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Resumo 
 O desenho de meios de cultura desempenha um papel vital na performance dos meios 

de cultura nomeadamente na concentração celular, viabilidade das células, rendimento e 

qualidade de produto produzido. O principal objetivo da presente dissertação é desenvolver um 

método computacional em MATLAB para o design de meios de cultura in silico com base em 

conhecimento metabólico prévio, sem a necessidade de experiências laboratoriais. Foi usado 

como caso de estudo uma rede metabólica para as células de ovário do hamster chinês (CHO), as 

células CHO são atualmente as principais células de mamífero utilizadas na produção de proteínas 

recombinantes para uso na indústria farmacêutica e aplicações terapêuticas. A técnica da análise dos 

modos elementares foi usada para calcular o número total de elementary modes (EM) da rede metabólica 

CHO, estes são usados para calcular a footprint (pegada) dos metabolitos extracelulares no meio de cultura 

para os diferentes metabolismos celulares. O conjunto de todas as footprints da rede metabólica foi nomeado 

de footprintome. O método “Pattern clustring” foi utilizado para reduzir o footprintome. Duas footprints foram 

calculadas para representar a totalidade do footprintome, usando dois métodos de cálculo, a média aritmética 

de todas as footprints presentes no footprintome e a média ponderada pela energia livre de Gibbs. Comparou-

se os resultados obtidos com dados da literatura e observou-se que 21 dos 26 metabolitos extracelulares 

presentes nos dados da literatura estão dentro do intervalo de variância dos resultados obtidos. 

Também foi desenvolvido um método para calcular meios de cultura específicos baseados no fenótipo 

de cada footprint, duas fórmulas de meios de cultura foram calculadas uma para crescimento celular e outra 

para produção de imunoglobulina G (IgG), a fórmula para crescimento celular foi comparada com uma 

fórrmula de meio de cultura CHO testada em laboratório, concluindo-se que esta ferramenta computacional 

é capaz de calcular fórmulas de meios de cultura, que posteriormente podem ser testadas em laboratório. 

 

Palavras Chave: desenho de meios de cultura, análise dos modos elementares, redes 

metabólicas, Chinese Hamster Ovary (CHO) 
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Abstract 

Culture media design plays a vital role in culture performance, namely cell density, cell viability, 

product yield and product quality. The main goal of the present M.Sc. thesis is to develop a method 

for in silico culture media design based on prior metabolic knowledge of the targeted cell line, 

reducing the burden of laboratory experiments. A Chinese Hamster Ovary (CHO) cell line was 

used as case study. CHO cells are the main mammalian host used today in the biopharmaceutical 

industry for the production of recombinant proteins for therapeutics and pharmaceutical 

applications. Elementary mode analysis (EMA) was applied to compute the total number of 

elementary modes (EM) of a representative CHO metabolic network. From the full set of EMs, 

the extracellular metabolite footprints for different metabolic states were computed. The full set 

of metabolic footprints was named footprintome. Footprintome reduction was achieved by pattern 

clustering. Two footprints were computed representing all of the Footprintome by averaging 

based on number and averaging based on Gibbs free energy. These footprints were compared with 

literature data resulting in significant similarities. More specifically, 21 out of the 26 extracellular 

metabolites present in the literature data are within the variance intervals of the computed 

footprintome. Afterwards a phenotype-targeted design was applied to compute custom culture 

media formulas for cell growth and for Immunoglobulin G (IgG) production. The cell growth 

formula was compared with a lab tested CHO culture medium formula, showing that this tool is 

capable of computing culture media formulas that can be further tested in the lab. 

 

Keywords: culture media design methods, elementary mode analysis, metabolic 

networks, Chinese Hamster Ovary (CHO) 

  



VI 
 

Index 
 

Abstract ......................................................................................................................................... V 

Figure Index ................................................................................................................................ VIII 

1. Introduction............................................................................................................................... 1 

1.1 Culture Media Design Methods .......................................................................................... 3 

        1.1.1 Plackett and Burman design ......................................................................................... 5 

1.1.2 Taguchi design .............................................................................................................. 6 

1.1.3 Response Surface Methodology .................................................................................. 7 

1.1.4 Artificial neural network............................................................................................... 8 

1.1.5 Genetic Algorithm ...................................................................................................... 10 

1.2 Metabolic modelling methods .......................................................................................... 12 

1.2.1 Metabolic flux analysis (MFA) .................................................................................... 13 

1.2.2 Flux balance analysis (FBA)......................................................................................... 14 

1.2.3 Elementary mode analysis ......................................................................................... 15 

1.4 M.Sc. thesis objectives ...................................................................................................... 17 

2.4.1 Calculation of elementary mode Gibbs free energy of reaction (ΔG⁰r) ..................... 21 

2.4.2 Clustering based on phenotype similarity. ................................................................. 22 

3. Results and discussion ............................................................................................................. 25 

3.1 Chinese Hamster Ovary Cells (CHO) metabolic network .................................................. 25 

3.2 Computation of CHO Elementary Modes .......................................................................... 26 

3.3 Computation and reduction of CHO footprintome ........................................................... 29 

3.4. Comparison with experimental data ................................................................................ 33 

3.4. Phenotype-targeted culture media design ...................................................................... 36 

3.4.1 Minimization of lactate and ammonium buildup ...................................................... 37 

3.4.2 Minimization of osmolarity buildup ....................................................................... 39 

3.4.3 Final culture media concentrations........................................................................ 41 

4. Conclusions.............................................................................................................................. 44 

5. References ............................................................................................................................... 46 

Appendix ..................................................................................................................................... 53 

Appendix A – CHO Metabolic Networks ............................................................................... 53 

Appendix C - Standard Gibbs free energy of formation of metabolites values ...................... 66 

Appendix D - Literature data cell growth rate and metabolic rates 62 ..................................... 67 

Appendix E - Arithmetic footprint and computed formulas for Biomass and IgG producing 

networks. ................................................................................................................................. 68 



VII 
 

Appendix F – Results from the IgG producing network footprintome automatic reduction ... 70 

 

 

  



VIII 
 

Figure Index 

Figure 1 - Culture media design methodologies………………………………………………...3 

Figure 2 - Response surface for an exemplary model…………………………………………..7 

Figure 3 - Multi layered perceptron neural network ..…………………………………………..9 

Figure 4 - GA basic flow scheme……………………………………………………………….10 

Figure 5 - Example of culture media optimization using GA…………………………………..11 

Figure 6 - Example of a simple metabolic Network……………………………………………12  

Figure 7 - FBA example, restrictions and objective function…………………………………..14 

Figure 8 - Elementary modes of the Fig. 6 network…………………………………………….15 

Figure 9 - Admissible Flux Space of the Fig. 6 network elementary modes…………………...15 

Figure 10 - Example of a Chinese Hamster Ovary Cell elementary mode……………………..18 

Figure 11 - Reduced footprintome for biomass production after 2 steps of reduction: Step 1- 

biomass production, Step 2-Thermodynamic reduction………………………………………...31 

Figure 12 - Reduced footprintome for biomass production after 3 steps of reduction: Step 1- 

biomass production, Step 2-Thermodynamic reduction, Step 3- Pattern clustering with 

arithmetic averagings……………………………………………………………………………32 

Figure 13 - Comparison between theoretical footprints computed by the arithmetic average 

method and the weighted average method with experimental footprint ……………………….34 

Figure 14 - Histogram ∆G⁰r of each EM for the biomass producing network…………………..36 

Figure 15 - Reduced footprintome for biomass production after 4 steps of reduction: Step 1- 

biomass production, Step 2-Thermodynamic reduction, Step 3- Pattern clustering with 

arithmetic averaging, Step 4- Elimination of all footprints that either produce lactate or 

ammonium. ……………………………………………………………………………………..38 

Figure 16 - Comparison between the optimal EM  computed for the biomass producing network 

and the respective arithmetic footprint………………………………………………………….40 

Figure 17 - Comparison between the optimal EM computed for the IgG producing network and 

the respective arithmetic footprint……………………………………………………………....41 

Figure 18 - Comparison between the computed formula for biomass synthesis  with CHO 

culture media…………………………………………………………………………………....42 

 

  

file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924095
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924096
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924098
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924100
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924101
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924102
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924103
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924104
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924105
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924105
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924106
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924106
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924106
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924107
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924107
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924109
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924109
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924109
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924109
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924110
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924110
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924111
file:///C:/Users/Toshiba/Desktop/Tese%20-%20Dinis%20-%20200326%20(RO).docx%23_Toc36924111


IX 
 

Table Index 

Table 1 Culture media design studies over the years…………………………………………...13 

Table 2 Plackett and Burman design of experiments…………………………………………...14 

Table 3 Taguchi Signal -to -Noise Ratios………………………………………………………15 

Table 4 Elementary mode count of the biomass and product producing networks……………..37 

Table 5 Footprint of the EM represented in Appendix B, Table B.1…………………………...39 

Table 6. Automatic footprintome reduction results………………………………......................40 

Table 7 MSE between measured and theoretical footprint……………………………………..46 

Table 8 Computed formulas for IgG and biomass syntheses and Lab tested CHO culture 

media……………………………………………………………………………………………54 

 



1 
 

1. Introduction 

The optimisation of the composition of culture media has been historically a very 

important factor for the performance of cell culture. Historically the main drivers have been the 

maximization of cell density, cell viability, product titer and product yield. In many cases the 

positive impact of culture media surpasses that of genetic engineering. The creation and 

optimization of culture media that supports the growth of microorganisms or cells comes with a 

set of challenges, particularly, the creation of methods that can achieve the best results, while 

being time and cost effective. There are several methodologies in use today, in this introduction 

we will be giving a brief history and definition about the different methods for culture media 

design. A more detail explanation about this methods, their advantages and disadvantages will be 

discussed in further chapters of this work. 

Culture media design started with classical methods using one-factor-at-time experiments 

which consists in changing one factor for each experiment until we have a desired result. This 

method was primarily used in culture media design until the mid-twenties century, when it was 

replaced by design of experiments methods (DoE). One of the early forms of this was the Plackett 

and Burman design (PBD) created by Plackett R. L. and Burman J. P.1 in 1946, it is a two level 

design method used to detect the top contributing factor, assuming that the interaction between 

two or more factors are negligible, PBD is still in use today, primarily for the elimination of non-

contributing factors (screening) in the early stages of culture media design. 

 A few years later the Central Composite Design (CCD) DoE was created by Box G. E. 

P. and Wilson K. B.2 in 1951 to overcome some of the limitations of PBD. The CCD is composed 

by 3 sets of points: a factorial set, each having two levels, a center set, whose values are the 

median values of each factor, and an axial set that are identical to the center points except for one 

factor. Today this design is mainly used in the Response Surface Methodology (RSM) also 

developed by Box G. E. P. and Wilson K. B.2, a DoE is ran and then RSM is used to create a 

mathematical model that uses statistical design of experiments and regression analysis to obtain 

the best formulations This method is still to date, the most used method in the industry to optimise 

culture media. 

The Taguchi method was created by Genichi Taguchi 3 in 1992, this method is based on 

noise analysis (uncontrollable variables in the experiments), making it a useful method for 

measuring the characteristics deviation of the target value. Taguchi method uses an orthogonal 

array of experiments and unlike PBD, it analyses the main effect and two factor iterations. 

The artificial neural networks (ANN) are a computing system inspired by the neural 

connections in the animal brains, the first computational model was created by Warren M. and 

Walter P.4 in 1943, the technology continued to advance through the century and the first 

application of ANN in culture media design was the work done by Glassey J et. al.5 in a 

Escherichia coli batch fermentation in 1994. ANN can process a large amount of information, 

which is useful in culture media design, that often contains hidden patterns and large amounts of 

variables. 

A genetic algorithm (GA) mimics the process of natural selection by relying on 

biologically inspired operators such as mutation, crossover and selection6. These types of 

algorithms started to be applied in culture media design in the 1990s. One of the first examples 

of this approach used in culture media design was the work proposed by Weuster-Botz D and 

Wandrey7, with the optimization of a culture media for a Candida boidinii fermentation. 

https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts


2 
 

 In this work will also be discussed different analysis tools to determine metabolic fluxes 

in metabolic networks. These types of analysis are the basis for metabolic engineering which is 

defined as the “direct improvement of product formation or cellular properties through the 

modification of specific biochemical reactions or introduction of new ones with the use of 

recombinant DNA technology”, as such metabolic engineering uses metabolic networks to 

determine metabolic fluxes that characterize cell physiology and control cell metabolism8. The 

analysis of a metabolic networks is based on the principle of mass conservation of internal 

metabolites within a system9. Depending on what type of analysis we want, there are three main 

techniques: metabolic flux analysis(MFA)10, flux balance analysis (FBA)11 and elementary mode 

analysis (EMA)12. These techniques and how they can be applied in culture media design will be 

explain in more detail in the next chapters of this work. 
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1.1 Culture Media Design Methods 

Culture media design methods can be classified as (Fig. 1):  

 Traditional one-factor-at-a-time 

 Advanced statistical/mathematical methods (the most frequently applied today)  

 Advanced system biology methods 

 

 

 

In this context, it is important to distinguish two different problems: screening and 

optimization of factors. Screening of factors is typically the first step in a culture media design 

project. It aims to identify the principal contributing factors that should be optimized in the 

proceeding steps. Optimization of factors aims at optimizing the media components quantities 

(typically concentrations) to enforce maximal product synthesis and/or maximal cell growth while 

minimizing unwanted by-products, such as lactate and ammonia. Table 1 overviews some of the 

published studies for culture media design methods. 

