝1, 𝑝2) and 𝑞 = (𝑞1, 𝑞2) is given by: 

𝑑(𝑝, 𝑞) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2  

For each cluster centroid ci, a data point x is assigned to a given cluster based on:  

𝑎𝑟𝑔𝑚𝑖𝑛 𝑑(𝑐𝑖 , 𝑥)2

𝑐𝑖 ∈ 𝐶
 

The algorithm then proceeds to find the new centroid from the clustered group of points: 

𝑐𝑖 =
1

|𝑆𝑖|
∑ 𝑥𝑖

𝑥∈𝑆𝑖

 

Where Si is the group of points that was assigned to the ith cluster. The process is iterated 

over all k points in the ith cluster, for all n clusters, until the squared error function is minimized: 

𝑀𝑖𝑛 ∑ ∑ 𝑑(𝑐𝑖 , 𝑥)2
𝑛

𝑗=1

𝑘

𝑖=1
 

                                                 
4 Contrary to supervised learning systems, where the data fed into the algorithm includes the desired solution (labels), in 

unsupervised learnings systems the data fed is unlabeled. The objective of an unsupervised system is, therefore, to label the 

data according to the algorithm selected by the user. 
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We selected three as the appropriate number of clusters after applying the reasoning that 

the first cluster should be constituted by the outperforming stocks, the second cluster should be 

made of underperforming stocks, and the third cluster should contain the “intermediate” stocks. 

The “intermediate” cluster is a way to statistically separate the top-performing cluster from the 

bottom-performing cluster by reducing the noise that would arise if only two clusters were 

applied. 

The K-Means algorithm took the 51 aforementioned features and classified the stocks 

fed into the model into three clusters. We then proceeded by calculating the t-statistic of 

difference between the characteristics of the clusters. As section 5 outlines in detail, we found 

evidence of the characteristics and returns of the stocks in the top-performing cluster to be 

statistically significant from the characteristics and returns of the stocks that constitute the 

underperforming cluster. These findings allowed us to conclude that these features could be 

used as inputs for our predictive algorithm. 

4.2. Cosine Similarity 

After confirming that the difference of characteristics and returns between top-

performing stocks and bottom-performing stocks was statistically significant, we were 

confident to start developing the algorithm that would predict which stocks would be the 

outperformers over a given timespan. Taking the standard practice amongst data scientists, we 

split the data into 75% of observations used to train the model and 25% of observations used to 

perform an out-of-sample evaluation of the model. 

The problem now relied on how we should choose the most appropriate training dataset. 

Given that our goal was to predict the outperformance of stocks in a given year5, we could only 

use past data to train the model, or otherwise we would be incurring into a forward-looking 

                                                 
5 We define as a “year” the period that starts in October and ends in October of the following year, as this is the 

most relevant period for the NSP. For instance, the year of 2016 refers to the period from Oct-2016 to Oct-2017. 
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bias. But which years would be more appropriate to select as training years? We took two 

different approaches to tackle this issue. 

The first approach was to simply take the three previous years as training years and then 

performing an out-of-sample evaluation of the model in the year we wanted to study. In other 

words, if we wanted to predict which stocks would outperform in year T, we would take all the 

data for the stocks present in the Russell 1000 in years T-1, T-2 and T-3 and feed their 

characteristics into the model. The model would then analyze the impact that each feature had 

on the return of the stock and make a prediction of which stocks would outperform in year T, 

based on the effects that were seen in the three previous years. 

The second approach involved a more sophisticated way to select the three years used 

to train the model. We took the basic premise explored by Fama and French (1989), that similar 

years should see similar behaviors in terms of stock returns, and used the cosine similarity to 

check which years were most similar to the year under analysis in terms of stock characteristics.  

The cosine similarity determines the similarity between two vectors by calculating the 

cosine of the angle between them, irrespective of the magnitude. Mathematically, it computes 

the product of two vectors divided by the product of the magnitude of each vector: 

𝑠𝑖𝑚(𝐴, 𝐵) = cos(𝜃) =
𝐴. 𝐵

|𝐴|. |𝐵|
 

As an example, if, in year T, stocks showed to have high valuation multiples, the cosine 

similarity will identify the three previous years with most similar characteristics, i.e., three years 

that also presented high valuation multiples. By selecting similar years to the one we wanted to 

predict, the model would be able to understand which features played a bigger role in the 

outperformance of equities during those years and make more accurate predictions for year T, 

given that the situation was similar. Empirical evidence shows that the same kind of stocks 

seems to continue to outperform in the same kind of situations (Kwag and Lee 2006). As an 

example, value investing has been showed to outperform in periods of crisis, when valuations 
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play a bigger role, whereas growth stocks outperform in the periods following the crisis, when 

stocks resurge and investors pay more attention to fast-growing businesses with higher Beta 

(Clare and Cosimano 2019).  

4.3. Recursive Feature Elimination 

After selecting the appropriate years to train the model, there was also the need to select 

the right features. Numerous data scientists point out how “garbage in, garbage out” can ruin a 

model, i.e., if one feeds inappropriate features into the model, one cannot expect its results to 

be trustworthy (Kira and Rendell 1992). As such, we took a two-step approach to select the 

right features, which were later used as independent variables in the predictive model. 

The first step consisted in detecting multicollinearity to improve the robustness of the 

model. Multicollinearity can be defined as a state of very high intercorrelations among the 

independent variables, which is a disturbance that can affect the reliability of the data. 

Mansfield and Helms (2012) propose identifying features with high correlation coefficients 

amongst themselves and eliminating at least one of them. In this case, we checked every pair 

of features that had an absolute correlation coefficient above 0.5 and eliminated the feature that 

presented the highest p-value in the cluster analysis mentioned in section 4.1. This resulted in 

the elimination of 9 features that demonstrated a correlation with other features above the 

threshold, therefore reducing our final sample of features from 51 to 42. 

In the second step, we used the Recursive Feature Elimination (RFE) method, which is 

a backward selection method part of Python Scikit-Learn library, to select the features that have 

the highest impact on the outcome we are trying to predict. In this method, an external estimator 

that assigns weights to each feature is firstly trained on the initial set of features and the 

importance of each feature is obtained through an attribute. Then, the RFE algorithm works by 

recursively considering smaller sets of features, eliminating the least important features (with 

lower attributes) from the existing set of features.  
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The years considered to apply the RFE method were the ones obtained through the 

cosine similarity algorithm presented in section 4.2, given that these were also the years used 

to train the main predictive algorithm, which is described in the next subsection (4.4). When 

putting together the step taken in subsection 4.2 with the step taken in this subsection, we are 

effectively selecting the years most similar to the year under analysis and considering the 

features that had the highest importance in those years, hoping that the same features may again 

have a higher importance in terms of stock returns. 

