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ABSTRACT 
 

Epithelia form the barrier that protects our body against the external environment. An injury represents 

a challenge to barrier homeostasis and must be repaired efficiently to maintain epithelial integrity and 

function. Wound healing in different types of epithelia varies in complexity but encompasses a series of 

conserved responses. The wound triggers the release of molecules that signal to the surviving tissue, leading 

to a cascade of events that include an immune response, and coordinated changes in the cellular 

cytoskeleton and adhesion machineries to close the wound and restore epithelial integrity. Understanding 

the molecular mechanisms involved in these different steps is highly relevant from the biological and 

biomedical perspective. Embryonic tissues have a remarkable ability to deal with injury by closing the wounds 

in a quick and scarless manner. The lessons learned from this model system should be useful to improve the 

current therapeutics for wound healing complications in humans, such as chronic wounds. Embryonic wound 

healing relies on the formation of a contractile cable at the wound leading edge, formed by the actin and 

myosin cytoskeleton, that coordinates the collective tissue movement that brings the wound edges together 

and closes the gap. This process is coordinated with cell crawling, cellular rearrangements and shape changes, 

in order to close the wound without the involvement of cell proliferation.  

Mitochondria are pivotal organelles for cell survival. Known as the powerhouse of the cell due to their 

energy production capability, they also perform other critical cellular functions, such as the regulation of 

calcium and redox homeostasis and apoptosis. Mitochondria are dynamic organelles, being able to change 

their shape, number and localization to adapt to the cellular needs. These events are collectively termed 

mitochondrial dynamics and play an important role in modulating mitochondrial functions. Mitochondrial 

dynamics includes fusion and fission events, which modulate morphology; mitochondrial biogenesis and 

mitophagy, which regulate mitochondrial number and quality control; and mitochondrial trafficking, which 

controls the subcellular distribution of mitochondria in response to the cellular needs. Dysfunction in the 

molecular machinery that governs mitochondrial dynamics is associated with a plethora of human 

pathologies, such as cancer, and neurodegenerative and metabolic diseases. However, the role of 

mitochondria and mitochondrial dynamics in epithelial repair in vivo has so far not been investigated.  

In this work, we took advantage of genetically-encoded fluorescent markers, high-resolution imaging 

and advanced laser ablation techniques to understand the contribution of mitochondrial dynamics to 

epithelial repair in vivo, in the Drosophila embryonic epidermis. Using a genetic screen assay, we identified 

proteins involved in mitochondrial fission, fusion and trafficking as novel wound healing regulators. In vivo 

live imaging of the wound closure process revealed that Dynamin related protein 1 (Drp1) and Optic Atrophy 

1 (Opa1) proteins, that are central players in mitochondrial fission and fusion, respectively, regulate calcium 
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and actin cytoskeleton dynamics during wound healing. Moreover, we showed that wounding induces 

changes in mitochondrial morphology in the cells facing the wound, suggesting that the injury induces 

mitochondrial fission. We found that Drp1 loss of function leads to defects in both cytosolic and 

mitochondrial calcium dynamics upon wounding. Calcium ions are important second messengers in a myriad 

of signalling pathways and key players in the most important wound healing events. Wounding induces a 

quick and striking increase in intracellular calcium in the cells closer to the wound, which triggers a cascade 

of events that leads to the formation of the contractile cable and consequent wound closure. We showed 

that, besides this rise in cytosolic calcium, wounding also prompts an increase in mitochondrial calcium upon 

wounding. The uptake of calcium by mitochondria is known as an essential mechanism in controlling cytosolic 

calcium levels. Given the pleiotropic effects of calcium ions in the cell, its concentration needs to be tightly 

regulated in a spatial and temporal manner. Based on our results, we propose that Drp1 regulates the 

mitochondrial calcium buffering capacity, which then controls cytosolic calcium levels. Consistent with the 

described role of calcium in coordinating F-actin dynamics during wound healing, we also show that Drp1 

mutants display significant defects in F-actin accumulation at the wound edge and in wound closure kinetics. 

Altogether, our results lead us to propose a model where mitochondrial fission is induced upon injury; this 

leads to a controlled increase in intracellular calcium, which then activates the main cytoskeleton changes 

needed to promote efficient wound healing. This work places Drp1 and mitochondrial fission as upstream 

players in the cascade leading to the main events of wound healing. As calcium and F-actin are crucial 

elements of the wound healing response across different types of epithelia, our work has relevant 

implications in the understanding of epithelial repair in other systems. Finally, our results also expand the 

knowledge about mitochondria biology and their relevance for different cellular processes.  
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RESUMO 
 

Os epitélios formam uma barreira que protege o nosso corpo do ambiente externo. Uma lesão constitui 

um desafio a esta função de barreira e deve ser resolvida de forma eficiente para manter a integridade e 

função dos epitélios. A cicatrização de feridas varia no grau de complexidade depedendo do tipo de epitélio, 

mas envolve uma série de respostas conservadas. A ferida promove a libertação de moléculas que servem 

como sinais para o tecido circundante coordenar uma cascata de eventos, que inclui uma resposta imunitária 

e alterações coordenadas no citoesqueleto e adesões celulares, de forma a fechar a ferida e restaurar a 

integridade epitelial. Compreender os mecanismos moleculares envolvidos nestes diferentes passos é 

extremamente relevante do ponto de vista biológico e biomédico. Os tecidos embrionários têm uma 

capacidade notável de resolver lesões, fechando as feridas de forma rápida e sem deixar cicatriz. O 

conhecimento adquirido através destes modelos poderá ser útil para melhorar as terapêuticas atuais para 

complicações inerentes à cicatrização de feridas em humanos, como é o caso das feridas crónicas. A 

cicatrização de feridas no estádio embrionário envolve a formação de um cabo contrátil de actina e miosina 

na margem da ferida que coordena o movimento coletivo do tecido de forma a aproximar os limites da ferida 

e fechar a brecha. Este processo acontece em paralelo com migração celular e rearranjos na forma e posição 

das células, de forma a fechar a ferida sem o envolvimento de proliferação celular.  

As mitocôndrias são organelos cruciais para a sobrevivência das células. São organelos conhecidos 

principalmente pela sua capacidade de produção de energia, mas desempenham outras funções críticas nas 

células, tais como a regulação do cálcio e do estado redox, e da morte celular. As mitocôndrias são organelos 

dinâmicos, com a capacidade de mudar a sua forma, número e localização como forma de adaptação às 

necessidades celulares. Estes processos são denominados de dinâmica mitocondrial e possuem um papel 

importante no controlo das funções mitocondriais. A dinâmica mitocondrial inclui eventos de fusão e fissão 

que modulam a morfologia das mitocôndrias, processos de biogénese e mitofagia que regulam o número de 

mitocôndrias e o seu controlo de qualidade, e mecanismos de tráfego mitocondrial que controlam a 

localização subcelular das mitocôndrias em resposta às necessidades da célula. A disfunção na maquinaria 

molecular que controla a dinâmica mitocondrial está associada a várias patologias humanas, tais como 

cancro e doenças neurodegenerativas e metabólicas. Contudo, o papel das mitocôndrias e dinâmica 

mitocondrial na reparação de tecidos in vivo não foi até agora investigado.  

Neste trabalho tirámos partido de marcadores fluorescentes geneticamente codificados, imagiologia de 

alta resolução e técnicas de ablação avançadas para compreender a contribuição da dinâmica mitocondrial 

na reparação epitelial in vivo, usando a epiderme do embrião da mosca-da-fruta (Drosophila melanogaster) 

como modelo. Este estudo permitiu-nos identificar proteínas envolvidas na fissão, fusão e tráfego 

mitocondrial como novos reguladores da cicatrização de feridas. A observação do processo de fecho de ferida 

in vivo e em tempo real revelou que as proteínas Drp1 e Opa1, envolvidas na fissão e fusão mitocondrial, 
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respetivamente, regulam o cálcio e o citoesqueleto de actina durante a cicatrização da ferida. 

Adicionalmente, descobrimos que a ferida promove alterações na morfologia mitocondrial que sugerem uma 

indução de fissão mitocondrial. A perda de função de Drp1 conduz a defeitos na dinâmica do cálcio citosólico 

e mitocondrial em resposta à ferida. Os iões de cálcio são importantes segundos-mensageiros em várias vias 

de sinalização e são reguladores fundamentais no processo de cicatrização de feridas. A ferida induz um 

aumento rápido e dramático no aumento dos níveis intracelulares de cálcio, que despoleta a cascata de 

eventos que culmina na formação do cabo de actina e miosina e consequente fecho da ferida. Neste trabalho 

mostrámos que, para além do aumento de cálcio no citosol, a ferida também induz um aumento no cálcio 

mitocondrial. Sabe-se que o influxo de cálcio para o interior das mitocôndrias é um mecanismo essencial para 

a regulação dos níveis de cálcio no citosol. Dado a variedade de funções desempenhadas pelo cálcio, a sua 

concentração celular deve ser regulada no tempo e no espaço. Com base nos nossos resultados, propomos 

que Drp1 regula a capacidade de captação de cálcio pelas mitocôndrias, o que por sua vez controla os níveis 

de cálcio no citosol. Em concordância com o papel descrito do cálcio na regulação do citoesqueleto de actina 

durante a cicatrização de feridas, mostrámos ainda que mutantes para Drp1 possuem defeitos significativos 

na acumulação de actina nas margens da ferida e na dinâmica de fecho da ferida. Em suma, os nossos 

resultados levam-nos a propor um modelo onde a fissão mitocondrial é induzida pela ferida, levando a um 

aumento controlado dos níveis intracelulares de cálcio, o que então regula as alterações no citoesqueleto 

necessárias para promover a cicatrização de forma eficiente. Este trabalho coloca a proteína Drp1 e a fissão 

mitocondrial no topo da cascata de sinalização que leva aos principais eventos na cicatrização de feridas. 

Dado que o cálcio e a actina são elementos cruciais na resposta à ferida em diferentes tipos de tecidos 

epiteliais, o nosso trabalho tem implicações relevantes na compreensão da reparação de tecidos noutros 

sistemas. Por fim, os nossos resultados aumentam o conhecimento da biologia mitocondrial e da sua 

relevância para diferentes processos celulares.  
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“What we know is a drop, what we don’t know is an ocean.” 

- Isaac Newton 
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1. EPITHELIAL WOUND HEALING 

For Metazoans, the maintenance of epithelial integrity is critical to sustain life. Epithelial tissues cover 

all the exposed surfaces of our body, inside and out, and form the functional units of secretory glands. 

Epithelia are cohesive sheets of specialized cells for absorption, secretion and to act as a barrier against 

abrasion, radiation, chemical stress and invasion by pathogens. Epithelia are classified in terms of the number 

of cell layers and the shape of the epithelial cells. They can be simple, when composed of just one cell layer, 

or stratified, containing several layers of epithelial cells. Epithelia are classified as squamous (flat cells), 

cuboidal (similar cellular width and height) or columnar (tall cells). The cellular shape and the tissue 

stratification are related to the epithelial function. For example, the stratified nature of our skin is ideal for 

its barrier function. In contrast, the squamous shape of the alveolar cells from our lungs facilitates gas 

exchanges (Lowe and Anderson, 2015). Given all the critical functions of epithelial tissues, it is of the upmost 

importance to deal with injury in a quick, efficient way. Epithelial cells have developed mechanisms to cope 

with wounds, either at the single cell level, or at the tissue scale.  

This thesis has focused on wound healing of the Drosophila melanogaster (hereafter Drosophila) 

embryonic epidermis, a simple epithelium. A detailed review of embryonic and other simple epithelia repair 

mechanisms will be provided in this section, along with brief mentions to single cell repair and wound healing 

of more complex epithelia. 

 

1.1. Embryonic and simple epithelia  

 Embryonic tissues have been used as models to understand epithelial repair because of their 

remarkable ability to efficiently deal with injury (Garcia-Fernandez et al., 2009). Early studies, relying on 

electron microscopy, have highlighted that the embryonic wound closure process is very fast, ranging from 

minutes to less than a day (Smedley and Stanisstreet, 1984; Stanisstreet et al., 1980). The current view of the 

phases of this process are depicted in Figure 1. Damage signals released by the wounded tissue trigger a 

response by the surviving cells. This response leads to the accumulation of cytoskeleton components, namely 

actin filaments and non-muscle myosin II (hereafter called myosin) molecular motors at the wound edge, 

forming a ring-like contractile structure called the actomyosin cable (Rothenberg and Fernandez-Gonzalez, 

2019). As the actomyosin structures form, immune cells from the leukocytic lineage, such as macrophages 

and neutrophils, are recruited to the wound in order to clear cell debris and fight the entry of pathogens. 

Sliding of myosin motors along actin filaments at the front-edge of wound-facing cells leads to tissue 

movement, contraction and concomitant reduction of the wound area over time. In addition, and possibly as 
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a consequence, wound edge cells elongate to further reduce the wound size. In 

addition to the actomyosin cable, leading edge cells form actin-rich protrusions 

that promote cell crawling and mediate contacts between opposing sides of the 

wound (Cordeiro and Jacinto, 2013). 

We will now address these steps in more detail, highlighting the known 

and unknown molecular mechanisms involved in the repair of embryonic and 

other simple epithelia. 

 

1.1.1. Actomyosin cable 

Wound healing of embryonic epithelia is characterized by accumulation of 

F-actin and Myosin at the cell membranes that face the wound, forming an 

actomyosin cable. Actin is the most abundant intracellular protein and exists in 

two conformations: as a globular monomer called G-actin and as a 

filamentous polymer called F-actin. Actin filaments are formed by 

polymerization of G-actin subunits, with consequent expenditure of adenosine 

triphosphate (ATP). F-actin organization in complex networks forms a 

cytoskeleton that modulates cellular shape. The polymerization, 

depolymerization and organization of F-actin into different types of networks 

are regulated by actin-binding proteins. Actin is also involved in the formation 

of cellular protrusions, like microvilli, which increase the apical membrane surface area, or filopodia and 

lamellipodia, which establish contacts with the underlying cell substrate and are involved in cell migration 

(Lodish et al., 2000).  Myosins are molecular motors that move along actin filaments by conformational 

changes induced by hydrolysis of ATP. Myosin is a multimeric protein, composed of two heavy chains (MHC), 

two essential light chains (MELC) and two regulatory light chains (MRLC) (Betapudi, 2014). The movement of 

myosin across F-actin networks generates contractile forces. The actin-myosin contractile machinery spans 

the apical cell surface of the epithelial cells and is anchored to cell-cell junctions, namely the Adherens 

Figure 1. Wound healing in embryonic tissues.  

The wound healing process includes the formation of actomyosin structures that 

promote tissue contraction and cell elongation to bring the wound edge cells together. 

Immune cells are recruited to the wounded region to clear cell debris and prevent 

infection. Actin protrusions mediate the final adhesion of the wound edge cells. 

Adapted from (Cordeiro and Jacinto, 2013). 
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Junctions (AJs). This localization allows contraction that lead to changes in cell shape and are coupled with 

tissue movements (Kasza and Zallen, 2011).  

In the early 90s, Martin and Lewis characterized the closure of the chick embryo epidermis and observed 

that the epidermal tissue moves inwards over time. The fact that lamellipodia were not detected in the 

leading-edge cells suggested that this movement was independent of cell migration. Combined with the 

observation that the tissue was under tension, it led them to propose that closure must rely on 

circumferential contractile forces at the wound margin, that bring the wound edges together, closing the 

hole in a purse string manner. Consistent with this hypothesis, they observed accumulation of F-actin at the 

wound edge minutes after wounding and remaining there until the wound was closed (Martin and Lewis, 

1992). The purse string hypothesis (Martin and Lewis, 1992) was compatible with previous observations that 

the shape of the epidermal cells changes upon wounding, suggesting that the tissue is under tension, and 

that the leading-edge cells elongate during wound closure, indicating that they are being pulled by contractile 

forces (Smedley and Stanisstreet, 1984; Stanisstreet et al., 1980). A few years later, the same purse string 

wound closure mechanism was observed in the mouse embryo and disruption of the actin cable by 

cytochalasin D treatment impaired re-epithelialization, confirming its requirement for proper wound closure 

(McCluskey and Martin, 1995). It was also found that myosin was part of the cable, accumulating at the 

wound edge together with F-actin, further highlighting the contractile nature of this ring-like structure 

(Bement et al., 1993; Brock, 1996).  

Over the past years, many efforts have been made to understand how epithelia sense the wound and 

form the actomyosin cable. Actomyosin cables are not exclusive of wound healing. They have been observed 

during morphogenesis in embryonic development (Jacinto et al., 2002; Wood et al., 2002; Young et al., 1993), 

in extrusion of apoptotic cells (Ninov et al., 2007; Rosenblatt et al., 2001), and during the separation of 

dividing cells in the process of cytokinesis (Pollard, 2010). Studies on these processes have also helped to 

understand how actomyosin cables work in wound healing. Advances in microscopy techniques, allowing the 

live imaging of the wound closure process have improved our understanding of how the actomyosin cable is 

formed and how it drives wound closure. 

 

1.1.2. Cell migration 

Studies in epithelial monolayers in vitro have shown that wounds can close either by actomyosin cable-

mediated contraction or by cell migration/crawling to cover the wound or a combination of the two processes 

(Altan and Fenteany, 2004; Begnaud et al., 2016; Bement et al., 1993; Fenteany et al., 2000; Tamada et al., 
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2007). Cell migration is not exclusive of wound healing in vitro. Wounds in the Drosophila abdomen epidermis 

also close through cell shape changes and lamellipodia formation (Rämet et al., 2002) and in embryonic 

wound healing the actin protrusions work together with the actomyosin cable to drive the collective 

movement of the epithelial tissue. 

Cell migration-mediated wound closure involves actomyosin cytoskeleton remodelling to form 

protrusive structures and to create the intracellular forces required for cell movement. Cells adjacent to the 

wound repolarize and become migratory and lead the other epithelial cells, in a process referred to as 

collective cell migration (Begnaud et al., 2016). Polarized leader cells extend protrusions in the direction of 

movement. Cell migration is associated with two types of F-actin protrusions: lamellipodia, which look like 

large sheets, and contain highly branched and cross-linked actin filaments (Ballestrem et al., 2000); and 

filopodia, thin finger-like structures, with parallel bundles of F-actin, that often project beyond the edge of 

the lamellipodium (Mattila and Lappalainen, 2008). The generation of the intracellular forces occurs through 

attachment sites, called focal adhesions (FAs). FAs link the intracellular actin cytoskeleton with the 

extracellular matrix (ECM) and this interaction is mediated by integrins. New FAs form behind the leading 

edge of the cell and pull the cell forward. Release of attachment sites at the rear of the cell allows the rear 

end to move in the direction of movement (Lambrechts et al., 2004). The regulators of the actomyosin cable 

and F-actin protrusions are conserved and are discussed below (1.1.3 Rho GTPases and their effectors and 

1.1.4 Calcium). 

 

1.1.3. Rho GTPases and effectors 

The regulation of actomyosin contractile structures relies on the action of Ras homologous (Rho) GTPase 

protein family. Rho GTPases are cytoskeletal regulators that alternate between an inactive (GDP-bound) and 

an active (GTP-bound) form. This switch is regulated by Rho guanine nucleotide exchange factors (RhoGEFs), 

which catalyse the phosphorylation of GDP to GTP, and by Rho GTPase-activating proteins (RhoGAPs), which 

hydrolyse the GTP to GDP. When active, Rho GTPases are able to activate effector proteins that regulate F-

actin polymerization and myosin contraction. In mammals, this protein family is composed of 20 proteins, 

but the most well studied and conserved members are Rho, Rac and the Cell division control protein 42 

homolog (Cdc42) (Heasman and Ridley, 2008; Sit and Manser, 2011). Rho GTPases are known regulators of 

the actin cytoskeleton in mammalian cultured cells (Hall, 1994) and are also important during wound healing 

in vivo (Abreu-Blanco et al., 2012a; Brock, 1996) 
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In the wound healing of the chick wing bud during development, treatment with C3 transferase, a 

bacterial enzyme that inactivates Rho, prevents the assembly of the actomyosin cable, leading to failure of 

wound closure. The Rho protein was found to be indispensable for actomyosin cable formation (Brock, 1996). 

In Drosophila, Rho1 mutants or embryos expressing dominant-negative (DN) versions of Rho1 fail to form the 

actomyosin cable during dorsal closure, a morphogenetic movement during Drosophila embryonic 

development that resembles wound closure (Lu and Settleman, 1999; Magie et al., 1999). The family of Rho 

GTPases cooperates during wound healing: Rho1 regulates the formation of the actomyosin cable and Cdc42 

mediates filopodia and lamellipodia formation. F-actin protrusions are important to mediate cell crawling 

during the contraction phase and to mediate the final approximation and adhesion of the wound-edge cells 

in the final stages of wound closure (Abreu-Blanco et al., 2012b; Verboon and Parkhurst, 2015; Wood et al., 

2002). In vitro, Rac is the Rho GTPase responsible for lamellipodia formation (Das et al., 2015; Fenteany et 

al., 2000; Yamaguchi et al., 2015). The role of Rac in wound closure in vivo is less clear. Expression of DN-Rac 

in both the chick wing bud (Brock, 1996) and mutations in Rac genes in the Drosophila embryo (Wood et al., 

2002) do not lead to detectable wound healing defects. However, a more recent study has identified a 

significant wound healing delay in Rac mutants, although no visible impairment in either the actomyosin 

cable or the actin protrusions was detected (Verboon and Parkhurst, 2015). 

Active Rho GTPases exert their function by activating effector proteins that regulate F-actin and myosin. 

Rho1 effectors include the formin Diaphanous (Dia) and the Rho kinase (Rok). Dia promotes the 

polymerization of unbranched F-actin (Narumiya et al., 1997). Rok acts on myosin by activating MRLC, either 

directly, by phosphorylation, or indirectly, by inactivation of myosin phosphatases, leading to actomyosin 

contractility (Amano et al., 1996; Kimura et al., 1996; Ueda et al., 2002). Knockdown of both Rok and Dia 

impairs actomyosin dynamics in the Drosophila pupa wound healing (Antunes et al., 2013). Rok2 mutant 

embryos show delayed wound healing (Verboon and Parkhurst, 2015) and dia5 mutants have defects in the 

formation of the actomyosin cable and actin protrusions (Matsubayashi et al., 2015). The Cdc42 effector 

protein Wiskott-Aldrich Syndrome protein (WASp) and the Rac effector WASp-family verprolin homologous 

protein (WAVE), both implicated in the nucleation of branched actin filaments (Miki and Takenawa, 2003), 

have also been linked to Drosophila embryonic wound healing, but their roles are still not well understood 

(Matsubayashi et al., 2015).  

The actomyosin cable and the actin protrusions collaborate to drive wound closure (Abreu-Blanco et al., 

2012b; Ducuing and Vincent, 2016). Disruption of either of the actin-based structures leads to delayed wound 

healing, but the wounds eventually close. Rho1 and zip1 (zipper, the Drosophila MHC gene) mutants, in which 

the actomyosin cable does not fully form, are able close their wounds by increased formation of actin 

protrusions. Conversely, the wounds in cdc42 mutants, are able to contract through the action of the 
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actomyosin cable and defects are only observed in the final adhesion stage (Abreu-Blanco et al., 2012b; Wood 

et al., 2002). The absence of either mechanism of wound closure seems to be compensated by the other. 

Only the simultaneous disruption of the actomyosin cable and actin protrusions leads to fully impairment of 

wound healing (Abreu-Blanco et al., 2012b). 

 

1.1.4. Remodelling of cell junctions 

The AJs mediate adhesion between neighbouring cells, thus being essential to maintain tissue 

architecture. AJs are composed of: 

-  calcium-dependent transmembrane proteins called cadherins. About 20 different cadherins have 

been described but E-cadherin is characteristic of epithelial tissues (Takeichi, 1988). Binding of calcium 

controls the conformation of the cadherin extracellular domain, leading to homophilic interactions between 

cadherins of neighbouring cells (Pokutta et al., 1994).   

- cytosolic proteins called catenins, which include p120-catenin, α-catenin and β-catenin. These 

catenins in turn bind a variety of other molecules. 

AJs are connected to the actin cytoskeleton via α-catenin, that binds both β-catenin and actin 

cytoskeleton regulators such as vinculin. In polarized epithelial cells, AJs are localized apically on the cell 

lateral membrane and  an adhesion belt, called the circumferential actin belt, as they completely encircle the 

cells along with the F‑actin lining on the cytosolic side (Hartsock and Nelson, 2008; Meng and Takeichi, 2009).  

 

During wound healing, at the same time of actomyosin cable formation, E-cadherin has been found to 

localize in clusters at the wound margin, presumably representing the sites that link the actomyosin cable in 

adjacent cells (Brock, 1996). The AJ components E-cadherin (Abreu-Blanco et al., 2012b; Brock, 1996), α-

catenin (Wood et al., 2002) and β-catenin (Zulueta-Coarasa et al., 2014) are removed from the cell cortex 

that face the wound and remain only at the cell-cell junctions linking adjacent cells. E-cadherin exclusion from 

the wound edge is mediated through remodelling by endocytosis (Hunter et al., 2015; Matsubayashi et al., 

2015) and by transcriptional regulation by the NFB-pathway (Carvalho et al., 2014). The dynamics of E-

cadherin localization is critical for the formation of the actomyosin cable, as both E-cadherin mutations and 

overexpression impair the formation of the actomyosin cable (Abreu-Blanco et al., 2012b; Hunter et al., 2015; 

Matsubayashi et al., 2015). 

Besides AJs, other types of cell junctions have been implicated in wound healing. Occluding Junctions 

(OJs) localize close to the AJs. OJs are known for their permeability barrier function, controlling the 

transepithelial passage of molecules, and for maintenance of cell polarity, constituting a “fence” that 
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separates the apical and basolateral membrane compartments. OJs are termed Tight Junctions (TJs) in 

vertebrates and Septate Junctions (SJs) in invertebrates (Jonusaite et al., 2016; Shen, 2012). Recently it was 

reported that several mutants for SJ components fail to close epithelial wounds. A functional analysis of the 

mutant kune-kune (kune), a transmembrane SJ component of the Claudin family, revealed that SJ loss of 

function severely impairs the wound closure process and actomyosin cable formation. As seen for AJs, SJ 

proteins are also removed from the wound edge, but the mechanisms are still unknown. Interestingly, SJ loss 

of function affects the mechanical properties of the epithelial tissue and the cell shape changes and 

rearrangements that occur during wound healing (Carvalho et al., 2018). However, the molecular 

mechanisms involved remain completely unknown.  

 

1.1.5. Calcium 

An increase in cytoplasmic calcium in cells adjacent to the wound is the first response signal to be 

detected upon injury. This has been observed both in in vitro (Hinman et al., 1997; Leiper et al., 2006; Shabir 

and Southgate, 2008; Sung et al., 2003), and in in vivo models (Antunes et al., 2013; Razzell et al., 2013; Xu 

and Chisholm, 2011).  

It is still unclear which are the calcium sources contributing to the increase of cytoplasmic calcium in the 

different wound healing models. In fact, there is evidence supporting both calcium influx from the 

extracellular environment and calcium release from internal stores. In the epidermis of the nematode 

Caenorhabditis elegans (C. elegans), the rise in intracellular calcium is mediated by the transient receptor 

potential calcium channels of the melastatin subfamily (TRPM) at the plasma membrane. Additionally, there 

is calcium release from the endoplasmic reticulum (ER) via the Inositol 1,4,5-trisphosphate (IP3) receptor 

(IP3R), that seems to be mediated by G-protein coupled receptor (GPCR) signalling  (Xu and Chisholm, 2011). 

Knockdown of TRPM also reduces the wound-induced intracellular calcium levels in the Drosophila pupal 

epithelium (Antunes et al., 2013). In both C. elegans and Drosophila models, impairment of the intracellular 

calcium rise leads to actomyosin cable defects (Antunes et al., 2013; Hunter et al., 2018a; Xu and Chisholm, 

2011; Xu and Chisholm, 2014).  Depletion of ER calcium stores or extracellular calcium also promote a 

reduction in Reactive Oxygen Species (ROS) production (Hunter et al., 2018a; Razzell et al., 2013; Xu and 

Chisholm, 2014) and immune cell recruitment (Razzell et al., 2013). 