Figure 1 - Culture media design methodologies . PBD: Plackett and Burman Design; RSM: Response Surface 
Method;(Adapted from: Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M and Tripathi C K M 2017 Strategies for 

fermentation media optimization: An in-depth review Front. Microbiol. 785) 
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Table 1 - Culture media design studies over the years 

Screening method  
/ DOE 

Optimization method Experiments Number of 

Factors 

Metabolite Cell line Optimization  Year  

Reference 

Taguchi - 16 4 hyaluronic acid Streptococcus sp.  112% 2009 13 

Taguchi - 9 4 N-acetylchitooligosaccharide Streptomyces chilikensis 126,86% 2019 14 

Taguchi - 16 4 Bioethanol Saccharomyces cerevisiae 37,50% 2019 15 

Taguchi - 8 6 Mixed alcohols Clostridium pasteurianum 78,48% 2013 16 

Taguchi - 18 8 Amidase Geobacillus subterraneus 113,79% 2016 17 

PBD - 16 12 Lipase Candida rugosa - 2008 18 

Taguchi - CCD RSM 12 - 27 10-4 Vanillin Psychrobacter sp. - 2012 19 

Taguchi - CCD RSM 18 -27 8-4 Lipase Rhizopus chinensis 120% 2008 20 

CCD RSM 20 3 b-carotene Daucus carota 141,33% 2008 21 

CCD RSM 50 5 Lipase Aryabhattai SE3-PB 618,45% 2018 22 

CCD RSM 17 3 Y-aminobutyric acid  Streptococcus thermophilus 20% 2018 23 

PBD - CCD RSM 20- 32 12-5 Glycolipopeptide 

Biosurfactant 

Pseudomonas aeruginosa - 2017 24 

PBD - CCD RSM 8 - 13 5-2 Exopolysaccharides Cordyceps militaris 96,00% 2010 25 

- GA 80 11 - Helicoverpa zea (insect cell) 550,00% 2002 26 

- GA 98 14 2-Phenylethanol Kluyveromyces marxianus  32,00% 2004 27 

- GA 270 12 Eicosapentaenoic acid  Nannochloropsis gaditana 23,00% 20015 28 

- GA 544 26 yessotoxins Dinoflagellates 60,00% 2011 29 

CCD ANN 20 3 avermectin B1b Streptomyces avermitilis 50,78% 2014 30 

 CCD ANN-GA 36  

5 

Cholesterol Oxidase Streptomyces Sp. 132,14% 2015 31 

RSM-GA 49,60% 

CCD ANN-GA 20  

3 

 

Lipase Soil Microorganism (Not 

Specified) 

19,41% 2007 32 

RSM-GA 10,56% 

(Experiments and number of factors are represented for screen method and Doe method respectively in cases were both take part in the study). 
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1.1.1 Plackett and Burman design 

 The PBD method focuses on the main effect of each factor, assuming that, interactions of 

two or more factors are negligible, it is used for factor screening in the beginning of a culture 

media design process. PBD is a two-level factor design, a high level (+) and a low level (-), there 

are two types of variables: “real variables”, who’s values changes during experiments, and 

“dummy variables”, whose values remain the same. Classical experiments before the execution 

of the PBD helps in the selection of independent and dummy variables. Table 2 represents a 

Plackett and Burman design of experiments for 12 runs and 11 two-level factors, usually in culture 

media design, factors values represent concentration values of different compounds in the media. 

Table 2 - Plackett and Burman design of experiments 
 

FACTORS 

RUN X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

1 + + + + + + + + + + + 

2 − + − + + + − − − + − 

3 − − + − + + + − − − + 

4 + − − + − + + + − − − 

5 − + − − + − + + + − − 

6 − − + − − + − + + + − 

7 − − − + − − + − + + + 

8 + − − − + − − + − + + 

9 + + − − − + − − + − + 

10 + + + − − − + − − + − 

11 − + + + − − − + − − + 

12 + − + + + − − − + − − 

 

 The effect of each factor is given by Eq. 1: 

 

𝐸𝑓𝑓 = 2 ∗ ( ∑ 𝑌ℎ − ∑ 𝑌𝑙 )/𝑁) (1) 

 

Where Eff is the effect of a factor (objective function), Yh is the value given for the high 

level experiments, Yl is the value given for the low level experiments and N is the total number 

of runs.  

The experimental error is calculated by using the effects of the “dummy variables” (Eq. 

2). 

 

𝑉𝑒𝑓𝑓 = ∑
𝐸𝑑2

𝑛
(2) 

 

Where Veff is the variance of the effect Ed, Ed is the effect of a “dummy variable” and n 

is the number of “dummy variables”.  
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The standard error is the square root of the variance 𝑉𝑒𝑓𝑓 and the significant level of the 

effect of each variable is determined by a t-test distribution and the variables with a confidence 

level greater than 90% or 95% are chosen. 

Examples of culture media design utilizing PBD are the statistical evaluation of a culture 

media components for lipase production by Pseudomonos fluorescens made by Rajendran A. et. 

al. 18 and the screening of components for protease production by Bacillus safensis in a submerged 

fermentation 33. 

Its main advantages are the screening of high number of factors using a low number of 

experiments, capable of screening n factors in n + 1 experiments, saving both time and money at 

the cost of neglecting two factor interaction, remaining a simple and practical screening method 

to use in the initial stages of culture media design.  

 

1.1.2 Taguchi design 

Taguchi method is based in an orthogonal array of experiments. Taking focal point in 

noise factor analysis (uncontrollable factors that affect the result of experiments and generally 

cause loss of quality), through the use of a signal-to-noise ratio (S/N), Taguchi methodology can 

be used in the initial stages of culture media design to identify which factors are more influential. 

First we identify the control factors (controllable factors), their levels and the appropriate 

orthogonal array (based on the degrees of freedom), once we got the measured experiment values, 

we calculate the (S/N) ration for each experiment. There are three signal-to-noise ratios: smaller 

the better, larger the better and nominal the best. Table 3 describes these three ratios. 

Table 3 - Taguchi Signal -to -Noise Ratios 

 

Smaller the better (
𝑆

𝑁
) = −10 ∗ 𝑙𝑜𝑔10[ (

1

𝑛
) ∗ ∑ 𝑌𝑖2 ]

𝑛

𝑖=1

                                    (3) 

 

Larger the better (
𝑆

𝑁
) = −10 ∗ 𝑙𝑜𝑔10[ (

1

𝑛
) ∗ ∑

1

𝑌𝑖2
 ]                                     (4)

𝑛

𝑖=1

 

 

Nominal the best (
𝑆

𝑁
) = 10 ∗ 𝑙𝑜𝑔10 (

𝑀𝑒𝑎𝑛2

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
)                                             (5) 

 

Where Y is the experiment result, n is the total number of experiments and for the nominal 

the best S/N ratio, the Mean and Variance are for a chosen set value. 

Next, we calculate the S/N value for each level of the control factors. Eq. 6 shows the S/N 

values for the control factor {i} level {j}. 

 

𝑆

𝑁
𝑖𝑗 =  ∑

𝑆

𝑁
𝑘

𝑛

𝑘

(6) 
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With n being the total number of experiments with the factor {i} on level {j}. 

The S/N values for the different levels of a factor are compared between each other and 

those with the highest value are chosen, being the levels that minimize the effect of noise. With 

Taguchi method we can chose the set of control factors levels that minimizes the effect of noise 

for the objective function in study.  

An example of culture media design study using Taguchi method is the work done by 

Makowski K. et. al34. It comprises the optimization of a culture media, for the production of 

microorganisms active in odorous compound removal. Another example is the optimization of 

media component for the production of N-acetylchitooligosaccharide from chitin by Streptomyces 

chilikensis 14. 

Contrary to PBD method, the Taguchi is a more complex and complete approach, that 

can detect 2 factors interaction but is still far away of describing a whole microorganism 

metabolism. 

 

1.1.3 Response Surface Methodology 

Response surface methodology (RSM) it’s a complex mathematical method for the 

optimization of culture media design, which includes statistical experimental design and 

regression analysis2. It is used after the implementation of a PBD or CCD design of experiments. 

RSM optimization includes three main steps, experimental design (screening of factors), the path 

of steepest ascent/descent and the quadratic regression mode. 

After identifying the main effects, the next step is to explore the region of the operation 

conditions. This region is called the response surface (Fig. 2) and the goal is to conduct a series 

of experiments to find the path of the steepest ascend or descend given by the initial set of 

experiences 35. A first order model can be used (Eq. 7), containing only the main effects and its 

interactions. 

 

 

Figure 2 - Response surface for an exemplary model 
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𝑌 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎12𝑥1𝑥2 + 𝑒 (7) 

 

Where Y is the predicted response, e represents the effects of uncontrollable variables 

(noise) and ai the regression coefficients of a factor i.  

In RSM, when close to the optimum region, in which a first order model is no longer 

adequate, it is also applied a second order model. The second order regression model is presented 

in Eq. 8: 

 

𝑌 =  𝑎0 + ∑ 𝑎𝑖𝑋𝑖 + ∑ 𝑎𝑖𝑗𝑋𝑖𝑋𝑗
𝑁

𝑖<𝑗

𝑁

𝑖=0
+ ∑ 𝑎𝑖𝑖𝑋𝑖2

𝑁

𝑖=0
(8) 

Where aiXi are the linear terms, aijXiXj are the interaction terms and aiiX
2 are the square 

terms. 

The main advantage of using RSM is the ability to study the effects of the factors in the 

response throughout the entire surface region, capable of predicting an optimum response. 

Examples of culture media design using RSM are the culture media optimization for β-carotene 

and biomass production in Dunaliella salina in mixotrophic culture36, and the optimization of 

lipase production in Bacillus aryabhattai (22).  

However, the RSM also has its limitations, the complexity of microorganism metabolism, 

its nonlinear nature and the low availability of quality kinetic data37, makes the modeling of 

biological reaction systems a challenge. Also it is difficult to study interaction of five or more 

factors, this is a problem because culture media can have up to 100 different components, this 

coupled with the fact that the experiment numbers needed to optimize 100 factors would be 

unfeasible to do explains the reason why RSM optimization in culture media design is limited to 

3-5 factors (Table 1). 

 

1.1.4 Artificial neural network 

Artificial neural networks (ANN) are based on the structural aspect of the network of 

neurons in the brain. It’s a mathematical system that adapts to the information flowing through 

the network, during the learning “stage”. Given a set of training data the network learns to output 

certain data based on the input given, ANN are useful in culture media design because they are 

able to compute and learn every type of function, acting as a black box model for solving complex 

functions that describe microorganism metabolisms38. 

The structure of the neural network its comprised in layers of “neurons”, a “neuron” is a 

mathematical function that model the functioning of a biological neuron, that computes the so 

called activation value. The first layer of the structure it’s called the input layer were its given the 

initial information, this layer of neurons is then connected to other layers until it reaches the output 

layer.  

  



9 
 

There are many types of neural networks Fig. 3 shows a simplistic structure for a multi 

layered perceptron neural network39 which comprises  multi layers of connected neurons. 

  

Figure 3 - Multi layered perceptron neural network 

The activation value of a neuron is comprised by the sum of all connections values from 

the previous layer, a connection value is given by the activation value from the originating neuron 

and a weight value associated to that connection as presented by Eq. 9. 

 

𝐴 = ∑ 𝑤𝑖𝑎𝑖

𝑛

𝑖

(9) 

 

Where A is the activation value of a neuron, n is the total number of neurons in the 

previous layer, w is the specific weight associated to a connection {i} and a the is the activation 

value from the neuron were connection {i} originated in the previous layer. The activation value 

is also subjected to an activation function that is mainly there to convert an input signal to an 

output one that can be used by the network, the activation function adds a layer of non-linearity, 

without this the neural network would be nothing more than a one-degree polynomial function, 

being just able to solve linear functions. The most used activation function is the sigmoid function 

(Eq. 10) that comprises the activation value between 0 and 1. 

 

𝜎(𝐴) =  
1

1 + 𝑒−𝐴
(10) 
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The neural network then learns to give a desired output value by running a set of learning 

data, utilizing a technique called backpropagation, the weights of each connection are modified 

so the network outputs the respective desired value. The objective is then, like RSM, to predict 

new data. An example of culture media design using ANN is the enhance of production of 

Avermectin B1b by Streptomyces avermitilis30. Also, various studies were conducted comparing 

RSM to ANN, showing that ANN as an overall better performance that RSM, with higher 

optimization and precision in predicted values40 41 42. 

ANN is able to process large amounts of data, which is suited to conduct culture media 

design, although studies using ANN with more than 3- 5 factors (Table 1) are, to our knowledge, 

inexistent in the literature. This is due to the fact that an ANN needs an initial set of training data, 

usually CCD is used to create this training set, needing a higher number of experiments the more 

factors we have in study, which can be costly and time consuming. The access to the training data 

is the main limitation factor in culture media design using ANN. 

 

1.1.5 Genetic Algorithm 

Genetic algorithm (GA) mimics the process of natural selection and it´s based in the 

principle “survival of the fittest”43. Different factors (genes) are encoded in a string 

(chromosome), the best performing individual is unchanged and the rest can “mate” in 

performance order. 

The GA optimize for each generation the values of a fitness functions using mainly three 

types of rules to create the next generation:  

 Selection rule, selects the individuals known as parents that contribute to the 

population of the next generation.  

 Crossover rule combines two parents to form children for the next generation.  

 Mutation rule applies random changes to individual parents to form children.  
 

Fig. 4 represents the basic workflow of a genetic algorithm44. 

Figure 4 - GA basic flow scheme 
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Having the previous scheme (figure 4) as example, a generic algorithm can be 

implemented into culture media design (Figure 5).  

Fig. 5 shows how a genetic algorithm can be implemented into culture media design26  

 

 

Figure 5 Example of culture media optimization using GA  

 

In this example, the factors encoded were media components concentrations and the 

parents were selected for maximum cell density and growth rate (fitness function). For every 

generation a new set of media components was created and tested. 

The main advantage of the GA is that, there is no guessing between each experiment as 

the direction of experiments is set automatically by experimental data, like so, the error between 

predicted and experimented values doesn´t exist, unlike RSM that relies on a second order model 

to predict the response of complex cell metabolisms, with an increasing number of factors this 

can often result in poor estimation of optimal formulations45, this is not a limitation in the case of 

GA. Various studies were carried out for culture media design using GA26 29 28 7, and although 

these studies shows good optimization values and higher number of factor when compared with 

other methods the main downside is the high number of experiments needed (Table 1). 

Various studies were conducted comparing RSM coupled with GA (RSM-GA) and ANN 

coupled with GA (ANN-GA), were the genetic algorithm is used to optimize the mathematical 

models created by RSM and ANN. In these studies, ANN-GA performed better than RSM-GA32 
31(Table 1), making ANN-GA one of the best methods to use in culture media design. 
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1.2 Metabolic modelling methods 

All the culture media design methods described above are empirical in nature, i.e. they 

disregard knowledge on the biological mechanisms underlying cell growth and product synthesis. 

They rely instead on intensive experimentation to acquire cause-effect data for a very high number 

of media modifications. A step further could be the use of more rational design methods based on 

metabolic networks which are currently widespread in the literature 46 47 48. The reconstruction of 

these networks allows to understand the interconnectivity and functional relationships between 

all biochemical reactions of a biological system. It is currently relatively easy to synthesize a 

detailed metabolic network of most of the cell lines/strains used for industrial production. In some 

organisms, a genome scale reconstructed metabolic network can be found in specific databases 

like BIgG (Genetic and Genomic knowledgebase of large scale metabolic reconstructions) 49. 