We note that the features are not always the same throughout the analyzed period. This 

result goes towards the findings of Fidelity (2019), according to which different features play a 

bigger role during different stages of the business cycle. As a result, there are some years such 

as 2009 in which the most important features had a “value” tilt, whereas in a year like 2012, 

most of the features had a “momentum” tilt.  

4.4. Predictive Model 

After selecting the right years to train the data and the right features to feed the model, 

the last step of this work involved using an algorithm that could effectively predict which stocks 

would be able to outperform the benchmark over a given timeframe. Rather than using a linear 

regression model to predict how much a given stock would yield over a year, we took a 

nonlinear, binary approach, which simply indicates whether a stock is likely to outperform the 

benchmark over a given timeframe or not. The reason for having decided to follow a binary 

approach is because it contributes in a different manner to the existing body of research that 

aims to predict nominal stock returns. Furthermore, we found this method to be more suitable 

to the needs of the NSP. NSP students’ goal is to beat the benchmark, and so they need a 

framework useful to select stocks that can fulfill this goal. Structuring the investment decision 

in a binary, simplified way facilitates the process of stock selection and improves the capacity 

of ML tools to support it. 
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Python’s Scikit-Learn library6 has numerous binary predictive algorithms that we could 

use in our task. However, as outlined by Lagoudakis, Littman and Parr (2001), data scientists 

often find themselves struggling to understand which model is best to use under which 

circumstances and why. Especially when the model used is a time-series model rather than a 

cross-sectional model, the algorithm that yields the best results in one year might not be the 

algorithm that yields the best results in the following year. Moreover, since these algorithms 

are not linear, there is a higher probability of overfitting to the training data, and subsequently 

having a poor performance on the testing set (Hawkins 2003). To avoid these problems, the 

approach taken was to use four different algorithms and then using a VotingClassifier to select 

the final output. The VotingClassifier is a meta-classifier for combining different Machine 

Learning classifiers via majority voting. It can operate through “hard-voting”, in which case the 

final class label is the class label that has been predicted most frequently by the individual 

classification models, or through “soft-voting”, where class labels are predicted by averaging 

the class-probabilities. We decided to use the “soft-voting” since this method considers not only 

the individual binary decisions of each classifier, but also the likelihood of their outcomes, 

which is not captured under “hard-voting”.  

In “soft-voting”, the class label ŷ  is predicted based on the predicted probabilities 𝑝 for 

each classifier:  

ŷ = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝑤𝑗𝑝𝑖𝑗

𝑚

𝑗=1

 

Where 𝑤𝑗 is the weight assigned to the 𝑗𝑡ℎ classifier. 

Since this is a binary classification task, the only two possible outcomes are 0, which 

means that the stock will not outperform the benchmark, and 1, which means the stock will 

outperform the benchmark.  

                                                 
6 The oficial documentation for the Scikit-Learn library can be found in https://scikit-learn.org/stable/user_guide 

https://scikit-learn.org/stable/user_guide
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One of the major drawbacks of Machine Leaning Algorithms is the uncertainty around 

how they work and issue predictions (Rudin 2019). To avoid the issue of not understanding the 

functioning of the model, we opted not to use more complex models like Deep Neural 

Networks, as these are often referred to as “black-box” algorithms, difficult to dissect. As such, 

we used four easily understandable models for which there is already a fair amount of research, 

as previously outlined in the Literature Review. In Appendices 3-6, we take a look at the 

mathematical explanation behind each of the four Scikit-Learn algorithms used: Logistic 

Regression, Random Forest, Support Vector Machines and Gradient Boosting.  

 

5. Results 

After having shared the reasoning, the literature support and the methodology that has 

been applied throughout this work, we present our results in this section. We start by presenting 

the results of the clustering algorithm in subsection 5.1, which demonstrates the statistical 

relevance of the features initially selected. We then proceed to show the features with higher 

predictive power over stock returns in subsection 5.2, and the results of our prediction algorithm 

are presented in subsection 5.3, as well as a backtesting of its performance for the Oct-2006 to 

Oct-2019 period. 

5.1. Clustering 

When analyzing the results of the clustering algorithm, we aim to answer the question 

“Are there any statistically significant differences between the characteristics of top-performing 

stocks vs. lower-performance stocks?”. To answer this question, we compared the p-value of 

the difference between the average values for the top-performing cluster, i.e., the cluster with 

the best 12m average performance, and the bottom-performing cluster, i.e., the cluster with the 

worst 12m average performance. We did this analysis per year and per sector to understand if 
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results changed between time-periods and across sectors. A 5% threshold has been kept 

throughout the analysis of p-values in this section. 

Appendix 2 shows the p-values as well as the averages of each cluster for three different 

time periods: 2006-2010, 2010-2014 and 2014-2018. 2006-2010 corresponds to the Financial 

Crisis Period, 2010-2014 corresponds to the period in the aftermath of the Financial Crisis, and 

2014-2018 corresponds to the period since the inception of the NSP. Our results show that, out 

of the 51 analyzed features, 20 appear to be statistically significant across the three periods. As 

Figure 2 shows, the number of Growth, Quality and Value factors seemed to have been less 

relevant in the after-crisis period than in the other two periods, whilst there was a higher number 

of Momentum factors that were significant in the aftermath of the crisis than in the other two 

periods. We note that Quality factors were particularly significant throughout the crisis years, 

which shows that investors tend to focus more on robust businesses during tough periods. 

 

Figure 2 - Significance of performance and features between clusters per sector and period 

Looking at the performance of each cluster, measured by the average alpha of that 

cluster relative to the S&P 500, one can see that the differences in 9m and 12m performances 

are always statistically significant but the same doesn’t hold true in the case of 1m/3m/6m 

performances. Since most of the features considered are related to Financial Statements, it is 

important to understand that these may take time until they are reflected into stock returns, 

which possibly explains why the return divergences are only significant in the longer term.  

Turning to a sector analysis, Figure 2 also highlights the sectors for which each factor 

was most relevant. A complete table of results can be found in Appendix 2. If one excludes the 

Financial sector from the analysis, given the particular characteristics of this sector, it can be 

HC Ind Mat RE Tech Uti Comm Disc Stap Energy Fin 2006-2010 2010-2014 2014-2018

Performance 12 months* 3.3% 0.0% 0.7% 54.8% 0.2% 0.8% 0.3% 0.0% 0.1% 3.9% 0.0% 0.0% 0.0% 0.9%

No. of Growth Features** 7 11 6 7 13 6 11 11 8 13 5 12 9 13

No. of Quality Features 5 6 4 4 7 3 5 2 5 7 6 8 4 7

No. of Value Features 2 6 5 4 4 5 3 4 4 4 4 6 5 6

No. of Momentum Features 10 7 6 7 8 5 6 8 8 7 7 9 11 9

Total Number of Features 24 30 21 22 32 19 25 25 25 31 22 35 29 35

* P-value of the difference between the average return of stocs in the top-performing cluster and the returns of stocks in the bottom-performing cluster

** Number of features belonging to that factor that show a p-value below 5% when comparing the top-performing and bottom-performing clusters



18 

 

noticed that Growth Factors were most significant for the Information Technology and Energy 

sectors, and less important for Utilities and Materials. Quality factors show higher significance 

for Information Technology and Energy and lower significance for Consumer Discretionary. A 

higher number of Value factors is significant for Industrials, but a lower number is significant 

for Health Care. Finally, Momentum seems to play a bigger role in Health Care, but the opposite 

is true for Utilities. 

