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Resumo

O desenho de meios de cultura desempenha um papel vital na performance dos meios
de cultura nomeadamente na concentragdo celular, viabilidade das células, rendimento e
qualidade de produto produzido. O principal objetivo da presente dissertacdo é desenvolver um
método computacional em MATLAB para o design de meios de cultura in silico com base em
conhecimento metabdlico prévio, sem a necessidade de experiéncias laboratoriais. Foi usado
como caso de estudo uma rede metabdlica para as células de ovario do hamster chinés (CHO), as
células CHO sdo atualmente as principais células de mamifero utilizadas na producdo de proteinas
recombinantes para uso na inddstria farmacéutica e aplicagdes terapéuticas. A técnica da analise dos
modos elementares foi usada para calcular o nimero total de elementary modes (EM) da rede metabolica
CHO, estes séo usados para calcular a footprint (pegada) dos metabolitos extracelulares no meio de cultura
para os diferentes metabolismos celulares. O conjunto de todas as footprints da rede metabdlica foi nomeado
de footprintome. O método “Pattern clustring” foi utilizado para reduzir o footprintome. Duas footprints foram
calculadas para representar a totalidade do footprintome, usando dois métodos de calculo, a média aritmética
de todas as footprints presentes no footprintome e a média ponderada pela energia livre de Gibbs. Comparou-
se os resultados obtidos com dados da literatura e observou-se que 21 dos 26 metabolitos extracelulares
presentes nos dados da literatura estdo dentro do intervalo de variancia dos resultados obtidos.
Também foi desenvolvido um método para calcular meios de cultura especificos baseados no fenétipo
de cada footprint, duas formulas de meios de cultura foram calculadas uma para crescimento celular e outra
para producéo de imunoglobulina G (IgG), a férmula para crescimento celular foi comparada com uma
forrmula de meio de cultura CHO testada em laborat6rio, concluindo-se que esta ferramenta computacional
é capaz de calcular formulas de meios de cultura, que posteriormente podem ser testadas em laboratério.

Palavras Chave: desenho de meios de cultura, analise dos modos elementares, redes
metabdlicas, Chinese Hamster Ovary (CHO)



Abstract

Culture media design plays a vital role in culture performance, namely cell density, cell viability,
product yield and product quality. The main goal of the present M.Sc. thesis is to develop a method
for in silico culture media design based on prior metabolic knowledge of the targeted cell line,
reducing the burden of laboratory experiments. A Chinese Hamster Ovary (CHO) cell line was
used as case study. CHO cells are the main mammalian host used today in the biopharmaceutical
industry for the production of recombinant proteins for therapeutics and pharmaceutical
applications. Elementary mode analysis (EMA) was applied to compute the total number of
elementary modes (EM) of a representative CHO metabolic network. From the full set of EMs,
the extracellular metabolite footprints for different metabolic states were computed. The full set
of metabolic footprints was named footprintome. Footprintome reduction was achieved by pattern
clustering. Two footprints were computed representing all of the Footprintome by averaging
based on number and averaging based on Gibbs free energy. These footprints were compared with
literature data resulting in significant similarities. More specifically, 21 out of the 26 extracellular
metabolites present in the literature data are within the variance intervals of the computed
footprintome. Afterwards a phenotype-targeted design was applied to compute custom culture
media formulas for cell growth and for Immunoglobulin G (IgG) production. The cell growth
formula was compared with a lab tested CHO culture medium formula, showing that this tool is
capable of computing culture media formulas that can be further tested in the lab.

Keywords: culture media design methods, elementary mode analysis, metabolic
networks, Chinese Hamster Ovary (CHO)
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1. Introduction

The optimisation of the composition of culture media has been historically a very
important factor for the performance of cell culture. Historically the main drivers have been the
maximization of cell density, cell viability, product titer and product yield. In many cases the
positive impact of culture media surpasses that of genetic engineering. The creation and
optimization of culture media that supports the growth of microorganisms or cells comes with a
set of challenges, particularly, the creation of methods that can achieve the best results, while
being time and cost effective. There are several methodologies in use today, in this introduction
we will be giving a brief history and definition about the different methods for culture media
design. A more detail explanation about this methods, their advantages and disadvantages will be
discussed in further chapters of this work.