A metabolic network is a system where metabolites (nodes) are linked to each other by 

enzyme catalysed reactions (edges) where directionality of connection means mass conversion 

(arrow) (see Fig. 6 for illustration). Reactions that transform metabolites within the system are 

considered internal reactions, while reactions involving the transport of metabolites in and out of 

the system are considered exchange reactions. Figure 6 illustrates this concept with 5 internal 

metabolites (A, B, C, D, P) and 4 external metabolites (Aext, Bext, Dext, Pext)50. 

 In this example reaction r1, r4, r8, and r9 are considered exchange/transport reactions while 

the other are the internal reaction. The analysis of a metabolic networks is based on the principle 

of mass conservation of internal metabolites within a system9. Under the hypothesis of a well-

mixed system, the general material balance equation applies (Eq. 11). 

𝑑

𝑑𝑡
𝐶 = 𝑆 × 𝑟 − µ × 𝐶 (11) 

 Where C is the metabolite concentration vector, r is the reaction rate vector, µ is 

the specific growth rate and S is the stoichiometry matrix. The stoichiometry matrix S contains 

the stoichiometry of the network metabolites in each reaction, where the rows are the network 

metabolites and the columns are the network reactions.  

  

 Figure 6 - Example of a simple metabolic Network 
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Eq.12 illustrates the stoichiometry matrix for the metabolic network of Fig. 6. 

 

 

 

(12)
 

 

 

 

At steady state, there is no accumulation of internal metabolites in the system and Eq. 11 

can be simplified into Eq. 13. 

 

𝑆 × 𝑟 = 0 (13) 

 

An additional restriction is needed (Eq. 14), due to thermodynamic constraints stating that 

irreversible reactions {j} have to proceed in the appropriate direction and require to have positive 

flux values 

 

𝑟𝑗 ≥ 0 (14) 

 

 There are 3 main techniques to solve Eq. 13 with de thermodynamic restriction (Eq. 14): 

metabolic flux analysis (MFA), flux balance analysis (FBA) and elementary mode analysis 

(EMA). These are briefly reviewed in the next sub-sections. 

 

1.2.1 Metabolic flux analysis (MFA) 

 In MFA the flux vector is divided into two vectors, a vector containing the measured 

metabolic fluxes rm, and a vector contain all the unmeasured fluxes ru, in this technique we solve 

Eq. 13 as: 

 

𝑆𝑢 × 𝑟𝑢 = 𝑆𝑚 × 𝑟𝑚 (15) 

 

With the Su and Sm being the stoichiometric matrix of the unmeasurable and measurable 

fluxes respectively. We want to measure enough fluxes so that, the matrix Su becomes invertible51 

and we can solve Eq. 15 like Eq.16: 

 

𝑟𝑢 =  −𝑆𝑢
−1 × 𝑆𝑚 × 𝑟𝑚 (16) 
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Then we can obtain the unmeasurable flux vector ru by solving Eq 14 15 and 16 in a 

system. MFA relies on measuring enough metabolic fluxes until we can calculate the unmeasured 

ones. Note that this technique only obtains a single metabolic flux vector for a specific growth 

condition, changing this growth condition will result in a different rm vector leading to a different 

metabolic flux vector, an example of this is the study by Wilkens et al.52, lactate production was 

compared in a CHO cell line grown on two different substrates, namely glucose and lactose.  

MFA has been applied in the context of culture media design as a “screening of factors” 

approach. MFA is typically applied for in-depth analysis of the effect of media factors on carbon 

flux distribution53 54.It is however not a technique that can be applied for quantitative design of 

media composition. 

 

1.2.2 Flux balance analysis (FBA) 

 FBA is a technique that can be used for undetermined systems, i.e. when measured fluxes 

are not enough to invert matrix Su. FBA implies an optimization according to some objective 

function alongside several flux constraints, such as, substrate consumption, product secretion, 

thermodynamic constrains, etc. Like MFA, FBA calculates one flux vector for a given growth 

condition. Fig. 7 illustrate a typical FBA problem for the small network shown of Fig. 650: 

 

 

In this example our objective function is to maximize the production of the metabolite 

P(r4) while applying substrate consumption (r1), product excretion (r8r) and thermodynamic (r2-

5,7,9) constrains. 

The main challenge of this approach is to define an objective function that best describes 

the metabolism of a given growth condition55 56.FBA was successfully implemented to develop a 

culture media supporting high cell density growth of Bacillus coagulans57. 

  

Figure 6 - FBA example, restrictions and objective function  
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1.2.3 Elementary mode analysis 

Elementary modes of a cell are defined as the unique set of reactions to support steady 

state operation of a metabolic network. Fig. 8 50 shows all elementary modes present in the simple 

network of Fig. 6. 

 

The universe of solutions of Eq. 13 together with the inequality constraint (Eq. 14) takes 

the form of a convex polyhedral cone58, containing an infinite number of solutions, i.e. the 

admissible flux space . Fig. 9 represents the admissible flux space for the network in Fig.6. 

 

Elementary modes must also obey to the non-decomposability constraint. This non-

decomposability constrain means that one EM vector cannot be described by other two or more 

vectors, meaning that each elementary mode its unique in the network. 

  

Figure 8.- Admissible Flux Space of the Fig. 6 network 
elementary modes 

Figure 7 - Elementary modes of the Fig. 6 network  
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After EMs calculation we obtain the EMs matrix that has all the EMs of the metabolic 

network Eq.17. 

 

 

 

(17) 

 

 

 

 

 

 The rows of the EM matrix represent metabolic reactions while the columns represent the 

elementary modes of the network. The values in the matrix represent the “weights” (i.e. 

participation strength) of a given reaction in a given EM. Note that the EM1 vector (1,1,0,0,0,-

1,0,1,0)T may be translated into a flux vector (2,2,0,0,-2,0,2,0)T by multiplying a positive scalar 

factor, for example 2. Negative reaction “weights” apply only for reversible reactions, meaning 

that the particular reaction takes place in the opposite direction of the positive flux direction in 

that particular EM. Flux calculations are thus obtained by applying a linear combination of EMs 

according to Eq.18 

𝑟 = ∑𝑖𝐸𝑀𝑖

𝑖

(18) 

With: 

 ≥ 0 (19) 

There is a parallelism between Eqs. 18-19 and steady state Eqs 13-14. There is however 

a fundamental difference when doing flux calculations by applying EM analysis. EMs embody 

knowledge on regulation of metabolic processes. This is so because one EM is interpreted as a 

metabolic state, i.e. it is not only the metabolic fluxes but also the genes, mRNAs, proteins, that 

support that particular steady state flux distribution. For example, Tunahan Çakır et al.(2007)59 

correlated transcriptomic data to active EMs in Saccharomyces cerevisiae. 
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1.4 M.Sc. thesis objectives 

The general objective of this thesis is the development of a rational design method for 

culture media composition customized to the cell line and/or product. This method should act as 

a proof of concept for the future development of a toolbox. Instead of an empirical design 

approach where culture media composition is optimized resorting to intensive lab 

experimentation, the goal here is to develop an In silico, experiment-free culture media design 

method. Given that the knowledge of the metabolic network is easily available in public domain, 

this novel methodology should be based on prior knowledge of the metabolic network of the target 

cells. Moreover, since the elementary modes embody additional information on regulation, the 

elementary modes framework will be privileged over the MFA or FBA techniques. As such, the 

specific thesis objectives are the following:  

Objective 1: Development of an In silico culture media design method based on prior 

knowledge of the metabolic network that drastically reduces the experimental activity for culture 

media optimization. In limit it should be experiment-free. 

Objective 2: The In silico culture media design method should allow to compute culture 

media formulations customized to the cell line and/or product expressed by the cell line. 

Objective 3. The method to be developed should be based on elementary modes 

framework. The advantage of the EM framework is the inclusion of high level regulatory 

information that is easily accessible. 

Objective 4: Implement the EM culture media design method in MATLAB. The input 

information is the metabolic network of the target cell line including detailed information of its 

biochemical composition and the synthesis of the target product. The output of the method is 

theoretical culture media formulations for the particular cell line and product.  

Objective 5: Apply the method/tool to design In silico culture media formulas for 

Chinese Hamster Ovary (CHO) cells as illustrative case study and compare computed culture 

media formulations with literature data. 
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2. SBEMedia: a toolbox for In silico 

culture media design 

In this thesis the method for the SBEMedia toolbox was developed for In silico 

experiment-free culture media design. The methodology applied in this thesis is based on the 

concept of elementary modes and the respective footprint. Fig. 10 illustrates a cell growth 

elementary flux mode for Chinese Hamster Ovary Cells (CHO). The nodes in green represent the 

exchange of materials with the extracellular media for the cell to be able to grow according to the 

particular elementary mode. 

 

The SBEMedia toolbox implements the following sequence of steps to compute In silico 

culture media formulations based on prior knowledge of the metabolic network: 

Step 1. Input metabolic network: The metabolic network comprising a list of representative 

metabolic reactions including i) the synthesis of the target product and ii) the exchange reactions 

of media components for the synthesis of the target product, are inputted to the system;  

Step 2. Computation of elementary modes: The full set of elementary modes of inputted 

metabolic network are calculated using elementary mode analysis algorithms; the resulting full 

set of elementary modes displays the full range of possible metabolic states for the cells to realize 

their biological function. 

Step 3. Computation of the footprintome: The metabolic footprint of each elementary mode is 

computed and merged together in a full matrix comprising all possible modes to interact with the 

extracellular environment. The full set of footprints is denominated “footprintome”. 

 

 

Figure 9 - Example of a Chinese Hamster Ovary Cell elementary mode 
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Step 4. Automatic footprintome reduction: The footprintome is reduced based on three steps: 

eliminating EMs that don’t produce the target product (this will later be explain), eliminating EMs 

that are thermodynamically unfeasible and clustering EMs that have the same phenotype (same 

list of external metabolites being produced and consumed). 

Step 5. Case-dependent footprintome reduction based on optimal metabolic criteria. In this 

step, a subset of elementary modes and respective footprints are selected such as to enforce a 

desired metabolic state. This step is case dependent and implies the definition of optimal 

metabolic criteria for the target cell 

Step 6. In silico culture media formulations: Computation In silico of culture media 

composition based on the final reduced footprintome.  

All methods were implemented in MATLAB version R2019a60. What follows are the 

details of each step provided. 

 

2.1. Input metabolic network 

The metabolic network is inputted as a MATLAB data structure with a list of reactions. 

To illustrate this, we specify below the metabolic reactions of the simple network of Fig. 6 

Network = { 

Internal reaction: 

‘A -->B’ 

‘A -->C’ 

‘B -->P’ 

‘C -->P+D’ 

‘C<-->B’ 

External/Transport reactions 

‘-->A’ 

‘<-->B’ 

‘P-->’ 

‘D-->’ 

} 

The exchange reactions, which must be placed in the end of the reactions list, implies a 

decision on the identity of the culture media components whose concentrations need to be 

optimised. 

A more realistic metabolic network, considering the production of biomass and product 

is described below in the CHO case study.  
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2.2 Computation of Elementary modes 

The metabolic network is parsed and processed into a MATLAB data structure using the 

efmtool package version 4.7.1. This MATLAB package is freely available for academia and may 

be accessed at https://csb.ethz.ch/tools/software/efmtool.html. The efmtool package builds: i) a 

list of metabolites, separated as intracellular and extracellular, ii) a list of metabolic reactions, 

separated as intracellular and extracellular, iii) creates the stoichiometric matrix S (Eq. 12) and 

internal and external stoichiometric submatrices. It also computes the elementary modes and 

delivers the result in the form of elementary modes matrix EM (Eq. 17). The method used to 

calculate the EMs is described in detail in Terzer et al. 61. The determination of elementary modes 

by this method suffers from the computational explosion problem62. It can be thus applied only 

to small and medium scale networks, it cannot be applied to genome scale networks. 

 

2.3 Computation of the footprintome 

Once the network elementary modes are computed, the next step is the computation of 

the footprintome. The footprint of an elementary mode may be seen as the extracellular phase 

modification pattern characteristic of the particular elementary mode. This footprint is computed 

from the subset of exchange reactions, in and out, and their respective weights in the EM matrix. 

Thus the first procedure is to reorganize the EM matrix by considering the exchange reactions 

only, and eliminating all others, resulting in Eq. 20.  

 

 

𝐸𝑀𝑒𝑥𝑐ℎ  =                                            (20)  

 

 

The stoichiometric matrix S is also reorganized by considering only the stoichiometry of 

the exchange reaction (Eq.21). 

 

 

𝑆𝑒𝑥𝑐ℎ =                                               (21) 

 

 

The footprintome of the cell results from the multiplication of these two matrices (Eq.22): 

 

𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑜𝑚𝑒 =  − 𝑆𝑒𝑥𝑐ℎ × 𝐸𝑀𝑒𝑥𝑐ℎ (22) 

https://csb.ethz.ch/tools/software/efmtool.html
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This operation eliminates all the intracellular metabolites, resulting in macroscopic 

reactions defining the stoichiometric conversion of extracellular substrates into extracellular 

products. Note that the minus sign is required because the metabolic reactions are defined in the 

perspective of the interior of the cell, i.e. the positive direction of an exchange flux is from the 

extracellular to the intracellular phase. With the minus signal the perspective is flipped, such that 

all culture media substrates take a negative stoichiometric coefficient, whereas all products of the 

network take a positive coefficient. The final result is thus a matrix with rows representing culture 

media components, columns representing elementary mode, and the matrix values are 

stoichiometric conversion factors. 

 

2.4 Automatic footprintome reduction 

The footprintome is typically a large matrix that comprises all possible interaction modes 

with the culture media. It may be reduced automatically by applying the following criteria: 

- Elimination based on selected product. Footprints that do not produce the target product 

are not useful for design purpose thus eliminated. The target products are typically 

biomass and/or recombinant product. As example, if the objective is to design a cell 

growth culture media, then only elementary modes with biomass production are selected 

for further analysis while all other eliminated. After this reduction step, the footprintome 

is normalized column wise by dividing the footprint vector by the stoichiometric 

coefficient of the target product. In this way the footprint of each EM is interpreted as the 

quantities of substrates consumed and sub-products produced per unit of target product 

synthesized.  

- Thermodynamic reduction. In this step a thermodynamic elimination of elementary 

modes based on the Gibbs free energy of reaction of the metabolites in each EM is 

performed. All elementary modes with positive Gibbs free energy of reaction are 

considered unfeasible thus eliminated. More details on the calculation of ΔG⁰r are 

provided next. 