High-speed imaging of the wound-induced calcium rise has shown that calcium increases in the leading 

cells and then spreads a few cell rows away from the wound, propagating in an intercellular wave manner. 

After this initial dispersion, the calcium levels decrease from the periphery towards the wound edge (Antunes 
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et al., 2013; Narciso et al., 2015; Razzell et al., 2013; Restrepo and Basler, 2016; Shannon et al., 2017). The 

propagation of the intercellular calcium wave depends on IP3-mediated calcium release from internal stores 

and calcium transport across cells via Gap Junctions (Narciso et al., 2015; Razzell et al., 2013; Restrepo and 

Basler, 2016).  

The exact mechanisms through which calcium mediates the wound healing response are still not fully 

understood. Data suggests that calcium regulates the actomyosin cable by activating actomyosin regulators. 

Knockdown of the calcium-dependent actin filament–severing protein Gelsolin (Sun et al., 1999) in the 

Drosophila pupa impairs the actomyosin flow towards the wound and consequent cable formation (Antunes 

et al., 2013). There is also evidence that the activation of Rho and Cdc42 GTPases upon wounding is calcium-

dependent (Benink and Bement, 2005). Recent work has also shown that the regulation of the actomyosin 

cable occurs through the calcium-mediated production of ROS (Hunter et al., 2018a; Xu and Chisholm, 2014). 

ROS can regulate Rho GTPases and Rok by acting on redox-sensitive motifs in these proteins (Muliyil and 

Narasimha, 2014; Xu and Chisholm, 2014) and control E-cadherin remodelling by oxidizing the Src kinase 

Src42A (Hunter et al., 2018a). 

 

1.1.6. Immune cell recruitment 

Although the immune system differs between embryos and adults, wounding of embryonic tissues also 

triggers an inflammatory response, that involves the recruitment of immune cells to the wound site (Babcock 

et al., 2008; Moreira et al., 2010; Niethammer et al., 2009b; Razzell et al., 2013; Stramer et al., 2005; Wood 

et al., 2006). Upon wounding, immune cells such as macrophages and neutrophils are attracted to and 

migrate towards the wound site, to phagocytose pathogens and cellular debris resulting from the death of 

wounded cells (Babcock et al., 2008; Stramer et al., 2005). Wound-induced hydrogen peroxide production, 

which is downstream of calcium signalling triggered by the injury (Razzell et al., 2013), seems to contribute 

to immune cell recruitment (Moreira et al., 2010; Niethammer et al., 2009b; Razzell et al., 2013). 

Interestingly, it was shown that hemocytes, the Drosophila equivalent to macrophages, are not required for 

reepithelialisation (Stramer et al., 2005). This suggests that wound closure is not mediated by signals coming 

from these immune cells, neither the cell debris removal is critical to achieve wound healing. Nevertheless, 

although they do not affect the wound healing process, it is possible that hemocytes are important to prevent 

infection and ensure embryo survival, but this is yet to be addressed. 
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1.2. Repair in complex and adult epithelia 

Unlike embryonic wound healing, the repair of more complex 

adult epithelia is a slow process, taking days or months to fully restore 

the epidermal tissue, and leaves a scar (Cordeiro and Jacinto, 2013; 

Gurtner et al., 2008; Sonnemann and Bement, 2011). Both inefficient 

and excessive wound healing are associated with pathological 

conditions. Wound healing delay and defects are associated with 

chronic wounds (Frykberg and Banks, 2015), whereas an exacerbated 

response leads to hypertrophic and keloid scars (Rabello et al., 2014). 

In contrast to embryonic wound healing, the repair of adult epithelia 

involves a coordinated and tightly regulated interaction between 

epithelial cells and other cell types, such as fibroblasts, immune cells 

and platelets. This process occurs in four distinct phases that are 

sequential but are also overlapping: 1) hemostasis, 2) inflammation, 

3) proliferation and migration, and 4) remodelling and resolution (Fig. 

2).  

 

1.2.1. Hemostasis 

This initial phase is characterized by the formation of a clot that 

serves as a shield against the physical and chemical extracellular environment, preventing tissue/fluid 

leakage and pathogen entry. During this phase, blood vessels constrict, mediated by the vascular smooth 

muscle cells, to limit blood loss. Platelets leak from damaged blood vessels and aggregate to form a plug at 

the lesioned area (Palta et al., 2014). The subsequent release of platelet-secreted factors such as platelet-

derived growth factor (PDGF), epidermal growth factor (EGF) and transforming growth factor-β (TGF-β) lead 

to the formation of a fibrin clot that plugs the wound hole. The factors released by the platelets also serve as 

Figure 2. Wound healing of complex epithelia.  

The wound healing of complex epithelia, such as the adult skin, occurs in 4 

phases: hemostasis (clot formation), inflammation (accumulation of 

leukocytes and angiogenesis), cell migration and proliferation (to replace 

the lost tissue) and resolution (remodeling). Adapted from (Cordeiro and 

Jacinto, 2013). 
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chemoattractants to the immune cells that are recruited to mediate the next phase of wound healing (Pakyari 

et al., 2013; Pierce et al., 1991; Schultz et al., 1991).  

 

1.2.2. Inflammation 

Immune cells infiltrate the wound. The first cells to arrive are neutrophils, whose main function is to kill 

pathogens, through the release of proteases and ROS (Wilgus et al., 2013). Later on, monocytes arrive at the 

wound site, where they differentiate into macrophages and remove debris and apoptotic neutrophils by 

phagocytosis (Zaja-Milatovic and Richmond, 2008). Macrophages also secrete cytokines and growth factors 

to recruit other immune cells, such as lymphocytes, fibroblasts and endothelial cells (Park and Barbul, 2004). 

T-lymphocyte infiltration is also observed. CD4+ cells (T-helper cells) play a positive role in wound healing, 

whereas CD8+ cells (T-suppressor-cytotoxic cells) have an inhibitory effect in wound healing (Park and Barbul, 

2004). There are also skin -resident T cells (γδ-T cells) that have roles in epidermal keratinocyte proliferation 

and survival (Havran and Jameson, 2010). Angiogenesis, the formation of new blood vessels, is also triggered 

at this stage. Vessels close to the wound produce branches that reach the lesioned area facilitating the 

migration of immune cells and providing oxygen and nutrients to the wound site (Rosenkilde and Schwartz, 

2004).  

 

1.2.3. Proliferation and migration 

Re-epithelialization is achieved by proliferation of epithelial cells, specifically keratinocytes, and tissue 

contraction. Keratinocytes undergo a transient dedifferentiation process: they change shape to a more 

flattened and elongated phenotype and remodel the contacts with the ECM and the F-actin cytoskeleton to 

form lamellipodia. These changes allow keratinocytes to migrate into the wound area as a cohesive sheet, 

referred as the migrating tongue. Keratinocytes behind the migrating tongue proliferate to provide sufficient 

number of cells to reconstitute the lost tissue (Pastar et al., 2014).  

Fibroblasts also proliferate and migrate to the wound. They secrete a large amount of ECM proteins, 

such as collagen, into the wound area. Some fibroblasts also differentiate into myofibroblasts, which are 

contractile cells. The newly formed ECM, together with the fibroblasts, myofibroblasts, and the new blood 

vessels form the so-called granulation tissue. Contraction of the myofibroblasts pulls the cells associated with 

the granulation tissue, leading to tissue contraction and alignment of the ECM collagen fibres, and 

contributing to the re-epithelialization (Li et al., 2007). 
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1.2.4. Remodelling and resolution 

After re-epithelialization, the structures formed in the previous stages are removed or remodelled. 

Epidermal cell migration and proliferation stops and the remaining leukocytes either leave the wound site or 

undergo apoptosis. The blood vessel network is reorganized and the granulation tissue is removed by 

metalloproteinases secreted by the remaining immune cells. At the end of this phase, only the aligned ECM 

filaments are maintained, forming the scar tissue (Gurtner et al., 2008; Li et al., 2007).  

 

 

1.3. Repair of single cell wounds  

Damage to the plasma membrane poses a threat to cell survival. The cell must avoid leakage of internal 

contents and the entry of foreign unwanted material, and needs to maintain the electrical and chemical 

gradients required for normal cellular functions (Nakamura et al., 2018). How cells sense a plasma membrane 

breach is still not clearly understood. The first signal to be detected upon membrane injury is the influx of 

extracellular calcium. This rise in intracellular calcium has been detected in different cellular models and is 

required for the wound response (Bement et al., 1999; Bi et al., 1995; Heilbrunn, 1930; Miyake and McNeil, 

1995; Steinhardt et al., 1994; Terasaki et al., 1997; Yumura et al., 2014). Calcium triggers the initiation of 

wound repair by regulating membrane (Bi et al., 1995; Luxardi et al., 2014; Steinhardt et al., 1994) and 

cytoskeleton changes (Bement et al., 1999). Alternative signals that trigger wound healing include the entry 

of ROS (Cai et al., 2009), plasma membrane depolarization (Luxardi et al., 2014) and the decrease in 

membrane tension (Togo et al., 2000). Single cell wound healing occurs at two levels: plasma membrane 

resealing and cortical cytoskeleton remodelling. 

Cell repair occurs through the successive fusion of cytosolic vesicles with each other and with the plasma 

membrane to form an impermeant and transient patch at the site of the membrane lesion (Fig. 3) (Cooper 

and McNeil, 2015; Davenport and Bement, 2016; McNeil et al., 2000; Terasaki et al., 1997). Proteins 

necessary for vesicle exocytosis have been shown to be required for this process. These proteins include the 

calcium/calmodulin kinase, kinesin and soluble N-ethylmaleimide-sensitive factor (NSF) attachment receptor 

(SNARE) proteins (Steinhardt et al., 1994). Based on increasing evidence, the current model proposes that 

calcium-dependent exocytosis of lysosomal-derived vesicles is immediately followed by endocytosis, which 

leads to lesion internalization and restoration of plasma membrane integrity (Corrotte et al., 2013; Idone et 

al., 2008; Tam et al., 2010).   
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Regarding cortical cytoskeleton remodelling, an enrichment in cortical F-actin close to the lesion has 

been observed in different single cell repair models and is required for wound closure (Nakamura et al., 

2018). Different mechanisms seem to control this localized F-actin accumulation. In Drosophila and Xenopus 

laevis (X. laevis) models, the membrane lesion triggers the formation of F-actin and myosin rings, that 

contract and reduce the wound area progressively until it closes. The contraction of the cortical cytoskeleton 

ring is accompanied by concomitant movement of the overlying membrane to fully repair the wound (Abreu-

Blanco et al., 2011; Bement et al., 1999; Mandato and Bement, 2001). The assembly and contraction of the 

Figure 3. Cell wound repair. 

Plasma membrane disruptions result in calcium influx that activates vesicular exocytosis and fusion of cytoplasmic 

vesicles. Exocytic fusion reduces membrane tension, and vesicle-vesicle fusion events form a transient patch to replace 

the membrane barrier missing at the lesion site. The membrane patch is subsequently remodelled and removed via 

exocytic and/or endocytic machinery. Adapted from (Cooper and McNeil, 2015). 
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actomyosin cortical ring is mediated by members of the Rho GTPase family and their effectors, which also 

localize at the vicinity of the wound (Abreu-Blanco et al., 2014; Benink and Bement, 2005; Nakamura et al., 

2017). When active, Rho GTPases are able to activate effector proteins that regulate F-actin polymerization 

and myosin contraction (Benink and Bement, 2005). In other models, in which F-actin rings are absent 

(Henson et al., 2002; Yumura et al., 2014),  cortical F-actin polymerization is mediated by the actin-related 

proteins 2/3 (Arp2/3) complex (Henson et al., 2002). 

Both cortical cytoskeleton changes and membrane resealing mechanisms contribute to single cell 

wound closure, but it is still unknown how they are coordinated. In some cell types, the cortical F-actin 

constitutes a barrier for the vesicle-plasma membrane fusion events. Destabilization of actin favours the 

membrane resealing process (Miyake et al., 2001; Togo et al., 1999; Xie and Barrett, 1991), whereas 

treatments to stabilize F-actin have the opposite effect (Miyake et al., 2001). An initial transient disassembly 

of the cortical cytoskeleton may be needed to allow the vesicle-plasma membrane fusion (Miyake et al., 

2001). The fact that the cortical cytoskeleton contraction is accompanied by the plasma membrane suggests 

that they must be connected (Mandato and Bement, 2001). One possible link appears to be the AJ protein E- 

cad, that co-localizes with the F-actin ring. Mutants for E-cadherin shown wound overexpansion and F-actin 

ring defects. However, wounds still manage to close in these mutants, suggesting that other cellular 

components are needed to mediate cytoskeleton-plasma membrane tethering (Abreu-Blanco et al., 2011). 
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1.4. Comparison between wound healing mechanisms 

To summarize this section about wound healing, there are obvious differences and similarities 

between wound repair in single cells, simple epithelia and complex epithelia.  

Single cell wound repair involves resealing of the plasma membrane and cytoskeletal 

rearrangements (Nakamura et al., 2018). When we go from a single cell to an epithelial tissue, the actomyosin 

cable still seems to be the most accepted main driving force for wound healing, and the actomyosin 

regulators, Rho GTPases and their effectors, are conserved. However, there is another layer of complexity: 

epithelial cells in a tissue are closely linked to each other and the integrity of the tissue must be maintained 

during the wound repair. For this purpose, epithelial cells rely on cellular junctions, which are also required 

for wound healing (Rothenberg and Fernandez-Gonzalez, 2019).  

In complex epithelia, different cell types have to mount a coordinated wound healing response, so 

the process takes longer. Although with different degrees of complexity, an immune response is common to 

embryonic and adult (complex epithelia) wound healing. The mechanisms involved in cell migration in both 

simple and complex epithelia share similarities. Unlike most embryonic wound healing models, healing of 

adult complex epithelia also requires cell proliferation (Thiruvoth et al., 2015). 

Despite all the mentioned differences, understanding how wound healing occurs in different cells 

and tissues is a fascinating subject from the cell biology perspective. Importantly, the fundamental 

knowledge gathered in simple epithelia wound closure models may be useful to improve current therapeutics 

for wound healing-related disease in humans. 

  



 
Chapter 1. Introduction 

 

 

49 
 

2. MITOCHONDRIAL BIOLOGY 

 

2.1. Origin 

The origin and evolution of mitochondria has long fascinated biologists. Mitochondria seem to be as old 

as the first Eukaryote, since all known eukaryotic lineages possess mitochondria or mitochondrion-related 

organelles (Van Der Giezen, 2009) or at least have contained them at some point (Karnkowska et al., 2016). 

The endosymbiont hypothesis (Sagan, 1967) is the most widely accepted theory of mitochondrial origin. 

Although many questions in the evolution of mitochondria and eukaryotes remain unanswered, 

mitochondria are thought to be derived from an α-proteobacterial endosymbiont that integrated into an 

archaebacteria host (Cox et al., 2008; Gray, 2012; Gray, 2017; Lane and Martin, 2010).  

 

2.2. Structure 

Mitochondria are double-membrane organelles, composed of an outer mitochondrial membrane 

(OMM), an inner mitochondrial membrane (IMM) and two aqueous compartments, the intermembrane 

Figure 4. Models of mitochondrial membrane structure. 
(a) Infolding or Baffle Model. (b) Crista Junction Model. Opposed to the Baffle Model, which shows large openings 
connecting the intercristal space to the intermembrane space, the Crista Junction Model shows that these connections 
are narrow tubular openings (crista junctions). Cristae can have more than one crista junction, on the same side of the 
mitochondrial periphery, or on opposite sides. Adapted from (Logan, 2006). 
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space (IMS) and the matrix. Early studies of mitochondrial structure, based on electron microscopy (EM), 

highlighted that the IMM extends all across the mitochondrial diameter, forming compartments that divide 

the matrix (Palade, 1952; Sjöstrand, 1956). Palade’s observations (Palade, 1952) were the basis of the “Baffle 

Model” that states that these compartments, called cristae mitochondriales, are plate-like infoldings of the 

IMM. This corresponds to the typical textbook representation of mitochondria (Fig. 4 a). Later studies 

reported that this model was not entirely accurate and that, instead, cristae look like flat sacs, with multiple 

narrow tubules that connect to the peripheral surface of the IMM (called the inner boundary membrane, 

IBM) and to each other (Mannella et al., 1994). These tubular connections were called pediculi crista by 

Daems and Wisse (Daems and Wisse, 1966) or crista junctions by Perkins and colleagues (Perkins et al., 1998), 

leading to a new model of mitochondrial structure, called the “Crista Junction Model”. In this model, the 

IMM is subdivided in IBM, cristae membrane and crista junctions (Fig. 4 b).  

Crista junctions are important for the establishment of mitochondrial contact sites (Hackenbrock, 1966) 

between the OMM and the IBM. The contact sites facilitate the communication between the cytoplasm and 

mitochondrial matrix and have been assigned several different functions, such as lipid transfer (Hoppins et 

al., 2011; Scharwey et al., 2013), import and sorting of nuclear encoded proteins (Dekker et al., 1997; von 

der Malsburg et al., 2011), exchange of ions and metabolites (Brdiczka, 1991), IMM stability (von der 

Malsburg et al., 2011) and even inheritance of mitochondrial deoxyribonucleic acid (mtDNA) (Li et al., 2016).  

The OMM and IMM diverge not only in shape but also in composition. Unlike the IMM, the OMM is very 

permeable, due to the presence of channels that allow transport of ions and small molecules between the 

cytosol and the IMS. These channels include, to name a few: 

- the voltage-dependent anion channel (VDAC), the most abundant protein in the OMM, which 

regulates the entry of ions, nucleotides and other metabolites (Colombini, 1980; Shoshan-Barmatz et al., 

2010); 

- the translocator of the outer mitochondrial membrane (TOM) complex, which acts as the principal 

entry point for almost all nuclear-encoded mitochondrial proteins (Rapaport, 2002); 

- the sorting and assembly machinery (SAM) complex, which inserts protein precursors into the outer 

membrane (Pfanner et al., 2004). 

The IMM is characterized by the presence of the mitochondria-specific phospholipid cardiolipin (Horvath 

and Daum, 2013) and a high amount of membrane-associated proteins, that include the oxidative 

phosphorylation (OXPHOS) system components (Schenkel and Bakovic, 2014). The IMM is dynamic and 

cristae morphology changes in response to alterations in osmotic and metabolic conditions. For instance, in 

response to low adenosine diphosphate (ADP) concentrations, the IMM changes from a ‘condensed’ state, 
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with a dense matrix and wide cristae, to an ‘orthodox’ state, with an expanded, matrix and more compact 

cristae compartment (Hackenbrock, 1966). Another example is the widening of crista junctions that occurs 

during programmed cell death (Scorrano et al., 2002). The IMS is subdivided into the peripheral IMS, which 

is adjacent to the OMM and IBM, and the cristae space, which is formed by invaginations of the IMM. The 

IMS is an important link in the transport of ions, metabolites and proteins across the two mitochondrial 

membranes (Backes and Herrmann, 2017). 

The mitochondrial matrix is packed with multiple copies of mitochondrial DNA, ribonucleic acids (RNAs) 

and ribosomes needed for its translation, metabolic enzymes and pools of metabolites including 

nicotinamide adenine dinucleotide NAD+, NADH (reduced form of NAD+), ATP, and ADP (Friedman and 

Nunnari, 2014; Logan, 2006).  

 

2.3. Mitochondrial DNA  

The mtDNA of most Metazoans is a small (approximately 16 kb in size) circular DNA molecule, present 

in multiple copies and composed of 37 genes, encoding 13 protein subunits required for OXPHOS, 2 ribosomal 

RNAs (one for each of the two mitochondrial ribosome subunits) and 22 transport RNAs (Clary and 

Wolstenholme, 1985; Jansen, 2000). Inside mitochondria, mtDNA forms a complex with proteins involved in 

mtDNA replication, repair, and transcription, forming the so-called nucleoids (Spelbrink, 2010; Zinovkina, 

2019). 

mtDNA is histone-free nature and has a limited repair ability. Exons are tightly packed, with no spacing 

introns, so mutations have higher chances of affecting the function of the encoded proteins (Jansen, 2000). 

These mtDNA features lead to a higher mutation-fixation rate than the nuclear genome in most vertebrate 

species (Allio et al., 2017; Wallace et al., 1987), 

 

2.4. Inheritance 

Mitochondria are not created de novo, they arise from the growth and division of pre-existing 

mitochondria, so they must be inherited. In the majority of eukaryotes, the inheritance of mitochondria is 

uniparental, coming from the mother (Allen, 1996; Pyle et al., 2015). In mammals, this is achieved by 

ubiquitination of sperm mitochondria that leads to degradation upon fusion with the oocyte (Sutovsky et al., 

1996; Sutovsky et al., 1999; Thompson et al., 2003). In other organisms, such as angiosperms, maternal 
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inheritance occurs by exclusion of the paternal mitochondrial genomes from the male reproductive cells 

before fertilization (Nagata et al., 1999; Sodmergen et al., 2002). 

During the cell cycle, mitochondria undergo a period of massive mitochondrial elongation, followed by 

a phase of mitochondrial division and uniform segregation of the mitochondria within the cell (Salazar-Roa 

and Malumbres, 2017). During mitosis, mitochondria are distributed in proportion to the volume of 

cytoplasm received by each daughter cell (Jajoo et al., 2016). 

 

2.5. Functions 

Mitochondria perform a myriad of functions in the cell, ranging from energy production, regulation of 

calcium and redox homeostasis, apoptosis, among others. We will present a general overview of these 

mitochondrial functions and focus on the most relevant ones for the work of this thesis. 

 

2.5.1. Cellular Metabolism  

The cellular metabolism comprises the biochemical reactions that take place within the cell. These 

reactions can be subdivided into catabolic reactions, that convert nutrients into to energy in the form ATP, 

and anabolic reactions that lead to the synthesis of larger biomolecules. The reactants, intermediates and 

products of these reactions are called metabolites (Yang, 2016). Cellular metabolism is vital for the cells to 

perform their functions and adapt to different environments (Metallo and Vander Heiden, 2013). 

Mitochondria are a central organelle for energy production within the cell: in the IMM cristae they harbour 

the respiratory complexes and the F1Fo-ATP synthase; on both mitochondrial membranes there are 

transporters for metabolites; and the IMS is the site where many metabolic pathways take place (Spinelli and 

Haigis, 2018). The aim of this section is to provide a general overview of the metabolic pathways controlled 

by mitochondria, focusing on a few examples. 

2.5.1.1. Metabolic pathways in the mitochondrial matrix  

Many metabolic pathways take place, at least partially, in the mitochondrial matrix. We selected a few 

important examples: Tricarboxylic Acid (TCA) cycle and fatty acid β-oxidation.  

The TCA cycle, also called the Krebs cycle or the citric acid cycle (Fig. 5 A), is the major energy-producing 

metabolic pathway in cells. Its functions include the production of intermediate compounds for the 
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biosynthesis of substances such as amino and fatty acids., and the formation of large quantities of ATP, which 

is used as energy for various cellular processes (Bender, 2003; Kumari, 2018). The TCA is a series of eight 

enzymatic reactions that consumes and regenerates citrate and uses acetyl-coenzyme A (acetyl-CoA), coming 

from the metabolism of carbohydrates and lipids. The oxidation of acetyl-CoA produces, among other things, 

the reducing agents NADH and succinate (via FADH2, the reduced form of flavin adenine dinucleotide FAD) 

(Fernie et al., 2004). These two molecules are the electron donors that transfer electrons to the 

mitochondrial respiratory chain to begin the process of OXPHOS (Fig. 5 B).  

Fatty acid β-oxidation is responsible for the catabolism of fatty acids. It is an important pathway in 

energy metabolism, particularly when the glucose supply is limited. Plasma free fatty acids or lipoprotein-

associated triglycerides are converted to acyl-coenzyme A (acyl-CoA) in the cytosol and imported into 

mitochondria. Inside mitochondria, acyl-CoAs are degraded into acetyl-CoA by a series of four reactions 

called β-oxidation. Acetyl-CoA, as mentioned previously, can feed into the Krebs cycle (Fig. 5 A) (Houten and 

Wanders, 2010; Spinelli and Haigis, 2018). 

 

 

Figure 5. Mitochondrial bioenergetics. 

(A) The citric acid cycle takes place in the matrix 

and involves the oxidation of acetyl-CoA to yield 

carbon dioxide (CO2), ATP, and reducing 

equivalents - NADH and FADH2. (B) These 

reducing equivalents fuel the electron transport 

chain (ETC) located in the IMM. The chain of 

redox reactions across the ETC leads to proton 

(H+) pumping from the matrix to the 

intermembrane space (IMS), thus generating an 

electrochemical gradient that creates the 

mitochondrial transmembrane potential 

(ΔΨmt). The ETC generates ROS as a by-product 

of its redox activity. Accumulated H+ in the IMS 

are pumped back to the matrix through the ATP 

synthase, which uses H+ translocation as a 

driving force for ATP production. Adapted from 

(Bravo-Sagua et al., 2017). 

A 
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2.5.1.2. Oxidative phosphorylation 

Mitochondria’s canonical role is to serve as the powerhouses of the cell, by producing ATP through 

OXPHOS (Fig. 5 B). Oxidation of metabolites produces electrons that are transferred by NADH to the 

mitochondrial electron transport chain (ETC), composed of large protein complexes: NADH-ubiquinone 

oxidoreductase (complex I), succinate dehydrogenase (complex II), ubiquinone-cytochrome c oxidoreductase 

(complex III), and cytochrome c oxidase (complex IV). Complexes I–IV shuttle electrons to their final acceptor, 

oxygen, to form water. This electron flow generates an electro-chemical gradient – ΔΨmt - by the pumping 

of protons (H+) from the mitochondrial matrix to the IMS (Mitchell, 1966; Sousa et al., 2018). The flow of H+ 

back into the mitochondrial matrix, via the H+ transport subunits of F1Fo ATP synthase complex, leads to 

conformational changes that promote the conversion of ADP and phosphate to ATP (Senior et al., 2002).  

 

2.5.2. Heat production  

Mitochondrial OXPHOS is not perfectly coupled to ATP synthesis. Approximately a quarter of the H+ 

pumped by the ETC leak back across the IMM and are not coupled to ATP production, thus this energy is lost 

as heat (Brand, 2000; Murphy, 1989). Cells can take advantage of this phenomenon to purposely augment 

thermogenesis, by expressing uncoupling proteins that promote mitochondrial heat production, as reported 

in brown fat thermogenesis in mammals (Busiello et al., 2015). It is even argued that the heat generating 

ability of mitochondria provided selective advantage for proto-mitochondrion maintenance during the 

evolution of eukaryotes (Dunn, 2017). 

 

2.5.3. Apoptosis 

Apoptosis is essential for embryonic development and maintenance of the adult tissue homeostasis. 

Apoptosis can be classified as extrinsic or intrinsic. Extrinsic apoptosis is triggered by external signals that are 

recognized by plasma membrane death receptors. On the other hand, intrinsic apoptosis is triggered by 

different stimuli, such as DNA damage, nutrient deficiency, oxidative stress, developmental cues, among 

others (Danial and Korsmeyer, 2004; Galluzzi et al., 2012; Vakifahmetoglu-Norberg et al., 2017). 