Culture media design started with classical methods using one-factor-at-time experiments
which consists in changing one factor for each experiment until we have a desired result. This
method was primarily used in culture media design until the mid-twenties century, when it was
replaced by design of experiments methods (DoE). One of the early forms of this was the Plackett
and Burman design (PBD) created by Plackett R. L. and Burman J. P.1 in 1946, it is a two level
design method used to detect the top contributing factor, assuming that the interaction between
two or more factors are negligible, PBD is still in use today, primarily for the elimination of non-
contributing factors (screening) in the early stages of culture media design.

A few years later the Central Composite Design (CCD) DoE was created by Box G. E.
P. and Wilson K. B.2 in 1951 to overcome some of the limitations of PBD. The CCD is composed
by 3 sets of points: a factorial set, each having two levels, a center set, whose values are the
median values of each factor, and an axial set that are identical to the center points except for one
factor. Today this design is mainly used in the Response Surface Methodology (RSM) also
developed by Box G. E. P. and Wilson K. B.2, a DoE is ran and then RSM is used to create a
mathematical model that uses statistical design of experiments and regression analysis to obtain
the best formulations This method is still to date, the most used method in the industry to optimise
culture media.

The Taguchi method was created by Genichi Taguchi * in 1992, this method is based on
noise analysis (uncontrollable variables in the experiments), making it a useful method for
measuring the characteristics deviation of the target value. Taguchi method uses an orthogonal
array of experiments and unlike PBD, it analyses the main effect and two factor iterations.

The artificial neural networks (ANN) are a computing system inspired by the neural
connections in the animal brains, the first computational model was created by Warren M. and
Walter P.* in 1943, the technology continued to advance through the century and the first
application of ANN in culture media design was the work done by Glassey J et. al.® in a
Escherichia coli batch fermentation in 1994. ANN can process a large amount of information,
which is useful in culture media design, that often contains hidden patterns and large amounts of
variables.

A genetic algorithm (GA) mimics the process of natural selection by relying on
biologically inspired operators such as mutation, crossover and selection®. These types of
algorithms started to be applied in culture media design in the 1990s. One of the first examples
of this approach used in culture media design was the work proposed by Weuster-Botz D and
Wandrey’, with the optimization of a culture media for a Candida boidinii fermentation.


https://en.wikipedia.org/wiki/Warren_McCulloch
https://en.wikipedia.org/wiki/Walter_Pitts

In this work will also be discussed different analysis tools to determine metabolic fluxes
in metabolic networks. These types of analysis are the basis for metabolic engineering which is
defined as the “direct improvement of product formation or cellular properties through the
modification of specific biochemical reactions or introduction of new ones with the use of
recombinant DNA technology”, as such metabolic engineering uses metabolic networks to
determine metabolic fluxes that characterize cell physiology and control cell metabolismé. The
analysis of a metabolic networks is based on the principle of mass conservation of internal
metabolites within a system®. Depending on what type of analysis we want, there are three main
techniques: metabolic flux analysis(MFA)®, flux balance analysis (FBA)! and elementary mode
analysis (EMA)2. These techniques and how they can be applied in culture media design will be
explain in more detail in the next chapters of this work.



1.1 Culture Media Design Methods

Culture media desigh methods can be classified as (Fig. 1):

o Traditional one-factor-at-a-time
. Advanced statistical/mathematical methods (the most frequently applied today)
. Advanced system biology methods

Culture medium optimization methods

Traditional Advanced Advanced System
(OFAT) Statistical/Mathematical Biology
I |
|| | | || | |
Screening of Optimization of Screening of Optimization of
Factors Factors Factors Factors
H Taguchi | H RSM I— MFA FBA
4 PBD —  ANN EMA
— GA

Figure 1 - Culture media design methodologies . PBD: Plackett and Burman Design; RSM: Response Surface
Method,;(Adapted from: Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M and Tripathi C K M 2017 Strategies for
fermentation media optimization: An in-depth review Front. Microbiol. 78%)

In this context, it is important to distinguish two different problems: screening and
optimization of factors. Screening of factors is typically the first step in a culture media design
project. It aims to identify the principal contributing factors that should be optimized in the
proceeding steps. Optimization of factors aims at optimizing the media components quantities
(typically concentrations) to enforce maximal product synthesis and/or maximal cell growth while
minimizing unwanted by-products, such as lactate and ammonia. Table 1 overviews some of the
published studies for culture media design methods.