- Clustering based on footprint similarity (Pattern Clustering). Many elementary modes 

footprints have the same phenotype (same list of external metabolites being produced and 

consumed). These are clustered together.  

 

2.4.1 Calculation of elementary mode Gibbs free energy of 

reaction (ΔG⁰r) 

The change in the Gibbs free energy of formation of a substance is the difference between 

the free energy of a substance and the free energies of its elements in their most 

thermodynamically stable states at standard-state conditions. The Gibbs free energy of reaction, 

ΔG⁰r, is a measure of reaction spontaneity (ΔG⁰r < 0) for constant pressure and temperature 

processes which describes the majority of the biological systems63. 
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Reaction 1 – Example of a reaction 

𝑎𝐴 + 𝑏𝐵 → 𝑐𝐶 + 𝑑𝐷 

For reaction 1, the standard Gibbs free energy of reaction is given by Eq. 23: 

 

 ∆𝐺⁰𝑟 = 𝑐 ∗ ∆𝐺⁰𝑓(𝐶) +  𝑑 ∗ ∆𝐺⁰𝑓(𝐷) − (𝑎 ∗ ∆𝐺⁰𝑓(𝐴) +  𝑏 ∗ ∆𝐺⁰𝑓(𝐵))(23) 

 

Where ∆G⁰f is the metabolite standard Gibbs free energy of formation. ΔG depends only 

on the difference in free energy of products and reactants (or final state and initial state). ΔG is 

independent of the path of the transformation64. With this in mind, the EMs are considered to be 

macroscopic reactions that transform a number of extracellular substrates into a number of 

extracellular products. The ∆G⁰r was calculated for each EMs and whenever ∆G⁰r >0 (non-

spontaneous reactions) the respective EM is eliminated from the list. The metabolite standard 

energy of formation data were taken from the eQuilibrator65 database, that uses the group 

contribution metodologies66 to estimate the Gibbs free energy of formation of metabolites. 

For IgG the ∆G⁰f value was not found in the literature alongside with that of biomass of 

CHO cells. For these complex products the ∆G⁰f was computed from the respective reaction of 

formation in the network of IgG (reaction 78) and biomass (reaction 69) respectively, as shown 

in Eq. 24. 

𝛥𝐺⁰𝑓 = ∑ 𝑎𝑖 × 𝛥𝐺⁰𝑓(𝑀𝑖)
𝑛

𝑖
(24) 

 

With n being the number of metabolite reactants in the reaction, ai are stoichiometric 

coefficients and ΔG⁰f(Mi) the standard Gibbs free energy of formation of the metabolite i. 

 

2.4.2 Clustering based on phenotype similarity. 

 In this step, after grouping the footprints together based on their phenotype the centroid 

position of each cluster is computed based on the arithmetic average of the metabolite values (Eq. 

25). 

 

𝐹 =  
∑ 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑖

𝑛
𝑖

𝑛
(25) 

 
With F being the centroid footprint and n the number of footprints under consideration. 

Note that Eq.21 will also be applied to do the arithmetic average of all EM in a 

footprintome in chapter 3.4, “Comparison with experimental data”, alongside a second method, 

the weighted average of the footprintome by the ∆G⁰r of each EM, shown in Eq. 26. 

 

𝐹 =  
∑ ∆𝐺0𝑟𝑛

𝑖 𝑖 × 𝐸𝑀𝑖

∑ ∆𝐺0𝑟𝑖 𝑛
𝑖

(26) 
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2.5 Case-dependent footprintome reduction based on 

optimal metabolic criteria 

A much smaller set of elementary modes and respective footprints are selected based on 

optimal metabolic criteria. The optimal metabolic criteria are case dependent. A typical objective 

might be the elimination of undesired metabolic byproducts secreted to the culture media. This is 

achieved by eliminating all elementary modes that produce the particular byproduct. In the CHO 

case study, hypothetical culture media that eliminate the production of lactate and ammonium is 

targeted. Another important criteria, especially for animal cell lines, is the media osmolarity. 

Culture media formulations that lead to a large increase in osmolarity should be eliminated (more 

to this will be discussed in the case study).  

 

2.6 In silico culture media formulations 

The final step is the computation of culture media formulas from the remaining EMs. At 

this stage only a small set of elementary modes survives the elimination/selection process.  

It is possible to choose an optimum EM from the remaining set of EMs. For each criteria 

implemented, elementary modes were given a score value between 0 and 1, dependent on the 

criteria value of the respective elementary mode. The lower the score value, the better the criteria 

value of an elementary mode is, compared with other EMs. If the objective is to minimize the 

criteria value, then Eq. 27 is applied: 

𝑆𝑐𝑜𝑟𝑒𝑖 =
𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑖

max(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎)
(27) 

 

With Score and Criteria, being vectors containing the score and the criteria values of the 

EMs for the criteria{i} and max(Criteria) being the highest values in the Criteria vector. 

In cases where we want to maximize a criteria value, Eq.28 is applied: 

𝑆𝑐𝑜𝑟𝑒𝑖 = 1 − (
𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑖

max(𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎)
) (28) 
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The Total Score vector, comprises the final score for each EM, it is the sum of the score 

vectors of all criteria implemented (Eq. 29). 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 = ∑ 𝑆𝑐𝑜𝑟𝑒𝑖

𝑛

𝑖

(29) 

 

With n being the total number of criteria implemented.  

The EM with the lowest total score value is chosen as the optimum one. Note that the 

final culture media formula is a vector whose elements represent the stoichiometric quantities of 

culture media components per unit of target product produced. To transform it in concentrations 

we need to multiply the culture media vector by the concentration of the target product, 

(𝑐𝑝𝑟𝑜𝑑𝑢𝑐𝑡), as shown in Eq. 30. 

𝐶 = 𝑂𝑝  𝑐𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (30) 

 

With C being the concentration vector of metabolites and Op the optimal EM chosen. 
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3. Results and discussion 

3.1 Chinese Hamster Ovary Cells (CHO) metabolic 

network 

To illustrate the application of this method, a Chinese Hamster Ovary (CHO) cell line 

expressing an antibody (IgG) was selected as a case study. CHO cells are currently the workhorse 

in the biopharmaceutical industry to produce monoclonal antibodies. It is probably the most 

important cell line in the biopharmaceutical industry today67. 

The metabolic network used in this thesis was adapted from the work published by Duarte 

et al.68. In this study the authors adapted and validated the CHO metabolic network from previous 

published works (Quek et al.69, Sengupta et al.70, Zamorano et al.71) and complemented the model 

using 1H-NMR (Proton nuclear magnetic resonance) exometabolomic analysis to quantify 

supernatant metabolites along culture time, under butyrate-treated conditions. 

In this thesis the network was simplified by eliminating ATP, NADH, NADPH and 

FADH2 and respective oxidative phosphorylation reactions. Thus the simplified metabolic 

network closes the carbon and nitrogen balances, but does not close the oxygen and hydrogen 

balances. The simplified CHO metabolic network has 114 reactions (79 intracellular and 35 

exchange reactions) and 81 metabolites (46 intracellular and 35 extracellular). The full list of 

reactions is provided in Appendix A.1. The target network “products” are biomass (X) and 

antibody (IgG). The synthesis reaction of CHO biomass sets the amounts of compounds in nmol 

required to synthesize 1 unit of CHO biomass. One unit of CHO biomass corresponds to 106 cells 

or a CDW of 271 µg.  

Reaction 2 - Biomass synthesis reaction 

160.1015 Ala + 235.2056 Glu + 70.3787 Gln + 174.6799 Gly + 114.9787 Ser + 147.4132 

Lys + 157.4070 Leu + 82.6648 Ile + 91.8543 Arg + 169.492 Asp + 95.7754 Thr + 118.3569 Val 

+ 40.0354 Met + 67.4027 Phe + 47.4956 Tyr + 36.2551 His + 55.559 Pro + 70.3787 Asn + 8.943 

AMPRN + 4.878 Cholesterol + 14.9321 CMPRN + 4.0108 dAMP + 2.6829 dCMP + 2.6829 

dGMP + 4.0108 dTMP + 0.813 DPG + 75.609 Glycogen + 16.9104 GMPRN + 18.699 PC + 

7.046 PE + 0.271 PG + 2.71 PI + 0.813 PS + 2.168 SM + 8.943 UMPRN + 9.2297 Trp --> 1 X  

The IgG synthesis reaction reflects the amount of compounds in nmol needed to 

synthesize 1 mg of IgG.  

Reaction 3 – Antibody IgG synthesis reaction 

428.7 Ala + 362.75 Glu + 351.76 Gln + 516.64 Gly + 934.36 Ser + 472.67 Lys + 516.64 

Leu + 175.88 Ile + 307.79 Arg + 296.8 Asp + 626.57 Thr + 714.51 Val + 65.954 Met + 285.8 Phe 

+ 285.8 Tyr + 164.89 His + 505.65 Pro + 263.82 Asn + 142.9 Trp + 10.992 GDPFuc + 54.962 

UDPNAG + 32.977 GDPMann + 21.985 UDPGal + 21.985 CMPSialic --> 1 P 
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The culture media components that will be subject to optimization in the following section 

are those present in the exchange reactions with positive influx to the intracellular phase. These 

are: 

 Glucose (Glc), Glutamate(Glu), Serine(Ser), Lysine(Lys), Leucine(Leu), Isoleucine(Ile), 

Arginine(Arg), Aspartate(Asp), Threonine(Thr), Valine(Val), Methionine(Met), 

Phenylalanine(Phe), Tyrosine(Tyr), Histidine(His), Proline(Pro), Choline, Asparagine(Asn), 

Tryptophan(Trp) and Pyruvate(Pyr). 

In the following sections, custom culture media will be developed for the specific cell 

line growth specified by reaction (2) and for the specific IgG specified by reaction (3) by 

determining the optimal quantities of the exchange compounds listed above. Obviously, these 

exchange compounds do not cover the complete set of media components in a typical CHO culture 

media, which has typically more than 100 components. In future studies, this network could be 

enlarged to include additional media exchange components. 

 

3.2 Computation of CHO Elementary Modes 

The complete set of elementary modes was computed for the CHO metabolic network 

using the efmtool72. The elementary modes count of medium and large metabolic networks can 

be very high, in the order of millions73. To facilitate the computation of elementary modes, it was 

considered two different scenarios: 

i) The metabolic network includes the biomass synthesis reaction only (without the 

IgG synthesis) resulting in the biomass elementary modes (biomass-EMs). 

ii) The metabolic network includes the IgG synthesis reaction only (without the 

biomass synthesis reaction) resulting in the product elementary modes (product-

EMs). 

 

 By removing the biomass synthesis and IgG synthesis reactions of the network, further 

reactions needed to be removed in order to not create metabolic dead ends for specific intracellular 

metabolites. As a result, for the biomass producing network the IgG glycosylation reactions were 

also removed, resulting in a 106 reaction network (Appendix A, Table A.2), for the IgG producing 

network the lipid synthesis reactions were removed, as well as some reactions in the nucleotide 

synthesis and glycogen synthesis metabolisms, this also led to the removal of the Choline and 

Glyc3PC exchange reactions. The final number of reactions in the IgG producing network was 

92 (Appendix A, Table A.3) 

The final count of Elementary Modes obtained is shown in Table 4 

Table 4 Elementary mode count of the biomass and product producing networks. 

 Without 

ATP/NADH/NADPH/FADH2 

With 

ATP/NADH/NADPH/FADH2 

Biomass-EMs 218 538 1 987 460 

Product-EMs 313 523 1 768 927 
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To note that the inclusion of oxidative phosphorylation reactions increases very 

expressively the EMs count. The overall computation time for the biomass producing network 

increases from 30,420s to 267,63s, and in the IgG producing network from 27,72s to 206,80s, 

roughly a 10-fold increase in both networks. Although the computation time of EM for the more 

complex metabolic network wouldn´t take a deterrent amount of time for the making of this work 

the computation of the respective footprintome visualizations would. For this reason, we have 

adopted in the proceeding studies the simplified version of the metabolic network. 

Note also, that the number of final EMs is not dependent on the stoichiometry of the 

biomass or IgG synthesis reactions. 

As an illustrative example, Appendix B, Table B.1, represents one EM from the biomass 

producing network that uses the minimum number of metabolic reactions required to synthesize 

1 unit of biomass. This EM is potentially very efficient for cell growth using the minimum 

regulatory resources to synthesize one unit of biomass. Even so, only 42 from the 106 reactions 

in the network do not participate in this EM. By multiplying the elementary modes coefficients 

by the exchange reactions stoichiometry (reactions 73 to 106), one gets the EM footprint shown 

in Table 5. The metabolites in green are end-products secreted to the culture media, whereas the 

red metabolites are substrates needed to synthesize biomass. The footprint may be interpreted as 

the resources needed to synthesize one unit of biomass and respective by-products if the cells 

grows according to the EM shown in Appendix B. 
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Table 5 – Footprint of the EM represented in Appendix B 

 

  
Metabolite Footprint 

(nmol/106 cell) 

X 1,00 

Glc -269,67 

His -37,17 

Isobut 0,00 

Ile -84,75 

Isoval 0,00 

Leu -161,33 

Lys -151,08 

Met -41,00 

Phe -254,08 

Thr -323,83 

Trp -9,50 

Val -121,33 

CO2 972,83 

NH4 0,00 

Acetate 0,00 

Ala 0,00 

Arg -311,33 

Asn -72,17 

Asp -342,50 

Gln 0,00 

Cit 0,00 

Choline 21,42 

Formate 0,00 

Glu -232,33 

Glyc 0,83 

Gly 0,00 

Lac 0,00 

Pro -56,92 

Pyr 0,00 

Ser -128,17 

Tyr 0,00 

Mal 0,00 

Glyc3PC 0,00 
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3.3 Computation and reduction of CHO footprintome 

The footprintome may be defined as, the complete set of footprints a cell may resort to, 

realize its physiological objectives. The footprintome is computed by repeating the process 

described in the previous chapter for the complete set of EMs. The footprint of each EM (a column 

vector) are stacked together in a large matrix in the final form of the footprintome matrix. Each 

footprint is a potential culture media “candidate”, thus it is imperative to reduce as much as 

possible the size of the footprintome by eliminating nonessential footprints. The full set of EMs 

undergoes three steps of automatic reduction as described below for the biomass-EMs (A similar 

reduction procedure was applied to the IgG-EMs with final results presented in Appendix F Fig. 