5.2. Selected Features 

The top 10 most selected features by our Recursive Feature Elimination model is shown 

in Figure 3. When comparing these features with the results obtained in the previous subsection 

(5.1), we observe that the features with lower p-values in our cluster analysis (Appendix 2) are 

also the ones most chosen to explain the alpha of some securities. In an opposite way, one can 

also see that some of the least selected features are the same that present higher p-values across 

sectors and years.  

    

Figure 3 - Top 10 most and least selected features for the period 10/2006 – 10/2019 

These results corroborate our thesis that different features can have distinct levels of 

importance across time and sectors, and so it is essential to find out which features are most 

important and should therefore be used as inputs when building a predictive model.  

Feature Years selected* Feature Years selected*

PE 13 Sales_Growth_1Y 4

EPS_Growth_3FW 12 FCF_Growth_3Y 5

SALES_SURPRISE_LAST_ANNUAL 12 FCF_Growth_1Y 5

Sales_Growth_1FW 11 EBITDA_Growth_1Y 6

Sales_Growth_3FW 11 FCF_Growth_1FW 6

Impl_Vol 11 ROE 6

Vol30_Vol260 11 EBITDA_Growth_1FW 7

ADX 11 Div growth 7

Beta 11 Div_Yld 7

Sales_Growth_3Y 10 Buyback Yield 7

* Number of years the feature was selected as having predictive power over stock's returns

Top 10 most selected features Top 10 least selected features
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5.3. Prediction algorithm 

When evaluating the performance of a binary model like the one used in this work 

project, there are two metrics of utmost importance: accuracy and precision. Accuracy measures 

the ratio between correct prediction and total predictions. Formally: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

In other words, accuracy attempts to answer the question “What proportion of all 

predictions was actually correct?”. Applying to this business case, accuracy will measure the 

percentage of times that the model was right in predicting the over/underperformance of stocks. 

As an example, an accuracy of 70% means that every time the model predicted that a stock was 

going to outperform/underperform the market, it was correct 70% of the times.  

On the other hand, precision measures the ratio between correct positive prediction and 

all positive predictions. Formally: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

In other words, precision attempts to answer the question “What proportion of positive 

predictions was actually correct?”. Applying to this business case, precision will measure the 

percentage of times that the model was right in predicting just the outperformance of stocks. As 

an example, a precision of 70% means that every time the model predicted that a stock was 

going to outperform, it was correct 70% of the times.  

The main difference between accuracy and precision is that, whilst accuracy measures 

how often the model is right at predicting both the overperformance and underperformance of 

stocks, precision focuses only on how often the model is correct at predicting the 

overperformance. Given the NSP is a long-only portfolio and the goal of this model is to help 

in the identification of stocks which are likely to outperform the market, it is preferable to have 

a model with higher precision.  
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Figure 4 shows the precision and accuracy of our model when predicting stock return 

performances over a 6m, 9m and 12m period. One can see that average precision and average 

accuracy are higher than 50%, the “random guess” threshold. This implies that our model 

provides an edge at predicting whether a stock will outperform the broad market. Figure 5, 

which shows how good the model is at predicting if a stock is going to outperform its sector, 

also presents average results for precision/accuracy higher than 50%, implying that the model 

also provides an edge at identifying which stocks will be outperformers within a certain sector. 

 

Figure 4 - Precision and Accuracy per year across the period 10/2006 – 10/2019, for different holding periods  

 

Figure 5 - Precision and Accuracy per sector across the period 10/2006 – 10/2019, for different holding periods 

We took the predictions of the algorithm for the period Oct-2006 to Oct-2019 and 

backtested two long-only strategies that invested in the stocks predicted by the algorithm as 

Year Precision Accuracy Precision Accuracy Precision Accuracy Alpha*

2006 60.8 59.6 52.7 52.6 47.1 48.5 3.0

2007 51.4 51.7 51.3 52.3 53.7 49.0 0.0

2008 49.1 52.9 52.5 51.2 53.2 51.6 2.6

2009 57.6 51.8 63.0 57.8 62.5 57.8 9.6

2010 58.7 54.1 58.6 56.5 48.6 55.0 0.3

2011 53.3 50.9 46.9 49.9 44.7 51.7 -1.3

2012 68.3 57.2 67.7 61.4 63.4 51.8 11.5

2013 51.1 55.0 50.0 52.9 41.8 55.9 -0.7

2014 63.4 57.5 58.6 56.4 68.0 56.0 8.4

2015 47.5 49.0 49.3 50.6 51.2 54.6 0.7

2016 46.1 49.5 54.0 55.2 48.9 54.3 2.5

2017 50.7 54.7 49.5 56.4 48.4 63.0 4.6

2018 60.2 55.5 66.4 59.2 68.5 59.1 8.9

Average 55.2 53.8 55.4 54.8 53.8 54.5 3.9

* Annualized excess return of the algorithms' predictions over the S&P500 during that year

6 months 9 months 12 months

GICS Sector Precision Accuracy Precision Accuracy Precision Accuracy Alpha*

Communication Services 56.4 49.6 43.4 49.8 45.6 49.2 2.8

Consumer Discretionary 51.9 54.5 47.7 54.1 44.7 51.5 -1.8

Consumer Staples 54.6 53.0 55.6 51.4 50.0 50.2 1.9

Energy 48.9 51.5 48.4 51.9 51.2 53.3 1.5

Financials 51.3 48.8 52.7 50.5 49.9 50.6 1.5

Health Care 58.5 54.7 58.1 53.5 50.3 52.8 5.3

Industrials 56.8 53.4 59.7 56.9 58.3 53.3 4.0

Information Technology 53.6 50.2 56.0 52.1 47.0 53.0 1.2

Materials 54.3 54.1 53.3 52.0 48.4 49.3 1.5

Real Estate 49.7 49.1 57.1 54.7 57.8 55.5 2.5

Utilities 61.5 53.6 53.9 50.5 59.1 53.7 2.8

Average 54.3 52.1 53.3 52.5 51.1 52.0 2.1

* Annualized excess return algorithms' predictions over the respective sector performance

6 months 9 months 12 months
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being outperformers over the following 12m. Strategy 1 predicts which stocks will outperform 

the S&P 500 over 12m by any amount, whilst Strategy 2 predicts which stocks will outperform 

the S&P 500 by at least 5% over the following 12m. At the end of 12m, we rebalance the 

portfolios by considering the new predictions of the algorithm.  