Table 1 - Culture media design studies over the years

Screening method
/ DOE
Taguchi
Taguchi
Taguchi
Taguchi
Taguchi
PBD
Taguchi - CCD
Taguchi - CCD
CCD
CCD
CCD
PBD - CCD

PBD - CCD

CCD
CCD

CCD

Optimization method

RSM
RSM
RSM
RSM
RSM
RSM

RSM
GA
GA
GA
GA

ANN

ANN-GA
RSM-GA
ANN-GA
RSM-GA

Experiments

16

9

16

8

18

16
12 -27
18 -27

20

50

17
20-32

270
544
20
36

20

Number of
Factors

12-5

5-2
11
14
12
26

Metabolite

hyaluronic acid
N-acetylchitooligosaccharide
Bioethanol
Mixed alcohols
Amidase
Lipase
Vanillin
Lipase
b-carotene
Lipase
Y-aminobutyric acid

Glycolipopeptide
Biosurfactant
Exopolysaccharides

2-Phenylethanol
Eicosapentaenoic acid
yessotoxins
avermectin B1b
Cholesterol Oxidase

Lipase

Cell line

Streptococcus sp.
Streptomyces chilikensis
Saccharomyces cerevisiae
Clostridium pasteurianum
Geobacillus subterraneus
Candida rugosa
Psychrobacter sp.
Rhizopus chinensis
Daucus carota
Aryabhattai SE3-PB
Streptococcus thermophilus
Pseudomonas aeruginosa

Cordyceps militaris
Helicoverpa zea (insect cell)
Kluyveromyces marxianus
Nannochloropsis gaditana
Dinoflagellates
Streptomyces avermitilis
Streptomyces Sp.

Soil Microorganism (Not
Specified)

Optimization

112%
126,86%
37,50%
78,48%
113,79%

120%
141,33%
618,45%

20%

96,00%
550,00%
32,00%
23,00%
60,00%
50,78%
132,14%
49,60%
19,41%
10,56%

Year

2009
2019
2019
2013
2016
2008
2012
2008
2008
2018
2018
2017

2010
2002
2004
20015
2011
2014
2015

2007

(Experiments and number of factors are represented for screen method and Doe method respectively in cases were both take part in the study).

Reference
13
14
15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30

31

32



1.1.1 Plackett and Burman design

The PBD method focuses on the main effect of each factor, assuming that, interactions of
two or more factors are negligible, it is used for factor screening in the beginning of a culture
media design process. PBD is a two-level factor design, a high level (+) and a low level (-), there
are two types of variables: “real variables”, who’s values changes during experiments, and
“dummy variables”, whose values remain the same. Classical experiments before the execution
of the PBD helps in the selection of independent and dummy variables. Table 2 represents a
Plackett and Burman design of experiments for 12 runs and 11 two-level factors, usually in culture
media design, factors values represent concentration values of different compounds in the media.

Table 2 - Plackett and Burman design of experiments

FACTORS
RUN | X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 + + + + + + + + + + +
2 = + = + + + = = = + =
3 - - + - + + + - — — +
4 + = = + = + + + = = =
5 - + — - + - + + + — —
6 = = + = = + = + + + =
7 - - - + - - + - + + +
8 + = = = + = = + = + +
9 + + - - - + - - + — +
10 + + + = = = + = = + =
11 - + + + — — — + — — +
12 + = + + + = = = + = =

The effect of each factor is given by Eq. 1:

Eff=2*(ZYh—ZYl)/N) (1)

Where Eff is the effect of a factor (objective function), Yh is the value given for the high
level experiments, Yl is the value given for the low level experiments and N is the total number
of runs.