Mitochondria participate in the intrinsic pathway of apoptosis, the most common pathway of vertebrate cell 

death. Irrespective of the initial apoptosis trigger, mitochondria are central players in this pathway, as the 

stimulation of mitochondrial outer membrane permeabilization (MOMP) is always involved (Kroemer et al., 

2007).   
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MOMP leads to the dissipation of the ΔΨmt with consequent impairment of ATP production and ΔΨmt-

dependent transport to the mitochondria. Additionally, there is release of proteins from the IMS, including 

cytochrome c (cyt c). cyt c triggers the formation of a multimeric protein complex - the apoptosome - which 

in turn activates a class of proteins called caspases (cysteine protease cleaving after Asp). The apoptosome 

activates initiator caspases, such as caspase-9, that will then cleave and activate the executioner caspases 3, 

6 and 7. The action of the executioner caspases results in cell shrinkage, chromatin condensation, DNA 

damage, nuclear fragmentation, blebbing, and phosphatidylserine exposure on the surface of the plasma 

membrane (Elmore, 2007). MOMP triggers the release of other proteins from mitochondria besides cyt c: 

direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) and high temperature 

requirement protein A2 (HTRA2), which sequester and/or degrade several members of the IAP family, thus 

facilitating caspase activation (Chai et al., 2000; Srinivasula et al., 2003; Yang et al., 2003).  

 

2.5.4. Calcium homeostasis 

Calcium ions (Ca2+) are important second messengers in a plethora of signalling pathways involved in 

cell proliferation (Pinto et al., 2015), differentiation (Tonelli et al., 2012), migration (Tsai et al., 2015) and 

death (Zhivotovsky and Orrenius, 2011), as well as in muscle contraction (Kuo and Ehrlich, 2015) and 

neurotransmission (Südhof, 2012), among others. Mitochondria and the ER are crucial organelles in the 

regulation of calcium homeostasis. The ability of mitochondria to uptake calcium is recognized since the 60s 

(DeLuca and Engstrom, 1961; Vasington and Murphy, 1962). Mitochondria accumulate high concentrations 

of calcium inside the matrix. Under resting conditions, the concentration of calcium inside mitochondria is 

not much different from the cytosolic calcium levels (100–200 nM). However, under stimulating conditions, 

mitochondria can accumulate 10 to 20 times more calcium than the cytosol. Mitochondrial calcium uptake is 

stimulated by an increase in cytosolic calcium, that can come from the extracellular environment or other 

calcium internal stores, such as the ER. Calcium accumulation inside mitochondria is followed by rapid 

extrusion into the cytoplasm by calcium antiporters, restoring the basal state (Belosludtsev et al., 2019; 

Bravo-Sagua et al., 2017; De Stefani et al., 2016).  

2.5.4.1. Calcium influx 

The ΔΨmt generated by the mitochondrial respiratory chain constitutes the electrochemical force 

required for positively charged ions, such as Ca2+, to enter the matrix. The OMM is rich in VDAC, forming 

pores through which calcium can cross (Gincel et al., 2001; Messina et al., 2012). VDAC is not limiting for 

calcium flow across the OMM (Colombini, 2012; Tan and Colombini, 2007), so the challenge for calcium is to 
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cross the IMM (Belosludtsev et al., 2019). Calcium can enter through several different channels: the 

mitochondrial ryanodine receptor (mRyR) (Altschafl et al., 2007; Ryu et al., 2010), the short transient receptor 

potential channel 3 (TRPC3) (Feng et al., 2013), the mitochondrial uncoupling protein 2 and 3 (UCP2/3) 

(Trenker et al., 2007), and the leucine zipper EF-hand-containing transmembrane protein 1 (LETM1) (Jiang et 

al., 2009). However, the main route of calcium uptake across the IMM is the Mitochondrial Calcium Uniporter 

(MCU) channel (Baughman et al., 2011; De Stefani et al., 2011). 

The MCU channel is formed by oligomerization of four subunits of MCU. Vertebrates possess another 

MCU related protein, MCUb, with 50% homology to MCU, that acts as a dominant-negative version of MCU. 

This protein can be integrated in the MCU complex, fine-tuning its regulation in different cell types (De Stefani 

et al., 2016; Raffaello et al., 2013). MCU lacks the classic EF-hand domain (Calcium-binding domain) 

(Baughman et al., 2011; De Stefani et al., 2011). Therefore, its calcium-dependent activity is controlled by 

regulatory proteins: essential MCU regulatory element (EMRE) and mitochondrial calcium uptake 1 (MICU1). 

MICU1 and its paralog MICU2 are found in the IMS and control the activity of MCU. At low intracellular 

calcium concentrations, MICU1/2 inhibit calcium entry. As the cytosolic calcium concentration increases, 

calcium binding to the EF-hand domains of MICU1/MICU2 leads to conformational changes, opening the 

channel and allowing calcium entry into the matrix (Csordás et al., 2013; Paillard et al., 2017; Perocchi et al., 

2010; Plovanich et al., 2013). EMRE is a transmembrane protein required for MCU function, as EMRE 

knockout abrogates calcium influx, even upon MCU overexpression, and is necessary for the interaction 

between MCU and MICU1/2 (Sancak et al., 2013; Vais et al., 2016).  

2.5.4.2. Calcium efflux 

Calcium release from the mitochondria is mediated by Na+ dependent (Na+/Ca2+) exchangers (NCX) in 

excitable tissues (e.g. brain, heart) (Carafoli et al., 1974; Palty et al., 2010); and by Na+ independent (H+/Ca2+) 

exchangers (HCX) in non-excitable tissues (e.g. liver) (Lin and Stathopulos, 2019; Pozzan et al., 1977; Tsai et 

al., 2014), located at the IMM. In both systems, the rate of calcium transport is significantly slower than the 

rate of calcium uptake through the MCU (Marinelli et al., 2014; Wingrove and Gunter, 1986). Other non-

specific modes of calcium efflux exist, such as the mitochondrial permeability transition (MPT) pore, that 

forms at the IMM in calcium-loaded mitochondria and leads to increased mitochondrial permeability 

(Haworth and Hunter, 1979).  

2.5.4.3. Calcium microdomain signalling 

One puzzling property of the mitochondrial calcium uptake is the MCU’s very low affinity for calcium 

(Marchi and Pinton, 2014). This fact implies that the rise in cytosolic calcium necessary to induce 
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mitochondrial calcium uptake should be much higher than those observed in living cells. How can 

mitochondria so rapidly uptake calcium in these conditions? This is achieved by the close proximity between 

mitochondria and hotspots of calcium increase. These so-called microdomains of high cytosolic calcium occur 

at sites of calcium influx at the plasma membrane or of calcium release from intracellular stores. At these 

locations, calcium transiently reaches higher levels than in the overall cytoplasm. Calcium signalling occurs 

preferentially at contact sites between mitochondria and the ER, termed mitochondria-associated ER 

membranes (MAMs). MAMs are enriched in ER-calcium channels, such as IP3R, that release calcium which 

then is transferred into the mitochondrial matrix (Fujimoto and Hayashi, 2011; Lee and Min, 2018; Rizzuto et 

al., 1993; Rizzuto et al., 1998). 

2.5.5. Redox homeostasis 

Mitochondria are known sources of ROS. ROS are radical and non-radical oxygen species derived from 

oxygen. The reduction of oxygen by the addition of electrons leads to the formation of different types of ROS 

including: Superoxide ([O2]•−), hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and singlet oxygen (1O2). 

Most ROS are generated as by-products of the mitochondrial ETC reactions. Occasionally during the flow of 

electrons, oxygen molecules undergo one- or two-electron reduction reactions to form ROS, being [O2]•− and 

H2O2 the most commonly produced (Dickinson and Chang, 2011; Murphy, 2009). 

ROS are widely known for their detrimental effects and thought to be the main contributors to the aging 

process. This free radical theory of aging proposes that aging is a consequence of the accumulation of 

oxidative damage, caused by ROS (Harman, 1956). ROS mediate redox modifications on biomolecules, the 

most commonly described being the oxidation of the thiol side chains of cysteine residues. If the redox 

homeostasis is not controlled, ROS will lead to oxidative stress, characterized by damage of nucleic acids, 

proteins and lipids (Dickinson and Chang, 2011).  

The cell developed ways to control redox homeostasis, such as ROS buffers and antioxidant enzymes 

(Dickinson and Chang, 2011; Munro and Treberg, 2017; Zorov et al., 2014). Glutathione (GSH), a tripeptide 

of glutamic acid, cysteine and glycine, is one of the most prevalent and important thiol buffers in the cell. 

The ratio of GSH (reduced) and its disulfide, GSSG (oxidized), reflects the redox capacity of the cell. The ratio 

is controlled by oxidation/reduction reactions involving GSH peroxidase and GSH reductase. Oxidative stress 

leads to a dramatic depletion of GSH, thereby promoting cell death (Franco and Cidlowski, 2009; Xiong et al., 

2011). Antioxidant enzymes act by neutralizing ROS. The Cu/Zn superoxide dismutase 1 (Sod1) dismutates 

[O2]•− to H2O2, that is further reduced to H2O by catalase, glutathione peroxidases or peroxiredoxins. All of 

these proteins are examples of antioxidant enzymes and are localized either in the cytosol or in the 

mitochondria (Rhee et al., 2005). 
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Despite their potentially harmful effects, ROS have important functions in physiological cellular 

processes (Ray et al., 2012; Zorov et al., 2014). As an example, ROS have been implicated in the control of 

cell migration.  H2O2 can act by regulating the actin cytoskeleton. H2O2-mediated oxidation of a cofilin 

regulatory phosphatase leads to cofilin activation. This actin regulatory protein then induces membrane 

ruffling and cell motility (Kim et al., 2009). At the whole-organism level, tissue-scale fluxes of H2O2 have been 

observed in Danio rerio (zebrafish) Drosophila embryos after injury, that contribute to the recruitment of 

leukocytes (Niethammer et al., 2009a; Razzell et al., 2013).  

Mitochondria are thus critical mediators of redox homeostasis, either by the production or by the 

detoxification of ROS.  
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2.6. Mitochondrial dynamics 

Mitochondrial morphology, number and position can vary depending on the cell type or developmental 

stage (Bereiter-Hahn and Vöth, 1994; Collins et al., 2002; Kuznetsov et al., 2009; Rastogi et al., 2019). Just to 

give a few examples, in cardiac or skeletal muscle cells (Fig. 6 A, B, respectively), mitochondria display a very 

regular arrangement, mostly confined to the spaces between myofibrils. Pancreatic cells (Fig. 6C) have a 

dense network of elongated mitochondrial surrounding the nuclei, while in other cells, such as hepatocytes 

or promyeloid cells (Fig. 6 D, E), mitochondria are distributed rather uniformly across the cell (Kuznetsov et 

al., 2009). 

The observation of living cells defied the textbook definition of mitochondrial morphology. Instead of 

being static bean-shaped organelles, as depicted in many textbooks, mitochondria can change their size, 

number, shape and localization. This dynamic behaviour of mitochondria was first described more than a 

century ago by Lewis and Lewis (Lewis and Lewis, 1914) in cultured cells and has been observed in many 

other cell types ever since (Bereiter-Hahn, 1990; Westermann, 2010). The concept of mitochondrial dynamics 

was created to include all these aspects of mitochondrial behaviour. Some authors have a broader 

mitochondrial dynamics definition, including the events that control mitochondrial morphology changes, 

Figure 6. Mitochondrial morphology in different cell types. 

(A) rat cardiomyocytes, (B) rat skeletal muscles, (C) human pancreatic cells, (D) rat hepatocytes, (F) promyeloid cells. 

Mitochondria were imaged by confocal fluorescent live microscopy using mitochondria-specific fluorescent probes 

TMRM or MitoTracker (A, B, C, and E) or autofluorescence  

A B C 

D E 
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trafficking, biogenesis and quality control (Eisner et al., 2018), while others just refer to the antagonizing 

fusion and fission events that determine mitochondrial shape and number (Dorn, 2018; Friedman and 

Nunnari, 2014). 

 

2.6.1. Fission 

 Mitochondrial fission is the process through which one mitochondrion divides into two mitochondria. 

It facilitates mitochondrial calcium transport, elimination of damaged mitochondria and equal segregation 

of mitochondria during cell division, among other functions (Lee and Yoon, 2016). Mitochondrial fission is 

accomplished by Dynamin-related protein 1 (Drp1) (Lee and Yoon, 2016; Scott and Youle, 2010). The 

implication of Drp1 in the control of mitochondrial morphology was first described in budding yeast (Otsuga 

et al., 1998) and cultured human cells (Smirnova et al., 2001). Drp1 is a large GTPase and, as other members 

of the dynamin superfamily of proteins, contains an amino terminal GTPase domain, a middle domain, and a 

GTPase effector domain (GED) (Bliek, 1999). When inactive, Drp1 is found mostly in the cytosol; when 

activated, it is recruited to the mitochondria and oligomerizes in a ring-like manner around these organelles 

(Bleazard et al., 1999; Labrousse et al., 1999; Smirnova et al., 2001; Yoon et al., 2001). GTP hydrolysis is the 

driving force to change conformation and constrict the mitochondria (Ingerman et al., 2005; Mears et al., 

2011). Some studies suggest that Drp1-mediated constriction alone is not sufficient to divide the 

mitochondria (Yoon et al., 2001) and that additional dynamin proteins aid in the final steps of constriction 

and scission (Lee et al., 2016). 

Drp1 oligomers dynamically and randomly assemble and disassemble on the OMM, independently of 

fission or constriction events (Ji et al., 2015; Legesse-Miller et al., 2003). So, what leads to a fission event? 

Fission sites are marked by contacts with the ER that wraps around mitochondria even before recruitment of 

Drp1 (Friedman et al., 2011). The ER-resident actin regulator Inverted Formin 2 (INF2) and the mitochondria 

resident actin-nucleating Spire protein (Spire1C) cooperate and coordinate polymerization of actin filaments, 

followed by recruitment of the myosin IIa motor, whose movement on F-actin leads to constriction of 

mitochondria (Korobova et al., 2013; Korobova et al., 2014; Manor et al., 2015). These events culminate in 

oligomerization and accumulation of Drp1 at the OMM (Hatch et al., 2014; Ji et al., 2015; Prudent and 

McBride, 2016) (Fig. 7). 
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In addition to ER-mediated mitochondrial constriction, Drp1 is recruited to mitochondria by pro-fission 

factors. Drp1 has an intrinsic ability for membrane binding (Yoon et al., 2001), but, depending on the 

organism, different adaptor proteins can recruit Drp1 to the OMM. Dynamin-related protein 1 (Dnm1, Drp1 

yeast homolog) recruitment and distribution at the OMM is controlled by the OMM protein Mitochondrial 

fission 1 protein (Fis1) (Mozdy et al., 2000) and the adaptor proteins C-C chemokine receptor type 4 (CCR4)-

associated factor 4 (Caf4) and Mitochondrial division protein 1 (Mdv1) (Griffin et al., 2005; Guo et al., 2012; 

Tieu and Nunnari, 2000). Caf4 and Mdv1 bind both Dnm1 and Fis1, forming a link between Fis1 and Dnm1, 

thus bringing Dnm1 to the OMM (Naylor et al., 2006). An alternative fission complex in yeast involves the 

accessory proteins Mitochondrial distribution and morphology protein 36 (Mdm36) and Nuclear migration 

protein 1 (Num1), which seem to anchor mitochondria at the cell cortex and aid mitochondrial scission 

through membrane tension (Cerveny et al., 2007; Hammermeister et al., 2010).  

In mammals, fission is promoted by association of Drp1 to mitochondria via OMM receptors such as Fis1 

(James et al., 2003; Stojanovski et al., 2004; Yoon et al., 2003), the mitochondrial fission factor (Mff ) (Gandre-

Babbe and van der Bliek, 2008; Otera et al., 2010) and the mitochondrial dynamics proteins of 49 and 51 kDa 

MiD49/51 (Losón et al., 2013; Palmer et al., 2011; Palmer et al., 2013; Zhao et al., 2011a). Other proteins 

have been suggested to participate in the regulation of fission, but their role and interaction with Drp1 is still 

not clearly understood. Those include the mitochondrial protein of 18 kDa (MTP18) (Tondera et al., 2005), 

Figure 7. Mitochondrial fission.  

(A) Drp1 dimers shift between the cytosol 

and the OMM. Oligomeric Drp1 accumulates 

at sites of ER-driven constriction. (B) Drp1 

assembly into a ring structure further 

constricts the mitochondria. (C) Mature Drp1 

oligomers hydrolyse GTP, resulting in fission. 

The zoomed area shows the factors 

regulating mitochondrial division. ER-

localized INF2 and mitochondrial Spire1C 

drive F-actin polymerization. Myosin IIa 

motor possibly acts as the force generator 

required for mitochondrial constriction. The 

accumulation of F-actin at the ER–

mitochondrial contact sites promotes Drp1 

recruitment, which is also aided by Drp1 

adaptors. Adapted from (Prudent and 

McBride, 2016).  
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the ganglioside-induced differentiation-associated protein 1 (Gdap1) (Niemann et al., 2005; Pedrola et al., 

2005) and Endophilin B1 (Karbowski et al., 2004). 

To add another layer of complexity to this process, Drp1 is regulated post-translationally by a myriad of 

different modifications, including phosphorylation, S-nitrosylation, SUMOylation, ubiquitination, and O-

GlcNAcylation (Chang and Blackstone, 2010). Just to give an example, phosphorylation of Drp1 is the most 

widely studied post-translational modification, and has opposing effects on its activity, depending on the 

phosphorylated residue. At Ser 616, it leads to Drp1 activation and consequently to mitochondrial fission 

(Kashatus et al., 2011; Taguchi et al., 2007), while phosphorylation at Ser 367 is inhibitory of Drp1 GTPase 

activity (Chang and Blackstone, 2007; Cribbs and Strack, 2007).  

It is also worth mentioning that, in addition to mitochondria fission, the fission machinery components 

Drp1, Mff, Gdap1 and Fis1 are also involved in peroxisomal division (Honsho et al., 2016; Huber et al., 2013). 

 

2.6.2. Fusion 

Fusion describes the process of tethering and union of apposed mitochondria. Fusion of mitochondria 

requires the successful union of both the OMM and the IMM (Fig 6), resulting in mitochondria elongation. A 

fused network of mitochondria is usually observed in high energy demanding cells (Westermann, 2012). 

Similar to mitochondrial fission, fusion is mediated by Dynamin related proteins (Dorn, 2018; Lee and Yoon, 

2016). The fusion of both membranes requires GTP hydrolysis. Additionally, IMM fusion is dependent on the 

maintenance of the ΔΨmt (Meeusen et al., 2004) (Fig. 8).  

The first member of the Dynamin family required for OMM fusion was found in Drosophila. In a study 

about spermatogenesis, Hales and Fuller reported that fuzzy onions (fzo) mutant males have defects in 

mitochondrial fusion and are sterile. By mutating its predicted GTPase domain, they found that the Fzo 

GTPase activity was required for its function in mitochondrial fusion (Hales and Fuller, 1997). Fzo mammalian 

homologs, Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2), are tethered to the OMM by two transmembrane 

domains. The cytosolic portion contains the GTPase domain and two coiled-coil protein-interaction domains 

that mediate homotypic or heterotypic binding of Mfn proteins (Koshiba et al., 2004; Rojo et al., 2002). 

Binding of Mfn isoforms from neighbouring mitochondria promotes mitochondrial tethering and Mfn GTPase 

activity mediates OMM fusion (Detmer and Chan, 2007; Koshiba et al., 2004). 

Mfn1/2 proteins are regulated post-transcriptionally by ubiquitination, which leads to their degradation 

and inhibition of OMM fusion (Durr et al., 2006; Tanaka et al., 2010; Youle and Narendra, 2011). 
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The protein mediator of IMM fusion is called mitochondrial genome maintenance 1 (Mgm1) in yeast, 

EAT-3 in C. elegans (Kanazawa et al., 2008), and Optic atrophy 1 (Opa1) in mammals and Drosophila 

(Alexander et al., 2000; Delettre et al., 2000; Misaka et al., 2002; Yarosh et al., 2008). Mgm1 name derives 

from the defects in mitochondrial genome maintenance caused by mutation of the corresponding gene 

(Jones and Fangman, 1992). Later on, this phenotype was found to be a consequence of impaired IMM fusion 

(Wong et al., 2000). Opa1 designation comes from the optic atrophy defects associated with OPA1 mutation 

in humans (Alexander et al., 2000; Delettre et al., 2000). Opa1 undergoes post-translational cleavage 

downstream of its transmembrane domain by IMM-associated metalloproteases: OMA1 and YME1L (Anand 

et al., 2013; Consolato et al., 2018; Ehses et al., 2009). Therefore, two forms of Opa1 coexist: an IMM-

anchored long Opa1 (L-Opa1) and a transmembrane region-free short Opa1 (S-Opa1) in the IMS. This balance 

of L-Opa1 and S-Opa1 forms is required for the maintenance of both normal mitochondrial morphology and 

mitochondrial DNA (Herlan et al., 2003). Induction of Opa1 cleavage prevents IMM fusion and facilitates 

fission, while L-Opa1 is required for fusion (Ishihara et al., 2006; MacVicar and Langer, 2016). 

Opa1 is essential not only for IMM fusion, but also for maintaining mitochondria cristae structure (Frezza 

et al., 2006; Meeusen et al., 2006; Olichon et al., 2003) and anchoring nucleoids to the IMM (Elachouri et al., 

2011). Mfn2 also localizes to the ER membrane and, by interacting with Mfn1 or Mfn2 of the mitochondria, 

Figure 8. Mechanism of mitochondrial fusion. 

(a) Separate mitochondria with MFN1 and MFN2 localized at the OMM and OPA1 localized at the IMM. (b) Tethering by 

MFN homo- or heterodimers. (c) After GTP-dependent MFN-mediated OMM fusion. (d) After GTP-dependent OPA1-

mediated IMM fusion. Adapted from (Dorn, 2018). 
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it controls the establishment of ER-mitochondria contacts (De Brito and Scorrano, 2008; Filadi et al., 2015; 

Leal et al., 2016; Wang et al., 2015). Additionally, Mfn2 is involved in mitophagy (see section 2.7.4) (Chen and 

Dorn, 2013) and in tethering mitochondria to microtubules (Misko et al., 2010). 

 

2.6.3. Trafficking  

Mitochondria must be able to position themselves at the right place to perform their functions 

efficiently. In migrating cells, mitochondria localize at the leading edge of the cell, where most energy is 

needed (Schuler et al., 2017). In sperm cells, mitochondria are located at the proximal part of the flagellum 

to supply the flagellar motor proteins with energy to sustain the movements of the sperm cell (Fawcett, 

1975). In neurons, some mitochondria reside far away (sometimes up to a meter) from the cell body, to fuel 

the synapses (Schwarz, 2013). Trafficking of mitochondria is accomplished by attachment of mitochondria to 

the cellular cytoskeletal tracks. Both actin- and microtubule-based transport have been reported (Lovas and 

Wang, 2013; Morris and Hollenbeck, 1995).  

Mitochondrial movement occurs predominantly along microtubules by kinesin and dynein motors. 

Microtubules are polarized polymers with a plus (+) end, usually facing the cell periphery, and a minus (-) 

end, anchored at the centrosome near the nucleus. Anterograde movement toward the (+) ends of 

microtubules is mediated by kinesin motors, while retrograde movement toward the (-) ends is mediated by 

dynein motors (Barlan and Gelfand, 2017). The tethering of mitochondria to microtubules is achieved via the 

Miro-Milton-Molecular motor complex. Although alternative adaptor complexes have been reported, the 

Miro-Milton-Kinesin complex (Fig. 9 A), that acts in anterograde movement, is the most well established 

Figure 9. Mitochondrial trafficking. 

(A) Microtubule-based mitochondrial transport: Miro binds mitochondria via Mfn2 and interacts with Milton, coupling 

mitochondria with dynein and kinesin molecular motors that move along microtubules. (B) Actin-based mitochondrial 

transport: Myo19 motor mediates transport along actin filaments. The adaptor proteins are still not well characterized 

but might involve WAVE1.  Protein X – unknown adaptor protein. Adapted from (Dorn, 2018; Lovas and Wang, 2013). 
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(Lovas and Wang, 2013). The small GTPase Mitochondrial Rho (Miro) integrates the OMM through a C-

terminal hydrophobic domain and binds to the adaptor protein Milton (Milt), which in turn binds to kinesin. 

Retrograde movement of mitochondria is not so well studied, but evidence from Drosophila suggests that it 

is mediated by Miro as well (Russo et al., 2009).  

Short-distance trafficking of mitochondria occurs through actin filaments (Fig. 9 B). The actin-based 

motor Myosin XIX (Myo19) regulates mitochondrial morphology and transport along actin filaments. 

However, the link between mitochondria, Myo19 and F-actin is still not well understood. Myo19 has a unique 

30-45 amino acids motif in its C-terminal domain that is necessary and sufficient for mitochondrial 

localization (Quintero et al., 2009; Rohn et al., 2014; Shneyer et al., 2016). WAVE1, a known regulator of F-

actin polymerization (Kim et al., 2006), has been implicated in depolarization-induced mitochondrial 

movement in neurons (Sung et al., 2008), but it is still not clear if or where it fits in the Myo19-based transport 

mechanism (Fig. 9 B). A recent study suggested that Miro1/2 are mitochondrial receptors of Myo19 (López‐

Doménech et al., 2018; Oeding et al., 2018), suggesting that these adaptor proteins coordinate both 

microtubule- and actin-based mitochondrial movement.  

Not only can mitochondria travel within the cell, but they can also be transferred to neighbouring cells 

(Plotnikov et al., 2015). The transfer of mitochondria via intercellular tunnelling nanotubes (TNTs) can rescue 

OXPHOS or prevent cell death in cells with dysfunctional mitochondria (Guo et al., 2018; Spees et al., 2006). 

TNTs are F-actin-based structures, which have been observed both in vitro and in vivo, mediate the transfer 

of molecules and organelles between cells (Austefjord et al., 2014; Marzo et al., 2012). Notably, Miro has 

also been implicated in this mode of mitochondrial transport (Ahmad et al., 2014).  

 

2.6.4. Mitophagy 

Given all the important functions performed by mitochondria (reviewed in 2.5), it is of the upmost 

importance to maintain a functional population of mitochondria. Damaged mitochondria are usually a source 

of ROS and thus toxic for the cell. Therefore, dysfunctional mitochondria must be recognized, separated from 

the healthy ones and eliminated. The cell accomplishes this by the process of mitochondrial autophagy or 

mitophagy. This selective catabolic pathway is regulated by several autophagy-related (Atg) proteins and 

involves the sequestration of mitochondria in a double-membrane organelle termed autophagosome 

(Moyzis et al., 2015).  
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A general overview of mitophagy is shown in Figure 10 A, which involves the following steps: 

1) Nucleation: a small group of molecules, called the class III phosphatidylinositol (3)-phosphate kinase 

(PI3K) complex, are mobilized to the site of autophagosome formation (phagophore) (Suzuki et al., 2001); 

2) Elongation: two ubiquitin-like conjugation systems, Atg12-AtgG5 and Atg8/light chain 3 (LC3), 

contribute to the elongation of the phagophore. Once it is completed, the mature lipidated form of LC3 (LC3-

II) remains at the autophagosome membrane; 

3) Sequestration: LC3-II interacts with proteins that label dysfunctional mitochondria (Lamark et al., 

2009), that are then engulfed by the autophagosome; 

4) Maturation and fusion: the autophagosome docks and fuses with the lysosome; 

5) Degradation: mitochondria are digested by lysosomal enzymes. 

Figure 10. Mitophagy. 

(A) Mitochondrial autophagy initiates with nucleation by BECLIN 1/VPS34/VPS15, leading to the formation of the 

autophagosome. Next, ATG5/ATG12/ATG16 and light chain 3 (LC3) elongate the membrane. The autophagosome fuses 

around a mitochondrion. Finally, the autophagosome fuses with a lysosome and the mitochondrion is degraded by 

lysosomal hydrolases. ER, endoplasmic reticulum. (B-D) Mitophagy pathways. (B) PINK1/Parkin-mediated mitophagy 

starts with accumulation of PINK1 at the OMM of depolarized mitochondria. PINK1 then phosphorylates Mitofusin 2 

(MFN2), which leads to recruitment of Parkin. The p62 adaptor protein binds to Parkin-ubiquitinated proteins and LC3 

on the autophagosome. (C) BNIP3 and NIX act as mitochondrial receptors and directly bind to LC3 to induce mitophagy. 