F.1-F.2) as follows: 

 The biomass-EMs (count = 218538) contain several EMs without biomass 

production. These were eliminated reducing the total EMs count to 211580. All 

columns of the footprintome are afterwards normalized by dividing by the 

biomass coefficient respectively. As a result, the biomass rows are always one, 

whereas the other rows read as nutrient consumption/production per unit of 

biomass production.  

 The next step is the thermodynamic reduction. The ΔG⁰r was computed for each 

EM and those with nonnegative ΔG⁰r were eliminated. This step further reduced 

the EMs count to 203137. The result of this reduction is shown in Fig. 11. The 

ΔG⁰f values of each metabolite can be found in Appendix C. 

 The next step is footprintome reduction by clustering based on phenotype 

similarity. Footprints that have the exact same list of substrates and end-products 

are clustered together. These clusters are averaged into a representative footprint 

by the arithmetic average (Eq. 25). This procedure ensures that the reduced set of 

footprints centroids (for simplicity sake during this work we will still be calling 

the footprints centroids as only footprints, although they are no longer 

representative of a singular EM) are linearly independent and characteristic of a 

unique cellular phenotype. This reduces the footprints count to 3488. This step 

was the one that achieved a higher degree of reduction. The result of this 

reduction is shown in Fig. 12 

 
These results are summarized in Table 6. 

 

Table 6. Automatic footprintome reduction results 

 BIOMASS-EMS IGG-EMS 
BEFORE REDUCTION 218538 313523 

ELIMINATION BASED ON SELECTED PRODUCT 211580 307404 

THERMODYNAMIC REDUCTION 203137 307402 

CLUSTERING 3488 4704 

 

After the automatic reduction steps, 3488 potential cell growth footprints remain, which 

still is very high to test in the lab. Nevertheless, in a scenario of abundant resources it would be 

feasible to test them in a high throughput cell culture equipment such as the Sartorius AMBR® 

system. 
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Other studies in the literature have attempted EM reduction using different criteria. Hyun-

Seob Song et. al. 74 proposed a reduction method based on yield analysis, in which the authors 

also compute EMs ratios of specific metabolites and use it to characterize different EMs 

phenotypes. The “yield analysis” method reduces EMs count to a small set representative of 99% 

of all phenotypic states. This reduction is however based on experimental data. Folch-Fortuny et 

al 75 proposed a method for discrimination of active EMs based on fluxomic datasets and tested it 

in Escherichia coli and Pichia pastoris cultures. It reduces the full set of EMs into a small number 

of representative EMs based on independent measurements of metabolic fluxes. This method 

explores the analogy of EM and principal component analysis of a measured fluxomics dataset. 

Ferreira et al. (2011)76 proposed a method to discriminate active EMs also based on experimental 

measurements of metabolic fluxes. A reduced set of EMs is discriminated by maximizing the 

correlation of the EM weighting factor and measured media composition. 

All the above methods are good options for EMs reduction when sufficient measured data 

of metabolic fluxes and/or metabolic footprints are available. Therefore, they could not be applied 

in this thesis as the objective in this thesis is to design In silico (100% experiment-free) the 

composition of culture media. 



31 
 

 

n
m

o
l/

1
0

6  c
el

ls
 

Figure 10 - Reduced footprintome for biomass production (normalized to unit) after 2 steps of reduction: Step 1- biomass production, Step 2-thermodynamic 
reduction. The columns represent the reduced set of EMs (203137). The colour green means that the compound is being produced by the EM. The colour red means 

it’s being consumed by the EM. The black means it is neither consumed nor produced by the EM. 
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Figure 11 - Reduced footprintome for biomass production (normalized to unit) after 3 steps of reduction: Step 1- biomass production, Step 2-Thermodynamic reduction, Step 3- 
Pattern clustering with arithmetic averaging. The rows represent extracellular media components. The columns represent average EM clusters (3488). The green gradient represents 

compound production associated with the production of 1 biomass unit. The red gradient represents compound consumption to generate 1 biomass unit. The black colour means 
that the compound is neither consumed nor produced by the EM cluster. 



33 
 

3.4. Comparison with experimental data 

The objective here is to compare the theoretical footprintome (computed from the 

metabolic network) with measured data of uptake/production rates of media compounds in CHO 

cultures (measured footprint). More specifically, the data published by Duarte et. al. 77 , who 

studied the metabolic response of CHO cells metabolism in experiments with varying 

concentration of asparagine and serine in the culture media, this data was adopted to validate the 

theoretical biomass growth footprintome after thermodynamic selection (Fig. 11). In order to 

compare the theoretical footprintome to a measured time point, it is required to average the full 

set of footprints into a representative footprint. Two different averaging methods were applied: 

i) Arithmetic average of all EM footprints (Eq. 25) in the footprintome of Fig. 11. 

The idea behind this method is that the number distribution of nutrient 

requirements in the footprintome is a measure of probability, thus the culture 

media formulation of a particular metabolic model corresponds to the mean 

concentration based on number. 

ii) Weighted average by the ∆G⁰r of each EM footprint (Eq. 26) in the footprintome 

of Fig. 11. The idea behind this method is that thermodynamically more 

favourable EMs have a higher contribution to the observed footprint.  

 

Fig. 13A shows the overall results for the arithmetic average and the weighted average, 

compared with the measured foortprint data (Fig. 13B), that was obtained from the raw data 

published by Duarte et. al. (2014) (Appendix D), normalized by the cell growth rate.  
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A B 

Figure 12 - (A)  Comparison between theoretical footprints  computed by the arithmetic average method (blue bar) and the weighted average method (orange bar) with experimental footprint 
(yellow bar). (B) Experimental footprint taken from Duarte et. al. (2014)58. The error bars correspond to the standard deviation of footprints in relation to the average  
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All in all these results show a remarkable concordance between the theoretical footprint 

and the measured footprint. Moreover, the measured footprint is within the variance interval of 

the theoretical footprints computed for most nutrients (exceptions discussed below) as shown by 

the error bars in Figs. 16A. It should be highlighted that the theoretical footprint was computed 

resorting to the metabolic network information only. It is completely In silico and experiment 

free.  

The broad error bars displayed in Figs. (13A) reflect the variablity in theoretical 

footprints. Even if it is not possible to know a priori without any experimental evidence which 

are the “active EMs” used by the cells to grow, it is possible to determine the average theoretical 

footprint and theoretical variability around the mean.  

The only large theory-measurement mismatch observed in Fig. 13A relates to the glucose 

and lactate nutrients. The measured footprint is characterized by a very high glucose consumption 

yield (-2866,67 nmol/106 cells ) which is linked with a very high lactate production yield (2061,90 

nmol/106 cells). This type of glucose overflow metabolism is typical of high glucose 

concentration in the media, which is indeed the case in the experiments described by Duarte et 

al.77, where the cell culture was initialiy fed with 50mM of glucose. The high lactate production 

can be prevented with a low and steady feed of glucose as shown by Fan Y et al.78 Very likely, if 

these experiments were repeated with low glucose concentrations, the glucose and lactate data 

would likely be concordant with the theoretical fooprint. 

To compare the arithmetic and weighted averaging methods, the Mean-Square-Error 

(MSE) between theoretical and experimental footprints were computed. The glucose and lactate 

data were considered outliers in the computation of the MSE. The results are shown in Table 7. 

 

Table 7 MSE between measured and theoretical footprint 

METHOD MSE 

ARITHMETIC FOOTPRINT 9.0320e+03 

WEIGHTED FOOTPRINT 8.7426e+03 

 

Although the weighted average method presented a lower MSE then the arithmetic 

method, the difference is not very significative. Comparing the arithmetic footprint with the 

weighted fooprint we can see that the differences between the footprints obtained by both methods 

are not significative. This could suggest a low variance in the ∆G⁰r values of EMs. Fig 14 displays 

the computed ∆G⁰r distribution, which is clearly a non-uniform distribution. This distribution has 

a mean value of -4.0756e-04 kJ/nmol and a variance coefficient of 73,29% which is very 

significant. It is not possible with these results to make a final conclusion on which method is 

better to compute the footprint given the small differences obtained. It is also important to mention 

that in simplifying the metabolic network we also influenced the ∆G⁰r distribution of the EM. 

More studies are required in the future before a final conclusion can be taken. 
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Figure 13 - Histogram ∆G⁰r  of each EM for the biomass producing network after the thermodynamic reduction step 

(Fig. 11) 

 

3.4. Phenotype-targeted culture media design 

The objective in this section is to design In silico culture media formulations that are 

targeted to a given desired phenotype. In here the following phenotypic optimal criteria were 

chosen 

 Minimization of lactate accumulation 

 Minimization of ammonium accumulation 

 Minimization of osmolarity build-up 

 Minimization of CO2 production 

 

The methodology adopted is to further reduce the footprintome by eliminating undesired 

footprints that do not comply with the above enumerated criteria. 
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3.4.1 Minimization of lactate and ammonium buildup 

Lactate and ammonium are by products that when accumulated to high concentrations in 

the media are toxic to mammalian cells. Lactate production is the by-product of an inefficient 

catabolism, as it only produces 2 ATP molecules compared to the 36 ATP molecules that result 

from the full oxidation of glucose in the TCA cycle. Lactate also acidifies the media and causes 

high osmolarity79, which reduces specific growth rate80 and protein yield81. High ammonium 

concentration in the media has also a detrimental effect on the cell culture, also reducing specific 

growth80 and protein yield82. It is therefore of high interest to design culture media formulations 

that minimize the accumulation of lactate and ammonium in the media. 

Taking a closer look to the reduced footprintome for biomass production (Fig. 12) and for 

IgG production (Appendix F, Fig. F.2), we observe that they contain a high number of footprints 

that produce either lactate, ammonium or both metabolites simultaneously. In order to design a 

culture media that theoretically eliminates the accumulation of lactate and ammonium in the 

media, a phenotype targeted footprintome reduction is applied by removing all footprints that 

produce lactate and/or ammonium, as follows: 

 For the biomass producing network, of the 3488 footprints present in the in the 

footprintome of Fig. 12, 1549 footprints either produce lactate and/or ammonium, 

and were therefore removed. The footprint count after this step is 1939.  

 For the IgG producing network, of the 4704 footprints present in the footprintome 

of Appendix F (Fig. F.2), 1804 footprints produce lactate and/or ammonium 

and were therefore removed. The footprints count after this step is 2900. 
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Fig. 15 represents the biomass producing footprintome after the elimination of the lactate and/or ammonia producing EMs.  

 

 

 

Figure 14 - Reduced footprintome for biomass production (normalized to unit) after 4 steps of reduction: Step 1- biomass production, Step 2-Thermodynamic reduction, Step 3- 
Pattern clustering with arithmetic averaging, Step 4- Elimination of all footprints that either produce lactate or ammonium. The rows represent extracellular media components. 
The columns represent average EM clusters (1939). The green gradient represents compound production associated with the production of 1 biomass unit. The red gradient 
represents compound consumption to generate 1 biomass unit. The black colour means that the compound is neither consumed nor produced by the EM cluster. 
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3.4.2 Minimization of osmolarity buildup 

The next criteria considered are the osmolarity and CO2 of each footprint. In the study 

by Marie M. Zhu et.al83 it is shown that osmolarity and partial pressure of CO2 have a very 

significant impact in a large scale CHO cell culture. High osmolarity in the culture media is shown 

to have a negative effect on specific growth rate and viable cell density. Moreover, it causes a 

shift in CHO cells metabolism leading to an increased production of lactate and ammonia. 

Furthermore, the combined effects of high partial pressure of CO2 (pCO2) and high osmolarity 

caused a more prominent effect on viable cell density than just high osmolarity alone.  

The osmolarity build-up associated with each footprint was computed. The osmolarity 

value of a footprint was approximated by the absolute sum of metabolite values (Eq.31). As we 

are dealing with metabolite yields and we lack any sense of volume, these osmolarity values don’t 

describe the real culture formula osmolarity. They can be however objectively compared between 

each other. 

 

∑ 𝑎𝑏𝑠(𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑖 )

𝑛

𝑖

(31) 

 
Where n is the total number of metabolites in a footprint and abs(footprinti) is the absolute 

value of a metabolite i. 

For the minimization of the osmolarity and CO2 criteria footprints associated with low 

osmolarity build-up and low CO2 production were selected. For this purpose, a score value 

(Scorei) is computed for each footprint {i} according to the Eq. 32: 

 

 

 

 

 

 

 𝑆𝑐𝑜𝑟𝑒𝑖 =
𝑂𝑠𝑚𝑖

max (𝑂𝑠𝑚)
 +

𝐶𝑂2𝑖

max (𝐶𝑂2)
(32) 

 

Where, Osmi is the osmolarity build-up associated with footprint {i}, Osm is a vector 

containing the osmolarity values of all footprints, CO2i is the CO2 production by footprint {i} 

and CO2 is a vector containing the CO2 values of all footprints. The EM with the lowest score is 

the one chosen for culture media design. Figs. 16-17 show the final optimal footprint with the 

lowest score, for the biomass producing network (Fig. 16) and IgG producing network (Fig. 17) 

in comparison with their respective arithmetic footprints representatives of the footprintome (Fig. 

13). 
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By comparing the optimal EM with the respective arithmetic footprint (Fig. 16, for 

biomass production), it becomes evident the absence of lactate and ammonium production, as 

expected. The same can be observed for the IgG producing network (Fig.17). 

In term of substrate comsumption, Fig. 16 shows that by minimizing osmolarity some 

substrates have a lower yield (lysine, valine, proline, histidine etc.) compared with the arithmetic 

footprint while others aren´t consumed at all. The most prominent case is the metabolite aspartate, 

where in the optimal EM no consumption is predicted whereas its consumption yield is 224,78 

nmol/106 cells for the arithmetic footprint. The main differences in substrate consumption are the 

lower glucose consumption of 263,06 nmol/106 cells compared to 356,20 nmol/106 cells, a higher 

glutamate consumption, 482,09 nmol/106 cells in comparison with 56,52 nmol/106 cells, an also 

higher consumption of asparagine 404,50 nmol/106 cells compared with 215,80 nmol/106 cells 

and a lower consumption of serine ,125,01 nmol/106 cells while the arithmetic footprint being 

312,07 nmol/106 cells. 