 

Figure 6 - Risk/Return profiles of S&P 500, Strategy 1 and Strategy 2, for the period 10/2006 – 10/2019 

As one can see in Figure 6, both strategies outperform the S&P 500 over the 14-year 

timespan, although Strategy 2 presents a better performance. Strategy 1 presents an annualized 

return of 11.1% vs. 12.7% for Strategy 2 and 7.9% for the S&P 500. Strategy 2 presents a higher 

Info Sharpe (0.62) vs. Strategy 1 (0.55) and the S&P 500 (0.42). The Information Ratio, a 

measure of portfolio returns in excess of the returns of a benchmark, also highlights the 

outperformance of Strategy 2, which has a ratio of 0.92, compared to 0.75 for Strategy 1. The 

outperformance of Strategy 2 is explained by the fact that, by setting the threshold of 

outperformance to be higher than 5% rather than higher than 0%, the algorithm becomes much 

more selective at predicting outperformers, improving its precision. As such, the average 

number of stocks selected as outperformers per year dropped from 420 to 166, highlighting the 

selectiveness of the model. 

The cumulative performance for the S&P 500, Strategy 1 and Strategy 2 is shown in 

Figure 7. The matrices of monthly returns for both strategies can be found in Appendices 7-8. 

S&P 500 Strategy 1 Strategy 2

Average no. of stocks* n/a 420 166

Cumulative return 193% 353% 460%

Annualized Return 7,9% 11,1% 12,7%

Annualized Volatility 18,9% 20,1% 20,4%

Maximum Drawdown -55,2% -57,0% -56,4%

% Positive Months 67,9% 66,0% 66,0%

% Positive Years 85,7% 85,7% 92,9%

Info Sharpe 0,42 0,55 0,62

Info Sortino 0,49 0,66 0,75

Information Ratio n/a 0,75 0,92

Skewness -0,13 -0,32 -0,30

Kurtosis 11,76 9,06 7,89

* Average number of stocks invested per year
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Figure 7 - Cumulative performance of Strategies 1 and 2 vs. S&P 500, for the period 10/2006 – 10/2019 

We also tested the application of the model to the stock picks inside the NSP. Taking 

the characteristics of each stock pick at the time the NSP invested, we fed the algorithm with 

the respective features and considered the output of whether that stock would be an 

outperformer or not. The algorithm achieved an accuracy of 52% and a precision of 57% at 

predicting the stocks that would be outperformers. Figure 8 compares the dollar P&L for a 

strategy that invested in all securities picked in the NSP since inception for different holding 

periods versus two strategies that only invested in the securities that were identified by the two 

previously mentioned algorithms as being outperformers. The results show how the P&L of the 

NSP since inception could be increased by a cumulative amount of circa USD 19,000 by the 

implementation of such an algorithm. 

 
Figure 8 - Adjusted alpha and P&L for NSP actual portfolio, Strategy 1 and Strategy 2, for the period 10/2006 – 10/2019 

 Strategy 2, which only invests in the stocks likely to overperform the S&P 500 by at 

least 5%, continues to present the best performance in terms of P&L. Appendix 9 shows the 

precision and accuracy of Strategy 2 at predicting which past NSP picks were likely to 

outperform at the time.  
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Alpha*** P&L Alpha*** P&L Alpha*** P&L

NSP** 185 -1.4% 20,176$     -2.2% 22,707$     -0.8% 48,913$     

Strategy 1 56 1.2% 38,009$     1.0% 44,077$     1.8% 66,823$     

Strategy 2 30 1.3% 38,285$     1.3% 46,066$     1.9% 67,490$     

* Holding period of the pick

** Considers the actual amount invested at the time of the pick

*** Calculated as the average alpha of each pick during the selected holding period

Total no. of 

stock picks 

6 months* 9 months* 12 months*
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6. Conclusion, Applications & Directions for further research 

This work project introduces the use of Machine Learning algorithms to the stock 

picking process and shows how algorithms can help humans in stock selection, taking as 

example the case of NSP. We demonstrate the models presented can attain at least three 

different purposes: 1) indicate which past years are most similar to the current one, helping in 

the assessment of the current microeconomic conditions; 2) select the most relevant 

features/factors, in general and by sector, serving as a support to investors in the process of 

building stock screeners/scorecards; 3) identify which stocks are most likely going to be 

outperformers over a given timeframe, providing an edge over a random guess.  

Beyond the theoretical framework outlined in this paper, which contributes to the 

previous research around the use of Machine Learning in stock selection, we made available to 

the NSP all of the tools used in our research and we encourage their use by the current team, 

who can start implementing some of the highlighted strategies straight away.  

We view the results achieved by our work as a starting point for future research and 

implementation of other ideas within the NSP and recognize some of the limitations of the 

presented models. Firstly, we only considered microeconomic data for the feature selection. We 

note that the inclusion of macroeconomic data, such as measures of economic growth and 

interest rates, is likely to further boost the model by enlarging the scope of the analysis. 

Secondly, the strategies applied focused on a long-only investment approach, which does not 

allow for short selling. Given that the model achieves an accuracy above 50%, we denote that 

a strategy that is long the stocks predicted as outperformers and short the ones predicted as 

underperformers is also likely to achieve good risk-adjusted returns. Finally, we focused our 

analysis in the US market given the investment policy of the NSP. Nonetheless, we encourage 

similar studies to be conducted for other regions of the world, to understand to what extend 

Machine Learning can be used by investors on a global scale. 
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8. Appendices 

Appendix 1 - Features' description 

 

Factor Feature Description

Sales_Growth_3Y Annualzed Sales growth rate over the previous 3 years

Sales_Growth_1Y Sales growth rate over the previous year

Sales_Growth_1FW Sales growth rate over the following year (Bloomberg estimates)

Sales_Growth_3FW Annualzed Sales growth rate over the next 3 years (Bloomberg estimates)

EBITDA_Growth_3Y Annualzed EBITDA growth rate over the previous 3 years

EBITDA_Growth_1Y EBITDA growth rate over the previous year

EBITDA_Growth_1FW EBITDA growth rate over the following year (Bloomberg estimates)

EBITDA_Growth_3FW Annualzed EBITDA growth rate over the next 3 years (Bloomberg estimates)

EPS_Growth_3Y Annualzed EBITDA growth rate over the previous 3 years

EPS_Growth_1Y EPS growth rate over the previous year

EPS_Growth_1FW EPS growth rate over the following year (Bloomberg estimates)

EPS_Growth_3FW Annualzed EPS growth rate over the next 3 years (Bloomberg estimates)

FCF_Growth_3Y Annualzed FCF growth rate over the previous 3 years

FCF_Growth_1Y FCF growth rate over the previous year

FCF_Growth_1FW FCF growth rate over the following year (Bloomberg estimates)