(D) Dephosphorylation of FUNDC1 by PGAM5 allows FUNDC1 to directly interact with LC3 to induce mitophagy. Adapted 

from (Moyzis et al., 2015)  
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Different selective mitophagy pathways have been described, that differ in the way mitochondria are 

targeted for destruction (Fig. 10 B-D). In the PINK1/Parkin-mediated mitophagy (Fig. 10 B), loss of ΔΨmt 

promotes the accumulation of the serine/threonine kinase Phosphatase and Tensin Homolog deleted on 

Chromosome 10 (PTEN)-induced kinase 1 (PINK1) at the OMM. PINK1 phosphorylates Mfn2, which acts as a 

receptor for the E3 ubiquitin ligase Parkin (Chen and Dorn, 2013). Activated Parkin ubiquitinates 

mitochondrial proteins that are recognized by the p62 adaptor protein, linking targeted mitochondria to LC3-

II on the autophagosome. In mitochondrial receptor-mediated mitophagy (Fig. 10 C-D), the B-cell lymphoma 

2 (Bcl-2)-related proteins Nix and Bcl2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) (Hanna et al., 

2012; Novak et al., 2010) or FUN14 Domain Containing 1 (FUNDC1) (Liu et al., 2012) act as receptors that 

interact with LC3-II via their LIR (LC3 interacting region) motif (Moyzis et al., 2015). 

  

 

2.6.5. Biogenesis 

Mitochondrial biogenesis is the regulated growth and division of pre-existing mitochondria and involves 

coordinated and increased production of nuclear and mitochondrial-encoded proteins. High energy 

demands, cold exposure, caloric restriction, oxidative stress, cell division and renewal, or the need to restore 

the number of functional mitochondria after mitophagy, are triggers of this pathway. After the incorporation 

of lipids and import of proteins to the existing mitochondrial pool, there are fission and fusion events to 

modulate the mitochondrial network, according to the cellular needs (Dorn et al., 2015; Jornayvaz and 

Shulman, 2010; Ventura-Clapier et al., 2008). 

The main regulator of mitochondrial biogenesis is PPAR (peroxisome proliferator-activated receptor)-γ 

coactivator-1α (PGC-1α) (Puigserver et al., 1998). PGC-1α is a co-transcription factor that activates different 

transcription factors, such as nuclear respiratory factors (NFRs) 1 and 2 (Baar et al., 2002; Wu et al., 1999). 

This leads to the increased expression of the genes encoding mitochondrial proteins (e.g. components of the 

ETC complexes) (Ventura-Clapier et al., 2008) and of the mitochondrial transcription factor A (Tfam), which 

controls the transcription and the replication of mtDNA (Virbasius and Scarpulla, 1994). 

The mitochondrial biogenesis cascade is triggered by many factors including exercise, diet, hormones, 

and stressors. For example, AMP-activated protein kinase (AMPK), an important regulator of the energy 

metabolism, triggers mitochondrial biogenesis in times of energy crisis (Hardie, 2007; Zong et al., 2002). 

Other activators of the biogenesis pathway include calcium/calmodulin-dependent protein kinase IV 

(CaMKIV) (Wu et al., 2002), nitric oxide (NO) (Nisoli et al., 2003) and transducer of regulated CREB (cAMP-
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response-element-binding protein)-binding protein (TORC) (Wu et al., 2006), among others (Jornayvaz and 

Shulman, 2010).  

 

2.6.6. Mitochondrial dynamics in health and disease 

Mitochondrial dynamics enable mitochondria to quickly adapt to the cell energetic demands. 

Mitochondrial fusion favours higher OXPHOS rates (Westermann, 2012; Yao et al., 2019). The impairment of 

fusion results in mitochondrial dysfunction and loss of mitochondrial respiratory capacity (Chen et al., 2005). 

Fusion promotes the exchange of intramitochondrial material, which can rescue mild mitochondrial 

dysfunction as it dilutes the damaged components (Nakada et al., 2009), and is important for mtDNA 

maintenance, as it preserves a balanced proteome, including the mtDNA synthesis enzymes (El-Hattab et al., 

2017; Jones and Fangman, 1992). If fusion is not enough, then mitochondrial quality control relies on fission 

to selectively separate healthy from dysfunctional mitochondrial parts, followed by mitophagy (Twig et al., 

2008). Mao and colleagues have shown that interfering with the interaction between the autophagy protein 

Atg11 and Drp1 severely blocks mitophagy (Mao et al., 2013). Activation of Drp1 has been observed in Bnip3-

mediated mitophagy (Lee et al., 2011) and is also implicated in PINK1-Parkin mitophagy pathway (Buhlman 

et al., 2014). Fission is also required to regulate programmed cell death (Frank et al., 2001; Goyal et al., 2007). 

Inhibition of Drp1 can prevent several apoptosis hallmarks, such as ΔΨmt dissipation, MOMP and release of 

cyt c (Frank et al., 2001). In addition, mitochondrial fission also facilitates mitochondrial transport (Fukumitsu 

et al., 2016) and ensures equal mitochondrial segregation between the two daughter cells during cell division 

(Fukumitsu et al., 2016; Taguchi et al., 2007). 

Given the crucial contribution of mitochondria to normal cellular functions or to the apoptosis of 

dysfunctional cells, and the interplay between mitochondrial dynamics and function, it is not surprising that 

mitochondrial dynamics are implicated in disease. Proper regulation of mitochondrial dynamics is essential 

for development, hence mutations in the mitochondrial fission and fusion machinery components lead to 

developmental defects and lethality (Chen et al., 2003; Ishihara et al., 2009; Waterham et al., 2007). 

Moreover, mutations in mitochondrial dynamics genes are implicated in the development of human diseases. 

Mutations in the MFN2 human genes lead to development of Type 2 Charcot-Marie-Tooth disease, 

characterized by abnormalities in the axons of peripheral nerve cells, leading to physical weakness, atrophy, 

sensory loss, among other symptoms (Kijima et al., 2005; Züchner et al., 2004). OPA1 is mutated in Autosomal 

Dominant Optic Atrophy, a hereditary disorder that leads to progressive loss of visual acuity, colour vision 

deficits and central visual field defects (Alexander et al., 2000; Delettre et al., 2000). 
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Additionally, dysregulation of mitochondrial dynamics is implicated in a wide range of human 

pathologies, such as neurodegenerative diseases (Johri and Beal, 2012), like Alzheimer’s (Zhu et al., 2012), 

Parkinson’s (Van Laar and Berman, 2009), and Huntington’s (Chaturvedi et al., 2009; Reddy, 2014) diseases, 

but also in type II diabetes (Rovira-Llopis et al., 2017) and cancer (Anderson et al., 2018; Trotta and Chipuk, 

2017; Wallace, 2012). Just to give a few examples, the proposed link between mitochondrial dynamics and 

neurodegeneration involves age-dependent increased production and abnormal accumulation of proteins in 

mitochondria (Amyloid-β in Alzheimer’s Disease, Huntingtin in Huntington’s disease, PINK/Parkin in 

Parkinson’s disease) that promote ROS production and activate the fission machinery. The excessive 

fragmentation of mitochondria impairs energy production and supply at the nerve terminals, leading to 

synaptic neurodegeneration (Reddy et al., 2011). In cardiac tissues, the distribution of mitochondria is highly 

limited by the myofibrils and thus fusion and fission events are rare. Nevertheless, the mitochondrial 

dynamics machinery performs other functions and has been implicated in the development of 

cardiomyopathies. Impairment of the function of Mfn1/2 leads to increased mitochondrial fragmentation, 

dissipation of the ΔΨmt, increased ROS production and apoptosis (Marín-García and Akhmedov, 2016). 

Moreover, disruption of Drp1 function impairs mitophagy, leading to accumulation of dysfunctional 

mitochondria and consequent cardiac dysfunction (Ikeda et al., 2015) 

In conclusion, the mitochondrial dynamics machinery is a critical regulator of mitochondrial function and 

research on this topic will help to understand the cellular and molecular mechanisms involved in several 

biological processes and how their failure leads to development of diseases. 
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3. THE ROLE OF MITOCHONDRIA AND EPITHELIAL WOUND HEALING 

 

The contribution of mitochondria to the development of human diseases is a hot topic of research. As 

previously mentioned, mitochondrial dysfunction has been linked to the aetiology or the aggravation of 

metabolic diseases (Bhatti et al., 2017), neurodegeneration (Cabezas-Opazo et al., 2015; Chaturvedi and Flint 

Beal, 2013; Chen and Chan, 2009; Reddy et al., 2011; Zorzano and Claret, 2015), muscle disorders (Zulian et 

al., 2016), cardiovascular diseases (Forini et al., 2015; Marín-García, 2013) and cancer (Wallace, 2012). 

However, the contribution of mitochondria and mitochondrial dynamics to epithelial repair has not been so 

deeply investigated.  

It is known that ROS regulate many aspects of wound healing. Low levels of ROS are required for the 

inflammatory response to fight invading pathogens and for cell survival. However, excessive ROS production 

or inefficient ROS detoxification leads to oxidative damage, which is the main cause of non-healing chronic 

wounds (Sanchez et al., 2018). The amelioration of oxidative stress by manipulation of mitochondrial ROS 

production or detoxification, treatment with antioxidants, or transfer of healthy mitochondria to 

dysfunctional cells, improves wound healing in mammals and represents a potential therapeutic to treat 

wound healing complications in humans (Demyanenko et al., 2015; Demyanenko et al., 2017; Dunnill et al., 

2017; Janda et al., 2016; Sanchez et al., 2018; Zhou et al., 2019). In contrast, in models of simple epithelia 

wound healing, ROS production is beneficial to the wound closure. Injury-induced calcium increase triggers 

the production of mitochondrial ROS, which have been shown to regulate several aspects of the wound 

healing response: immune cell recruitment (Razzell et al., 2013), cell junction remodelling (Hunter et al., 

2018a) and actomyosin dynamics (Hunter et al., 2018a; Xu and Chisholm, 2014).  

Increasing evidence supports a role for mitochondrial calcium in cell migration. Knockdown of MCU 

during zebrafish (Danio rerio) development leads to reduced mitochondrial calcium levels and impairment of 

cell migration (Prudent et al., 2013). MCU knockdown in the epidermis of C. elegans leads to wound healing 

impairment (Xu and Chisholm, 2014). In human cancer cell lines, depletion of MCU also leads to a drastic 

reduction of cell migration (Prudent et al., 2016; Tang et al., 2015; Tosatto et al., 2016).  

A recent report compared normal skin fibroblasts with keloid fibroblasts, found in keloid scars which 

represent an abnormal response to cutaneous wound healing. Li and colleagues found that keloid fibroblasts 

present mitochondrial dysfunction, as they showed reduced ATP production and increased proton leakage. 

Interestingly, they observed an increase in mitochondrial mass and in the expression of fission, fusion and 

biogenesis genes, in addition to abnormal mitochondrial morphology. This work suggests that the 

dysregulation of mitochondrial dynamics might be involved in abnormal tissue repair (Li et al., 2019). Another 

study has found that Drp1 mediated-mitochondrial fission induces an increase in mitochondrial ROS that 

activate Rho GTPases, inducing F-actin formation in human mesenchymal stem cells (hMSCs). Furthermore, 
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treatment of skin excision wounds with hMSCs enhanced wound closure, vascularization and re-

epithelialization, suggesting a role for Drp1 in tissue repair (Ko et al., 2017). Moreover, evidence from cancer 

models shows that an imbalance in mitochondrial dynamics towards mitochondrial fission favours cancer cell 

migration, and inhibiting fission or promoting fusion can impair cancer invasion (Ferreira-da-Silva et al., 2015; 

Peiris-Pagès et al., 2018; Zhao et al., 2013). Drp1 is also implicated in the regulation of T cell activation and 

migration (Simula et al., 2018).  

Although these data suggest that mitochondrial dynamics have the ability to regulate the cellular 

processes and the different cell types involved in wound healing, further research is required to get the big 

picture and understand how mitochondrial dynamics influences epithelial repair. 

 

 

4. AIMS  

The work described in this thesis aims to understand the contribution of mitochondria to epithelial 

repair. As mitochondrial function and dynamics are intimately connected, we aim to investigate how 

mitochondrial dynamics impacts on mitochondrial function during wound healing, using the Drosophila 

embryonic epidermis as a model system. To achieve this goal, this work has three specific aims: 

1) To identify the mitochondrial dynamics machinery components that are required for wound healing; 

2) To characterize mitochondrial dynamics during wound healing; 

3) To analyse the wound closure phenotype of the loss of function of the mitochondrial dynamics 

mediators.  
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“Everything is theoretically impossible, until it is done.” 

 – Robert A. Heinlein 
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1. Drosophila strains and handling 

Flies were maintained at 18ºC, except for crosses which were kept at 25ºC, on standard Drosophila 

medium. Detailed information about the fly lines used in this work is listed on Table 1. The detailed 

composition of the Drosophila medium is listed on Table 2. 

ubi-PLCγPH::ChFP and UAS-mito::GCaMP3 were a gift from Y. Bellaïche and F. Kawasaki, respectively. UAS-

mito-roGFP2-Grx1, UAS-cyto-roGFP2-Grx1, UAS-mito-roGFP2-Orp1 and UAS-cyto-roGFP2-Orp1 were kindly 

provided by Tobias P.Dick. Zip CPTI-100036::GFP and ubi-E-cad::GFP were obtained from the Kyoto Drosophila 

Genomics and Genetic Resources Stock Center,  Kyoto Institute of Technology, Kyoto, Japan. All the remaining 

fly lines were obtained from the Bloomington Drosophila Stock Center, Indiana University, Bloomington, USA. 

For live imaging, the Drp1KG03815 and Opa1EY09863 mutant alleles were recombined with live reporter lines.  

Mutant alleles, transgenic and recombinant lines were crossed to balancer stocks that express GFP driven by 

a Twist-Gal4 driver (Halfon et al., 2002).  

Fly lines were crossed in laying pots and embryos were collected at 25°C overnight in apple juice agar 

plates. Embryos were dechorionated in 50% bleach and washed extensively with distilled water. Homozygous 

mutant embryos were identified by the absence of GFP fluorescence. Stage 15-16 embryos were selected by 

the shape of the yolk (Campos-Ortega and Hartenstein, 1997). 

 

2. Generation of recombinant fly lines 

Generation of recombinant flies was done as previously described (Roote and Prokop, 2013).  

Mutant flies [Dynamic-related protein (Drp1)KG03815 or Optic atrophy (Opa1)EY09863] were crossed with flies 

carrying the transgenic construct of interest (fluorescent marker for live imaging). As meiotic recombination 

only happens in females, trans-heterozygous females from the first filial generation (F1) were crossed with 

males carrying a balancer chromosome. Each individual in F2 is the result of an individual recombination 

event in its mother’s germline. Therefore, it was necessary to screen single animals for the presence of the 

mutation/transgenic construct. F2 males were individually crossed with females carrying a balancer 

chromosome. F3 males and females were incrossed to establish all potential recombinant lines that were 

then screened for the presence of the transgenic construct and the mutation.  

The presence of the fluorescent marker was assessed by live imaging of embryos from each incross. The 

presence of the mutation was screened by a complementation test. Potential recombinant flies were crossed 

with parental mutant flies. Drp1KG03815 and Opa1EY09863 homozygosity is embryonic lethal, so the absence of 

homozygous flies confirms the existence of the mutation in the potential recombinant fly line. 
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3. Reagents 

The reagents used in this work are listed in Table 2. 

 

4. Wounding assay 

The wounding assay was performed as previously described (Campos et al., 2010). Selected mutant and 

control embryos were mounted on double-sided tape affixed to a slide, covered with halocarbon oil 700 and 

a 32x32mm coverslip, and sealed with nail polish. A 24x24mm coverslip bridge was used between the slide 

and the top coverslip to avoid embryo squashing. 

The embryos were wounded at 25 ºC by using a nitrogen laser-pumped dye laser (435 nm; Micropoint 

Photonic Instruments) connected to a Nikon/Andor Revolution XD spinning-disk confocal microscope with an 

electron-multiplying charge-coupled device (EMCCD) camera (iXon 897) using the iQ software (Andor 

Technology) and using a 60× Plan Apochromat VC Perfect Focus System (PFS) 1.4 NA oil-immersion objective. 

After wounding, the top coverslip was carefully removed and the embryos were left to recover in a humid 

chamber at 20 ºC. About 16h later, the wounded embryos were scored under a stereomicroscope for closed, 

intermediate and open wounds.  

The percentage of open wounds was calculated as the ratio of nearly hatching embryos with open wounds 

over the total number of wounded embryos (dead animals and intermediate wound phenotypes were 

excluded).  

Images of representative embryos depicting open, intermediate and closed wounds were acquired using 

a Zeiss Axio Imager Z2 widefield system equipped with an Axiocam 506 monochromatic CCD camera, a 10x 

EC Plan-Neofluar 0.3 NA objective and the Zen Pro 2012 software. Individual Z slices with a step size of 10 

µm were acquired. Stacks were processed using the Extended Depth of Field plugin based on the complex 

wavelet method on Fiji (Forster et al., 2004; Schindelin et al., 2012). 

 

5. Embryo permeabilization 

Different embryo permeabilization methods were performed. Dechorionated stage 15 embryos were 

incubated in either: 

- 1:1 heptane:dye solution for 10-30 minutes (min). Drug/dye solutions consisted of Mitotracker 300 

nM in PBS 1X at room temperature (RT) (Razzell et al., 2013); 
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- 1:10 limonene/Citrasolv in MilliQ water, phosphate-buffered saline (PBS) 1X or 5% Tween 20  in PBS 

1X (agitated at 37ºC) for 1.5-5 min at RT, followed by 5-15 min incubation in Mitotracker 300 nM in 

PBS 1X (Rand et al., 2010); 

- 1 µM Mitotracker diluted in a 1:1 or 1:2 limonene:heptane solution for 20-30 min at RT (Schulman 

et al., 2013). 

After incubation, the embryos were thoroughly washed with PBS 1X, mounted in glass-bottomed culture 

dishes (MatTek) coated with embryo glue (double-sided tape dissolved in heptane) and imaged (see 2.8 Live 

imaging section for details). 

 

6. Embryo microinjection 

Dechorionated stage 13-15 embryos were mounted on their ventral side on glass-bottomed culture dishes 

(MatTek) coated with embryo glue and covered with a 1:1 halocarbon oil 27:700 mixture. Dishes were cut on 

one side to allow the entrance of the microinjection needle. 

Microinjection needles were made using glass capillaries (Harvard Apparatus, ref. 30-0020) and a P-97 

Flaming/Brown Micropipette Puller (Sutter Instrument). Injections were done using a PV820 Pneumatic 

PicoPump (World Precision Instruments) microinjector. 

Compounds (0.5 nL) were injected inside the embryo or into the perivitelline space and are predicted to 

be diluted 50-fold in the embryo (Foe and Alberts, 1983). Dimethyl sulfoxide (DMSO) was added to desiccated 

compounds to establish stock solutions. Working solutions were made using MilliQ water or PBS 1X. Injected 

compounds were: 1 µg/ml Fluorescein, 1-10 µM Mitotracker, 25 µM - 25 mM Tetramethylrhodamine methyl 

ester, perchlorate (TMRM), 23mM Diamide and 5mM Amplex UltraRed. 

 

7. Immunohistochemistry and imaging of fixed samples 

 

7.1. HA-Drp1 

Dechorionated embryos were fixed for 20 min in a glass vial containing a mix of 1:1 heptane and 4% 

formaldehyde in PBS 1X at RT, manually devitellinized and washed in PBSTT (PBS 1X + 0.1% Triton X-100 + 

0.1% Tween 20). Embryos were incubated in blocking solution [1% Bovine Serum Albumin (BSA) + PBSTT] 

overnight (ON) at 4ºC, followed by an ON incubation at 4°C with primary antibody (anti-HA, 1:500). Embryos 

were washed with PBSTT, incubated with secondary antibodies for 2 hours (h) at RT. Phalloidin staining was 

performed to label actin. Alexa Fluor® 568 Phalloidin 1:100 was added to the secondary antibody incubation. 
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4', 6-diamidino-2-phenylindole (DAPI) 1:500 in PBST was added in the last 15 min of secondary antibody 

incubation. Embryos were washed with PBSTT before adding anti-fading mounting medium [2% 1,4-

diazabicyclo[2.2.2]octane (DABCO) + PBS 1X(1:4) + glycerol]. Stained embryos were kept at 4ºC in the dark 

until mounting. 

 

7.2. TUNEL assay 

The TUNEL assay was adapted from a previously described protocol (Arama and Steller, 2006). 

Dechorionated embryos were fixed for 20 min in a glass vial containing a mix of 1:1 heptane and 8% 

formaldehyde in PBS at RT. Embryos were devitellinized in a solution of 1:1 heptane:methanol, with vigorous 

shaking for 1 min. Devitellinized embryos were washed with 100% methanol, rehydrated by sequential 

incubation in 70%, 50% and 30% methanol solutions in PBS and washed with PBSTT. Embryos were 

permeabilized in 10 µg/ml proteinase K in PBSTT for 5 min at RT, washed with PBSTT, re-fixed in 8% 

formaldehyde in PBS at RT for 20 min and washed with PBSTT. Embryos were then incubated in blocking 

solution (1% BSA in PBSTT) for 30 min at RT and then with primary antibody (anti-Cora C615.16 1:500) ON at 

4ºC. For positive controls, embryos were treated with DNaseI (1 µL DNaseI + 4 µL DNase I buffer + 35 µL 

MilliQ water) during 15 min at 37ºC to induce DNA damage and washed with PBSTT. Embryos were incubated 

in TUNEL reaction mixture (TUNEL label solution + TUNEL enzyme) ON at 4ºC, followed by DAPI treatment 

for 15 min at RT. Secondary antibody was diluted in the TUNEL reaction mixture. For negative controls, 

embryos were incubated in TUNEL label solution (without the TUNEL enzyme). After rinsing in PBSTT, 

embryos were kept in the dark in anti-fading mounting medium at 4ºC until mounting. 

 

7.3. Mounting and imaging 

Stained embryos were mounted between two 24x60 mm coverslips in a drop of mounting medium.  The 

coverslips were separated by one-coverslip-high bridge to avoid embryo squishing and sealed using nail 

polish. Imaging was performed on an LSM 710 confocal microscope (Zeiss) with a 63× Plan Apochromat 1.4 

NA oil-immersion objective (Zeiss). Stacks were acquired using the Zen software (Zeiss) and a step size of 0.5 

µm. 
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8. Live imaging 

Live imaging was performed as described previously (Carvalho et al., 2018). Dechorionated stage 15 

embryos were mounted on their ventral side on glass-bottomed culture dishes (MatTek) coated with embryo 

glue and covered with halocarbon oil 27. Embryos were wounded as described above for the wounding assay 

except that the laser power was lower in order to inflict smaller wounds that are able to close during the 

imaging procedure.  

Time-lapse microscopy of transgenic embryos was performed at 25°C on a Nikon/Andor Revolution XD 

spinning-disk confocal microscope with a 512 EMCCD camera (iXon 897) with a 60× Plan Apochromat VC PFS 

1.4 NA oil-immersion objective or a 60× Plan Apochromat VC PFS 1.2 NA water-immersion objective (Nikon) 

and using the iQ software (Andor Technology). In Figures 14, 15, 17, 27 and 28 we used an 1.5x auxiliary 

Optovar magnification. Individual Z slices with a step size of 0.28-0.5 µm were acquired (see Figure legends 

for detailed number of Z slices). 

For roGFP imaging, roGFP fluorescence was excited by the 405 nm and 488 nm lasers and emission was 

detected at 500–570 nm (Albrecht et al., 2011). For all other imaging experiments, we used the 405 nm laser 

to excite GFP and the 561 nm laser to excite mCherry/ChFP.  

 

9. Image analysis and quantifications 

All images were processed and analyzed using Fiji (ImageJ 1.52p; National Institutes of Health [NIH]; 

(Schindelin et al., 2012), unless stated otherwise. Z-stacks were processed to obtain maximum Z-projections.  

 

9.1. Mitochondrial morphology 

EYFP::mito Z-stacks were deconvolved with the Huygens Remote Manager (Scientific Volume Imaging, 

The Netherlands, http://svi.nl), using the Classic Maximum Likelihood Estimation (CMLE) algorithm, with 

Signal to Noise Ratio (SNR) of 15 and 30 iterations. Individual cells were manually outlined and cropped from 

maximum Z projections of deconvolved sqh-mito-YFP (mitochondrial maker) merged with PLCγPH::ChFP 

(membrane marker) Z-stacks. Mitochondrial morphology from the selected cells was quantified using MiNA 

(Mitochondrial Network Analysis) 2.0.0 macro for Image J (Valente et al., 2017) 

(https://github.com/StuartLab/MiNA), selecting a Maximum Entropy Threshold Method and Ridge 

Detection. The branch length mean and network branches mean output parameters for each cell were 

plotted. The branch length mean, which was called mitochondrial length for simplicity, is the mean length of 
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all the lines used to represent the mitochondrial structures. The network branches mean is the mean number 

of attached lines used to represent each structure.  

 

9.2. Wound area 

sqh-GFP::Moesin maximum Z projections were used. An ellipse was drawn along the wound edge over 

time, and the area was obtained using the Measure tool. For each embryo, the area was normalized relative 

to the initial wound area. For statistical comparisons, only the first 30 min after wounding were considered, 

as shortly after that wounds start to close in control embryos. 

 

9.3. Fluorescence intensity measurements 

To measure F-actin and myosin intensities at the wound edge, maximum Z projections of sqh-GFP::Moesin 

mCherry::Moesin (F-actin), and Zip::GFP (myosin) stacks were used after Rolling Ball Background Subtraction 

(15 pixel). The wound edge and the cortical region of epithelial cells (10 cells per embryo) before wounding 

were outlined using a 3-pixel-wide segmented line, and the mean grey value was obtained using the Measure 

tool. For F-actin quantifications, cells containing actin-rich denticle precursor structures were excluded as 

they mask the actin present at the cable and cell cortex.  

To measure E-cadherin (E-cad) intensities, maximum Z projections of ubi-E-cad::GFP stacks were used. 

Background fluorescence was subtracted from each image. The mCherry::Moesin channel was used to 

confirm the location of the wound edge. Junctions were outlined using a 4-pixel-wide segmented line and 

the average intensity obtained using the Measure tool. To calculate the intensity decrease (fold-change) at 

the wound edge, the intensity value for each wound edge junction after wounding (10 and 30 minutes post-

wounding, mpw) was divided by the intensity value obtained for the same junction before wounding. 

To measure Rok intensities, maximum Z projections of sqh-GFP::Rok stacks were used after Rolling Ball 

Background Subtraction (5 pixel). The mCherry::Moesin channel was used to confirm the location of the 

wound edge. The wound edge and the cortical region of epithelial cells (10 cells per embryo) before wounding 

were outlined using a 3-pixel-wide segmented line, and the mean grey value was obtained using the Measure 

tool.  

To measure mitochondrial and intracellular Ca2+ dynamics, mito::GCaMP3 and GCaMP-6f maximum Z 

projections were used after applying a median filter (0.5 pixel). The wound area, measured from 

mCherry::Moesin maximum Z projections from respective embryos, was deleted from mito::GCaMP3 and 

GCaMP-6f maximum Z projections to exclude the signal coming from cellular debris and wound-recruited 

hemocytes. The region of Ca2+ increase upon wounding was selected by applying an Intensity Threshold 
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[Otsu’s method (Otsu, 1979)]. The Mean Grey Value, Area and Integrated Density (the product of Area and 

Mean Grey Value) were obtained using the Measure Tool, before and during wound closure. The Integrated 

density normalized to pre wound values and the area of Ca2+ increase normalized to the initial wound area 

were plotted.  