It may also be observed a lack of by-products formation in the optimal EM. Examples of 

this are the, isobut, isoval, alanine, glycine and formate. On the contrary, malate and glutamine 

are increased. Also the CO2 production is much lower in the formula chosen as a result of 

minimizing CO2 production, being 161,46 nmol/106 cells compared to the arithmetic footprint of 

983,73 nmol/106 cells. The full list of results can be found in Appendix E, Table E.1 

 

  

Figure 15 - Comparison between the optimal EM (orange bars) computed for the biomass producing network 
and the respective arithmetic footprint (blue bars). 
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The effects of minimizing osmolarity and CO2 had similar results for the product 

producing network, with substrates having lower consumption (lysine, valine, proline, histidine 

etc.), the non-consumption of aspartate and lack of by-product formation (isobut, isoval, glycine, 

formate) and an increase in specific by-products productions (citrate and alanine). The CO2 

production also dropped sharply compared with the arithmetic footprint from 1330,80 nmol/106 

cells to 120,92 nmol/106cells, interestingly the glucose has a higher consumption yield in the 

optimal EM with 681,53 nmol/106cells compared with 390,55 nmol/106cells. The glutamate, 

serine and asparagine yields show similar behaviour to the biomass optimal EM. It should 

however be noted that the amount of glucose used for IgG production should be much less than 

that for biomass production. The full list of results can be found in Appendix E, Table E.2 

 

3.4.3 Final culture media concentrations 

In order to formulate the final optimal culture media composition, the concentrations of 

each compound need to be specified. The footprints are not ready to be used as culture media 

formulas because they are expressed as yields. As such, they need to be multiplied by a 

concentration value of the target product (Eq.30).  

  The concentration used for the optimal IgG producing EM was 0,56 mg of 

IgG/ml, this being the mean value of the results from the work of Reinhart, D, et. al.84 where they 

benchmarked several commercial CHO culture medias for IgG antibody production, measuring 

the IgG concentration in all tested medias. 

The concentrations for the optimal biomass producing EM were obtained by initially 

multiplying the computed formula by a cell concentration of 10 106 cell/ml the formula. It was 

then compared with a lab tested CHO culture media. The cell concentration was adjusted such as 

to minimize the MSE between the computed and experimental concentrations. The final cell 

concentration calculated was 17,55 106 cell/ml (still in reasonable range) for a MSE value of 

42,88. 

Figure 16 - Comparison between the optimal EM computed (orange bars) for the IgG producing network and 
the respective arithmetic footprint (blue bars). 



42 
 

The comparison between lab tested CHO culture media with the final computed formula 

for biomass synthesis is shown in Fig 18, these results are also shown in Table 8 alongside the 

computed formula for IgG synthesis.  

 

Figure 17 - Comparison between the computed formula for biomass synthesis (blue bars) with experimental CHO 
culture media (orange bars). 

Fig.18 shows many similarities between the In silico formula for biomass synthesis (blue 

bars) and the lab tested CHO culture media (orange bars). The metabolites with more concordant 

concentrations (between In silico and experiment) were lysine, valine, histidine, arginine and 

choline. A significant difference is observed for glutamate and threonine concentrations, with 

higher In silico concentrations (8,46 mM and 8,35 mM respectively) than the experimental 

concentrations (1,79 mM and 2,50 mM respectively). The largest mismatch is a much lower In 

silico glucose concentration (4,62 mM) than the experimental concentration (31,01 mM). Glucose 

is the preferred carbon source by CHO cells. In batch runs, high amounts of glucose are usually 

formulated in the culture media. A lower glucose concentration in the In silico formula suggests 

that it needs to be complemented with a continuous feeding strategy of glucose. 
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Table 8 Computed formulas for IgG and biomass syntheses and Lab tested CHO 

culture media 

Metabolites Computed formula 

for IgG synthesis 

(mM) 

Computed formula for 

biomass synthesis 

(mM) 

Lab tested CHO 

culture media  

(mM) 

Glc 0,38 4,62 31,01 

Pyr 0,00 2,23 1,52 

Glu 0,40 8,46 1,79 

Asp 0,00 0,00 1,29 

Thr 0,66 8,35 2,50 

Ser 0,52 2,19 5,60 

Trp 0,08 0,16 0,93 

Lys 0,26 2,59 2,78 

Val 0,40 2,08 2,58 

Ile 0,10 1,45 2,41 

Leu 0,29 5,57 3,54 

Phe 0,24 2,02 1,05 

Tyr 0,08 0,00 0,70 

Met 0,04 0,70 0,74 

Asn 0,67 7,10 4,71 

Pro 0,28 0,97 4,42 

Arg 0,17 1,61 2,28 

His 0,09 0,64 1,00 

Choline - 0,37 0,52 
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4. Conclusions 

In this work a method was developed capable of computing culture media In silico using 

only a metabolic network of a target cell line as input and elementary mode analysis (EMA). The 

Chinese Hamster Ovary (CHO) metabolic network was used as a case-study in order to validate 

our approach. The proposed tool is an alternative to empirical and wet lab intensive methods used 

in the industry, like RSM. 

The main challenge in using EMA for In silico culture media design, is the elementary 

mode computation combinatorial explosion, the computational burden associated with computing 

all EM in the case study CHO metabolic network was too high. As a result, we used a more 

simplistic CHO metabolic network without the respective oxidative phosphorylation reactions, 

closing the balances for carbon and nitrogen but not for oxygen and hydrogen, which is sub-

optimal. We want the computed footprints values displayed in the footprintome to be as 

representative of the different metabolisms of the targeted cell line as possible, the more complete 

the metabolic network in use is the better, a genome scale network would be ideal but it´s not 

feasible due to the computation power needed to calculate all possible millions of EMs in a 

network of this scale. 

Even with these drawbacks this study obtained optimistic results: 

 

 The arithmetic and the weighted footprints when compared with the footprints 

calculated from the experimental literature data77 (Fig. 13A), shows that the 

majority of metabolite yields values in the literature data, are on the variance 

bounds of the theoretical footprints computed (21 out of the 26 metabolites). 

Which indicates that a general predictions of the metabolism footprint of a target 

cell line can be done using this method 

 The phenotype target design has shown to be a useful method for selecting 

optimal metabolic footprints, the differences between the optimal computed EMs 

for both networks and the arithmetic footprints of the respective networks were 

concordant with the selective criteria chosen.  

 The similarities observed between the optimal EM for the biomass producing 

network with a lab teste CHO culture media (MSE value of 42,88 for a cell 

concentration of 17,55 106 cell/ml), shown that this tool is capable of computing 

reasonable culture media formulas that can be further tested in the lab. 

 

The present M.Sc. thesis had the objective to develop a method in MATLAB capable of 

computing culture media In silico using only the targeted cell line metabolic network, this 

objective was reached, the positive results shown that further studies regarding the usage and 

development of the methods present in this thesis are worth pursuing. 
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4.1 Future work 

The arithmetic and the weighted footprint shown similar results when compared with the 

data published by Duarte et. al. 77 ,as already discussed , but we could not conclude which of these 

methods is better and further research is needed. This methodology should be tested with different 

cell lines metabolic networks and the results compared with available literature data, to better 

understand the difference between the two methods and to confirm if the results observed in this 

thesis are also true for different cell lines. 

  There are several options for future work regarding the phenotype-targeted culture media 

phase: 

 The culture media for growth and IgG production computed in this thesis, should be teste 

in the lab to quantify the differences between the computed formulas and the experimental 

results, to study if the computed culture medias can have a decisive effect in controlling 

the active EMs of the CHO cell metabolism. 

 Different culture media formulas should be computed using different criteria (e. g. 

minimization of glucose consumption) to study which criteria or combination of criteria 

can be used to better match the experimental results, the number of criteria used can also 

be a decisive factor. 

 Different metabolic networks can be tested to understand more the potential of the 

toolbox and to further develop it. 
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Appendix 

Appendix A – CHO Metabolic Networks 

 

 

# Reactions 
 Glicolysis 

1 1 Glc + 1 ATP --> 1 G6P 

2 1 G6P --> 1 F6P  

3 1 F6P + 1 ATP --> 1 GAP + 1 DHAP  

4 1 DHAP --> 1 GAP  

5 1 GAP --> 1 NADH + 1 ATP + 1 3PG  

6 1 3PG --> 1 Pyr + 1 ATP 

 TCA cycle 
7 1 Pyr --> 1 CO2 + 1 AcCoA + 1 NADH 

8 1 AcCoA + 1 Oxal --> 1 Cit  

9 1 Cit --> 1 CO2 + 1 aKG + 1 NADH 

10 1 aKG --> 1 CO2 + 1 SucCoA + 1 NADH  

11 1 SucCoA --> 1 Succ + 1 ATP  

12 1 Succ --> 1 Fum + 1 FADH2  

13 1 Fum --> 1 Mal  

14 1 Mal --> 1 Oxal + 1 NADH 

 Pyruvate fates 
15 1 Pyr + 1 NADH --> 1 Lac  

16 1 Pyr + 1 Glu --> 1 Ala + 1 aKG  

 Pentose Phosphate Pathway 
17 3 G6P --> 3 CO2 + 3 R5P + 6 NADPH 

 Anaplerotic Reaction 
18 1 Mal --> 1 Pyr + 1 CO2 + 1 NADPH 

 Amino Acid Metabolism 
19 1 Glu <--> 1 aKG + 1 NH4 + 1 NADH  

20 1 aKG + 1 Asp --> 1 Glu + 1 Oxal  

21 1 Glu + 1 NH4 + 1 ATP --> Gln  

22 1 Thr --> 1 AcCoA + 1 Gly + 1 NADH  

23 1 Ser --> 1 Gly + 1 NADPH + 1 ATP + 1 Formate  

24 1 Ser --> 1 Pyr + 1 NH4 

25 1 Thr --> 1 NH4 + 1 aKb  

26 1 ATP + 1 aKb --> 1 SucCoA + 1 NADH  

27 1 Trp --> 2 CO2 + 1 Ala + 1 aKa  

28 2 aKG + 1 Lys --> 2 Glu + 3 NADPH + 1 FADH2 + 1 aKa  

29 1 aKa --> 2 CO2 + 2 AcCoA + 2 NADH 

30 1 aKG + 1 Val --> 1 CO2 + 1 Glu + 1 NADH + 1 IsobutCoA 

Table A.1 Metabolic Network for CHO cell line 

 

Table A.1 Metabolic Network for CHO cell line 
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31 1 ATP + 1 IsobutCoA --> 1 SucCoA + 2 NADH + 1 FADH2 

32 1 IsobutCoA --> 1 Isobut 

33 1 aKG + 1 Ile + 1 ATP --> 1 Glu + 1 AcCoA + 1 SucCoA + 2 NADH + 1 

FADH2 

34 1 aKG + 1 Leu --> 1 CO2 + 1 Glu + 1 NADH + 1 IsovalCoA  

35 1 CO2 + 1 SucCoA + 1 ATP + 1 IsovalCoA --> 3 AcCoA + 1 Succ + 1 FADH2  

36 1 IsovalCoA --> 1 Isoval 

37 1 Phe + 1 NADH --> 1 Tyr  

38 1 aKG + 1 SucCoA + 1 Tyr --> 1 CO2 + 1 Glu + 2 AcCoA + 1 Fum + 1 Succ  

39 1 Ser + 1 Met + 1 ATP --> 1 NH4 + 1 aKb  

40 1 Asn --> 1 NH4 + 1 Asp  

41 1 Pro --> 1 Glu + 1 NADH  

42 1 aKG + 1 Arg --> 2 Glu + 1 NADH  

43 1 His --> 1 Glu + 1 NH4  

 Glycogen Synthesis 
44 1 G6P --> 1 G1P                                                           

45 2 ATP + 1 G1P + 1 UMPRN --> 1 UDPG                                         

46 1 UDPG --> 1 Glycogen   

 Nucleotide Synthesis 
47 1 R5P + 1 ATP --> 1 PRPP 

48 1 CO2 + 2 Gln + 1 Gly + 1 Asp + 5 ATP + 1 PRPP --> 2 Glu + 1 Fum + 1 IMP  

49 1 Asp + 2 ATP + 1 GMPRN + 1 IMP --> 1 Fum + 1 AMPRN  

50 1 Gln + 1 ATP + 1 IMP --> 1 Glu + 1 NADH + 1 GMPRN  

51 1 NH4 + 1 Asp + 2 ATP + 1 CO2 --> 1 NADH + 1 Orotate  

52 1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN 

53 1 Gln + 1 ATP + 1 UMPRN --> 1 Glu + 1 CMPRN  

54 1 AMPRN --> 1 dAMP  

55 1 GMPRN --> 1 dGMP  

56 1 CMPRN --> 1 dCMP  

57 1 UMPRN --> 1 dTMP  

 Lipid Synthesis 
58 1 ATP + 1 Choline --> 1 Pcholine  

59 18 AcCoA + 33 NADH + 22 ATP + 1 Glyc3P + 1 Pcholine --> 1 PC  

60 1 Ser + 1 PC --> 1 PS + 1 Choline  

61 1 PS --> 1 CO2 + 1 PE  

62 1 Glyc3P + 1 Choline --> 1 Glyc3PC  

63 1 G6P --> 1 Inositol  

64 18 AcCoA + 33 NADH + 22 ATP + 1 Glyc3P + 1 Inositol --> 1 PI  

65 18 AcCoA + 33 NADH + 22 ATP + 2 Glyc3P --> 1 PG 

66 2 PG --> 1 DPG + 1 Glyc  

67 16 AcCoA + 1 Ser + 29 NADPH + 16 ATP + 1 Choline --> 2 CO2 + 1 SM 

68 18 AcCoA + 14 NADPH + 18 ATP --> 9 CO2 + 1 Cholesterol   

 Biomass Formation 
69 160.1015 Ala + 235.2056 Glu + 70.3787 Gln + 174.6799 Gly + 114.9787 Ser + 

147.4132 Lys + 157.4070 Leu + 82.6648 Ile + 91.8543 Arg + 169.492 Asp + 

95.7754 Thr + 118.3569 Val + 40.0354 Met + 67.4027 Phe + 47.4956 Tyr + 

36.2551 His + 55.559 Pro + 70.3787 Asn + 83943.063 ATP + 8.943 AMPRN + 

4.878 Cholesterol + 14.9321 CMPRN + 4.0108 dAMP + 2.6829 dCMP + 2.6829 

dGMP + 4.0108 dTMP + 0.813 DPG + 75.609 Glycogen + 16.9104 GMPRN + 

18.699 PC + 7.046 PE + 0.271 PG + 2.71 PI + 0.813 PS + 2.168 SM + 8.943 

UMPRN + 9.2297 Trp --> 1 X 

 Other by-products 
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70 1 AcCoA --> 1 ATP + 1 Acetate  