The experimental error is calculated by using the effects of the “dummy variables” (Eq.
2).

Ed?
Veff =) — (2)

Where Veff is the variance of the effect Ed, Ed is the effect of a “dummy variable” and n
is the number of “dummy variables”.



The standard error is the square root of the variance Vef f and the significant level of the
effect of each variable is determined by a t-test distribution and the variables with a confidence
level greater than 90% or 95% are chosen.

Examples of culture media design utilizing PBD are the statistical evaluation of a culture
media components for lipase production by Pseudomonos fluorescens made by Rajendran A. et.
al. 8 and the screening of components for protease production by Bacillus safensis in a submerged
fermentation *.

Its main advantages are the screening of high number of factors using a low number of
experiments, capable of screening n factors in n + 1 experiments, saving both time and money at
the cost of neglecting two factor interaction, remaining a simple and practical screening method
to use in the initial stages of culture media design.

1.1.2 Taguchi design

Taguchi method is based in an orthogonal array of experiments. Taking focal point in
noise factor analysis (uncontrollable factors that affect the result of experiments and generally
cause loss of quality), through the use of a signal-to-noise ratio (S/N), Taguchi methodology can
be used in the initial stages of culture media design to identify which factors are more influential.

First we identify the control factors (controllable factors), their levels and the appropriate
orthogonal array (based on the degrees of freedom), once we got the measured experiment values,
we calculate the (S/N) ration for each experiment. There are three signal-to-noise ratios: smaller
the better, larger the better and nominal the best. Table 3 describes these three ratios.

Table 3 - Taguchi Signal -to -Noise Ratios

n
S 1
Smaller the better (N) = —10 = log10[ (E) * Z Yi?] 3)
lr=ll
§)=-so-wam () ;
— | = — * — ] * ——~
Larger the better N 0g10[ n)" L Yi2 ] (4)
i=
S Mean?
Nominal the best (ﬁ) =10 * log10 Variance ®)

Where Y is the experiment result, n is the total number of experiments and for the nominal
the best S/N ratio, the Mean and Variance are for a chosen set value.

Next, we calculate the S/N value for each level of the control factors. Eg. 6 shows the S/N
values for the control factor {i} level {j}.

k (6)

=l
=«

n
ij=z
k



With n being the total number of experiments with the factor {i} on level {j}.

The S/N values for the different levels of a factor are compared between each other and
those with the highest value are chosen, being the levels that minimize the effect of noise. With
Taguchi method we can chose the set of control factors levels that minimizes the effect of noise
for the objective function in study.

An example of culture media design study using Taguchi method is the work done by
Makowski K. et. al**. It comprises the optimization of a culture media, for the production of
microorganisms active in odorous compound removal. Another example is the optimization of
media component for the production of N-acetylchitooligosaccharide from chitin by Streptomyces
chilikensis .

Contrary to PBD method, the Taguchi is a more complex and complete approach, that
can detect 2 factors interaction but is still far away of describing a whole microorganism
metabolism.

1.1.3 Response Surface Methodology

Response surface methodology (RSM) it’s a complex mathematical method for the
optimization of culture media design, which includes statistical experimental design and
regression analysis?. It is used after the implementation of a PBD or CCD design of experiments.
RSM optimization includes three main steps, experimental design (screening of factors), the path
of steepest ascent/descent and the quadratic regression mode.

After identifying the main effects, the next step is to explore the region of the operation
conditions. This region is called the response surface (Fig. 2) and the goal is to conduct a series
of experiments to find the path of the steepest ascend or descend given by the initial set of
experiences *. A first order model can be used (Eg. 7), containing only the main effects and its
interactions.

>

Figure 2 - Response surface for an exemplary model



Y = a0+ aix1 + azx2 + anxix2 + e (7)

Where Y is the predicted response, e represents the effects of uncontrollable variables
(noise) and a; the regression coefficients of a factor i.

In RSM, when close to the optimum region, in which a first order model is no longer
adequate, it is also applied a second order model. The second order regression model is presented
in Eq. 8:

N N N
Y = a0+ Z aiXi + Z aijXiXj + Z aiiXi? (8)
i=0 i<j i=0

Where a;X; are the linear terms, a;;XiX; are the interaction terms and a;iX? are the square
terms.