 

9.4. Statistics 

Statistical analysis was performed using GraphPad Prism 6.01 (GraphPad Software, La Jolla California, 

USA). Statistical tests, P values, sample sizes, and error bars are indicated in the respective figure legends. 
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Table 1. Fly lines used in this study 

Fly stock Information Origin 

Control and mutant alleles used in the wounding assay 

Information on the nature of the mutant alleles can be found on Flybase (Thurmond et al., 2019) 

w1118 
Control for wounding assay 

experiments 
BDSC # 3605 

Marf B  Marf mutant allele (amorphic) BDSC # 67154 

Marf E  Marf mutant allele BDSC # 67155 

Marf I  Marf mutant allele BDSC # 57097 

Marf J  Marf mutant allele BDSC # 57096 

Opa1s3475 Opa1 mutant allele (hypomorphic) BDSC # 12188 

Opa1EY09863 Opa1 mutant allele BDSC # 20054 

Fis1MI10520 Fis1 mutant allele BDSC # 55496 

Gdap1MB07860 Gdap1 mutant allele BDSC # 25575 

Tango11 1 Tango 11 mutant allele BDSC # 36320 

Drp1KG03815 Drp1 mutant allele BDSC # 13510 

Df(2L)D20, Drp1D20 nrdD20 Drp1 mutant allele BDSC # 3911 

Drp1T26 Drp1 mutant allele BDSC # 8662 

miltEY01559 milt mutant allele BDSC # 15518 

miltk04704 milt mutant allele BDSC #  10553 

MiroB682 Miro mutant allele BDSC # 52003 

Balancer stocks 

gla/CyO, Twi-Gal4, UAS-GFP 2nd chromosome balancer 
BDSC # 6662  

(Halfon et al., 2002) 

w1118/Dp(1;Y)y+; CyO/nub1 b1 

snaSco lt1 stw3; MKRS/TM6B, Tb1 
2nd and 3rd chromosome balancer BDSC # 3703  

w*; Kr If-1/CyO; D1/TM3, Ser1 3rd chromosome balancer BDSC # 7198 

Transgenic constructs 

sqh-EYFP::mito 
Ubiquitously expressed mitochondrial 

marker 

BDSC # 7194;  

(Lajeunesse et al., 2004) 

ubi-PLCγPH::ChFP 
Ubiquitously expressed membrane 

marker 

(Herszterg et al., 2013) 

(kindly provided by 

Yohanns Bellaïche) 

sqh-GFP::Moesin 
Ubiquitously expressed F-actin 

marker 

BDSC # 59023 

(Kiehart et al., 2000) 

Zip CPTI-100036::GFP 
Myosin II heavy chain marker 

(fluorescent protein-trap) 

Kyoto DGGR # 115082 

(Lye et al., 2014) 

ubi-E-cad::GFP 
Ubiquitously expressed E-cadherin 

fused with GFP 

Kyoto DGGR # 109007 

(Oda and Tsukita, 1999) 

UAS-mCherry::Moesin UAS-dependent F-actin marker (Millard and Martin, 2008) 

e22c-Gal4 
GAL4 driver (drives expression of UAS 

transgenes mainly in the epidermis) 
BDSC # 1973 
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UAS-GCaMP6f 
UAS-dependent intracellular calcium 

sensor 

BDSC # 52869 

(Chen et al., 2013) 

UAS-mito::GCaMP3 
UAS-dependent mitochondrial 

calcium sensor 
(Lutas et al., 2012) 

UAS-Atg8::GFP 
Expresses GFP-tagged Atg8a protein 

under UAS control 
BDSC # 52005 

HA-Drp1 
Expresses HA-tagged Drp1 protein 

from the native Drp1 promoter 
BDSC # 42208 

UAS-GFP::mito 
Expresses GFP with a mitochondrial 

import signal under UAS control 

BDSC # 8442 

(Rizzuto et al., 1995) 

sqh-GFP::Rok 
Ubiquitously expressed Rok fused to 

GFP 

BDSC # 52289  

(Abreu-Blanco et al., 2014) 

UAS-mito::roGFP2-Orp1 
Mitochondrial hydrogen peroxide 

sensor 

(Albrecht et al., 2011) 

(kindly provided by Tobias 

P. Dick) 

Recombinant lines 

e22c-Gal4, UAS-mCherry::Moesin   

Drp1KG03815, e22c-Gal4, UAS-mCherry::Moesin  

Opa1EY09863, e22c-Gal4, UAS-mCherry::Moesin  

Drp1KG03815, Zip CPTI-100036::GFP   

Opa1EY09863, Zip CPTI-100036::GFP   

Drp1KG03815, ubi-E-cad::GFP   

Opa1EY09863, ubi-E-cad::GFP   

Drp1KG03815, ubi-PLCγPH::ChFP   

Opa1EY09863, ubi-PLCγPH::ChFP   

Drp1KG03815, UAS-GFP::mito   

Opa1EY09863, UAS-GFP::mito   

BDSC – Bloomington Drosophila Stock Center (funded by NIH P40OD018537), Dept Biology, Indiana 

University, Bloomington, USA 

Kyoto DGGR – Kyoto Drosophila Genomics and Genetic Resources Stock Center, Center for Advanced 

Insect Research Promotion, Kyoto Institute of Technology, Kyoto, Japan 
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Table 2. Reagents used in this study 

Reagent Reference Supplier 

Heptane 34873 Sigma-Aldrich 

Formaldehyde  F8775 Sigma-Aldrich 

Methanol M/4056/17 Fisher Chemical  

Triton X-100 AC215680010 ACROS Organics™ 

TWEEN® 20 P9416 Sigma-Aldrich 

Halocarbon oil 700 H8898 Sigma-Aldrich 

Halocarbon oil 27 H8773 Sigma-Aldrich 

Bovine Serum Albumin A3294 Sigma-Aldrich 

DABCO (1,4-Diazabicyclo[2.2.2]octane) D27802 Sigma-Aldrich 

Glycerol  MB16101 NZYTech 

DMSO (Dimethyl sulfoxide) D5879 Sigma-Aldrich 

D-Limonene 155234 MP Biomedicals 

Citra Solv  Citra Solv 

Drosophila Standard medium   

Barley Malt Syrup, 45 g/L  Provida 

Agar, 10 g/L  NZYtech 

Biological Corn Flour, 70 g/L  Provida 

Yeast Extract, 20 g/L  Provida 

Sugar, 75 g/L  Sidul 

10% Niapagin in 96% ethanol, 25 mL/L  Tegosept, Dutscher UK 

Distilled water   

Drosophila Ringers Solution, pH 7.1   

2 mM KCl 104936 Merck 

128mM NaCl  S/3120/65 Fisher Chemical 

35.5 mM sucrose S9378 Sigma-Aldrich 

5 mM HEPES (2-[4-(2-hydroxyethyl)-1-

piperazinyl]ethanesulphonic acid) 
441485H VWR 

4 mM MgCl2 M8266 Sigma-Aldrich 

Phosphate Buffer Saline (PBS), pH 7.4   

1.4 M NaCl S/3120/65 Fisher Chemical 

27 mM KCl 104936 Merck 

Na2HPO4, 102.1 mM 319540250 Biochem Chemopharma 

17.6 mM KH2PO4 60229 Sigma-Aldrich 

Enzymes   

Proteinase K 3115836001 Roche 

DNaseI 004716728001 Roche 

Antibodies, dyes and probes   

Anti-HA-Tag (C29F4), rabbit, 1:500 #3724 Cell Signaling Technology 

Anti-Cora, mouse, 1:500 C615.16 Developmental Studies 

Hybridoma Bank 
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Alexa Fluor® 568 Phalloidin, 1:100 A12380 Invitrogen™ 

DAPI (4', 6-diamidino-2-phenylindole), 1:500  Sigma-Aldrich 

TUNEL - In Situ Cell Death Detection Kit, Fluorescein 11684795910 Roche 

Fluorescein dextran  D1821 Invitrogen™ 

TMRM (Tetramethylrhodamine methyl ester, 

perchlorate) 

#70017 Biotium 

MitoTracker® Red CMXRos M7512 Invitrogen™ 
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“I seem to have been only like a boy playing on the seashore, and diverting myself in now 

and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of 

truth lay all undiscovered before me.”  

- Isaac Newton 
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1. Mitochondrial dynamics proteins are required for wound healing 

 

As a first approach to test whether the mitochondrial dynamics machinery (Fig. 11 A) is required for 

epithelial repair, we performed a genetic screen based on a previously described wounding assay in the 

Drosophila embryonic epidermis (Campos et al., 2010). We laser-wounded late-stage embryos bearing wild-

type and mutant alleles of proteins related to mitochondrial dynamics and assessed the wound healing 

phenotype by the percentage of embryos with non-healing wounds (Fig. 11 B). This assay is a crude way of 

finding potential genes required for wound healing. If mutants for a certain gene present increased number 

of open wounds compared to controls, it suggests that this gene is required for wound healing.   

Mitochondrial dynamics comprises the changes in mitochondrial morphology, through fission and fusion 

events; in their localization, controlled by mitochondrial trafficking; and in mitochondrial number and quality 

control, mediated by mitophagy and biogenesis (Dorn, 2018; Sebastián et al., 2017). We tested mutants for 

the proteins involved in mitochondrial fusion, fission and trafficking. Figure 11 A shows a scheme of 

mitochondrial dynamics with all the tested proteins represented. 

Mitochondrial fusion is mediated by large GTPases of the dynamin family: Mitofusins 1 and 2 (Mfn1/2) 

fuse the outer mitochondrial membrane (OMM), whereas Optic Atrophy 1 (Opa1) fuses the inner 

mitochondrial membrane (IMM) (Lee and Yoon, 2016; van der Bliek et al., 2013). Drosophila has two Mfn1/2 

homologs: Fuzzy Onions (Fzo) and Mitochondrial assembly regulatory factor (Marf). Fzo was the first OMM 

fusion protein to be described and was named after the fuzzy and onion-like appearance of unfused 

mitochondria in electron micrographs of mutants for this protein (Hales and Fuller, 1997). fzo is only 

expressed in the male germ line whereas Marf is widely expressed in the embryo (Hwa et al., 2002), so we 

tested four Marf alleles, each carrying a different point mutation (Haelterman et al., 2014; Sandoval et al., 

2014): Marf B, Marf E, Marf I and Marf J. Concerning fusion of the IMM, we tested two Opa1 alleles: Opa1s3475 

(hypomorphic) (Yarosh et al., 2008) and Opa1EY09863 (McQuibban et al., 2006).  

Mitochondrial fission relies on the activity of Dynamin-related protein (Drp1) (Aldridge et al., 2007; Lee 

and Yoon, 2016), so we tested three loss-of-function Drp1 alleles [Drp1KG03815 (Verstreken et al., 2005), 

Drp1D20, Drp1T26 (Littleton and Bellen, 1994)] and a heteroallelic combination (Drp1KG03815/T26). Unlike fusion 

proteins, Drp1 is largely cytosolic and needs to be recruited to mitochondria upon certain stimuli. Several 

proteins have been shown to recruit Drp1 to mitochondria (Lee et al., 2016; Roy et al., 2015). The ones with 

known Drosophila homologs are Mitochondrial Fission Factor (Mff) (Gandre-Babbe and van der Bliek, 2008) 

and Mitochondrial fission protein 1 (Fis1) (Yang et al., 2008). Ganglioside-induced differentiation associated 

protein 1 (Gdap1) also contributes to mitochondrial fission but its function is not well understood (Huber et 

al., 2013; López del Amo et al., 2017; Pedrola et al., 2005). Mutants for Tango 11, the Drosophila Mff homolog 

(Gandre-Babbe and van der Bliek, 2008), have severe developmental defects and we could not obtain healthy 
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stage 15 embryos to perform the wounding assay. Therefore, we only tested Fis1MI10520 (Venken et al., 2011) 

and Gdap1MB07860 mutant embryos (Metaxakis et al., 2005). 

Mitochondria move by interacting with different cytoskeleton components, such as microtubules and 

actin filaments (Lovas and Wang, 2013; Morris and Hollenbeck, 1995). In animal cells, the most studied 

interaction has been between mitochondria and microtubules (Anesti and Scorrano, 2006). Mitochondrial 

Rho (Miro), a calcium-sensing member of the Ras homologous (Rho)-GTPase family that localizes at the 

OMM, interacts with Milton (Milt), linking mitochondria to kinesin motors (Saotome et al., 2008). To test 

their loss of function, we used the following alleles: MiroB682 (Guo et al., 2005), miltk04704 (Spradling et al., 

1999) and miltEY01559 (Bellen et al., 2004). Most miltk04704 embryos died before reaching stage 15, so we only 

tested miltEY01559 embryos. 

We observed three types of wound closure phenotypes: open, intermediate and closed wounds (Fig. 11 

C). Closed wounds are identified by a small melanized spot. Open wounds show a continuous well-defined 

melanized ring around the hole. In the intermediate phenotype, melanization occurs in a large circular area 

but a clear hole is absent, making it uncertain whether the wound is open or closed. As it is unclear whether 

the intermediate wounds represent a closure impairment or just a melanization defect, we excluded these 

wounds from the statistical analysis of the wound healing phenotype (Fig. 11 E).  

As previously shown (Carvalho et al., 2018), control embryos (w1118) have an outstanding capacity for 

epithelial repair, as 94.7% of the wounds closed (Fig. 11 D). Mutations in either mitochondrial fission or fusion 

genes increased the frequency of open and intermediate wounds (Fig. 11 D), indicating they are required for 

wound closure. For all mitochondrial fission genes, the percentage of open wounds was significantly higher 

than in controls. Regarding mitochondrial fusion, from the four tested Marf alleles, Marf J showed increased 

percentage of open wounds compared to controls, while both Opa1 alleles showed a significant wound 

closure phenotype. Considering the mitochondrial trafficking proteins, miltEY01559, but not MiroB682 embryos, 

showed a mild increase in the percentage of open wounds compared to controls (Fig. 11 E).  

This assay led to the identification of novel wound healing regulators. As we observed wound closure 

defects for mutated versions of mitochondrial fusion, fission and trafficking proteins, these data strongly 

suggest that the regulation of mitochondrial dynamics is essential for proper wound healing. 

We chose the two most significant hits from the wounding assay screen, Drp1KG03815 and Opa1EY09863 (52% 

and 50% of open wounds, respectively), to further investigate the role of mitochondrial dynamics in the 

Drosophila epidermis wound healing. Although Drp1 and Opa1 are well-described proteins involved in 

mitochondrial fission and fusion, respectively, their role in embryonic wound healing has so far never been 

investigated.  
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2. Drp1 is present in the embryonic epidermis 

 

The expression and localization of Drp1 in the Drosophila embryonic epidermis has never been assessed. 

We took advantage of a fly transgenic line expressing an HA-tagged version of Drp1 under the control of its 

endogenous promotor and used an antibody directed at HA to detect Drp1 (Fig. 12) by immunofluorescence.  

Drp1 was found to be localized throughout the embryo (Fig. 12 A), including in the epidermis (Fig. 12 D, 

the epidermis is outlined by dashed lines). At the subcellular level, Drp1 was distributed in the whole cell, 

except in the nucleus (Fig. 12 A, ai, aii, Ai, D), which corroborates previous studies in human cell lines 

(Smirnova et al., 1998). A fly transgenic line expressing HA-Opa1 has been recently published (Tsuyama et 

Figure 16. Mitochondrial dynamics proteins are required for wound healing. 

(A) Schematic representation of mitochondrial dynamics, illustrating the proteins used in the wounding assay screen. 

We tested proteins involved in mitochondrial fission (Drp1, Fis1 and Gdap1), fusion (Marf and Opa1) and trafficking 

(Miro and Milt). (B) Wounding assay protocol: the ventral epidermis of stage 15-16 mutant embryos was laser-ablated. 

16 h after wounding the number of open, intermediate (not represented) and closed wounds was scored. (C) 

Representative images of hatching larvae, showing the three observed wound phenotypes: closed, intermediate and 

open. Closed wounds present a small scab, while open wounds show a ring of melanization around the hole. 

Intermediate wounds have more melanization than closed and open wounds but not a clear hole. Arrowheads point to 

the wound region. Scale bar = 200 µm. (D) Graph of percentage of closed, intermediate and open wounds in controls 

(w1118) and mutant alleles for mitochondrial dynamics proteins. (E) Graph showing the percentage of open wounds in 

controls and mutant alleles for mitochondrial dynamics proteins. Regarding fusion, both Opa1 alleles showed increased 

percentage of open wounds compared to controls; for Marf, only the Marf J mutation shows significantly increased 

percentage of open wounds compared to controls. All the tested fission genes showed higher percentage of open 

wounds compared to controls. Regarding mitochondrial trafficking mutants, only miltEY01559 but not MiroB682 embryos 

presented an increased percentage of open wounds in comparison to controls. Fisher’s exact test was used to test for 

significant differences between groups. ns – not significant (P > 0.05), * P = 0.0261, ** P = 0.0020, *** P = 0.0008, **** 

P < 0.0001. The number of embryos per condition is indicated above the respective bar in D and E. 

Figure 17. Drp1 localization in the embryonic epidermis. 

Representative confocal images of embryos expressing HA-Drp1 stained with an HA antibody (A, green), phalloidin to 

label F-actin (B, magenta) and DAPI to label nuclei (C, blue). Images are maximum Z projections of 48 slices (24-µm-thick 

stack) Scale bar = 20 µm. Insets (ai-ci, aii) show a zoom of the region outlined by the dashed square. Inset scale bar = 10 

µm. (Ai-Ci) XZ sections of A-C, respectively. (D) XZ merge from Ai and Ci, showing Drp1 (green) and nuclei (blue). Dashed 

lines delimit the epidermis. Drp1 is present all over the embryo, including in the epidermis. At the subcellular level, it is 

localized all over the cell, except in the nucleus (aii, D).  
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al., 2017) and there is also an antibody that recognizes the Drosophila Opa1 (Yarosh et al., 2008) but, due to 

time constraints, we were not able to investigate the Opa1 expression and localization in the embryonic 

epidermis. 

Our results reveal that Drp1 is expressed in the Drosophila embryonic epidermis.  

 

 

3. Drp1 and Opa1 mutations do not compromise cell viability in Drosophila 

embryos 

 

Our wounding assay screen revealed that mutations in the mitochondrial dynamics machinery impair 

wound healing, suggesting that mitochondrial dynamics is involved in the repair process. Another possibility 

is that this phenotype is related to unspecific effects of these mutations in other tissues, that would 

compromise embryo development and survival. With the exception of Fis1MI10520, Gdap1MB07860 and miltEY01559 

mutants, which are viable, the remaining tested mitochondrial dynamics mutants are either lethal 

(Drp1KG03815, Drp1D20, Drp1T26, Opa1EY09863, Marf B, Marf E, Marf I and Marf J) or partially lethal, meaning that 

the majority dies before eclosion (MiroB682 and Opa1s3475). 

Therefore, we tested whether Drp1KG03815 and Opa1EY09863 mutants have an increase in cell death that 

might affect embryo or epidermis viability. For this purpose, we performed a TUNEL (TdT-mediated dUTP-X 

nick end labelling) assay that detects dying cells, based on the presence of DNA fragmentation, a hallmark of 

apoptosis (Zhang and Xu, 2000). DNA breaks (nicks) are detected by labelling the free 3′-OH termini with 

modified nucleotides (in this case we used fluorescein-dUTP) in an enzymatic reaction catalysed by a terminal 

deoxynucleotidyl transferase (TdT). The fluorescein-dUTP positive cells were visualized by confocal 

microscopy of fixed embryos. As a negative control, we used control (w1118) embryos incubated without the 

TdT (Fig. 13 A-Aii); as a positive control, we incubated control embryos with DNase I to induce DNA breaks 

(Fig. 13 B-Bii).  

As expected, no TUNEL positive cells were observed in the negative control (Fig. 13 A), whereas all cells 

were labelled in the positive control (Fig. 13 B), confirming the accuracy and specificity of the assay. In 

addition to TUNEL labelling, we stained the embryo with DAPI (Fig. 13, Ai-Ei) to label the cell nuclei and with 

an antibody for Coracle, a component of the Occluding Junctions, to outline the cells (Fig. 13, Aii-Eii). As 

reported in other studies (Bardet et al., 2008; Muro et al., 2006), dying cells are present throughout the 

embryo in the wild type (Fig. 13, C). We also observed TUNEL positive cells in Drp1 and Opa1 mutant embryos 

but did not detect any major differences in their number when compared to controls. Although these are 
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preliminary results, since they lack quantitative analysis, they suggest that the wound closure defects of Drp1 

and Opa1 loss of function are not due to increased cell death in the embryonic epidermis. 

Figure 18. Drp1 and Opa1 mutations do not seem to affect apoptosis. 

Confocal images of negative control (A), positive control (B), control (w1118, C), Drp1KG03815 (D) and Opa1EY09863 (E) 

embryos labelled with TUNEL (in green) to detect apoptotic cells. Embryos were stained with DAPI (blue, Ai-Ei) to label 

nuclei and Coracle (red, Aii-Eii) to mark the cell outline. Images are maximum Z projections of approximately 85 slices 

(42.5-µm-thick stack). We observed no major differences in the number of apoptotic cells in control and mutant 

embryos. Scale bar = 20 µm. n=3 per condition 
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4. Analysis of mitochondrial morphology and localization in the embryonic 

epidermis 

4.2.  Drp1 mutants have altered mitochondrial morphology 

By controlling mitochondrial fission and fusion events, Drp1 and Opa1 are known modulators of 

mitochondrial morphology (Lee and Yoon, 2016). To characterize the mitochondrial morphology in the 

embryonic epidermis and assess whether it is affected by mutations in Drp1 and Opa1, we used embryos 

expressing mitochondria (EYFP::mito) and membrane (PLCγPH::ChFP) markers. The EYFP::mito transgenic 

flies express EYFP tagged with a mitochondrial targeting sequence under the control of Drosophila spaghetti 

squash (sqh) (regulatory light chain of the non-muscle type 2 myosin) promotor (Lajeunesse et al., 2004), 

which is expressed ubiquitously. PLCγPH::ChFP flies ubiquitously express the Phospholipases Cγ (PLCγ) 

pleckstrin homology (PH) domain fused to ChFP, which targets the ChFP protein to the cell membrane 

(Herszterg et al., 2013). In controls, we observed both round (Fig. 14 A-Ai, arrowheads) and filamentous (Fig. 

14 A-Ai, arrows) mitochondria. In Drp1 mutants, we observed very long and interconnected mitochondria 

(Fig. 14 B-Bi, arrows), while in Opa1 mutants the overall mitochondrial morphology was similar to controls 

(Fig. 14, compare A-Ai with C-Ci).  

Several methods have been developed to quantify mitochondria morphology by using images obtained 

from cells in culture (Dagda et al., 2009; Lihavainen et al., 2012; McClatchey et al., 2016; Nikolaisen et al., 

2014; Valente et al., 2017; Westrate et al., 2014). We found that our in vivo system was more challenging. 

We had to find the adequate imaging settings that allowed us to obtain the best possible resolution without 

bleaching the signal. To improve image resolution, we performed image deconvolution using the Huygens 

software (Scientific Volume Imaging, The Netherlands). After this processing step, we tested three different 

mitochondrial morphology quantification tools, namely Mytoe (Lihavainen et al., 2012), Mito Morphology 

(Dagda et al., 2009) and Mitochondrial Network Analysis (MiNA) (Valente et al., 2017) (Fig. 15). Although 

these methods have technical differences in the image processing workflow and in the output parameters, 

they are based on the same fundamental steps: 

 1) Creation of a binary image by thresholding, where a foreground pixel (the signal of interest, in this case 

mitochondria) is assigned the maximum value (255) and background pixels are assigned the minimum 

possible value (0) (Fig. 15 B and C); 

2) Creation of a skeleton representing the features in the original image using a wireframe of lines (Fig. 

15 D); 

3) Skeleton analysis to measure mitochondrial morphology parameters (Fig. 15 Bi-Di, Bii-Dii).  
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Figure 19. Drp1 mutant embryos have altered mitochondrial morphology. 

(A-Ai, B-Bi, C-Ci) Representative confocal images of the epidermis of control (A-Ai), Drp1 (B-Bi) and Opa1 (C-Ci) mutant 

embryos expressing mitochondrial (EYFP::mito, A-C, green in Ai-Ci) and membrane (PLCγPH::ChFP, magenta in Ai-Ci) 

markers. Genotypes are PLCγPH::ChFP; EYFP::mito for control, Drp1KG03815, PLCγPH::ChFP; EYFP::mito for Drp1 and 

Opa1EY09863, PLCγPH::ChFP; EYFP::mito for Opa1 mutant embryos. Images are maximum Z projections of 19 slices (5.3-

µm-thick stack). Arrowheads point to punctate mitochondria. Arrows point to elongated mitochondria. The 

mitochondrial morphology of control (A-Ai) and Opa1 mutant (C-Ci) embryos is similar, with both small round and 

filamentous mitochondria. In contrast, mitochondria in Drp1 mutants (B-Bi) are more elongated and interconnected 

than in controls (A-Ai). Scale bar = 10 µm. (D) Graph of average number of branches in control, and Drp1 and Opa1 

mutant embryos. (E) Graph shows the average mitochondrial length in control, and Drp1 and Opa1 mutant embryos. 

The mitochondrial network in Drp1 mutants shows an increased number of branches and increased length, compared 

to controls. Mann-Whitney test was used to test for significant differences between groups. ns – not significant (P > 

0.05), ** P = 0.0059, **** P < 0.0001. N(control) = 23 cells from 6 embryos, N(Drp1) = 34 cells from 6 embryos, N(Opa1) 

= 18 cells from 3 embryos. Error bars represent SD. 
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The Mytoe and Mito Morphology  tools provide information for each identified individual mitochondrion 

while the MiNA plugin (Valente et al., 2017) produces the average value of the mitochondrial parameters. 

So, for the first two tools, each point in the graphs represents one mitochondrion (Fig. 15 Bi-Ci, Bii-Cii), while 

Figure 20. Different quantification methods applied to the analysis of mitochondrial morphology in the Drosophila 

embryonic epidermis. 

(A) Representative deconvolved maximum Z projection of a Drp1 mutant epidermis labelled with a mitochondrial 

marker (EYFP::mito). (B-D) Resulting processed images using three different mitochondrial morphology quantification 

methods: Mytoe (B), Mito Morphology (C) and MiNA (D). (Bi-Di, Bii-Dii). Graphs showing the output parameters of the 

respective quantification methods, comparing control, and Drp1 and Opa1 mutant embryos. Error bars represent SD.  
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for MiNA, each point is the average value of the corresponding embryo (Fig. 5 Di-Dii). We found that the 

quantification tool that better suited our sample was the MiNA toolset (Fig. 15 D-Diii). From the three tools, 

this one produced the best fitted skeleton (Fig. 15 D) and the output parameters were consistent with 

expected results (Fig. 15 Di-Dii). This preliminary analysis was used to choose the most suitable quantification 

tool and to validate our quantification pipeline, so the number of embryos was low and we did not perform 

statistical analysis at this time. Nevertheless, these first results suggested that the number of mitochondrial 

branches was lower in Opa1 mutant embryos compared to controls (Fig. 15 Di), which was expected as the 

lack of Opa1 should prevent mitochondrial fusion. As anticipated, the length of mitochondria was reduced in 

Opa1 mutants and increased in Drp1 embryos, compared to controls. This indicates that, from the tool sets 

analysed, the MiNA is the more appropriate to measure differences in mitochondria morphology in the 

Drosophila embryonic epidermis. After choosing the most suitable quantification method, we increased the 

number of embryos per condition and quantified mitochondrial morphology in control, and in Drp1 and Opa1 

mutant embryos (Fig. 14 D, E). We found that the number of mitochondrial branches (Fig. 14 D) and the 

length of mitochondria (Fig. 14 E) were increased in Drp1 mutants compared to controls. No significant 

differences were found between control and Opa1 mutant embryos (Fig. 14, D, E).  