FCF_Growth_3FW Annualzed FCF growth rate over the next 3 years (Bloomberg estimates)

Div growth Dividend growth rate over the previous year

EBITDA_Margin EBITDA Margin

Op_Margin Operating Margin

Prof_Margin Profit Margin

ROE Return on Equity

ROA Return on Assets

ROIC Return on Invested Capital

INTEREST_COVERAGE_RATIO Interest Coverage Ratio

TOT_DEBT_TO_TOT_EQY Debt to Equity ratio

CUR_RATIO Current ratio

NET_DEBT_TO_EBITDA Current Return on Equity

Accruals Current Return on Equity

Asset Turnover Asset turnover

PE Price to Earnings Ratio

PEG Price to Earnings Growth ratio

PB Price to Book ratio

FCF_YLD FCF Yield

EV_EBITDA EV/EBITDA

Div_Yld Dividend Yield

Buyback Yield Buyback Yield

Total Yield Dividend Yield + Buyback Yield

Impl_Vol Implied Volatility based on options

Vola30_Vola260 Volaility 30d vs Volatitility 260d

Vol30_Vol260 Volume 30d vs Volume 260d

MA50_MA200 Moving Average 30d vs Moving Average 200d

TRR_3M Total return over past 3 months

TRR_6M Total return over past 6 months

TRR_12M Total return over past 12 months

ADX Average Directional Index

RSI Relative Strength Index

EPS_SURPRISE_LAST_QTR % Actual vs Bloomberg Estimates EPS in the last available quarter

SALES_SURPRISE_LAST_QTR % Actual vs Bloomberg Estimates Sales in the last available quarter

EPS_SURPRISE_LAST_ANNUAL % Actual vs Bloomberg Estimates EPS in the last available year

SALES_SURPRISE_LAST_ANNUAL % Actual vs Bloomberg Estimates Sales in the last available year

Beta Market Beta

Growth

Quality

Momentum

Value
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Appendix 2 – Features’ significance per sector and period 

 
Source: Author calculations 

 

  

Factor HC Ind Mat RE Tech Uti Comm Disc Stap Energy Fin No. sectors* 2006-2010 2010-2014 2014-2018

Alpha_1m 2.9% 5.2% 88.3% 51.7% 71.7% 39.6% 90.7% 25.8% 69.7% 48.4% 1.6% 2 0.0% 22.0% 1.5%

Alpha_3m 3.0% 2.3% 91.0% 80.4% 44.7% 1.0% 73.0% 0.6% 4.5% 0.0% 14.5% 6 0.0% 0.5% 5.7%

Alpha_6m 63.3% 21.8% 91.6% 11.9% 18.2% 1.4% 6.9% 3.1% 2.9% 0.8% 3.0% 5 0.2% 0.1% 78.2%

Alpha_9m 68.1% 0.0% 39.1% 56.8% 2.3% 13.1% 1.3% 0.0% 1.8% 36.2% 0.0% 6 0.0% 0.0% 2.8%

Alpha_12m 3.3% 0.0% 0.7% 54.8% 0.2% 0.8% 0.3% 0.0% 0.1% 3.9% 0.0% 10 0.0% 0.0% 0.9%

Sales_Growth_3Y 0.0% 0.1% 9.6% 0.0% 0.0% 58.8% 0.0% 0.0% 0.5% 0.0% 0.8% 9 0.0% 0.6% 0.0%

Sales_Growth_1Y n/a 19.8% 17.8% 42.2% 0.0% 5.9% 30.0% 0.0% 6.1% 0.0% n/a 3 n/a 4.4% 0.0%

Sales_Growth_1FW 0.0% 0.1% 55.0% 90.7% 0.0% 0.6% 0.0% 0.0% 1.2% 0.6% 0.0% 9 0.0% 76.4% 0.2%

Sales_Growth_3FW 0.5% 0.0% 24.2% 2.4% 0.0% 35.7% 0.0% 0.0% 0.1% 1.7% 60.7% 8 10.8% 0.0% 0.0%

EBITDA_Growth_3Y 74.4% 6.4% 36.0% 1.9% 96.6% 0.7% 12.4% 0.4% 0.0% 9.3% 99.8% 4 0.0% 31.2% 0.0%

EBITDA_Growth_1Y 21.8% 0.2% 2.6% 0.2% 0.0% 0.0% 0.0% 4.4% 41.8% 0.0% 68.8% 8 0.0% 30.1% 0.0%

EBITDA_Growth_1FW 0.0% 1.6% 4.3% 84.2% 0.0% 40.7% 0.0% 32.9% 59.2% 0.1% 26.0% 6 17.9% 40.6% 0.0%

EBITDA_Growth_3FW 23.7% 0.0% 74.4% 0.0% 0.0% 16.4% 2.1% 93.1% n/a 0.9% 22.9% 5 13.0% 55.6% 0.0%

EPS_Growth_3Y 28.9% 21.5% 0.9% 57.0% 49.2% 21.6% 0.0% 6.4% 0.0% 0.0% 2.2% 5 0.3% 0.0% 0.0%

EPS_Growth_1Y 91.7% 0.5% 0.2% 78.8% 1.3% n/a 94.6% 22.6% 68.0% 75.0% 18.3% 3 0.0% 60.4% 0.0%

EPS_Growth_1FW 55.8% 1.7% 9.4% 3.1% 57.0% 44.8% 0.2% 1.9% 4.6% 35.1% 11.0% 5 0.0% 4.9% 3.2%

EPS_Growth_3FW 71.4% 0.0% 0.0% 0.0% 4.0% 6.1% 0.0% 2.4% 22.6% 0.0% 7.8% 7 0.0% 0.0% 0.0%

FCF_Growth_3Y 0.2% 5.9% n/a 17.0% 0.0% 0.0% 0.0% 0.8% 1.4% 2.5% n/a 7 0.0% 82.0% 0.8%

FCF_Growth_1Y 91.7% n/a n/a n/a 3.0% n/a n/a 10.3% n/a 1.3% n/a 2 0.0% 50.0% 16.6%

FCF_Growth_1FW 3.5% 19.3% 68.7% n/a n/a n/a 0.2% 66.3% 75.1% 2.1% n/a 3 n/a 1.2% 29.0%

FCF_Growth_3FW 5.3% 0.2% 0.9% 23.0% 4.4% 0.0% 71.8% 0.0% 0.4% 52.7% 0.1% 7 0.0% 0.0% 91.2%

Div growth 0.0% 0.0% 15.0% 31.4% 0.0% 0.1% 5.3% 0.0% 8.7% 4.6% 0.0% 7 0.0% 0.0% 28.4%

Number of Growth Factors** 7 11 6 7 13 6 11 11 8 13 5 12 9 13

EBITDA_Margin 0.0% 0.0% 23.9% 0.0% 0.0% 69.4% 0.0% 0.0% 0.0% 0.0% 0.0% 9 0.0% 0.1% 0.7%