The main advantage of using RSM is the ability to study the effects of the factors in the
response throughout the entire surface region, capable of predicting an optimum response.
Examples of culture media design using RSM are the culture media optimization for [3-carotene
and biomass production in Dunaliella salina in mixotrophic culture®, and the optimization of
lipase production in Bacillus aryabhattai (??).

However, the RSM also has its limitations, the complexity of microorganism metabolism,
its nonlinear nature and the low availability of quality kinetic data®’, makes the modeling of
biological reaction systems a challenge. Also it is difficult to study interaction of five or more
factors, this is a problem because culture media can have up to 100 different components, this
coupled with the fact that the experiment numbers needed to optimize 100 factors would be
unfeasible to do explains the reason why RSM optimization in culture media design is limited to
3-5 factors (Table 1).

1.1.4 Artificial neural network

Acrtificial neural networks (ANN) are based on the structural aspect of the network of
neurons in the brain. It’s a mathematical system that adapts to the information flowing through
the network, during the learning “stage”. Given a set of training data the network learns to output
certain data based on the input given, ANN are useful in culture media design because they are
able to compute and learn every type of function, acting as a black box model for solving complex
functions that describe microorganism metabolisms®.

The structure of the neural network its comprised in layers of “neurons”, a “neuron” is a
mathematical function that model the functioning of a biological neuron, that computes the so
called activation value. The first layer of the structure it’s called the input layer were its given the
initial information, this layer of neurons is then connected to other layers until it reaches the output
layer.



There are many types of neural networks Fig. 3 shows a simplistic structure for a multi
layered perceptron neural network3® which comprises multi layers of connected neurons.

N

output layer

Vs
b
og

input layer
hidden layer 1 hidden layer 2

Figure 3 - Multi layered perceptron neural network

The activation value of a neuron is comprised by the sum of all connections values from
the previous layer, a connection value is given by the activation value from the originating neuron
and a weight value associated to that connection as presented by Eq. 9.

A= Zn: wiai (9)

Where A is the activation value of a neuron, n is the total number of neurons in the
previous layer, w is the specific weight associated to a connection {i} and a the is the activation
value from the neuron were connection {i} originated in the previous layer. The activation value
is also subjected to an activation function that is mainly there to convert an input signal to an
output one that can be used by the network, the activation function adds a layer of non-linearity,
without this the neural network would be nothing more than a one-degree polynomial function,
being just able to solve linear functions. The most used activation function is the sigmoid function
(Eq. 10) that comprises the activation value between 0 and 1.

o(A) = (10)

1+e 4



The neural network then learns to give a desired output value by running a set of learning
data, utilizing a technique called backpropagation, the weights of each connection are modified
so the network outputs the respective desired value. The objective is then, like RSM, to predict
new data. An example of culture media design using ANN is the enhance of production of
Avermectin B1b by Streptomyces avermitilis*®. Also, various studies were conducted comparing
RSM to ANN, showing that ANN as an overall better performance that RSM, with higher
optimization and precision in predicted values* 4 42,

ANN is able to process large amounts of data, which is suited to conduct culture media
design, although studies using ANN with more than 3- 5 factors (Table 1) are, to our knowledge,
inexistent in the literature. This is due to the fact that an ANN needs an initial set of training data,
usually CCD is used to create this training set, needing a higher number of experiments the more
factors we have in study, which can be costly and time consuming. The access to the training data
is the main limitation factor in culture media design using ANN.

1.1.5 Genetic Algorithm

Genetic algorithm (GA) mimics the process of natural selection and it’s based in the
principle “survival of the fittest™*3, Different factors (genes) are encoded in a string
(chromosome), the best performing individual is unchanged and the rest can “mate” in
performance order.

The GA optimize for each generation the values of a fitness functions using mainly three
types of rules to create the next generation:

e Selection rule, selects the individuals known as parents that contribute to the
population of the next generation.

e Crossover rule combines two parents to form children for the next generation.
e Mutation rule applies random changes to individual parents to form children.