We have established the MiNa as a valid tool for the quantification of mitochondrial morphology in the 

Drosophila epidermis. Our results show that Drp1, but not Opa1, mutant embryos have altered mitochondrial 

morphology compared to controls. These data suggest that mitochondrial fission is critical for the 

maintenance of mitochondrial morphology in the embryonic epidermis. 

 

4.3. Epithelial wounding leads to changes in mitochondrial morphology  

Knowing that mitochondrial dynamics proteins are required for proper wound repair, we asked whether 

there is any change in mitochondrial morphology during wound healing. As mitochondrial function and 

morphology are intimately connected (Ferree and Shirihai, 2012), defects in mitochondrial morphology by 

Drp1 and Opa1 loss of function could affect mitochondrial function during wound healing.  

We used spinning-disk confocal microscopy to image live embryos before and during wound closure. 

We used control, Drp1 and Opa1 mutant embryos expressing a UAS-dependent mitochondrial marker (UAS-

GFP::mito) and an F-actin marker (UAS-mCherry::Moesin) under the control of the e22c-Gal4 driver (Fig. 16). 

This driver leads to gene expression in ectodermal tissues (Lawrence et al., 1995), such as the embryonic 

epidermis. The UAS-GFP::mito construct encodes a peptide corresponding to the 31 amino acid 

mitochondrial import sequence from human cytochrome C oxidase subunit VIII fused to the N-terminus of 
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the S65T spectral variant of GFP (Rizzuto et al., 1995). The UAS-mCherry::Moesin construct encodes mCherry 

fused to the actin-binding domain of the Drosophila Moesin (C-terminal 137 residues) (Millard and Martin, 

2008). 

Figure 21. Mitochondrial morphology before and during wound healing. 

(A-Ciii) Confocal images of control (A-Aiii), Drp1KG03815(B-Biii) and Opa1EY09863 (C-Ciii) embryos expressing UAS-

mCherry::Moesin (magenta in Ai-Aiii, Bi-Biii and Ci-Ciii) to mark F-actin and UAS-GFP::mito (A-C, green in Ai-Aiii, Bi-Biii 

and Ci-Ciii) to label mitochondria in the epidermis under the control of the e22c-Gal4 driver, before (A,Ai,B,Bi,C,Ci) and 

during wound closure (Aii,Aiii,Bii,Biii,Cii,Ciii). Genotypes are e22c-Gal4, UAS-mCherry::Moesin / UAS-GFP::mito for 

control, Drp1KG03815, e22c-Gal4, UAS-mCherry::Moesin / Drp1KG03815, UAS-GFP::mito for Drp1 and Opa1EY09863, e22c-Gal4, 

UAS-mCherry::Moesin / Opa1EY09863, UAS-GFP::mito for Opa1 embryos. Insets are zoomed images of the dashed region 

in A, B, C. Control (A) embryos show a complex mitochondrial network, some mitochondria are long while others are 

smaller and round.  Drp1 mutants (B) seem to have more elongated mitochondria than controls while Opa1 embryos 

(C) seem to have smaller mitochondria, compared to control embryos (A). In all cases, we observed different 

mitochondrial morphologies in smooth (s) and denticle (d) cells, depicted in Ai (but this applies to all genotypes). In 

denticle cells, we are not able to distinguish individual mitochondria, as mitochondria are very clustered together. We 

can only assess individual mitochondrial morphology by looking at smooth cells. Upon wounding, we observed 

fragmentation of mitochondria in the wound region (arrows in Aii to Cii). Most of these small mitochondria seem to be 

phagocytosed by hemocytes (arrowheads in Aiii-Ciii). Images are maximum Z projections of approximately 55 slices 

(15.4-µm-thick stack). Scale bar = 20 µm. Inset scale bar = 5 µm. s – smooth cells. d – denticle cells. Arrows – fragmented 

mitochondria. Arrowheads – hemocytes. mpw – minutes post wounding.  
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The ventral epidermis of late stage embryos is composed of two distinct cell types: cells decorated with 

actin-based cellular protrusions at the apical cell surface, called denticles; and cells apically naked or smooth, 

named after the absence of denticles (Dickinson and Thatcher, 1997; Hillman and Lesnik, 1970). These two 

cell types alternate, forming different segments (Fig. 16, Ai, s and d). Regardless of the genotype, we observed 

different mitochondrial morphologies in smooth (Fig. 16, s in Ai) and denticle cells (Fig. 16, d in Ai). In denticle 

cells, we were not able to distinguish individual mitochondria, as mitochondria are very clustered together. 

We could only observe individual mitochondrial morphology in smooth cells.  

Corroborating our observations with other markers (Fig. 14), in control embryos, the epidermis presents 

a complex network of mitochondria: some mitochondria have a tubular and elongated morphology, while 

others are smaller and rounder (Fig. 16, A). Although the image resolution is not optimal to clearly evaluate 

mitochondrial morphology, Drp1 mutants seem to have more elongated mitochondria (Fig. 16, B) than 

controls (Fig. 16, A). In contrast, Opa1 mutants look more similar to controls, with the presence of small and 

round mitochondria (Fig. 16, C). Upon wounding, we observed fragmentation of mitochondria in the wound 

region, both in controls and mutant embryos (arrows in Aii to Cii), suggesting that wounding might trigger 

mitochondrial fission. However, we could not clearly discern whether these fragments were inside the 

wound-edge cells or part of cell debris, since most of these small mitochondria seem to be phagocytosed by 

hemocytes, the Drosophila macrophages (arrowheads in Aiii-Ciii). To understand if mitochondrial fission is 

induced in the wound leading-edge cells and to exclude that these are not just wound debris, we imaged the 

epidermis of control embryos with higher magnification and a shorter time interval to observe the 

mitochondrial morphology changes in the cells close to the wound before and after injury (Fig. 17).  

We observed that mitochondria are more fragmented than before wounding in some cells close to the 

wound region, suggesting that mitochondrial fission is induced upon epithelia wounding (Fig. 17, compare 

mitochondria left to the asterisks in A-D). To confirm this hypothesis, we sought to quantify mitochondrial 

morphology after wounding. However, imaging of mitochondria in the wound closure context presented 

several challenges, which prevented us from performing these quantifications: 

1) The embryonic epidermis is not completely flat, as the embryo has a fusiform shape. For live imaging, 

embryos are usually mounted on a glass-bottom petri dish. To flatten the epidermis, we tried to image them 

on a slide with a coverslip on top. It has been previously shown that this mounting method is not ideal for 

wound healing imaging (Abreu-Blanco et al., 2012b) but we thought we might be able to use it as long as the 

imaging duration was short. However, we have found that this mounting method was not suitable, as cells 

started to die shortly after the beginning of the imaging (data not shown).  

2) The wound causes recoil of the tissue that compresses the cells closer to the wound, making it difficult 

to clearly discriminate mitochondrial shape. 
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3) As the wound closes, the epidermal tissue moves and sinks slightly. For long term imaging, in which 

we do not need a short time interval, we can image a considerable number of z slices and the sinking 

phenomenon is not limiting. However, to capture fast changes in mitochondrial morphology, we need a 

higher time-resolution, which limits the number of z stacks that can be acquired at each time point. Hence, 

any tissue movement easily leads to the image getting out of focus and, thus, a reduced fluorescence signal 

over time. This fact strongly limits an accurate mitochondrial morphology quantification throughout wound 

closure. 

In this work, we have characterized, for the first time, the mitochondrial morphology of the ventral 

epidermis of stage 15 Drosophila embryos, before and after wounding. Although we cannot conclude 

whether Drp1 and Opa1 influence mitochondrial morphology during wound closure, our observations 

indicate that wounding induces mitochondrial fission in the cells adjacent to the wound.  

 

 

 

Figure 22. (A-D) Mitochondrial morphology changes upon wounding. 

Embryo expressing a mitochondrial marker (UAS-GFP::mito, green) and an F-actin marker (UAS-mCherry::Moesin, 

magenta) in the epidermis (e22c-Gal4). Mitochondria become fragmented upon wounding, not only in the debris area 

(white arrowheads) but also in some cells around the wound (left of the asterisks), suggesting that the wound induces 

mitochondrial fission. Dashed line - wound margin. bw - before wounding. spw - seconds post wounding. Images are 

maximum Z projections of 22 slices (6.2-µm-thick stack). Scale bar = 10 µm.  
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4.4. Mitochondrial localization is unaffected during wound closure 

In our wounding assay screen (Fig. 11), we observed that miltEY01559 embryos had a mild increase in the 

percentage of open wounds compared to controls, suggesting that mitochondrial trafficking could be 

required for wound healing. From the maximum Z projections of the embryonic epidermis, we did not detect 

a change in mitochondrial localization upon wounding (Fig. 17). To further investigate mitochondrial 

localization after injury, we looked at YZ sections of the epidermis (Fig. 18). We observed that mitochondria 

were localized apically, bellow the F-actin cortical belt at the level of the Adherens Junctions (AJs), both 

before and after wounding (Fig. 18 B).  

These results show that mitochondria do not seem to change their localization during wound healing, 

suggesting that their function during epithelial repair does not require a polarized distribution. It would be 

interesting to assess whether the miltEY01559 mutant mitochondria have a different localization compared to 

wild-type embryos, to further clarify the role of mitochondrial trafficking in wound healing.  

 

 

  

Figure 23. Mitochondrial localization upon wounding. 

(A) Representative confocal images of a Drosophila embryo expressing a mitochondrial marker (UAS-GFP::mito, green) 

and an F-actin marker (UAS-mCherry::Moesin, magenta) in the epidermis (e22c-Gal4), before (Ai) and after wounding 

(Aii).. (B) Kymographs showing YZ sections of A (white line) before and in the first 30 minutes after wounding. White 

dashed lines outline the wound margins. We did not observe any striking change in mitochondrial localization upon 

wounding. Scale bar = 20 µm. bw – before wounding- ’ – minutes. 
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5. Measurement of the mitochondrial membrane potential in the embryonic 

epidermis 

The mitochondrial membrane potential (ΔΨm) is the driving force for ATP synthesis during oxidative 

phosphorylation. The measurement of ΔΨm is often used as a readout of mitochondrial function. For 

instance, depolarization of mitochondria (loss of ΔΨm) is an indicator of impaired mitochondrial function 

(Zorova et al., 2018). Interestingly, ΔΨm and mitochondrial dynamics are interconnected. Sustained 

dissipation of ΔΨm triggers Opa1 cleavage and degradation, inhibiting fusion and targeting mitochondria to 

degradation by mitophagy (Chan and Chan, 2011; Song et al., 2007). Conversely, knockdown of Opa1 can 

lead to a decrease in ΔΨm (Trevisan et al., 2018).  

We thus wondered whether wounding induces changes in mitochondrial function in the cells closer to 

the injury site. Moreover, knowing that there is an interplay between mitochondrial dynamics and ΔΨm, we 

aimed to understand whether the ΔΨm of Drp1 and Opa1 mutants was altered and could contribute to the 

observed wound healing defects. To measure ΔΨm, we used two different dyes: Mitotracker and TMRM 

(tetramethylrhodamine methyl ester). These cationic red-fluorescent dyes passively diffuse across the 

membrane and accumulate in active mitochondria. This accumulation correlates with ΔΨm (Poot et al., 

1996). 

Drosophila embryos present a challenge to the use of dyes because they are enveloped in a quite 

impermeable eggshell, composed by the vitelline membrane and the waxy layer (Margaritis et al., 1980). To 

allow penetration of the dyes, we tested three previously described permeabilization methods:  

1) Razzell and colleagues have used a protocol in which embryos were incubated in heptane, a non-

polar organic solvent (Razzell et al., 2013). In our hands, this treatment was too harsh and the 

embryos died by extreme desiccation.  

2) Rand and colleagues have used D-limonene-based reagents to permeabilize embryos (Rand et al., 

2010). We incubated embryos in solutions containing either D-limonene or Citrasolv, a commercially 

available cleaning agent (composed by D-limonene, an unknown mixture of surfactants and 

essential oils), followed by an incubation with 300 nM Mitotracker (Fig. 19). This concentration of 

Mitotracker has been used for staining of Drosophila larvae (Frei et al., 2005). Neither of these 

permeabilization reagents led to consistent results. We obtained variable Mitotracker staining:  no 

staining (Fig. 19 A), partial staining (Fig. 9 B) and positive staining (Fig. 19 C).   

3) Schulman and colleagues developed a more suitable permeabilization protocol for late stage 

embryos, using a 1:1 combination of D-limonene and heptane, called LH (Schulman et al., 2013). 
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However, in our hands this protocol induced high embryo lethality by desiccation, similar to the 

Protocol 1.  

To summarize, none of the three different permeabilization protocols was suitable to assess ΔΨm. 

Therefore, we tested a different approach to deliver dyes into the embryo, by using a microinjection 

technique. 

We started by validating the microinjection technique by injecting embryos with fluorescein (Fig. 20 A). 

After injection, we observed an increase in GFP fluorescence compared to uninjected controls (Fig. 20 A, 

compare i with ii), consistent with successful injection. To evaluate the changes in ΔΨm using the 

microinjection protocol, we decided to use the TMRM dye instead of Mitotracker. TMRM is more suitable to 

assess rapid changes in ΔΨm due to its ability to quickly enter or exit mitochondria depending on the ΔΨm. 

To confirm the accuracy of the microinjection, we co-injected the embryos with fluorescein (data not shown). 

We tried injecting in three different sites: into the perivitelline space (PVS), the space between the embryo 

proper and the vitelline envelope (Fig. 20 Bii,Cii); into the embryo, at the anterior or posterior pole (Fig. 10 

Biii,Ciii); or into the embryo, at the lateral side (Fig. 20 Biv,Civ). Injection into the PVS usually resulted in 

TMRM staining only around the site of injection, indicating that the injection was not successful. Since the 

PVS is a very confined region, to specifically deliver TMRM into this space, we have to pierce the embryo with 

the needle and retract it a bit to release the dye only in the PVS. We believe that, instead of limiting TMRM 

delivery to the PVS, we damaged the anterior tip of the embryo, allowing some TMRM penetration in that 

region (Fig. 20 Cii). The lateral injection improved the homogeneity of TMRM staining throughout the embryo 

(Fig. 20 Ciii, Civ). Nevertheless, TMRM staining was variable, ranging from negative staining in the epidermis 

to positive staining, with a gradient of fluorescence intensity (Fig. 20 D). As we found no report using TMRM 

Figure 24. Mitochondrial membrane potential assessment with Mitotracker after embryo permeabilization. 

(A-C) Representative confocal images of embryos submitted to the D-limonene/CitraSolv permeabilization protocol, 

followed by incubation with 300nM Mitotracker. Permeabilization protocol led to variable results: negative (A), partial 

(B) and positive (C) labelling of mitochondria with Mitotracker. Scale bar = 20 µm. 
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in the Drosophila embryo we tried to optimize the staining protocol, by testing different TMRM 

concentrations, ranging from 125 µM to 25 mM (Fig. 20 E). The highest concentration was very toxic, as most 

mitochondria looked swollen (Fig. 20 Ei, inset), an indicator of mitochondrial dysfunction that precedes cell 

death (Bernardi et al., 1999). With concentrations in the µM range, the toxicity was reduced but we still 

observed swollen mitochondria (Fig. 20 Eii-iv, insets, yellow arrowheads). Lower concentrations (125 µM) 

resulted in absence of TMRM staining in the epidermis, even though fluorescein was able to diffuse. 

Occasionally, hemocytes were labeled (Fig. 20, E v).  

In conclusion, the inconsistent results regarding Mitotracker and TMRM staining do not allow us to 

conclude about the ΔΨm in the Drosophila epidermis. 
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6. Assessment of mitophagy during wound healing 

Macroautophagy of damaged mitochondria, referred as mitophagy, is a way of regulating mitochondrial 

quality within the cell (Moyzis et al., 2015). Our results indicate that wounding promotes an increase in 

mitochondrial fragmentation. We asked whether this fragmentation is due to the stress caused by wounding, 

that could impair mitochondrial function and target mitochondria to degradation by the mitophagy 

machinery. Mitophagy involves the formation of an autophagosome (double-membrane vesicle) that engulfs 

selected mitochondria and fuses with the lysosomes for degradation. Target mitochondria are recognized by 

Figure 25. Mitochondrial membrane potential assessment by microinjection of TMRM. 

(A) Images depict Drosophila embryos without (i) and after fluorescein microinjection (ii). (B) Schematic representation 

of the embryo anatomy representing the vitelline membrane and perivitelline space (i) and the different sites of 

injection: into the perivitelline space (ii), into the embryo, at the anterior or posterior pole (iii) or into the embryo, at 

the lateral side (iv). (C) Confocal images showing TMRM staining in uninjected embryos (i) or embryos injected in the 

different sites described in B. (D) Confocal images of embryos injected laterally with 500µM TMRM, depicting the 

variability of the microinjection protocol. (E) Confocal images of embryos injected with different concentrations of 

TMRM. Insets are zoomed images of the region outlined by the yellow dashed line. Arrowheads point to swollen 

mitochondria. A – anterior. P – posterior. Scale bar = 20 µm. Inset scale bar = 10 µm. Embryos in C, D and E are oriented 

accordingly to the corresponding embryo scheme. 

Figure 26. Wounding does not seem to induce autophagy. 

(A-E, Ai-Ei) Representative confocal images of an embryo expressing UAS-Atg8::GFP (A-E) to label autophagosomes and 

mCherry::Moesin (Ai-Ei) to mark F-actin. Insets show zoomed images of the regions delimited by dashed squares in A-E. 

Yellow dashed squares show the same region in the F-actin marker channels, just for reference. Autophagy does not 

seem to be triggered by injury because most of the visualized Atg8::GFP spots appear away from the wound site. Images 

are maximum Z projections of 50 slices (5.3-µm-thick stack). mpw – minutes post wounding. Scale bar = 20 µm. Inset 

scale bar = 5 µm.  
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Microtubule-associated protein 1A/1B-light chain 3 (LC3) adapters (Yoo and Jung, 2018). LC3-conjugates are 

present in the autophagosome membrane and are often used as autophagy activity indicators (Nagy et al., 

2015).  

To determine whether wounding triggers mitophagy, we assessed whether wounding leads to the 

formation of LC3-positive autophagic structures. We used transgenic flies expressing UAS-Atg8::GFP (the 

Drosophila LC3 homolog) and an F-actin marker in the epidermis (e22c-Gal4 driver) and used spinning-disk 

microscopy to image the wound closure process (Fig. 21). Although we observed transient spots of Atg8::GFP 

in the epidermis, there was no correlation between the sites of Atg8::GFP accumulation and the wound.  

Our results suggest that mitophagy is not induced upon injury and is likely not relevant for the wound 

healing process. In the future, it might be worthwhile testing other autophagy reporters or antibodies to 

validate these results.  

 

7. Characterization of the wound healing phenotype of Drp1 and Opa1 mutants 

7.1. Drp1 mutants show delayed wound healing 

After analyzing several aspects related to mitochondrial dynamics and function during wound healing, 

mitochondrial fusion and fission seem to be the most relevant processes for the epithelial repair process. 

Therefore, we decided to evaluate in more detail the role of Drp1 and Opa1 in wound healing.  We used 

spinning-disk microscopy to image control, and Drp1 and Opa1 mutant embryos expressing an F-actin 

marker, and followed the dynamics of wound closure. For technical reasons, we used two slightly different, 

but previously characterized F-actin markers for each of the mutants and their respective controls: for Drp1 

mutants we used GFP::Moesin (Kiehart et al., 2000) and for Opa1 mutants we used UAS-mCherry::Moesin 

(Millard and Martin, 2008). In both constructs the actin-binding domain of Moesin is fused with a fluorescent 

protein. mCherry::Moesin expression is UAS dependent, while GFP::Moesin expressing is driven ubiquitously 

through the sqh promoter.  

Control embryos accumulate F-actin at the wound edge (Fig. 22 A), forming the so-called actin cable, 

and the wound area progressively decreases until the hole is closed (Fig. 22 A-Aiii, F). Although the initial area 

was similar in both conditions (Fig. 22 D), Drp1 mutant wounds took on average 128±34 min to close, 

significantly longer than controls (56±17 min) (Fig. 22 E).  
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Figure 27. Drp1 mutant embryos show impaired wound closure dynamics. 

(A-Aiii, B-Biv, C-Cv) Representative confocal images of the epidermis of control (A-Aiii), Drp1 mild (B-Biv) and Drp1 strong 

(C-Cv) mutant embryos expressing an F-actin marker (GFP::Moesin) during wound closure. Images are maximum Z 

projections of 60 slices (16.8-µm-thick stack). In Drp1 mild mutants (B-Biv) wounds close slower than in controls 

(compare B-Biv with A-Aiii). In Drp1 strong mutants (C-Cv), although the wound contracts in the first 40mpw (compare 

C with Ci), it then starts to expand (Cii-Civ). Later on, the wound contracts again and by 180 mpw it is almost closed (Cv). 

Scale bar = 20 µm. (D) Graph showing the average initial wound area in control and Drp1 mutant embryos (strong and 

mild). (E) Graph displaying the wound closure time in control and Drp1 mutant embryos. Although the initial wound 

area of control and Drp1 mutants was similar (D), Drp1 mutants took longer to close their wounds than controls (E). 

Unpaired t test with Welch’s correction was performed to test for significant differences between groups in D and E. ns 

– not significant (P > 0.05), **** P ≤ 0.0001. (F) Graph showing the average wound area in control, Drp1 mild and Drp1 

strong mutants over time. Drp1 mild mutant wounds close slower than controls. Drp1 strong mutant wounds initially 

contract but start to expand after 40 mpw. At 120-130 mpw wounds start to contract again. (G) Graph indicates the 

average wound area in control, Drp1 mild and Drp1 strong mutants in the first 30 mpw, corresponding to the grey region 

in F. Significant differences between control and mutants start at 4 mpw in Drp1 mild mutants and at 10 mpw in Drp1 

strong mutants. A two-way ANOVA with a Tukey correction for multiple comparisons was used to test for significant 

differences between groups in G. Asterisks (*) refer to control and Drp1 mild comparisons. Number signs (#) refer to 

control and Drp1 strong comparisons. Dashed lines depict an interval of points in which the comparison between groups 

gives the same degree of statistical significance, given by the symbols above. # - P ≤ 0.05, ** or ## - P ≤ 0.01, *** P ≤ 

0.001, **** P ≤ 0.0001. Error bars represent SEM. Number of embryos per condition is shown in each graph. mpw – 

minutes post wounding. 
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We observed two phenotype strengths in Drp1 mutants. In milder cases, wounds closed at a slower rate 

than controls (Fig. 22 B-Biv, F); in other cases (3 out of 13 Drp1 mutant embryos), the phenotype was 

stronger: although the wound contracted for about 40 min post-wounding (mpw), after that its area began 

to increase again until 120-130 mpw (Fig. 22 C-Civ, F). After this expansion phase, wounds contracted again, 

and in one case it was almost closed by the end of imaging (Fig. 22 Cv, F). We quantified the wound area of 

control and Drp1 mutants in the first 30 mpw and found significant differences in the first minutes after 

wounding (4 mpw and 10 mpw for mild and strong conditions, respectively) (Fig. 22 G). Our results show that 

Drp1 loss of function severely impairs wound closure dynamics, suggesting that mitochondrial fission is 

necessary for wound healing regulation. 

Figure 28. Opa1 mutant embryos show no wound closure dynamics defects. 

(A-Aiv, B-Biv) Representative confocal images of the epidermis of control (A-Aiv) and Opa1 (B-Biv) mutant embryos 

expressing an F-actin marker (UAS-mCherry::Moesin under the control of the e22c-Gal4 driver) during wound closure. 

Images are maximum Z projections of 40-50 slices (11.2 to 14-µm-thick stack). (C) Graph indicates the average initial 

wound area in control and Opa1 mutant embryos (D) Graph showing quantification of wound closure time in control 

and Opa1 mutant embryos. Unpaired t test with Welch’s correction was performed to test for significant differences 

between groups in C and D. ns – not significant (P > 0.05). (E) Graph displaying the average wound area in control and 

Opa1 mutants over time. A two-way ANOVA with a Tukey correction for multiple comparisons was used to test for 

significant differences between groups in E. No significant differences in either the time of wound closure or the wound 

area over time were found between control and Opa1 mutant embryos. Error bars represent SEM. Number of embryos 

per condition is shown in each graph. mpw – minutes post wounding.  
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Regarding Opa1 mutants, although they presented a phenotype in the wounding assay screen (Fig. 11), 

we did not observe significant differences in either the time of wound closure (Fig. 23, A-Aiv, B-Biv, D) or the 

wound area changes over time between mutants and controls (Fig. 23 A-Aiv, B-Biv, E). The discrepancy in the 

results of the two experiments could be related to the size of the wound. In the wounding assay screen, we 

used maximum laser power to inflict large wounds. In contrast, in order to follow the wound closure process 

by live imaging, we inflicted smaller wounds. Thus, our results suggest that mitochondrial fusion is required 

for the repair of larger wounds but not for the repair of small wounds. 

 

7.2. Drp1 and Opa1 mutants have F-actin defects during wound closure 

The assembly of the actomyosin cable is a hallmark of the epithelial wound repair process (Cordeiro and 

Jacinto, 2013; Martin and Lewis, 1992). Although cells can compensate for the loss of the actomyosin cable 

(Ducuing and Vincent, 2016), this structure is one of the main driving forces for wound healing (Zulueta-

Coarasa and Fernandez-Gonzalez, 2017). So we quantified the fluorescence intensity of the F-actin marker in 

Drp1 mutant embryos expressing GFP::Moesin (Kiehart et al., 2000) and Opa1 mutant embryos expressing 

UAS-mCherry::Moesin (Millard and Martin, 2008) and respective control embryos. To quantify Myosin 

intensity, we used control, and Drp1 and Opa1 mutant embryos expressing a protein trap for Myosin II heavy 

chain (Zipper, Zip), Zip CPTI-100036::GFP (Lye et al., 2014).  

Although Drp1 mutant embryos accumulated F-actin (Fig. 24 B-Biii) at the wound edge, they do so in 

significant lower levels than controls, from the early stages of wound closure (Fig. 24 C). Surprisingly, despite 

not having major wound closure defects (Fig. 23), we detected a significant decrease in F-actin levels in Opa1 

mutants, but only at 30 mpw, when compared to controls (Fig. 25, compare Aiii and Biii, C). Regarding myosin, 

we found no significant differences in Zip-GFP levels between control, and Drp1 and Opa1 mutant embryos 

(Fig. 26).  

These results show that both Drp1 and Opa1 regulate F-actin but not myosin accumulation at the wound 

edge. This suggests that, in Drp1 mutants, the F-actin defects detected shortly after wounding might underlie 

the observed wound healing phenotype. In contrast, in Opa1 mutants, the observed defects in F-actin might 

be milder or compensated by other mechanisms, hence not leading to major wound healing impairment.  
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Figure 29. Drp1 mutants show F-actin defects during wound closure. 

(A-Aiii, B-Biii) Representative confocal images of control (A-Aiii) and Drp1 (B-Biii) mutant embryos expressing an F-actin 

(GFP::Moesin) marker before (A,B) and after wounding (Ai-Aiii, Bi-Biii). Images are maximum Z projections of 60 slices 

(16.8-µm-thick stack). Images are pseudo-colored with a gradient of fluorescence intensity, ranging from blue (low) to 

yellow (high). Although no differences are evident before wounding (A, B), Drp1 mutant embryos accumulate less F-

actin at the wound edge than controls (compare Bi-Biii with Ai-Aiii). Scale bar = 20 µm. (C) Graph showing the average 

F-actin intensity at the cell cortex before wounding and at the wound edge. F-actin levels are significantly reduced in 

Drp1 mutants at 10 and 20 mpw. A two-way ANOVA with a Sidak correction for multiple comparisons was used to test 

for significant differences between groups. Only significant differences (P ≤ 0.05) are represented. Error bars represent 

SEM. Number of embryos per condition and P values are shown in C. a.u. - arbitrary units. mpw – minutes post 

wounding. 
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Figure 30 Opa1 mutants show F-actin defects during wound closure. 