Op_Margin n/a n/a n/a n/a n/a n/a n/a n/a n/a 68.7% n/a 0 n/a n/a n/a

Prof_Margin n/a n/a n/a n/a n/a n/a 13.1% n/a n/a n/a n/a 0 n/a n/a n/a

ROE n/a 0.0% 0.0% 13.7% n/a n/a n/a n/a n/a 0.0% n/a 3 0.0% 0.0% 0.0%

ROA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

ROIC n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

INTEREST_COVERAGE_RATIO 0.0% 0.0% n/a 17.2% 1.2% 7.4% 0.0% 0.7% 0.0% 0.0% 0.0% 8 0.0% 0.0% 0.0%

TOT_DEBT_TO_TOT_EQY 0.0% 4.7% 0.0% 0.2% 0.0% 4.4% 32.6% 64.4% 0.0% 0.0% 0.0% 9 0.0% 28.2% 0.0%

CUR_RATIO 0.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 5.5% 0.2% 0.0% 0.0% 10 0.1% 34.5% 0.0%

NET_DEBT_TO_EBITDA n/a 5.7% 0.0% 0.0% 0.0% n/a n/a n/a 0.0% 0.0% 2.9% 6 0.0% 12.9% 0.0%

Accruals 61.5% 0.0% 10.5% n/a 0.0% 0.9% 0.0% 57.1% 73.2% 3.7% 3.2% 6 0.4% 24.2% 0.0%

Asset Turnover 0.0% n/a n/a n/a 0.0% n/a 0.1% n/a n/a n/a n/a 3 0.0% 0.0% 59.9%

Number of Quality Factors 5 6 4 4 7 3 5 2 5 7 6 8 4 7

PE 30.5% 0.0% 0.0% 79.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 9 0.0% 0.0% 0.0%

PEG 17.3% 2.6% 7.9% 7.0% 79.8% 0.5% 48.7% 0.0% 8.9% 4.4% 0.0% 5 0.0% 0.2% 0.0%

PB n/a 0.0% 0.0% 3.4% n/a 0.0% 0.0% n/a 0.0% 9.7% n/a 6 0.0% 0.0% 0.0%

FCF_YLD 0.5% 0.0% 1.0% 1.8% 0.3% 25.5% 22.0% 0.0% 0.2% 13.9% 0.0% 8 0.0% 68.1% 0.0%

EV_EBITDA n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

Div_Yld 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 11 0.0% 0.0% 0.0%

Buyback Yield 25.5% 0.0% 0.0% 0.0% 0.0% 0.0% 89.5% 16.0% 99.3% 0.0% 61.8% 6 0.0% 0.0% 0.0%

Total Yield n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

Number of Value Factors 2 6 5 4 4 5 3 4 4 4 4 6 5 6

Impl_Vol 0.0% 0.0% n/a 17.0% 0.0% n/a 0.0% 0.0% 0.0% n/a 24.7% 6 0.0% 0.0% 0.4%

Vola30_Vola260 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 11 0.0% 0.0% 0.5%

Vol30_Vol260 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% n/a n/a 4.4% 26.9% 0.0% 8 0.0% 0.0% 0.0%

MA50_MA200 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

TRR_3M 0.0% 0.0% 53.0% 0.0% 18.5% n/a n/a 0.0% 0.0% 0.1% 0.0% 7 0.0% 0.0% 12.8%

TRR_6M 0.0% 35.9% 0.0% n/a n/a n/a n/a 0.0% 19.8% n/a 32.0% 3 0.2% 0.0% 0.2%

TRR_12M n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

ADX n/a n/a 0.0% 0.0% 0.0% 0.0% 12.4% 0.0% 0.0% 0.7% 0.0% 8 0.1% 0.1% 0.0%

RSI n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 n/a n/a n/a

EPS_SURPRISE_LAST_QTR 0.0% 8.4% 0.3% 0.0% 0.0% 0.6% 0.0% 0.0% 0.0% 0.5% 1.7% 10 5.6% 2.9% 0.1%

SALES_SURPRISE_LAST_QTR 0.0% 0.0% 0.0% 40.4% 13.4% 14.1% 34.8% 36.7% 57.2% 48.7% 2.7% 4 4.2% 0.0% 0.0%

EPS_SURPRISE_LAST_ANNUAL 0.5% 7.6% 21.7% 0.0% 0.0% 35.5% 1.2% 0.3% 0.0% 0.0% 12.0% 7 0.1% 0.0% 0.2%

SALES_SURPRISE_LAST_ANNUAL 0.0% 0.1% 17.6% 13.6% 0.0% 83.7% 0.1% 76.3% 22.5% 4.9% 99.0% 5 7.7% 3.0% 40.4%

Beta 0.7% 0.0% n/a 0.0% 0.0% 0.0% 2.3% 0.0% 0.0% 0.0% 0.0% 10 0.0% 0.0% 0.1%

Number of Momentum Factors 10 7 6 7 8 5 6 8 8 7 7 9 11 9

Total Number of Factors 24 30 21 22 32 19 25 25 25 31 22 35 29 35

* Represent the number of sectors in which we observe a p-value below 5%

** Represents the number of features that have a p-value below 5% in that sector / period

*** n/a means that feature was not considered in the analysis due to multicollinearity
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Appendix 3 - Logistic Regression 

The Logistic Regression is a classification algorithm that predicts the probability of a binary 

outcome of belonging to a given class. The regression hypothesis is based on the Sigmoid Function 

(𝜃𝑇𝑥): 

𝐻𝜃(𝑥) =  𝜎(𝜃𝑇𝑥) =  
1

1 +  𝑒(−𝜃𝑇𝑥)
(3.1) 

Results of 3.1 are rebased into the range [0, 1] (Figure 9), such that 𝐻𝜃(𝑥) is interpreted as a probability:  

𝐻𝜃(𝑥) =  𝑃(𝑦 = 1|𝑥) =  𝜎(𝜃𝑇𝑥) =  
1

1 + 𝑒(−𝜃𝑇𝑥)
                                                   (3.2) 

And 

𝑃(𝑦 = 0|𝑥) =  1 − 𝜎(𝜃𝑇𝑥) =  1 −
1

1 +  𝑒(−𝜃𝑇𝑥)
                                                    (3.3) 

 

Figure 9 - Logistic Function (Source: Hands-On Machine Learning with Scikit-Learn & TensorFlow) 

The Logistic Regression Loss Function, which evaluates the goodness of the parameters’ fit, is 

defined as: 

Ј(𝜃) =  −
1

𝑚
∑(𝑦𝑖 ln(𝑝𝑖))

𝑚

𝑖=1

+ (1 − 𝑦𝑖)(1 − ln(𝑝𝑖)) (3.4) 