71 1 NADH + 1 DHAP --> 1 Glyc3P  

72 1 Glyc3P --> 1 Glyc 

 IgG Glycosylation 
73  1 UDPG --> 1 UDPGal  

74  1 Glc + 3 ATP + 1 GMPRN --> 1 GDPMann  

75  1 AcCoA + 1 Gln + 1 F6P + 1 UMPRN + 2 ATP --> 1 Glu + 1 UDPNAG  

76  3 ATP + 1 3PG + 1 UDPNAG + 1 CMPRN --> 1 CMPSialic  

77  1 NADPH + 1 GDPMann --> 1 GDPFuc 

 IgG Formation 
78  428.7 Ala + 362.75 Glu + 351.76 Gln + 516.64 Gly + 934.36 Ser + 472.67 Lys 

+ 516.64 Leu + 175.88 Ile + 307.79 Arg + 296.8 Asp + 626.57 Thr + 714.51 Val 

+ 65.954 Met + 285.8 Phe + 285.8 Tyr + 164.89 His + 505.65 Pro + 263.82 Asn 

+ 142.9 Trp + 10.992 GDPFuc + 54.962 UDPNAG + 32.977 GDPMann + 

21.985 UDPGal + 21.985 CMPSialic --> 1 P 

 Transport Reactions 
79 1 ATP --> 

80  1 NADH --> 

81  1 FADH2 --> 

82  1 NADPH --> 

83 1 X --> 

84  1 P --> 

85 --> 1 Glc  

86 --> 1 His 

87 1 Isobut -->   

88 --> 1 Ile  

89 1 Isoval -->   

90 --> 1 Leu  

91 --> 1 Lys  

92 --> 1 Met  

93 --> 1 Phe  

94 --> 1 Thr  

95 --> 1 Trp  

96 --> 1 Val  

97 1 CO2 --> 

98 1 NH4 --> 

99 1 Acetate --> 

100 1 Ala -->   

101 --> 1 Arg  

102 --> 1 Asn  

103 --> 1 Asp 

104 1 Gln -->  

105 1 Cit -->   

106 --> 1 Choline  

107 1 Formate --> 

108 --> 1 Glu  

109 1 Glyc -->   

110 1 Gly -->   

111 1 Lac -->   

112 --> 1 Pro  

113 --> 1 Pyr  

114 --> 1 Ser  
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115 --> 1 Tyr  

116 1 Mal -->   

117 1 Glyc3PC --> 

118 1 Glyc3PC --> 
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# Reactions 
 Glycolysis 
1 1 Glc --> 1 G6P 

2 1 G6P --> 1 F6P  

3 1 F6P --> 1 GAP + 1 DHAP   

4 1 DHAP --> 1 GAP  

5 1 GAP -->1 3PG  

6 1 3PG --> 1 Pyr   

 TCA cycle 
7 1 Pyr --> 1 CO2 + 1 AcCoA  

8 1 AcCoA + 1 Oxal --> 1 Cit  

9 1 Cit --> 1 CO2 + 1 aKG  

10 1 aKG --> 1 CO2 + 1 SucCoA   

11 1 SucCoA --> 1 Succ  

12 1 Succ --> 1 Fum  

13 1 Fum --> 1 Mal  

14 1 Mal --> 1 Oxal  

 Pyruvate fates 
15 1 Pyr --> 1 Lac  

16 1 Pyr + 1 Glu --> 1 Ala + 1 aKG  

 Pentose Phosphate Pathway 
17 3 G6P --> 3 CO2 + 3 R5P   

 Anaplerotic Reaction 
18 1 Mal --> 1 Pyr + 1 CO2  

 Amino Acid Metabolism 
19 1 Glu <--> 1 aKG + 1 NH4  

20 1 aKG + 1 Asp --> 1 Glu + 1 Oxal  

21 1 Glu + 1 NH4--> Gln  

22 1 Thr --> 1 AcCoA + 1 Gly   

23 1 Ser --> 1 Gly + 1 Formate  

24 1 Ser --> 1 Pyr + 1 NH4 

25 1 Thr --> 1 NH4 + 1 aKb  

26 1 aKb --> 1 SucCoA   

27 1 Trp --> 2 CO2 + 1 Ala + 1 aKa  

28 2 aKG + 1 Lys --> 2 Glu + 1 aKa  

29 1 aKa --> 2 CO2 + 2 AcCoA  

30 1 aKG + 1 Val --> 1 CO2 + 1 Glu + 1 IsobutCoA 

31 1 IsobutCoA --> 1 SucCoA  

32 1 IsobutCoA --> 1 Isobut 

33 1 aKG + 1 Ile --> 1 Glu + 1 AcCoA + 1 SucCoA  

34 1 aKG + 1 Leu --> 1 CO2 + 1 Glu + 1 IsovalCoA  

35 1 CO2 + 1 SucCoA + 1 IsovalCoA --> 3 AcCoA + 1 Succ   

36 1 IsovalCoA --> 1 Isoval 

37 1 Phe --> 1 Tyr  

38 1 aKG + 1 SucCoA + 1 Tyr --> 1 CO2 + 1 Glu + 2 AcCoA + 1 Fum + 1 Succ  

39 1 Ser + 1 Met --> 1 NH4 + 1 aKb  

40 1 Asn --> 1 NH4 + 1 Asp  

41 1 Pro --> 1 Glu   

42 1 aKG + 1 Arg --> 2 Glu   

Table A.2 Biomass producing Network 
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43 1 His --> 1 Glu + 1 NH4  

 Glycogen Synthesis 
44 1 G6P --> 1 G1P  

45 1 G1P + 1 UMPRN --> 1 UDPG 

46 1 UDPG --> 1 Glycogen  

 Nucleotide Synthesis 
47 1 R5P --> 1 PRPP 

48 1 CO2 + 2 Gln + 1 Gly + 1 Asp + 1 PRPP --> 2 Glu + 1 Fum + 1 IMP  

49 1 Asp + 1 GMPRN + 1 IMP --> 1 Fum + 1 AMPRN  

50 1 Gln + 1 IMP --> 1 Glu + 1 GMPRN  

51 1 NH4 + 1 Asp + 1 CO2 --> 1 Orotate  

52 1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN 

53 1 Gln + 1 UMPRN --> 1 Glu + 1 CMPRN  

54 1 AMPRN --> 1 dAMP  

55 1 GMPRN --> 1 dGMP  

56 1 CMPRN --> 1 dCMP  

57 1 UMPRN --> 1 dTMP  

 Lipid Synthesis 
58 1 Choline --> 1 Pcholine  

59 18 AcCoA + 1 Glyc3P + 1 Pcholine --> 1 PC  

60 1 Ser + 1 PC --> 1 PS + 1 Choline  

61 1 PS --> 1 CO2 + 1 PE  

62 1 Glyc3P + 1 Choline --> 1 Glyc3PC  

63 1 G6P --> 1 Inositol  

64 18 AcCoA + 1 Glyc3P + 1 Inositol --> 1 PI  

65 18 AcCoA + 2 Glyc3P --> 1 PG 

66 2 PG --> 1 DPG + 1 Glyc  

67 16 AcCoA + 1 Ser + 1 Choline --> 2 CO2 + 1 SM 

68 18 AcCoA  --> 9 CO2 + 1 Cholesterol   

 Biomass Formation 
69 160.1015 Ala + 235.2056 Glu + 70.3787 Gln + 174.6799 Gly + 114.9787 Ser + 

147.4132 Lys + 157.4070 Leu + 82.6648 Ile + 91.8543 Arg + 169.492 Asp + 95.7754 

Thr + 118.3569 Val + 40.0354 Met + 67.4027 Phe + 47.4956 Tyr + 36.2551 His + 

55.559 Pro + 70.3787 Asn + 8.943 AMPRN + 4.878 Cholesterol + 14.9321 CMPRN 

+ 4.0108 dAMP + 2.6829 dCMP + 2.6829 dGMP + 4.0108 dTMP + 0.813 DPG + 

75.609 Glycogen + 16.9104 GMPRN + 18.699 PC + 7.046 PE + 0.271 PG + 2.71 PI 

+ 0.813 PS + 2.168 SM + 8.943 UMPRN + 9.2297 Trp --> 1 X 

 Other by-products 
70 1 AcCoA --> 1 Acetate  

71 1 DHAP --> 1 Glyc3P  

72 1 Glyc3P --> 1 Glyc  

 Transport Reactions 
73 1 X --> 

74 --> 1 Glc  

75 --> 1 His 

76 1 Isobut -->   

77 --> 1 Ile  
78 1 Isoval -->   

79 --> 1 Leu  
80 --> 1 Lys  

81 --> 1 Met  



59 
 

82 --> 1 Phe  

83 --> 1 Thr  

84 --> 1 Trp  

85 --> 1 Val  

86 1 CO2 --> 

87 1 NH4 -->   

88 1 Acetate -->   

89 1 Ala -->   

90 --> 1 Arg  

91 --> 1 Asn  

92 --> 1 Asp 

93 1 Gln -->  

94 1 Cit -->   

95 --> 1 Choline  

96 1 Formate -->    

97 --> 1 Glu  

98 1 Glyc -->   

99 1 Gly -->   

100 1 Lac -->   

101 --> 1 Pro  

102 --> 1 Pyr  

103 --> 1 Ser  

104 --> 1 Tyr  

105 1 Mal -->   

106 1 Glyc3PC -->  
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# Reactions 
 Glycolysis 
1 1 Glc --> 1 G6P 

2 1 G6P --> 1 F6P  

3 1 F6P --> 1 GAP + 1 DHAP   

4 1 DHAP --> 1 GAP  

5 1 GAP -->1 3PG  

6 1 3PG --> 1 Pyr  

 TCA cycle 
7 1 Pyr --> 1 CO2 + 1 AcCoA  

8 1 AcCoA + 1 Oxal --> 1 Cit  

9 1 Cit --> 1 CO2 + 1 aKG  

10 1 aKG --> 1 CO2 + 1 SucCoA   

11 1 SucCoA --> 1 Succ  

12 1 Succ --> 1 Fum  

13 1 Fum --> 1 Mal  

14 1 Mal --> 1 Oxal  

 Pyruvate fates 

15 1 Pyr --> 1 Lac  
16 1 Pyr + 1 Glu --> 1 Ala + 1 aKG  

 Pentose Phosphate Pathway 

17 3 G6P --> 3 CO2 + 3 R5P   

 Anaplerotic Reaction 
18 1 Mal --> 1 Pyr + 1 CO2  

 Amino Acid Metabolism 

19 1 Glu <--> 1 aKG + 1 NH4  
20 1 aKG + 1 Asp --> 1 Glu + 1 Oxal  

21 1 Glu + 1 NH4--> Gln  

22 1 Thr --> 1 AcCoA + 1 Gly   
23 1 Ser --> 1 Gly + 1 Formate  

24 1 Ser --> 1 Pyr + 1 NH4 

25 1 Thr --> 1 NH4 + 1 aKb  

26 1 aKb --> 1 SucCoA   

27 1 Trp --> 2 CO2 + 1 Ala + 1 aKa  

28 2 aKG + 1 Lys --> 2 Glu + 1 aKa  

29 1 aKa --> 2 CO2 + 2 AcCoA  

30 1 aKG + 1 Val --> 1 CO2 + 1 Glu + 1 IsobutCoA 

31 1 IsobutCoA --> 1 SucCoA  

32 1 IsobutCoA --> 1 Isobut 

33 1 aKG + 1 Ile --> 1 Glu + 1 AcCoA + 1 SucCoA  

34 1 aKG + 1 Leu --> 1 CO2 + 1 Glu + 1 IsovalCoA  

35 1 CO2 + 1 SucCoA + 1 IsovalCoA --> 3 AcCoA + 1 Succ   

36 1 IsovalCoA --> 1 Isoval 

37 1 Phe --> 1 Tyr  

38 1 aKG + 1 SucCoA + 1 Tyr --> 1 CO2 + 1 Glu + 2 AcCoA + 1 Fum + 1 Succ  

39 1 Ser + 1 Met --> 1 NH4 + 1 aKb  

40 1 Asn --> 1 NH4 + 1 Asp  

Table A.3 Product Producing Network 
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41 1 Pro --> 1 Glu   

42 1 aKG + 1 Arg --> 2 Glu   

43 1 His --> 1 Glu + 1 NH4  

 Glycogen Synthesis 

44 1 G6P --> 1 G1P  

45 1 G1P + 1 UMPRN --> 1 UDPG 

4 Nucleotide Synthesis 

46 1 R5P --> 1 PRPP 

47 1 CO2 + 2 Gln + 1 Gly + 1 Asp + 1 PRPP --> 2 Glu + 1 Fum + 1 IMP  
48 1 Gln + 1 IMP --> 1 Glu + 1 GMPRN  

49 1 NH4 + 1 Asp + 1 CO2 --> 1 Orotate  

50 1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN 

51 1 Gln + 1 UMPRN --> 1 Glu + 1 CMPRN  
 Other by-products 
52 1 AcCoA --> 1 Acetate  

53 1 DHAP --> 1 Glyc3P  

54 1 Glyc3P --> 1 Glyc 

 IgG Glycosylation 
55 1 UDPG --> 1 UDPGal  

56 1 Glc + 1 GMPRN --> 1 GDPMann  

57 1 AcCoA + 1 Gln + 1 F6P + 1 UMPRN --> 1 Glu + 1 UDPNAG  

58 1 3PG + 1 UDPNAG + 1 CMPRN --> 1 CMPSialic  

59 1 GDPMann --> 1 GDPFuc 

 IgG Formation 

60 428.7 Ala + 362.75 Glu + 351.76 Gln + 516.64 Gly + 934.36 Ser + 472.67 Lys + 

516.64 Leu + 175.88 Ile + 307.79 Arg + 296.8 Asp + 626.57 Thr + 714.51 Val + 

65.954 Met + 285.8 Phe + 285.8 Tyr + 164.89 His + 505.65 Pro + 263.82 Asn + 

142.9 Trp + 10.992 GDPFuc + 54.962 UDPNAG + 32.977 GDPMann + 21.985 

UDPGal + 21.985 CMPSialic --> 1 P 

 Transport Reactions 

61 1 P -->  

62 --> 1 Glc  

63 --> 1 His 

64 1 Isobut -->   
65 --> 1 Ile  

66 1 Isoval -->   

67 --> 1 Leu  
68 --> 1 Lys  

69 --> 1 Met  

70 --> 1 Phe  

71 --> 1 Thr  

72 --> 1 Trp  

73 --> 1 Val  

74 1 CO2 --> 

75 1 NH4 -->   

76 1 Acetate -->   

77 1 Ala -->   

78 --> 1 Arg  

79 --> 1 Asn  

80 --> 1 Asp 

81 1 Gln -->  
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82 1 Cit -->   

83 1 Formate -->    

84 --> 1 Glu  

85 1 Glyc -->   

86 1 Gly -->   

87 1 Lac -->   

88 --> 1 Pro  

89 --> 1 Pyr  

90 --> 1 Ser  

91 --> 1 Tyr  

92 1 Mal -->   
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Appendix B - Elementary mode that uses the minimum number of 

metabolic reactions required to synthesize 1 unit of biomass . 