(A-Aiii, B-Biii) Representative confocal images of the epidermis of control (A-Aiii) and Opa1 (B-Biii) mutant embryos 

expressing an F-actin marker (UAS-mCherry::Moesin under the control of the e22c-Gal4 driver) during wound closure. 

Images are maximum Z projections of 40-50 slices (11.2 to 14-µm-thick stack). Images are pseudo-colored with a 

gradient of fluorescence intensity, ranging from blue (low) to yellow (high). F-actin accumulation at the wound edge is 

reduced in Opa1 mutant embryos compared to controls. Scale bar = 20 µm. (C) Graph of average F-actin intensity at the 

cell cortex before wounding and at the wound edge. F-actin levels are significantly reduced in Opa1 mutants at 30 mpw 

when compared to controls. A two-way ANOVA with a Sidak correction for multiple comparisons was used to test for 

significant differences between groups. Only significant differences (P ≤ 0.05) are represented. Error bars represent 

SEM. Number of embryos per condition and P value are shown in C. a.u. - arbitrary units. mpw – minutes post wounding. 
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Figure 31. Myosin accumulation at the wound edge is unaffected in Drp1 and Opa1 mutants. 

(A-Aiii, B-Biii, C-Ciii) Representative confocal images of the epidermis of control (A-Aiii), Drp1 (B-Biii) and Opa1 (C-Ciii) 

mutant embryos expressing a Myosin II heavy chain (Zip::GFP) (C-Ciii, D-Diii) marker before (A-C) and after wounding 

(Ai-Aiii, Bi-Biii, Ci-Ciii). Images are pseudo-colored with a gradient of fluorescence intensity, ranging from blue (low) to 

yellow (high). Myosin accumulation at the wound edge seems similar between control, and Drp1 and Opa1 mutants. 

Scale bar = 20 µm. (D) Graph of average Myosin intensity at the cell cortex before wounding and at the wound edge. No 

significant differences were found between control, and Drp1 and Opa1 mutant embryos (P > 0.05). A two-way ANOVA 

with a Sidak correction for multiple comparisons was used to test for significant differences between groups. Error bars 

represent SEM. Number of embryos per condition is shown in each graph. a.u. - arbitrary units. mpw – minutes post 

wounding. 
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7.3. Rok localization at the wound edge is affected in Opa1 mutants 
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The cytoskeletal changes that occur during wound closure are regulated by proteins of the Rho-GTPase 

family (Verboon and Parkhurst, 2015). The GTP-dependent activation of these proteins leads to 

conformational changes that allow them to interact with downstream target proteins (Bishop and Hall, 2000; 

Bustelo et al., 2007). The Rho1 protein has been shown to regulate the actomyosin cable assembly and 

contraction during wound healing (Verboon and Parkhurst, 2015; Wood et al., 2002). One of the described 

functions of Rho1 is to activate Rho kinase (Rok) that phosphorylates myosin regulatory light chain (MRLC) 

(Kosako et al., 2000), therefore promoting actomyosin contractility (Antunes et al., 2013; Tamada et al., 2007; 

Vasquez et al., 2014).  

Upon wounding, Rok accumulates at the cellular membranes facing the wound, and has been used as a 

read-out of Rho1 activity (Tamada et al., 2007; Verboon and Parkhurst, 2015). Therefore, to understand 

whether Drp1 and Opa1 regulate actomyosin cable function through Rho-GTPase activity, we analyzed Rok 

localization at the wound edge as a proxy for Rho1 activity. We used control, and Drp1 and Opa1 mutants 

expressing GFP::Rok (Abreu-Blanco et al., 2014) and the F-actin marker mCherry::Moesin (Millard and Martin, 

2008) (Fig. 27). In the GFP::Rok construct, sqh promoter sequences drive ubiquitous expression of the Rok 

open reading frame which is tagged with GFP (Abreu-Blanco et al., 2014). We used the F-actin marker to 

accurately determine the wound boundary (Fig.27, Ai-Ci), and measured the GFP::Rok intensity at the wound 

edge and compared it to levels at the cortical region of cells before wounding (Fig.27, A-C).  

Upon wounding, Rok accumulation was clear at 10 mpw and then decreased during wound closure (Fig. 

27 A-C). Quantification of the GFP::Rok fluorescent intensity showed a decrease in Rok levels at the wound 

edge in Opa1 mutants at 10 mpw but not at later time points, compared to controls, suggesting that Opa1 

might influence the recruitment of this kinase (Fig. 27 D). It remains unclear why this defect in Rok localization 

does not lead to altered myosin levels in Opa1 loss of function.  

In contrast, no significant difference in Rok intensity was found between control and Drp1 mutant 

embryos (Fig. 27 D). These results suggest that Drp1 does not regulate Rok recruitment and are in line with 

Figure 32. Rok localization in control, Drp1 and Opa1 mutants during the wound healing response. 

(A–C) Representative confocal images of the epidermis during wound closure in control (A-Ai), Drp1 (B-Bi) and Opa1 (C-

Ci) mutant embryos expressing GFP::Rok (A-C) and mCherry::Moesin labeling F-actin (Ai-Ci) before and upon laser 

wounding. Images are maximum Z projections of 33 slices (9.24-µm-thick stack). Upon wounding, Rok accumulates at 

the wound edge in controls, Drp1 and Opa1 mutants. Scale bar = 20 µm. (D) Graph displaying the average GFP::Rok 

fluorescence intensity at the cell cortex before wounding and at the wound edge. No significant differences were found 

between control and Drp1 embryos, but Opa1 mutants showed reduced Rok levels at the wound edge at 10 mpw, 

compared to controls. A two-way ANOVA with a Sidak correction for multiple comparisons was used to test for 

significant differences between groups. Error bars represent SEM. Number of embryos per condition and P value is 

shown D. a.u. - arbitrary units. mpw – minutes post wounding. 
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the lack of phenotype in myosin levels upon Drp1 loss of function. On the other hand, they suggest that the 

F-actin defects observed during wound closure in Drp1 mutants are not related to impaired Rok activity. 

Instead, it is possible that other Rho1 targets, such as Protein kinase N (Pkn) and Diaphanous (Dia) (Abreu-

Blanco et al., 2014; Matsubayashi et al., 2015), are involved. This aspect should thus be addressed in future 

studies.  

 

7.4. E-cadherin remodelling during wound repair is unaffected in Drp1 and 

Opa1 mutants 

The formation of the actomyosin cable depends on remodeling of the AJs (Abreu-Blanco et al., 2012b; 

Carvalho et al., 2014; Hunter et al., 2015; Matsubayashi et al., 2015). After wounding, the AJ protein E-

cadherin is downregulated at the cell boundaries facing the wound, remaining only at the lateral junctions of 

leading-edge cells.  

To test whether the F-actin phenotypes observed in Drp1 and Opa1 mutants were associated with E-

cadherin remodeling defects, we imaged control, Drp1 and Opa1 mutant embryos expressing ubi-E-

cadherin::GFP (Oda and Tsukita, 1999) and mCherry::Moesin (Millard and Martin, 2008) before and upon 

wounding. We observed no significant differences between E-cadherin levels of control, and Drp1 and Opa1 

mutant embryos, either before or after wounding (Fig. 28). These results suggest that Drp1 and Opa1 regulate 

F-actin dynamics during wound closure, independently of AJs remodeling, through an alternative mechanism.  

 

 

7.5. Drp1 and Opa1 mutants have altered cytosolic calcium dynamics upon 

wounding 

The first signal to be detected upon wounding is an intracellular calcium burst across several cell rows 

surrounding the wound (Antunes et al., 2013; Razzell et al., 2013; Sammak et al., 1997; Xu and Chisholm, 

2011). This calcium increase regulates many wound healing steps, including actomyosin cable formation 

(Antunes et al., 2013; Xu and Chisholm, 2011). Mitochondria are known regulators of calcium homeostasis 

(Finkel et al., 2015; Giorgi et al., 2008; Rizzuto et al., 2012), so we asked whether the F-actin defects observed 

in Drp1 and Opa1 mutants could be due to impaired calcium dynamics.  
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Thus, we imaged control, and Drp1 and Opa1 mutant embryos expressing the GCaMP6f calcium sensor 

(Chen et al., 2013) and the F-actin marker mCherry::Moesin (Millard and Martin, 2008), and measured 

calcium levels before and upon wounding. The GCaMP6f construct consists of a circularly permuted GFP 

(cpGFP), the calcium-binding protein calmodulin (CaM) and CaM-interacting M13 peptide. Calcium-

dependent conformational changes in CaM–M13, cause increased brightness of the chromophore upon 

calcium binding (Chen et al., 2013). The F-actin marker was used to monitor the wound boundary over time.   

 As previously described (Razzell et al., 2013), wounding induces a dramatic and transient increase in 

cytosolic calcium levels in cells around the wound (Fig. 29 Ai-Aiii). In Drp1 mutant embryos, the cytosolic 

calcium burst was less pronounced than in controls (Fig. 29, B-Biii, D). Moreover, the area around the wound 

where this calcium increase is detected was significantly reduced in Drp1 mutants compared to controls (Fig. 

29 E). These results suggest that impairing Drp1 function affects not only the calcium levels but also the 

intercellular calcium propagation. In Opa1 mutants, cytosolic calcium levels were also reduced upon 

wounding (Fig. 29, C-Ciii, D), whereas the area of calcium increase seemed to be unaffected (Fig. 29 E), when 

compared to controls. 

Knowing that impaired cytosolic calcium dynamics upon wounding compromises the actomyosin cable 

(Antunes et al., 2013; Xu and Chisholm, 2011), our results suggest that the F-actin defects during wound 

closure in Drp1 and Opa1 mutants may be a consequence of altered cytosolic calcium. It would be interesting 

to confirm this hypothesis by rescuing cytosolic calcium levels in Drp1 and Opa1 mutants, and then assess 

whether the F-actin levels are recovered.  

 

Figure 33. E-cadherin localization in control, Drp1 and Opa1 mutants after wounding. 

(A–C) Representative confocal images of the epidermis during wound closure in control (A-Ai), Drp1 (B) and Opa1 (C) 

mutant embryos expressing ubi–E-cad::GFP (A, B, C) and mCherry::Moesin labeling F-actin (Ai) before and upon laser 

wounding. Images are maximum Z projections of 35 slices (12.6-µm-thick stack). Upon wounding, E-cadherin intensity 

decreases at cell boundaries facing the wound edge in controls, Drp1 and Opa1 mutants (arrowheads mark the same 

junctions before and after wounding in each embryo). Scale bar = 10 µm. (D) Graph indicates the average E-cadherin 

fluorescence intensity in cells before wounding in controls, Drp1 and Opa1 mutants. (E) Graph showing the fold change 

decrease in E-cadherin fluorescence intensity in cell boundaries at the wound edge at 10 and 30 mpw (normalized to E-

cadherin levels before wounding) in control, Drp1 and Opa1 mutant embryos. N(control)=52 junctions from six embryos; 

N(Drp1)=64 junctions from five embryos. N(Opa1)=66 junctions from six embryos. An unpaired t test (D) and a two-way 

ANOVA with a Tukey multiple comparisons test (E) were performed to test for significant differences between groups. 

Differences between groups are not significant (ns, P > 0.05). Error bars represent SEM. a.u. – arbitrary units. mpw – 

minutes post wounding. E-cad – E-cadherin 
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Figure 34. Drp1 and Opa1 mutant embryos show altered cytosolic calcium dynamics. 

(A-Aiii, B-Biii) Confocal images of the epidermis of control (A-Aiii), Drp1 (B-Biii) and Opa1 (C-Ciii) mutant embryos 

expressing a cytosolic calcium sensor (GCaMP6f) before and after wounding. Images are pseudo-colored with a gradient 

of fluorescence intensity, ranging from blue (low) to yellow (high). Dashed lines show the wound boundaries. Scale bar 

= 20 µm. mpw – minutes post wounding. Control, Drp1 and Opa1 mutant cells around the wound dramatically increase 

cytosolic calcium levels immediately upon wounding (Ai- Ci). Intensity returns to pre wound levels after approximately 

15 min (Aiii-Ciii). calcium levels and area of cells that respond to the wound are lower in Drp1 (Bi) mutants compared to 

controls (Ai). In Opa1 mutants (Ci), only the calcium levels are slightly reduced compared to controls (Ai). (D) Graph of 

cytosolic calcium intensity in control, Drp1 and Opa1 mutants shows that cytosolic calcium is lower in Drp1 and Opa1 

mutants (in the first 2.5 mpw and immediately upon wounding, respectively) compared to controls. (E) Graph of average 

area of elevated cytosolic calcium in control, Drp1 and Opa1 mutants shows that the calcium burst area is lower in Drp1 

mutants compared to controls from 0 to 1 mpw. A two-way ANOVA with a Sidak correction for multiple comparisons 

was used to test for significant differences between groups in D and E. Asterisks (*) refer to control and Drp1 mutant 

comparisons. Number signs (#) refer to control and Opa1 mutant comparisons. Only significant differences are 

represented: ## P=0.0038, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. Error bars represent SEM. Number of 

embryos per condition is shown in graph D. 
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7.6. Drp1 mutants have altered mitochondrial calcium dynamics upon 

wounding 

Mitochondria are known for their calcium buffering ability. When cytosolic calcium increases, either by 

influx from the extracellular environment or release from internal stores such as the endoplasmic reticulum 

(ER), the mitochondria in the vicinity of calcium channels uptake calcium from the cytosol. This local cytosolic 

calcium modulation regulates the activity of calcium channels, controlling cytosolic calcium oscillations 

(Rizzuto et al., 2012; Szabadkai and Duchen, 2008). For example, in X. laevis oocytes, mitochondrial calcium 

uptake leads to cytosolic calcium transients by stimulating calcium release from ER channels (Jouaville et al., 

1995). Interestingly, mitochondrial morphology has been shown to influence mitochondrial calcium levels, 

both by changing the close contacts between mitochondria and with ER or plasma membrane channels, and 

by affecting the ΔΨm (Bianchi et al., 2006; Brand, 1975; Gerencser and Adam-Vizi, 2005; Szabadkai et al., 

2004). Furthermore, a mitochondrial calcium burst has been observed during wound repair in the C. elegans 

epidermis (Xu and Chisholm, 2014). So, we asked whether this is a conserved response during epithelial 

repair. In particular, our hypothesis is that mitochondrial dynamics influences the calcium buffering capacity 

of mitochondria and, consequently, the cytosolic calcium burst already shown to be essential for proper 

wound closure. To address this, we investigated whether mitochondrial calcium oscillations also occur in our 

system, the Drosophila embryonic epidermis, and, if so, whether Drp1 loss of function affects this process. 

We chose to focus on the role of Drp1, as Drp1 mutants showed consistent and clear phenotypes in terms of 

cytosolic calcium, mitochondrial morphology and wound closure, in contrast to Opa1 mutants. 

We examined control and Drp1 mutant embryos expressing the mitochondria-targeted GCaMP3 calcium 

sensor [mito::GCaMP3 (Lutas et al., 2012)] and the F-actin marker mCherry::Moesin (Millard and Martin, 

2008), before and upon wounding. The F-actin marker was used to follow the wound edge over time.  

Concomitantly with the cytosolic response, we observed a sharp increase in mitochondrial calcium 

around the wound in both control (Fig. 30 A-Aiii) and Drp1 mutants (Fig. 20, B-Biii), similar to what has been 

previously observed in C. elegans (Xu and Chisholm, 2014). Notably, quantification of mitochondrial calcium 

intensity showed a significantly reduced response upon wounding in Drp1 mutant embryos compared to 

controls (Fig. 30 C, 0 mpw). No differences were found in the area of increased mitochondrial calcium (Fig. 

30 D), suggesting that in contrast to what was observed for cytosolic calcium, mitochondrial calcium 

propagation is not affected.  

In conclusion, our results strongly suggest that Drp1 mutant mitochondria have reduced mitochondrial 

calcium buffering capacity, which can impact on cytosolic calcium and cause the observed cytosolic calcium 

burst defects. To validate this hypothesis, it will be important in future studies to assess whether 
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experimentally manipulating mitochondrial calcium entry or exit phenocopies the Drp1 wound healing 

defects.  

 

 

 

Figure 35. Drp1 mutants show altered mitochondrial calcium dynamics. 

(A-Aiii, B-Biii) Confocal images of the epidermis of control (A-Aiii) and Drp1 (B-Biii) mutants expressing a mitochondrial 

calcium sensor (mito::GCaMP3) before and after wounding. Wounding triggers an increase in mitochondrial calcium 

levels in both control and Drp1 mutant cells around the wound (Ai, Bi). (C) Graph of mitochondrial calcium intensity in 

control and Drp1 mutants. Drp1 mutants have a significantly reduced mitochondrial calcium burst at 0 mpw, compared 

to controls. (D) Graph of average area of elevated mitochondrial calcium in controls and Drp1 embryos. No significant 

differences were found between control and Drp1 mutants. Images are pseudo-colored with a gradient of fluorescence 

intensity, ranging from blue (low) to yellow (high). Dashed lines show the wound boundaries. Scale bar = 20 µm. mpw 

– minutes post wounding. A two-way ANOVA with a Sidak correction for multiple comparisons was used to test for 

significant differences between groups in C and D. Only significant differences are represented: * P ≤ 0.05. Error bars 

represent SEM. Number of embryos per condition is shown in C.  



 
Chapter 3. Results 

 

123 

7.7. Measurement of Reactive Oxygen Species in the embryonic epidermis 

ROS constitute a double-edge sword in tissue repair in mammalian models: whereas low ROS levels are 

beneficial, sustained oxidative stress leads to impaired wound healing (Dunnill et al., 2017; Schäfer and 

Werner, 2008). Interestingly, Xu and Chisholm found that ROS production is downstream of the observed 

mitochondrial calcium burst and regulates actin cytoskeleton dynamics in C. elegans epidermis wound 

healing (Xu and Chisholm, 2014).  

It is well known that ROS can be produced by mitochondria (Murphy, 2009) and that this mitochondrial 

function can be regulated by mitochondrial dynamics. Fragmentation of the mitochondrial network is 

associated with increased ROS production and inhibition of mitochondrial fission can reduce oxidative stress 

(Galloway et al., 2012). As we have shown that Drp1 regulates calcium+ and F-actin dynamics during wound 

closure, we hypothesized that ROS production might provide a link between calcium activity and F-actin 

dynamics. Therefore, we investigated whether Drp1 mutants have altered ROS production. 

To measure ROS production, we took advantage of transgenic flies expressing genetically encoded ROS 

sensors based on the roGFP probe. RoGFP contains cysteines engineered in a way that their redox equilibrium 

is associated with measurable ratiometric fluorescent changes (Hanson et al., 2004). Albrecht and colleagues 

developed transgenic flies bearing roGFP coupled to oxidant receptor peroxidase 1 (Orp1) that make the GFP 

fluorophore responsive to changes in hydrogen peroxide (H2O2), respectively(Albrecht et al., 2011).  

 

 

Figure 36. Changes in roGFP emission spectrum upon oxidation after injection of Diamide. 

(A-Ci) Representative confocal images of embryos expressing UAS-mito::roGFP2-Orp1 and the F-actin marker 

mCherry::Moesin in the epidermis (e22c-Gal4 driver) before (A-C) and after (Ai-Ci) injection of diamide, an oxidant agent. 

A-B, Ai-Bi are maximum Z projections. C, Cii are individual slices. Upon diamide injection, a small increase in the roGFP 

oxidized intensity is detected (Ci, arrow). Scale bar = 20 µm.  
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To test the sensitivity of the ROS sensors to oxidation in our experimental system, we performed a 

positive control, using an oxidant agent – diamide. We imaged embryos expressing the mitochondrial H2O2 

sensor (UAS-mito::roGFP2-Orp1) (Albrecht et al., 2011) and an F-actin marker (mCherry::Moesin) (Millard and 

Martin, 2008) in the epidermis, before and after diamide injection (Fig. 31). We observed a slight increase in 

the oxidized roGFP signal (Fig. 31 Ci, arrow), confirming that it is sensitive to oxidative stress. To quantify the 

changes in redox potential, we should calculate the ratio between the oxidized and the reduced roGFP 

intensities. However, we were unable to perform these quantifications because the oxidized roGFP signal 

was not bright enough. The vitelline membrane autofluorescence masks the signal of the oxidized roGFP, 

posing a challenge for ROS quantification in the embryo using this sensor.  

Due to time constraints, we were not able to explore other alternatives to ROS measurement but 

previous studies have reported several fluorescent dyes that successfully labelled ROS production upon 

wounding in the Drosophila embryonic epidermis (Hunter et al., 2018a; Razzell et al., 2013)    
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“Nothing in life is to be feared, it is only to be understood. Now is the time to understand 

more, so that we may fear less.” 

 ― Marie Curie 
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Epithelial tissues line our body inside and out and are thus essential to protect us against the external 

environment (Lowe and Anderson, 2015). Therefore, any injury must be solved quickly to restore the 

epithelial barrier. Studies in simple epithelia, such as the ones performed in embryonic stages, have proven 

to be useful to understand the molecular mechanisms that control epithelial repair (Cordeiro and Jacinto, 

2013; Garcia-Fernandez et al., 2009; Rothenberg and Fernandez-Gonzalez, 2019). Embryonic wound healing 

is characterized by the accumulation of F-actin and Non-muscle Myosin II (Myosin) in the wound leading-

edge cells, forming an actomyosin cable that contracts and brings cells together, thereby closing the wound 

(Bement et al., 1999; Danjo and Gipson, 1998; Kiehart et al., 2000; Xu and Chisholm, 2011). Additionally, 

wound repair involves cell crawling mediated by actin protrusions (Abreu-Blanco et al., 2012b; Verboon and 

Parkhurst, 2015) and cellular rearrangements (Carvalho et al., 2018; Razzell et al., 2014).  

With this work we aimed to broaden the knowledge about the role of mitochondria in the wound healing 

response. Besides the evidence from both simple and complex epithelia models about the involvement of 

reactive oxygen species (ROS) and in the regulation of the wound healing process (Hunter et al., 2018b; 

Sanchez et al., 2018; Xu and Chisholm, 2014), little was known about other mitochondrial functions required 

for this process. Mitochondrial function is influenced by mitochondrial dynamics, a term that describes the 

dynamic changes in mitochondrial number, shape and localization in the cell. Although the impact of 

mitochondrial dynamics in mitochondrial function has been studied in different contexts, and some evidence 

shows that it can regulate cell migration, the contribution to embryonic wound repair has never been 

addressed, which highlights the novelty of this work and its potential implication to the tissue repair field.  

To summarize our most relevant results, we have identified mitochondrial dynamics proteins as novel 

embryonic wound healing regulators. The analysis of mitochondrial morphology suggested that wounding 

triggers mitochondrial fission. To understand how mitochondrial fission contributes to epithelial repair, we 

characterized the phenotype of Dynamin-related protein 1 (Drp1) mutants. Drp1 loss of function led to 

defects in the cytosolic and mitochondrial calcium bursts upon wounding and deficient F-actin accumulation 

at the wound edge, culminating in wound healing impairment. 

 

1. Mitochondrial dynamics proteins as novel embryonic wound healing 

regulators 

We started by performing a small screen to uncover whether the mitochondrial dynamics machinery is 

required for wound healing. This wounding assay screen has been useful in the identification of multiple 

wound healing regulators (Campos et al., 2010; Carvalho et al., 2018). In this context, the opposed action of 
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mitochondrial fission and fusion control mitochondria morphology and number. These processes are 

mediated by large GTPases, namely Dynamin-related protein 1 (Drp1), which mediates mitochondrial fission; 

and Optic atrophy 1 (Opa1) and Mitofusins (Mfns) [Mitochondrial assembly regulatory factor (Marf) in 

Drosophila] that control the fusion of the mitochondrial membranes. Regarding mitochondrial fusion 

proteins, out of the four tested Marf alelles, only Marf J mutants showed an increased number of open 

wounds compared to controls. It is unclear why only one Marf mutant allele (Marf J) showed wound closure 

defects. The four Marf alleles carry different point mutations that can differently impact on mitochondrial 

function. The effects of Marf I and Marf J mutants have never been characterized before. Previous work using 

the Marf B allele indicates that it is a severe loss of function or null allele, and that the underlying mutation 

is in the GTPase domain (Sandoval et al., 2014). However, Marf B did not lead to wound healing impairment. 

A genetic and biochemical analysis of the effects of the Marf J mutation on protein function, together with 

further characterization of the wound healing phenotype is needed to validate the requirement of Marf for 

epithelial repair. In addition to Marf J, both Opa1 mutant alleles showed a significant wound healing 

phenotype, indicating that mitochondrial fusion is necessary for proper embryonic wound healing. In 

addition, all the tested mitochondrial fission genes are required for wound healing. Drp1 mutants, as well as 

mutants for Mitochondrial fission protein 1 (Fis1) and Ganglioside-induced differentiation-associated protein 

1 (Gdap1), genes encoding proteins that recruit Drp1 to mitochondria, showed an increased percentage of 

open wound compared to control embryos. We also observed a significant wound healing phenotype in 

miltEY01559 mutants. Milton (Milt) usually interacts with mitochondria-bound Mitochondrial Rho (Miro) to 

mediate mitochondrial trafficking. However, no significant wound healing phenotype was observed in 

MiroB682 mutant embryos. In both miltEY01559 and MiroB682, there was a higher frequency of open and 

intermediate wounds than in controls. Since we do not understand the significance of the intermediate 

phenotype and had to exclude these wounds from the statistical analysis, this may imply that the wounding 

assay is less sensitive to mutations that induce milder phenotypes. Overall, the wounding screen led to the 

identification of mitochondrial fusion, fission and trafficking proteins as novel regulators of embryonic wound 

healing.  

To understand the role of mitochondrial dynamics in wound healing we decided to characterize in more 

detail the phenotype of Drp1KG03815 and Opa1EY09863 mutant embryos. We have excluded the hypothesis that 

the wound healing impairment in these mutants is caused by pre-existing embryonic defects in cell viability, 

as our preliminary results show no striking difference in the number of apoptotic cells between mutants and 

controls. However, based on published data, we were expecting to observe a reduction in the number of 

apoptotic cells in Drp1 mutants and increased apoptosis in Opa1 mutants. In Drosophila, similar to what is 

observed in mammals, different apoptotic stimuli lead to mitochondrial fragmentation and membrane 

disruption (Abdelwahid et al., 2007; Goyal et al., 2007). Inhibition of Drp1-mediated mitochondrial fission 
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protects cells from apoptosis (Abdelwahid et al., 2007; Clavier et al., 2015; Goyal et al., 2007). Opa1 is also 

important in the regulation of apoptosis. In mammals, the function of Opa1 in stabilizing the IMM cristae 

prevents cytochrome c release and consequent apoptosis (Frezza et al., 2006; Griparic et al., 2004). Cellular 

stress can induce excessive cleavage of the full length Opa1 (L-Opa1) into short Opa1 form (S-Opa1). S-Opa1 

lacks the transmembrane domain required for anchoring to the IMM. An increase in S-Opa1 form impairs 

IMM fusion and facilitates mitochondrial fission and the induction of apoptosis (MacVicar and Langer, 2016). 

In Drosophila, although the role of Opa1 in apoptosis has not been so extensively studied, the excessive 

cleavage of Opa1 has also been implicated in apoptosis (Rahman and Kylsten, 2011). In summary, lack of 

Opa1 and excessive Opa1 cleavage facilitates apoptosis by disruption of the cristae structure or by an 

imbalance in the fusion/fission equilibrium, respectively. Although our preliminary data on apoptosis lack the 

quantification of the number of dying cells, they suggest that apoptosis is unaffected in Drp1 and Opa1 

mutants. A thorough analysis of apoptosis in different embryonic tissues, using other apoptotic markers (e.g. 

activated caspase-3, acridine orange staining), would be helpful to validate our results. As we only assessed 

apoptosis in an uninjured situation, a further analysis of the number of apoptotic cells after wounding is 

necessary to understand if Drp1 and Opa1 differentially regulate apoptosis upon wounding. Although 

induction of apoptosis has not been observed in embryonic wound healing (Abreu-Blanco et al., 2012b) in a 

wild-type condition, we cannot exclude the possibility that it happens when the mitochondrial dynamics 

machinery is affected.  