Where: 

𝑝𝑖 =  𝐻𝜃(𝑥𝑖) =
1

1 +  𝑒(−𝜃𝑇𝑥)
(3.5) 

The Logistic Regression Loss Function is minimized throughout the training process and 

optimized in function of 𝜃 by using a gradient descendent function and deriving with respect to 

𝜃𝑗(∀𝑗 ∈ [0, 𝑛]): 

𝜕(𝐽(𝜃))

𝜕𝜃𝑗

=  − −
1

𝑚
∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)𝑥𝑗

𝑖

𝑚

𝑖=1

(3.6) 

Iteratively repeating: 

𝜃𝑗 =  𝜃𝑗 − 𝛼 (−
1

𝑚
∑(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)𝑥𝑗

𝑖

𝑚

𝑖=1

) (3.7) 

Where 𝛼 is the gradient descendent function’s learning rate. 
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Appendix 4 - Random Forest 

The Random Forest Classifier is an Ensemble Algorithm. Ensemble algorithms combine more 

than one algorithm for classifying objects. As outlined in Figure 10, Random Forests work by training 

several Decision Trees on random subsets of the features, and then averaging out their predictions.   

 

Figure 10 - Random Forest representation (Source: Hands-On Machine Learning with Scikit-Learn & TensorFlow) 

 The Decision Trees inside the Random Forest Classifier use the CART algorithm, where the 

Gini index is used as a metric. The Gini index in a cost function defined as:  

𝐺𝑖 = 1 − ∑ 𝑃𝑖,𝑘

𝑛

𝑘=1

2

(4.1) 

Where 𝑃𝑖,𝑘 is the ratio of class k amongst the training instances in the ith node. The Gini score 

states how good a split is by showing how mixed the classes are in the two groups created by the split. 

A Gini score of 0 indicates perfect separation, whereas the worst split results in 50/50 classes. The 

process in repeated recursively for every row and the data is split accordingly in a binary tree. 

The Gini Index is computed for every feature. Taking the average information entropy for the 

selected attribute: 

𝐻𝜃(𝑆) =  ∑ −𝑝(𝑐)𝑙𝑜𝑔2𝑝(𝑐) (4.2) 

Where 𝑐 =  {𝑦𝑒𝑠, 𝑛𝑜}, we are able to calculate the Gini gain. The best Gini gain attribute is 

picked, and the process repeated until the desired tree is reached. The CART algorithm splits the training 

set to minimize the MSE: 

𝐽(𝑘, 𝑡𝑘) =
𝑚𝑙𝑒𝑓𝑡

𝑚
𝑀𝑆𝐸𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡 (4.3) 

where:  {
𝑀𝑆𝐸𝑛𝑜𝑑𝑒 = ∑ (𝑦𝑛𝑜𝑑𝑒 − 𝑦𝑖)2

𝑖∈𝑛𝑜𝑑𝑒

𝑦𝑛𝑜𝑑𝑒 =
1

𝑚𝑛𝑜𝑑𝑒
∑ 𝑦𝑖

𝑖∈𝑛𝑜𝑑𝑒
                                                     (4.4) 

A forecast 𝑓 at a new point x can be made through: 

𝑓 𝑟𝑓
𝑏=1 𝑡𝑜 𝐵

𝐵 =
1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1
(4.5) 

Considering 𝐶𝑏(𝑥) as the class prediction of the bth decision tree. Then: 

𝐶𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶𝑏(𝑥)}1

𝐵 (4.6) 
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Appendix 5 - Support Vector Machines 

Support Vector Machines (SVM) are a classification method, firstly introduced by Vapnik 

(1995), that works by drawing a straight line between two classes. The data points that fall on a given 

side of the line are labeled as one class and the points that fall on the other side of the line are labeled as 

a second class. The goal is to find a hyperplane that maximizes the separation between classes. In the 

illustration shown in Figure 11, it is possible to observe how the red line maximizes the separation 

between the blue datapoints and the red ones. 

 

Figure 11 - Illustration of an SVM classifier (Source: Hands-On Machine Learning with Scikit-Learn & TensorFlow)  

Mathematically, given a dataset {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑙 ,  𝑥𝑖 ∈ ℝ𝑛, 𝑦𝑖 = ±1, where 𝑥𝑖 is an input vector and 

𝑦𝑖 is the class label, the SVM approximates a separating hyperplane through: 

𝑓(𝑥) = 𝑤. ∅(𝑥) + 𝑏 (5.1) 

Where ∅(𝑥) is a high dimensional feature space. 

The optimal hyperplane for equation 5.1 is found by setting the value of the margin to 
2

|𝑤|
. The 

maximum value for the margin is found though a minimization process to estimate w and b: 

𝑀𝑖𝑛 𝐶 ∑ 𝜀𝑖 +
1

2
 |𝑤|2

𝑙

𝑖=1
(5.2) 

𝑠. 𝑡.  𝑦𝑖(𝑤. ∅(𝑥) + 𝑏 ≥ 1 − 𝜀𝑖, 𝑖 = 1, … , 𝑙 

In equation 5.2, 𝐶 ∑ 𝜀𝑖
𝑙
𝑖=1  sums the training errors. C is a user-defined parameter that determines 

the trade-off between training error and margin, and 
1

2
 |𝑤|2 maximizes the margin. If one applies the 

Lagrange multipliers 𝛼𝑖 to exploit the optimality conditions, equation 5.1 takes the form: 

𝑓(𝑥, 𝛼𝑖) = ∑ 𝛼𝑖 , 𝑦𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏
𝑙

𝑖=1
(5.3) 

Where 𝛼𝑖 is obtained by optimizing equations 5.2 and 5.3: 

𝑅(𝛼𝑖) = ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑥𝑖𝑥𝑗𝐾(𝑥𝑖 , 𝑥𝑗)

𝑙

𝑗=1

𝑙

𝑖=1

𝑙

𝐼=1
(5.4) 

𝑠. 𝑡.  ∑ 𝛼𝑖𝛼𝑗 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶
𝑙

𝑖=1
 

𝐾(𝑥𝑖, 𝑥𝑗) is known as the kernel function. The user determines which kernel function is 

appropriate. Given the non-linearity of our original problem, we followed the advice of Raschka and 

Mirjalili (2019) and opted to use the Radial Basis Function kernel, which is a non-linear kernel. 
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Appendix 6 - Gradient Boosting 

Like the Random Forest, the Gradient Boosting is a ML technique used for regression and 

classification problems, which consists of an ensemble of weaker models. The boosting method consists 

in generalizing weaker models though the optimization of an arbitrary differentiable function. The 

“boosting” idea was first observed by Breiman (1998) and subsequently developed by Friedman (1999). 