Fig. 4 represents the basic workflow of a genetic algorithm?,

‘ Initialize Population ‘

v

>< Fitness Calculation

. Yes
Terminate? ™ ——» Results
. //
\v/

lNo

Selection

v

Crossover

'

— Mutation

Figure 4 - GA basic flow scheme
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Having the previous scheme (figure 4) as example, a generic algorithm can be
implemented into culture media design (Figure 5).
Fig. 5 shows how a genetic algorithm can be implemented into culture media design®

01010 10011 10011
HyPe p Lactalbumin Hydr. Depleted medium
10/30 of C 19/30 of C pa 19/30 of C s
6.7 g/l 21.5 g/l 63.3 ml/l|

Generation 2 Ind.l
[17101 Jo10101001 110000 [1001 110010 [00010 00010 [01001 [1001 1 [01011 |

Cross- over

(10001 Jo0101 [10000 [00110 [10101 |01001 00110 [11001 [10111 00101 [01111]
Generation 2 Ind.1l
Generation 3 Ind. XX

[10001 Joo100]10011 [10000 [1001 1 [1001 0 J0001 0 J00010 01001 [11011 [01011 |

mutated

[11101 Jo1011 [10000 Jo0110 [10101 01001 Joo110 [11001 [10111 Jo0101 [01111
Generation 3 Ind. X

01011 10011 11011
HyPe p Lactalbumin Hydr. Depleted medium
11/30 of C oy 16/30 of Crra | 27/30 of C o
7.3 g/l 18.1 g/l 90 ml/l

Figure 5 Example of culture media optimization using GA

In this example, the factors encoded were media components concentrations and the
parents were selected for maximum cell density and growth rate (fitness function). For every
generation a new set of media components was created and tested.

The main advantage of the GA is that, there is no guessing between each experiment as
the direction of experiments is set automatically by experimental data, like so, the error between
predicted and experimented values doesn’t exist, unlike RSM that relies on a second order model
to predict the response of complex cell metabolisms, with an increasing number of factors this
can often result in poor estimation of optimal formulations®, this is not a limitation in the case of
GA. Various studies were carried out for culture media design using GA% 2° 2 7 and although
these studies shows good optimization values and higher number of factor when compared with
other methods the main downside is the high number of experiments needed (Table 1).

Various studies were conducted comparing RSM coupled with GA (RSM-GA) and ANN
coupled with GA (ANN-GA), were the genetic algorithm is used to optimize the mathematical
models created by RSM and ANN. In these studies, ANN-GA performed better than RSM-GA?
$1(Table 1), making ANN-GA one of the best methods to use in culture media design.
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1.2 Metabolic modelling methods

All the culture media design methods described above are empirical in nature, i.e. they
disregard knowledge on the biological mechanisms underlying cell growth and product synthesis.
They rely instead on intensive experimentation to acquire cause-effect data for a very high number
of media modifications. A step further could be the use of more rational design methods based on
metabolic networks which are currently widespread in the literature *¢ 47 8, The reconstruction of
these networks allows to understand the interconnectivity and functional relationships between
all biochemical reactions of a biological system. It is currently relatively easy to synthesize a
detailed metabolic network of most of the cell lines/strains used for industrial production. In some
organisms, a genome scale reconstructed metabolic network can be found in specific databases
like BIgG (Genetic and Genomic knowledgebase of large scale metabolic reconstructions) °.

A metabolic network is a system where metabolites (nodes) are linked to each other by
enzyme catalysed reactions (edges) where directionality of connection means mass conversion
(arrow) (see Fig. 6 for illustration). Reactions that transform metabolites within the system are
considered internal reactions, while reactions involving the transport of metabolites in and out of
the system are considered exchange reactions. Figure 6 illustrates this concept with 5 internal
metabolites (A, B, C, D, P) and 4 external metabolites (Aext, Bext, Dext, Pext)®.