 

2. Epithelial wounding induces changes in mitochondrial morphology  

Knowing that both Drp1 and Opa1 loss of function lead to wound healing impairment and that these 

proteins regulate mitochondrial shape, we characterized the mitochondrial morphology in the Drosophila 

embryonic epidermis in homeostasis and upon wounding. In homeostasis, we observed a different 

mitochondrial morphology in the smooth and denticle epidermis cells. Denticle cells, which are much smaller 

than smooth cells, showed a very condensed mitochondrial distribution and we were only able to distinguish 

individual mitochondria in smooth cells.  

In homeostasis, we observed that late-stage embryos (Stage 15) have smaller and rounder 

mitochondria, compared to younger (stage 13) embryos (Macchi et al., 2013). Drosophila embryos undergo 

a metabolic switch to aerobic glycolysis, that begins midway through embryogenesis, to prepare for the 

transition from differentiated to proliferative cells in larval stages (Tennessen et al., 2011; Tennessen et al., 

2014). Interestingly, highly proliferative cells such as cancer or stem cells, which favour aerobic glycolysis for 

energy production, also present a more fragmented mitochondrial network (Chen and Chan, 2017; Deng et 
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al., 2018; Seo et al., 2018; Yadav and Srikrishna, 2019). Hence, our observations support the hypothesis that 

mitochondrial shape correlates with the metabolic state in the cell. What is the cause and what is the 

consequence remains unclear.  

We showed that, whereas Drp1 loss of function strongly affects the shape of mitochondria, Opa1 

mutation has no effect. Given that the mitochondrial morphology of control embryos is already very 

fragmented at late stages, the result observed in the context of Opa1 mutation is not surprising. On the other 

hand, Drp1 seems to be required at late embryogenesis stages to regulate mitochondrial fission. This is 

consistent with what has been observed in younger embryos (Macchi et al., 2013) and in other Drosophila 

tissues (Sandoval et al., 2014; Verstreken et al., 2005). 

Upon wounding, we observed mitochondrial fragmentation, not only restricted to the damaged cell 

debris, but also in cells at the wound edge, suggesting that wounding triggers mitochondrial fission. This is 

consistent with the defective wound closure observed Drp1 mutants. Unfortunately, we were not able to 

accurately follow and quantify the mitochondrial morphology, due to tissue movements and cell shape 

changes inherent to wound closure. On the other hand, although we show that Opa1 is also required for 

wound healing, we did not detect obvious mitochondrial fusion events upon wounding. Still, it is possible 

that mitochondrial fusion occurs at later stages of wound closure or that our current imaging method does 

have enough resolution to detect these changes. Imaging of mitochondrial morphology with higher 

resolution, for example by using super-resolution microscopy, would help to understand the requirement of 

mitochondrial fusion and fission during the wound healing process.  

Regarding mitochondrial localization, we did not observe any striking change during wound closure. In 

migrating cells, mitochondria localize close the leading edge to provide energy for cell migration (Schuler et 

al., 2017). Since both the polymerization of F-actin and myosin contractility are energy-consuming processes 

(Lymn and Taylor, 1971), we hypothesized that mitochondria would localize close to the actomyosin cable, 

but we did not observe any preferential localization towards the leading-edge. We also did not observe any 

change in apico-basal movement of mitochondria. These were puzzling results, as miltEY01559 mutants showed 

wound healing impairment. It would be interesting to compare the mitochondrial localization in wild-type 

and miltEY01559 mutant embryos to clarify its role of in wound healing.  

Overall, our results suggest that wound closure does not require polarization of mitochondria and that 

wounding induces mitochondrial fission, further implicating this process in the regulation of wound healing. 

Mitochondrial fission facilitates the removal of dysfunctional mitochondrial by mitophagy (Burman et al., 

2017; Ikeda et al., 2015), so we hypothesized that the wound could be a stress factor for the epithelial tissue 

and induce mitochondrial fission followed by mitophagy. However, we did not detect any autophagic events 
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close to the wound site. To confirm the role of mitophagy in wound healing we should test other mitophagy 

markers and test whether blocking mitophagy leads to wound closure defects. So far, our preliminary results 

suggest that mitophagy does not play a key role in embryonic wound healing. It would also be interesting to 

investigate whether mitochondrial biogenesis, which promotes the increase of mitochondrial mass to restore 

cellular function upon damage, is involved. This pathway has been observed as a response to brain or heart 

injuries, in which hypoxia causes oxidative damage to the cells, and constitutes a therapeutic target for these 

conditions (Marquez et al., 2016; Scholpa and Schnellmann, 2017; Yin et al., 2008). Interestingly, a recent 

study about keloid fibroblasts, which are cells present in aberrant scars that form in response to cutaneous 

wound healing, has reported an increase in mitochondrial biogenesis (Li et al., 2019). It would be interesting 

to understand if mitochondrial biogenesis also happens in epithelial cells and if this pathway is conserved in 

the repair of simple epithelia. As mitochondrial biogenesis involves a transcriptional response that leads to 

increased expression of mitochondrial and nuclear encoded proteins (Ventura-Clapier et al., 2008), it may 

not be relevant in the first stages of embryonic repair (which take place in the first minutes after wounding), 

but may be important later on to fully restore the epithelial integrity. 

 

3. Mitochondrial fusion and fission proteins regulate wound healing events 

To understand the role of mitochondrial dynamics during embryonic wound healing, we characterized 

the phenotype of Drp1 and Opa1 loss of function by live imaging of specific features of the wound closure 

process. Embryonic wound healing is mediated by the formation of an actomyosin cable at the wound edge, 

that contracts and coordinates the collective tissue movement to close the wound (Bement et al., 1999; 

Danjo and Gipson, 1998; Kiehart et al., 2000; Xu and Chisholm, 2011). The formation of the actomyosin cable 

has been shown to depend on an intracellular calcium increase upon wounding (Antunes et al., 2013; Razzell 

et al., 2013; Xu and Chisholm, 2011), that in turn is regulates the remodelling of the Adherens Junctions (AJs) 

(Abreu-Blanco et al., 2012b; Carvalho et al., 2014; Hunter et al., 2015) and the activation of the Rho family of 

GTPases and its targets, all required for proper actomyosin dynamics and contractility (Brock, 1996; Verboon 

and Parkhurst, 2015; Wood et al., 2002). Therefore, we investigated whether these processes were impaired 

in the absence of Drp1 and Opa1.  
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3.1. The mitochondrial fusion protein Opa1 is required for calcium and F-

actin dynamics during wound closure  

Regarding mitochondrial fusion, we found no significant difference in how the wound area changes over 

time in Opa1 mutants compared to controls. In both cases the actomyosin cable forms at the wound edge 

and progressively contracts until the wound is closed, with similar wound closure speeds. These results came 

as a surprise given that, in the initial wounding assay screen, Opa1 mutants showed a significant increase in 

the percentage of open wounds compared to controls.  

Nevertheless, we found defects in F-actin accumulation and Rho GTPase activation at the wound edge 

in these mutants. Myosin, on the other hand, seems to be unaffected. Contractile actomyosin structures are 

regulated by Rho GTases. Rho 1 and its downstream effectors have been shown to regulate wound healing 

in the Drosophila embryonic epidermis (Matsubayashi et al., 2015; Verboon and Parkhurst, 2015). The Rho1 

effector Rho kinase (Rok) accumulates at the wound edge (Verboon and Parkhurst, 2015) and has been 

shown to regulate for the actomyosin cable formation during wound healing (Antunes et al., 2013; Verboon 

and Parkhurst, 2015). Rok regulates myosin by phosphorylation the myosin regulatory light chain (MRLC), or 

inhibition of the MRLC phosphatase, thus activating myosin contractility (Amano et al., 2010; Dawes-Hoang 

et al., 2005; Kimura et al., 1996; Royou et al., 2002). Thus, it was surprising to find that there were no 

significant differences in myosin levels at the wound edge between Opa1 mutants and controls, while Rok 

levels were decreased. Thus, it would be useful to look at alternative reporters of myosin activity, for example 

by measuring phosphorylated MRLC, to clarify whether myosin contractility is in fact affected when 

mitochondrial fission is impaired.  We can propose two hypotheses to explain these seemingly contradictory 

results. On one hand, Rok is also known to regulate F-actin dynamics through LIM kinase (Julian and Olson, 

2014), so the activity of Rok during wound healing might be more associated with F-actin instead of myosin. 

On the other hand, it is possible that other kinases compensate for the reduced Rok levels, leading to 

unaffected myosin levels. Indeed, in single cell wound repair, Rok has been shown to cooperate with MRLC 

kinase in the phosphorylation of MRLC (Russo et al., 2005).  

The actomyosin contractility is regulated by an intracellular calcium increase in the cells closer to the 

wound. This calcium burst is the first signal to be detected upon wounding and impairment of calcium flux 

leads to actomyosin cable defects. Evidence suggests that calcium regulates the actomyosin cable by 

activating actin regulatory proteins and the remodelling of AJs (Antunes et al., 2013; Hunter et al., 2018a; Xu 

and Chisholm, 2011). Opa1 mutants show a reduced calcium burst compared to control embryos. This 

reduction could also explain the observed reduced F-actin levels at the wound edge.  
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Even though Opa1 mutants show calcium and F-actin defects, the wounds still managed to close at a 

similar rate than controls. Either the calcium and F-actin defects are not sufficient to delay wound healing or 

there are other compensatory mechanisms involved. Another possibility is that the requirement of Opa1 

depends on the extension of the wound. In the wounding assay screen, we used maximum laser power to 

inflict large wounds. In contrast, in order to follow the wound closure process by live imaging, we inflicted 

smaller wounds. Thus, our results suggest that mitochondrial fusion is required for the repair of larger 

wounds. To better understand the role of mitochondrial fusion in wound healing, it will be helpful to analyse 

the phenotype of other Opa1 null mutant alleles and to explore the contribution of other fission-related 

proteins. 

In conclusion, although we do not fully understand the contribution of Opa1 to wound closure, we have 

found that it regulates F-actin and calcium during wound healing. 

 

3.2. The mitochondrial fission protein Drp1 is essential for wound healing 

 

3.2.1. Drp1 regulates F-actin accumulation at the wound edge 

The analysis of the wound closure dynamics revealed that Drp1 mutants have a significant wound healing 

impairment, taking more than two times longer to close the wounds that control embryos. Moreover, we 

could identify two degrees of wound closure phenotypes: a mild phenotype, in which the wound 

progressively contracted but at a slower rate than in controls; and a strong phenotype, in which the wound 

area expanded. Drp1 mutants showed strong defects in F-actin accumulation at the wound edge, while 

myosin levels were unaffected. However, in contrast to Opa1 mutants, the lack of Drp1 does not affect Rok 

localization at the wound edge. This suggests that mitochondrial fission does not regulate Rok and its targets 

that control myosin contractility, but instead is required for F-actin dynamics. As mentioned above (section 

3.1), testing other myosin and Rok markers would be helpful to validate these results. Several actin 

regulators, such as Diaphanous (Formin), which are also activated by Rho GTPases, have been shown to 

regulate F-actin dynamics in simple epithelia wound healing (Antunes et al., 2013; Matsubayashi et al., 2015). 

Future studies should thus address whether Drp1 controls the activity of Rho GTPases and their different 

effectors. In addition to the actomyosin cable, wound healing involves cell crawling mediated by actin 

protrusions (Abreu-Blanco et al., 2012b; Verboon and Parkhurst, 2015) and cellular rearrangements 

(Carvalho et al., 2018; Razzell et al., 2014). It would be interesting to understand how these processes 

are affected in Drp1 mutants and if their compensatory action in the absence of a proper actomyosin cable 

can explain the milder Drp1 wound healing phenotype. 
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3.2.2. Drp1 regulates cytosolic and mitochondrial calcium dynamics upon 

wounding 

Our results suggest that the wound healing impairment in Drp1 mutants could be due to F-actin defects. 

The analysis of E-cadherin localization shows that the F-actin defects are independent of AJs remodelling, so 

alternative molecular mechanisms must be involved in the regulation of F-actin assembly at the wound 

margin in Drp1 mutants. Quantification of the cytosolic calcium burst induced by wounding revealed that it 

is strikingly reduced in Drp1 mutants compared to controls. Previous studies have shown that injury triggers 

calcium influx from the extracellular environment (Antunes et al., 2013; Razzell et al., 2013; Xu and Chisholm, 

2011). The elevated cytosolic calcium levels induce calcium release from the endoplasmic reticulum (ER) 

mediated by the inositol-3-phosphate (IP3) receptor (IP3R), followed by propagation of calcium and IP3 to 

neighbouring cells through Gap Junctions (Narciso et al., 2015; Razzell et al., 2013; Restrepo and Basler, 

2016), in a wave-like manner. After this initial spreading of calcium to regions more distal to the wound site, 

calcium levels decrease from the periphery to the edge of the wound. Our results show that, not only the 

calcium levels are lower in Drp1 mutants, but also that the area of calcium increase is reduced, compared to 

the controls. These results strongly suggest that Drp1 regulates the propagation of intercellular calcium 

across the epidermis.  

Mitochondria can uptake calcium from the cytosol, thereby modulating cytosolic calcium levels 

(Szabadkai and Duchen, 2008). Moreover, mitochondrial morphology can influence mitochondrial calcium 

levels (Bianchi et al., 2006; Gerencser and Adam-Vizi, 2005; Szabadkai et al., 2004). Consistent with a previous 

report on wound healing in the epidermis of C. elegans (Xu and Chisholm, 2014), we have also observed an 

increase in mitochondrial calcium around the wound, similar to what is observed with cytosolic calcium 

(Antunes et al., 2013; Razzell et al., 2011; Xu and Chisholm, 2011). Xu and colleagues have mentioned that 

the mitochondrial calcium wave starts after and travels slower than the cytosolic calcium wave, supporting 

the idea that mitochondria uptake calcium as a consequence of the dramatic increase in cytosolic calcium. 

Observations from our laboratory in the wound healing of the pupal epidermis are consistent with this finding 

(Cristo I, unpublished data). This suggests that, similarly to the cytosolic calcium burst, the rise in 

mitochondrial calcium levels is a conserved response to tissue injury. We found the mitochondrial calcium 

levels upon wounding are reduced in Drp1 mutants compared to controls. In contrast to cytosolic calcium, 

the area of tissue that responds to the wound by increasing calcium levels is not affected in Drp1 mutants. 

The reduction in calcium levels is not as dramatic as seen for cytosolic calcium. This might be due to the 

higher sensitivity of the cytosolic calcium sensor compared to the mitochondrial version. The mitochondrial 

calcium sensor is based on GCaMP3 while the cytosolic calcium was measured with GCaMP6, an improved 

version of the GCaMP calcium sensors that leads to increased fluorescence upon calcium binding (Chen et 
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al., 2013). In summary, our results show that Drp1 regulates mitochondrial and cytosolic calcium dynamics 

upon wounding.  

But how can the mitochondria control cytosolic calcium levels and how can we interpret these results? 

First of all, mitochondrial calcium uptake depends on an increase in cytosolic calcium levels (Lawrie et al., 

1996; Rizzuto et al., 1992; Rutter et al., 1993). So, one hypothesis is that Drp1 mutants have a reduced 

cytosolic calcium burst and consequently less calcium goes into the mitochondria. Given that Drp1 is a protein 

that influences mitochondrial morphology and function, we hypothesize that the cytosolic calcium increase 

leads to mitochondrial calcium uptake, which in turn modulates the cytosolic calcium concentration. 

Mitochondria localize close to the ER, forming calcium signalling microdomains. Calcium uptake by 

mitochondria reduces the cytosolic calcium levels close to the open ER channels (local cytosolic calcium), 

preventing their calcium-dependent inactivation. By controlling ER calcium channels activity, mitochondrial 

calcium uptake affects global cytosolic calcium (Billups and Forsythe, 2002; Rizzuto et al., 2012). Our results 

lead us to speculate that, upon wounding, mitochondria remove calcium from the ER-mitochondria 

microdomain, preventing IP3R inactivation and favouring calcium release from the ER. When the calcium 

buffering capacity of mitochondria is compromised, as it seems to be in Drp1 mutants, the high local cytosolic 

calcium levels could inhibit IP3R opening and reduce calcium release, resulting in lower global cytosolic 

calcium levels. This would then affect the cytosolic calcium wave propagation, as less calcium and/or IP3 

would cross Gap Junctions.  

To support our hypothesis, further work is necessary to understand the molecular mechanisms by which 

Drp1 regulates the calcium buffering capacity of mitochondria. Mitochondrial calcium levels are determined 

by: (1) calcium uptake into mitochondria; (2) calcium efflux; (3) calcium buffering activity in the mitochondrial 

matrix, through the formation of calcium phosphate complexes (Nicholls and Chalmers, 2004). Prudent and 

colleagues have shown that the Mitochondrial Calcium Uniporter (MCU), the main mitochondrial calcium 

influx channel, is required for cell migration. Knockdown of MCU in human cell lines leads to increased actin 

stiffness, loss of cell polarization and impaired migratory capacity, due to reduced activity of the Rho GTPases 

RhoA and Rac1 (Prudent et al., 2016). The MCU is conserved in Drosophila and mediates ER-to-mitochondrial 

calcium transfer via IP3R (Choi et al., 2017). The calcium efflux channels are also conserved in Drosophila 

(Haug-Collet et al., 1999; McQuibban et al., 2010) but their role in wound healing has not been investigated. 

How mitochondrial dynamics impacts on mitochondrial calcium buffering capacity is nor clearly understood. 

A recent study in muscle myofibers showed that DRP1-deficient mice present lower cytosolic calcium levels 

and increased mitochondrial levels, due to the increased expression of MCU (Favaro et al., 2019). Here, we 

observed the opposite effect, suggesting that the role of Drp1 on mitochondrial calcium regulation may be 

context dependent. Further work is needed to understand how Drp1 regulates mitochondrial calcium uptake 
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in the Drosophila epidermis. Another factor that could regulate mitochondrial calcium is the proximity of 

mitochondria to ER or plasma membrane calcium channels, which in turn are affected by the mitochondrial 

shape and localization in the cell. A recent study suggested that mitochondrial elongation increases the 

number of ER-mitochondrial contacts in human cell lines (Cieri et al., 2018). It would be interesting to 

investigate whether this is true for the epidermis of the Drosophila embryos. Additionally, calcium influx into 

mitochondria is dependent on the mitochondrial membrane potential (ΔΨmt). Unfortunately, we were not 

able to measure the ΔΨmt in the embryonic epidermis to understand if it was a limiting factor in 

mitochondrial function and calcium uptake.  

It has also been shown that mitochondrial calcium triggers mitochondrial ROS production, that in turn 

regulates the F-actin cytoskeleton through RHO-1 (Xu and Chisholm, 2014). A recent work by Hunter and 

colleagues has shown that calcium-dependent mitochondrial ROS production regulates the actomyosin 

cytoskeleton and wound healing in the Drosophila and the zebrafish (Danio rerio) embryos (Hunter et al., 

2018a). The analysis of ROS levels in Drp1 mutants would be useful to establish the place of Drp1 in the 

known mechanism of calcium-dependent regulation of wound closure.  

Hence, our hypothesis is that Drp1 controls F-actin accumulation at the wound edge, and consequently 

wound healing, by controlling mitochondrial and cytosolic calcium levels. To confirm this, we would need to 

test whether increasing mitochondrial calcium uptake or the retention of calcium inside mitochondria in Drp1 

mutants rescues the cytosolic calcium and the F-actin dynamics during wound closure. Nevertheless, we 

cannot exclude the possibility that Drp1 regulates F-actin in a calcium-independent manner. Drp1 can directly 

bind F-actin (DuBoff et al., 2012; Ji et al., 2015), but the interaction between these molecules has been mainly 

studied in the context of the mitochondrial fission process (De Vos et al., 2005; Ji et al., 2015). However, how 

Drp1 loss-of-function can impact on F-actin dynamics is still not well understood. Drp1 has been shown to 

regulate F-actin dynamics in glioma cells, in which Drp1 knockdown reduced the formation of actin 

protrusions and invasiveness of these cells (Yin et al., 2016). Moreover, Yin and colleagues showed that Drp1 

can bind to RHOA and activate the RHOA/ROCK pathway (Yin et al., 2016), known to regulate cytoskeleton 

dynamics (Amano et al., 2010). Future studies should investigate the activity of F-actin regulatory proteins 

involved in wound healing in Drp1 mutants to understand how Drp1 can impact on the actomyosin cable.  

The wound expansion phenotype of Drp1 strong mutants is similar to what has been described in 

mutants for a component of the invertebrate Occluding Junctions (OJs). In the absence of OJs, the epidermis 

presents defects in the actomyosin cable, cellular shapes and rearrangements as well as in tissue mechanical 

properties (Carvalho et al., 2018). Notably, Gangwar and colleagues have found that mitochondrial 

dysfunction caused by calcium-mediated oxidative stress leads to the disruption of OJs in human cell line 
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(Gangwar et al., 2017). It would be interesting to explore in future studies the link between mitochondria 

and OJs in the context of Drosophila wound healing. 

To strengthen the claim that mitochondrial fission is required for wound healing it would be helpful to 

investigate the wound healing phenotype of other molecular players involved in mitochondrial fission, such 

as Fis1 and Gdap1. The mitochondrial fission machinery also mediates peroxisome division, so we cannot 

exclude the possibility that Drp1 mutants also have peroxisomal defects (Honsho et al., 2016). It would be 

interesting to explore whether any potential peroxisomal defects contribute to the wound healing 

phenotype.  

In conclusion, our work has identified important novel regulators of wound healing – the mitochondrial 

dynamics machinery. In particular, we have shown that mitochondrial fission is induced upon wounding and 

that this is key for proper embryonic wound repair. Finally, we propose that mitochondrial fission is required 

for the regulation of F-actin dynamics and calcium signalling.  

 

4. Conclusions and future perspectives 

Our work has revealed that mitochondrial dynamics proteins are novel regulators of embryonic wound 

healing. We show for the first time that mitochondrial fusion, fission and trafficking proteins are required for 

proper wound healing of the Drosophila embryonic epidermis.  

Mitochondrial fission seems to be particularly important for the wound healing process. The injury 

induces mitochondrial fission in cells adjacent to the wound. The factors that trigger mitochondrial fission 

upon wounding remain to be investigated, but we hypothesize that calcium might be one of these factors. 

Several reports have shown that an increase in intracellular calcium triggers mitochondrial fission. In cultured 

neurons, calcium influx activates the calcium/calmodulin-dependent protein kinase Iα (CaMKIα), that in turn 

phosphorylates Drp1, leading to its activation and, consequently, mitochondrial fission (Han et al., 2008). 

Using a liver cell line, Hom and colleagues have shown that the calcium-mediated mitochondrial fission could 

be prevented by inhibiting ER-calcium release and that calcium influx into mitochondria was necessary to 

induce mitochondrial fission (Hom et al., 2007). In the embryonic epidermis, there is an increase in 

intracellular calcium immediately upon wounding that involves ER-calcium release (Razzell et al., 2013). 

Moreover, we showed that, in agreement with other wound healing models (Zhao et al., 2011b), wounding 

leads to mitochondrial calcium increase and mitochondrial calcium uptake. Hence, calcium seems like a 

strong candidate to be regulating mitochondrial fission upon wounding.   
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We have also shown that both Drp1 and Opa1 loss of function promote F-actin and calcium defects 

during wound closure. Embryonic wound healing relies on the formation and the contraction of the 

actomyosin cable, as well as actin-based cell crawling (Rothenberg and Fernandez-Gonzalez, 2019). The F-

actin defects might explain the severe wound healing impairment in the Drp1 mutants. Recent studies have 

shown the ability of Drp1 to regulate F-actin mediated protrusions. Drp1 knockdown reduced the formation 

of actin protrusions and invasiveness of glioma cells (Yin et al., 2016). Inhibition of Drp1 in a breast cancer 

cell line impaired the migratory capacity of these cells (Peiris-Pagès et al., 2018), as well as in thyroid cancer 

cells (Ferreira-da-Silva et al., 2015). The mechanisms through which Drp1 regulates F-actin are not well 

understood. In the glioma cells, Yin and colleagues showed that Drp1 can bind to RHOA and activate the 

RHOA/ROCK pathway (Yin et al., 2016), known to regulate cytoskeleton dynamics (Amano et al., 2010). This 

pathway also regulates embryonic wound repair (Abreu-Blanco et al., 2012b; Brock, 1996; Verboon and 

Parkhurst, 2015; Wood et al., 2002). Rok localization was unaffected in Drp1 mutants, so the role of other 

Rho effectors and other Rho GTPases should be explored in future studies. Another way to regulate F-actin 

is through calcium. Impairing the intracellular calcium burst upon wounding leads to actomyosin cable 

defects and wound healing impairment (Antunes et al., 2013; Xu and Chisholm, 2011). Calcium can activate 

calcium-dependent actin-binding proteins, such as gelsolin, that regulate F-actin polymerization at the 

wound edge (Antunes et al., 2013). Calcium can also indirectly activate Rho GTPases by the production of 

ROS. Rho GTPases contain oxidation sensitive motifs that promote their activation upon ROS production (Xu 

and Chisholm, 2014). Drp1 mutants displayed a striking reduction in cytosolic calcium levels upon wounding, 

suggesting that this could be the upstream event responsible for the F-actin defects and failure of wound 

closure. The role of calcium in wound healing is not restricted to simple or embryonic epithelia. It is involved 

in complex epithelia repair at the level of the clot formation during the hemostasis phase (Palta et al., 2014), 

and it has been implicated in the regulation of keratinocyte and fibroblast differentiation, proliferation and 

migration (Dulbecco and Elkington, 1975; Magee et al., 1987; Navarro-Requena et al., 2018), as well as ECM 

deposition (Rokosova and Peter Bentley, 1986). Calcium regulation is thus a universal player in different 

aspects of wound healing. In addition to cytosolic calcium defects, Drp1 mutants showed a reduced 

mitochondrial calcium burst upon wounding. The role of mitochondria in calcium uptake and consequent 

regulation of the cytosolic calcium levels is not understood in the context of wound healing. Recent studies 

point to a role of mitochondrial calcium in cell migration (Prudent et al., 2013; Prudent et al., 2016; Tang et 

al., 2015; Tosatto et al., 2016) and wound healing, but how the mitochondrial and cytosolic calcium dynamics 

are connected remains unclear.  

In conclusion, we have found that Drp1 regulates conserved and key events required for wound healing 

in different epithelia. We have shown that the Drosophila embryonic wound healing model is highly suitable 
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to address the role of mitochondria in in vivo wound repair and hopefully this knowledge can contribute to 

the better understanding of the wound healing process as a hole. 

In the future it would be interesting to investigate how mitochondrial fission is triggered upon wounding, 

how it impacts on the mitochondrial and cytosolic calcium dynamics and which are the downstream targets 

of calcium responsible for the regulation of the wound healing events. Additionally, many other 

mitochondrial functions can have an impact on wound healing and have not been addressed so far. As an 

example, a previous screen from our lab has identified two genes required for embryonic wound healing that 

are related to mitochondrial metabolism: aralar1 and Mitochondrial trifunctional protein α subunit (Mtpα) 

(Campos et al., 2010). Aralar 1 is a calcium-dependent aspartate-glutamate carrier (Palmieri et al., 2001), 

whereas Mtpα is an enzyme subunit involved in the fatty acid β-oxidation (Xia et al., 2019). Actin 

accumulation at the wound edge is an energy-dependent process (Yumura et al., 2014), so the contribution 

of mitochondrial metabolism should be further examined. Moreover, mitochondrial morphology changes are 

coupled to metabolism (Wai and Langer, 2016), so the relationship between these processes in the context 

of wound healing is worth investigating.  
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