 

REACTION 

NUMBER 

EM 

COEFF 

REACTIONS 

R1 269,67 '1 Glc --> 1 G6P' 

R2 33,92 '1 G6P --> 1 F6P'  

R3 33,92 '1 F6P --> 1 GAP + 1 DHAP '  

R4 0 '1 DHAP --> 1 GAP'  

R5 33,92 '1 GAP -->1 3PG'  

R6 33,92 '1 3PG --> 1 Pyr ' 

R7 202,25 '1 Pyr --> 1 CO2 + 1 AcCoA ' 

R8 0 '1 AcCoA + 1 Oxal --> 1 Cit'  

R9 0 '1 Cit --> 1 CO2 + 1 aKG ' 

R10 136,33 '1 aKG --> 1 CO2 + 1 SucCoA '  

R11 0 '1 SucCoA --> 1 Succ'  

R12 136,33 '1 Succ --> 1 Fum'  

R13 332,50 '1 Fum --> 1 Mal'  

R14 0 '1 Mal --> 1 Oxal'  

R15 0 '1 Pyr --> 1 Lac'  

R16 164,08 '1 Pyr + 1 Glu --> 1 Ala + 1 aKG'  

R17 51,83 '3 G6P --> 3 CO2 + 3 R5P '  

R18 332,50 '1 Mal --> 1 Pyr + 1 CO2'  

R19 325,67 '1 Glu <--> 1 aKG + 1 NH4'  

R20 0 '1 aKG + 1 Asp --> 1 Glu + 1 Oxal'  

R21 216,83 '1 Glu + 1 NH4--> Gln'  

R22 225,67 '1 Thr --> 1 AcCoA + 1 Gly '  

R23 0 '1 Ser --> 1 Gly + 1 Formate'  

R24 0 '1 Ser --> 1 Pyr + 1 NH4' 

R25 0 '1 Thr --> 1 NH4 + 1 aKb'  

R26 0 '1 aKb --> 1 SucCoA '  

R27 0 '1 Trp --> 2 CO2 + 1 Ala + 1 aKa'  

R28 0 '2 aKG + 1 Lys --> 2 Glu + 1 aKa'  

R29 0 '1 aKa --> 2 CO2 + 2 AcCoA ' 

R30 0 '1 aKG + 1 Val --> 1 CO2 + 1 Glu + 1 IsobutCoA' 

R31 0 '1 IsobutCoA --> 1 SucCoA ' 

R32 0 '1 IsobutCoA --> 1 Isobut' 

R33 0 '1 aKG + 1 Ile --> 1 Glu + 1 AcCoA + 1 SucCoA ' 

R34 0 '1 aKG + 1 Leu --> 1 CO2 + 1 Glu + 1 IsovalCoA'  

R35 0 '1 CO2 + 1 SucCoA + 1 IsovalCoA --> 3 AcCoA + 1 Succ '  

R36 0 '1 IsovalCoA --> 1 Isoval' 

R37 185,00 '1 Phe --> 1 Tyr'  

R38 136,33 '1 aKG + 1 SucCoA + 1 Tyr --> 1 CO2 + 1 Glu + 2 AcCoA 

+ 1 Fum + 1 Succ' 
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R39 0 '1 Ser + 1 Met --> 1 NH4 + 1 aKb'  

R40 0 '1 Asn --> 1 NH4 + 1 Asp'  

R41 0 '1 Pro --> 1 Glu '  

R42 217,17 '1 aKG + 1 Arg --> 2 Glu '  

R43 0 '1 His --> 1 Glu + 1 NH4'  

R44 77,50 '1 G6P --> 1 G1P'  

R45 77,50 '1 G1P + 1 UMPRN --> 1 UDPG' 

R46 77,50 '1 UDPG --> 1 Glycogen'  

R47 155,50 '1 R5P --> 1 PRPP' 

R48 46,67 '1 CO2 + 2 Gln + 1 Gly + 1 Asp + 1 PRPP --> 2 Glu + 1 

Fum + 1 IMP'  

R49 13,25 '1 Asp + 1 GMPRN + 1 IMP --> 1 Fum + 1 AMPRN'  

R50 33,33 '1 Gln + 1 IMP --> 1 Glu + 1 GMPRN'  

R51 108,83 '1 NH4 + 1 Asp + 1 CO2 --> 1 Orotate'  

R52 108,83 '1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN' 

R53 18,08 '1 Gln + 1 UMPRN --> 1 Glu + 1 CMPRN'  

R54 4,08 '1 AMPRN --> 1 dAMP'  

R55 2,75 '1 GMPRN --> 1 dGMP'  

R56 2,75 '1 CMPRN --> 1 dCMP'  

R57 4,08 '1 UMPRN --> 1 dTMP'  

R58 27,25 '1 Choline --> 1 Pcholine'  

R59 27,25 '18 AcCoA + 1 Glyc3P + 1 Pcholine --> 1 PC'  

R60 8,08 '1 Ser + 1 PC --> 1 PS + 1 Choline'  

R61 7,25 '1 PS --> 1 CO2 + 1 PE'  

R62 0 '1 Glyc3P + 1 Choline --> 1 Glyc3PC'  

R63 2,75 '1 G6P --> 1 Inositol'  

R64 2,75 '18 AcCoA + 1 Glyc3P + 1 Inositol --> 1 PI'  

R65 1,92 '18 AcCoA + 2 Glyc3P --> 1 PG' 

R66 0,83 '2 PG --> 1 DPG + 1 Glyc'  

R67 2,25 '16 AcCoA + 1 Ser + 1 Choline --> 2 CO2 + 1 SM' 

R68 5,00 '18 AcCoA  --> 9 CO2 + 1 Cholesterol'   

R69 1,00 Biomass reaction synthesis (Reaction 2) 

R70 0 '1 AcCoA --> 1 Acetate'  

R71 33,92 '1 DHAP --> 1 Glyc3P'  

R72 0 '1 Glyc3P --> 1 Glyc' 

R73 1,00 '1 X -->' 

R74 269,67 '--> 1 Glc'  

R75 37,17 '--> 1 His' 

R76 0 '1 Isobut -->'   

R77 84,75 '--> 1 Ile'  

R78 0 '1 Isoval -->'   

R79 161,33 '--> 1 Leu'  

R80 151,08 '--> 1 Lys'  

R81 41,00 '--> 1 Met'  

R82 254,08 '--> 1 Phe'  

R83 323,83 '--> 1 Thr'  
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R84 9,50 '--> 1 Trp'  

R85 121,33 '--> 1 Val'  

R86 972,83 '1 CO2 -->' 

R87 0 '1 NH4 -->'   

R88 0 '1 Acetate -->'   

R89 0 '1 Ala -->'   

R90 311,33 '--> 1 Arg'  

R91 72,17 '--> 1 Asn'  

R92 342,50 '--> 1 Asp' 

R93 0 1 Gln -->' 

R94 0 '1 Cit -->'   

R95 21,42 '--> 1 Choline'  

R96 0 '1 Formate -->'    

R97 232,33 '--> 1 Glu'  

R98 0,83 '1 Glyc -->'   

R99 0 '1 Gly -->'   

R100 0 '1 Lac -->'   

R101 56,92 '--> 1 Pro'  

R102 0 '--> 1 Pyr'  

R103 128,17 '--> 1 Ser'  

R104 0 '--> 1 Tyr'  

R105 0 '1 Mal -->'   

R106 0 '1 Glyc3PC -->'  
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Appendix C - Standard Gibbs free energy of formation of metabolites 

values 

 

METABOLITE GIBBS 

ALANINE(ALA) -366,7 

GLUTAMATE(GLU) -716,4 

GLYCINE(GLY) -379,1 

SERINE(SER) -522 

LYSINE(LYS) -303,8 

LEUCINE(LEU) -348,2 

ISOLEUCINE(ILE) -343,9 

ARGININE(ARG) -229,2 

ASPARTATE(ASP) -726,4 

THREONINE(THR) -529,3 

VALINE(VAL) -358,7 

METHIONINE(MET) -318,8 

PHENYLALANINE(PHE) -207,1 

TYROSINE(TYR) -370,7 

HISTIDINE(HIS) -179,8 

PROLINE(PRO) -285,6 

ASPARAGINE(ASN) -526 

TRYPTOPHAN(TRP) -112 

GLUCOSE(GLC) -916,3 

ISOBUT -368,6 

ISOVAL -362,5 

PYRUVATE(PYR) -483,6 

CO2 -386 

CITRATE(CIT) -1238 

NH4 -75,7 

CHOLINE -31,8 

GLYCEROL(GLYC) -493,6 

ACETATE -369,3 

LACTATE(LAC) -532,9 

MALATE(MAL) -887,9 

FORMATE -372,1 

GLY3PC -1334 

GLUTAMINE(GLN) -525,8 

ATP -26,2 

NADH -25,4 

FADH2 52,1 

NADPH -28 

X -3359687,065 
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P -3479886,061 

 

 

Appendix D - Literature data cell growth rate and metabolic rates 77 
 

(The cell growth shown in (h-1) and metabolic rates in (nmol/106 cells/h) respectively) 

 

 

 

  

Growth rate 0.021 

Ammonia 5.52 

Acetate -0.08 

Alanine 2.72 

Arginine -2.40 

Asparagine -11.6 

Aspartate -2.60 

Citrate 0.51 

Choline -0.58 

Formate 2.77 

Fumarate 0.02 

Glucose -60.2 

Glutamate -4.57 

Glutamine 0.18 

Glycerol 2.91 

Glycine 1.77 

Histidine -1.17 

Isobutyrate 0.27 

Isoleucine -2.02 

Isovalerate 0.85 

Lactate 43.3 

Leucine -3.82 

Lysine -2.22 

Methionine -0.96 

Phenylalanine -1.33 

Proline -2.71 

Pyruvate -3.07 

Serine -7.20 
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Appendix E - Arithmetic footprint and optimal EM for biomass and IgG 

producing networks. 

 

Metabolites Arithmetic Footprint 

(nmol/106 cells) 

Optimal EM 

(nmol/106 cells) 
Glc -356,20 -263,06 

Pyr -45,18 -127,04 

CO2 983,73 161,46 

Cit 51,46 0 

Mal 82,81 218,56 

Lac 14,90 0 

Glu -56,52 -482,09 

Ala 76,71 0 

NH4 61,41 0 

Asp -224,78 0 

Gln 21,17 176,51 

Thr -336,50 -476,06 

Gly 54,55 0 

Ser -312,07 -125,01 

Formate 89,06 0 

Trp -67,21 -9,23 

Lys -168,29 -147,41 

Val -164,33 -118,36 

Isobut 16,06 0 

Ile -128,27 -82,66 

Leu -255,46 -317,51 

Isoval 16,07 0 

Phe -128,13 -114,90 

Tyr -60,61 0 

Met -92,96 -40,04 

Asn -215,80 -404,50 

Pro -117,97 -55,56 

Arg -120,90 -91,85 

His -80,80 -36,26 

Choline -46,17 -20,87 

Glyc3PC 25,30 0 

Glyc 46,05 0,81 

Biomass(X) 1,00 1,00 

Acetate 8,98 17,02 

  

Table E.1 Arithmetic footprint and computed formula for the biomass 

producing network. 

 

Table E.1 Footprintome arithmetic average and Formula computed for 

Biomass producing network metabolite values in nmol/106 cells. 

 

Table E.1 Arithmetic footprint and computed formula for Biomass 

producing network. 

 

Table E.1 Footprintome arithmetic average and Formula computed for 

Biomass producing network metabolite values in nmol/106 cells. 

 

Table E.1 Arithmetic footprint and computed formula for the biomass 

producing network. 

 

Table E.1 Footprintome arithmetic average and Formula computed for 

Biomass producing network metabolite values in nmol/106 cells. 

 

Table E.1 Arithmetic footprint and computed formula for Biomass 

producing network. 

 

Table E.1 Footprintome arithmetic average and Formula computed for 

Biomass producing network metabolite values in nmol/106 cells. 
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Metabolites Arithmetic Footprint 

(nmol/1mg of IgG) 

Optimal EM 

(nmol/1mg of IgG) 
Glc -390,55 -681,53 

Pyr -88,36 0 

CO2 1330,80 120,92 

Cit 148,34 483,66 

Mal 89,48 43,97 

Lac 26,75 0 

Glu -146,05 -714,51 

Ala 25,11 296,79 

NH4 70,61 0 

Asp -331,43 0 

Gln 29,48 0 

Thr -956,37 -1187,18 

Gly 4,17 0 

Ser -1516,11 -934,36 

Formate 339,65 0 

Trp -194,71 -142,90 

Lys -493,11 -472,67 

Val -850,61 -714,51 

Isobut 63,20 0 

Ile -234,69 -175,88 

Leu -647,85 -516,64 

Isoval 63,20 0 

Phe -477,51 -428,70 

Tyr -191,71 -142,90 

Met -170,62 -65,95 

Asn -576,30 -1209,17 

Pro -651,70 -505,65 

Arg -377,61 -307,79 

His -270,76 -164,89 

Acetate 261,76 0 

Glyc 55,17 0 

P 1,00 1,00 
 

Table E.2 Arithmetic footprint and optimal EM for the IgG producing 

network metabolite values in  

 

Table E.2 Arithmetic footprint and optimal EM for the IgG producing 

network metabolite values in  
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Appendix F – Results from the IgG producing network footprintome automatic reduction 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1 Reduced footprintome for IgG(P) production (normalized to unit) after 2 steps of reduction: Step 1- IgG(P) production, Step 2-thermodynamic reduction. The 

columns represent the reduced set of EMs (307402). The colour green means that the compound is being produced by the EM. The colour red means it’s being consumed 

by the EM. The black means it is neither consumed nor produced by the EM. 
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Figure F.2 Reduced footprintome for IgG (P) production (normalized to unit) after 3 steps of reduction: Step 1- IgG(P) production, Step 2-Thermodynamic reduction, Step 3- Pattern 
clustering with arithmetic averaging. The rows represent extracellular media components. The columns represent average EM clusters (4704). The green gradient represents compound 
production associated with the production of 1 biomass unit. The red gradient represents compound consumption to generate 1 IgG unit. The black colour means that the compound is 

neither consumed nor produced by the EM cluster. 
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