Using a training set {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} of inputs x and outputs y, the objective is to find an 

approximation Ĝ(𝑥) to a function 𝐺(𝑥), minimizing the expected value of a loss function 𝐿(𝑌, 𝐺(𝑥)): 

Ĝ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐸𝑥,𝑦[𝐿(𝑦, 𝐺(𝑋))] (6.1) 

The Gradient Boosting seeks to find an approximation Ĝ(𝑥) in the form of a weighted sum of 

functions hi(x), which are the weak learners: 

Ĝ(𝑥) = ∑ 𝛾𝑖ℎ𝑖(𝑥) + 𝑏
𝑚

𝑖=1
(6.2) 

 As per the empirical risk minimization principle (Vapnik 1995), the value of Ĝ(𝑥) should be 

such that it minimizes the loss function on the training set. As shown in Figure 12, the algorithm starts 

with an initial model consisting of a constant function 𝐺0(𝑥) and incrementally expands it by adding 

other weaker learners: 

𝐺0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝛾)
𝑛

𝑖=1
(6.3) 

𝐺𝑚(𝑥) = 𝐺𝑚−1(𝑥) + 𝑎𝑟𝑔𝑚𝑖𝑛 [∑ 𝐿(𝑦𝑖 , 𝐺𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖))
𝑛

𝑖=1
] (6.4) 

Where ℎ𝑚 ∈ 𝐻 is a weaker learner function. The number of weaker learners should be pre-

defined by the user in order to avoid the overfitting to the training set.  

 

Figure 12 - Illustration of the Gradient Boosting expanding process (Source: Hands-On Machine Learning with Scikit-Learn 

& TensorFlow) 
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Appendix 7 - Strategy 1 monthly returns 

 

Source: Author calculations 

 

Appendix 8 - Strategy 2 monthly returns 

 

Source: Author calculations 

 

Appendix 9 – Precision and Accuracy of Strategy 2 applied to the NSP for different holding 

periods 

 

Source: Author calculations 

Year January February March April May June July August September October November December YTD

2006 3.9% 3.7% -0.1% 7.5%

2007 3.7% -0.3% 0.7% 3.8% 4.0% -1.8% -3.7% 0.5% 3.2% 2.3% -4.7% -1.4% 6.3%

2008 -6.4% -2.0% -1.2% 6.0% 3.6% -9.0% -1.9% 2.2% -12.3% -22.0% -9.4% 3.2% -49.1%

2009 -8.4% -10.1% 8.6% 12.1% 3.4% 0.6% 8.6% 4.3% 4.7% -3.1% 5.1% 5.2% 30.9%

2010 -3.8% 4.5% 6.5% 3.4% -7.1% -5.5% 6.8% -4.3% 10.2% 3.9% 1.7% 6.4% 22.4%

2011 2.0% 4.2% 1.8% 3.4% -0.8% -1.7% -3.1% -6.7% -9.6% 13.3% -0.7% -0.1% 1.9%

2012 6.3% 4.3% 2.5% -0.6% -7.6% 2.9% -0.6% 3.5% 2.5% 0.1% 1.8% 1.9% 16.9%

2013 6.9% 1.8% 4.3% 1.0% 2.0% -1.2% 5.9% -2.7% 4.6% 4.3% 2.7% 3.2% 32.7%

2014 -2.0% 5.6% 0.2% -1.0% 2.6% 3.0% -2.5% 4.7% -3.0% 4.3% 3.3% 0.3% 15.6%

2015 -1.3% 5.8% 0.3% -1.0% 2.4% -1.0% 2.6% -5.6% -2.7% 6.1% 1.2% -2.1% 4.6%

2016 -6.5% 1.1% 7.2% 1.0% 2.3% 0.3% 3.9% 0.4% 0.0% -2.7% 4.5% 1.2% 12.8%

2017 2.4% 3.5% 0.5% 1.8% 1.8% 0.7% 2.0% 0.7% 2.7% 2.7% 3.9% 0.8% 23.4%

2018 4.9% -2.8% 0.3% -0.1% 3.2% 1.0% 2.9% 4.1% 0.3% -8.8% 2.4% -8.2% -0.8%

2019 9.3% 5.9% 2.1% 4.7% -2.9% 6.4% 2.3% -0.7% -1.2% 26.1%

Year January February March April May June July August September October November December YTD

2006 3.8% 3.9% 0.4% 8.2%

2007 4.4% -0.6% 0.9% 3.8% 4.9% -1.6% -4.0% 0.3% 3.6% 2.5% -6.1% -1.8% 6.2%

2008 -6.3% -2.2% -0.5% 6.1% 3.0% -10.6% -1.9% 2.1% -13.7% -21.1% -7.4% 3.4% -49.1%

2009 -6.6% -9.5% 8.4% 10.6% 3.4% 0.0% 7.8% 3.7% 4.5% -4.9% 4.9% 6.6% 28.9%

2010 -3.6% 5.0% 6.5% 4.3% -7.7% -7.2% 7.1% -5.3% 11.2% 4.1% 1.9% 5.7% 21.9%

2011 2.0% 4.0% 2.2% 3.2% -0.7% -1.1% -3.0% -5.3% -8.9% 12.8% 0.3% -0.4% 5.0%

2012 6.5% 4.5% 3.3% 0.2% -6.6% 3.1% -0.2% 3.7% 1.5% -1.1% 3.0% 0.9% 18.9%

2013 6.8% 2.2% 5.6% 1.7% 2.9% -1.3% 5.6% -1.9% 5.2% 4.9% 2.8% 3.4% 38.0%

2014 -1.7% 5.7% -0.1% -2.2% 2.8% 3.5% -2.9% 5.4% -3.0% 2.4% 3.0% -0.5% 12.5%

2015 -3.0% 6.9% 0.4% -0.1% 2.2% -1.1% 2.5% -5.8% -3.6% 6.9% 1.1% -1.3% 5.1%

2016 -7.6% 1.2% 7.9% 1.1% 2.6% 1.0% 5.4% -0.6% -0.1% -2.4% 5.8% 0.8% 15.0%

2017 2.5% 3.5% 0.8% 3.1% 3.4% 0.5% 2.5% 0.6% 3.5% 3.4% 4.5% 0.5% 28.9%

2018 6.3% -2.4% 0.9% 0.1% 4.3% 1.4% 2.7% 6.1% 1.3% -11.2% 2.7% -7.7% 4.4%

2019 11.2% 7.1% 2.5% 4.8% -2.7% 6.4% 2.9% -1.1% -2.7% 28.5%

Year Precision Accuracy Precision Accuracy Precision Accuracy

2014 55.6 67.4 40.0 62.8 100.0 76.7

2015 40.0 55.9 50.0 50.0 66.7 61.8

2016 100.0 47.2 75.0 27.8 80.0 38.9

2017 100.0 57.9 70.0 73.7 69.2 68.4

2018 0.0 50.0 100.0 64.7 100.0 73.5

Average 59.1 55.7 67.0 55.8 83.2 63.9

6 months 9 months 12 months
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