Figure 6 - Example of a simple metabolic Network

In this example reaction ry, r4, I's, and rg are considered exchange/transport reactions while
the other are the internal reaction. The analysis of a metabolic networks is based on the principle
of mass conservation of internal metabolites within a system®. Under the hypothesis of a well-
mixed system, the general material balance equation applies (Eq. 11).

d
EC=SXT—|JXC (11)

Where C is the metabolite concentration vector, r is the reaction rate vector, |l is
the specific growth rate and S is the stoichiometry matrix. The stoichiometry matrix S contains
the stoichiometry of the network metabolites in each reaction, where the rows are the network
metabolites and the columns are the network reactions.

12



Eq.12 illustrates the stoichiometry matrix for the metabolic network of Fig. 6.

P T Ty T4 T B T Ty Ty

A 1 -1 ] o -1 0 0 o 0

Ble o o o 1 4 4 a4 o (12)
§=¢|lo 1+ 4 0o o 1 o 0 ©
" o|loe o 1 o © 0 0 0 -

plo o 1+ 4 o 0o 2 o o0

At steady state, there is no accumulation of internal metabolites in the system and Eq. 11
can be simplified into Eqg. 13.

Sxr=0 (13)

An additional restriction is needed (Eqg. 14), due to thermodynamic constraints stating that
irreversible reactions {j} have to proceed in the appropriate direction and require to have positive
flux values

rj =0 (14)

There are 3 main techniques to solve Eg. 13 with de thermodynamic restriction (Eq. 14):
metabolic flux analysis (MFA), flux balance analysis (FBA) and elementary mode analysis
(EMA). These are briefly reviewed in the next sub-sections.

1.2.1 Metabolic flux analysis (MFA)

In MFA the flux vector is divided into two vectors, a vector containing the measured
metabolic fluxes rm, and a vector contain all the unmeasured fluxes ry, in this technique we solve
Eqg. 13 as:

SuXru=8SnX1rm (15)

With the Sy and Si being the stoichiometric matrix of the unmeasurable and measurable
fluxes respectively. We want to measure enough fluxes so that, the matrix S, becomes invertible>
and we can solve Eq. 15 like Eq.16:

ru= —Su > X SnXTn (16)
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Then we can obtain the unmeasurable flux vector ry by solving Eq 14 15 and 16 in a
system. MFA relies on measuring enough metabolic fluxes until we can calculate the unmeasured
ones. Note that this technique only obtains a single metabolic flux vector for a specific growth
condition, changing this growth condition will result in a different rr, vector leading to a different
metabolic flux vector, an example of this is the study by Wilkens et al.>, lactate production was
compared in a CHO cell line grown on two different substrates, namely glucose and lactose.

MFA has been applied in the context of culture media design as a “screening of factors”
approach. MFA is typically applied for in-depth analysis of the effect of media factors on carbon
flux distribution® 541t is however not a technique that can be applied for quantitative design of
media composition.

1.2.2 Flux balance analysis (FBA)

FBA is a technigue that can be used for undetermined systems, i.e. when measured fluxes
are not enough to invert matrix S,. FBA implies an optimization according to some objective
function alongside several flux constraints, such as, substrate consumption, product secretion,
thermodynamic constrains, etc. Like MFA, FBA calculates one flux vector for a given growth
condition. Fig. 7 illustrate a typical FBA problem for the small network shown of Fig. 6

Obj: max r,

s.t.: S-r=0

Figure 6 - FBA example, restrictions and objective function

In this example our objective function is to maximize the production of the metabolite
P(rs) while applying substrate consumption (r1), product excretion (rs;) and thermodynamic (ra-
57,9) constrains.

The main challenge of this approach is to define an objective function that best describes
the metabolism of a given growth condition® %.FBA was successfully implemented to develop a
culture media supporting high cell density growth of Bacillus coagulans®’.
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1.2.3 Elementary mode analysis

Elementary modes of a cell are defined as the unique set of reactions to support steady
state operation of a metabolic network. Fig. 8 *° shows all elementary modes present in the simple
network of Fig. 6.

Figure 7 - Elementary modes of the Fig. 6 network

The universe of solutions of Eq. 13 together with the inequality constraint (Eq. 14) takes
the form of a convex polyhedral cone®, containing an infinite number of solutions, i.e. the
admissible flux space . Fig. 9 represents the admissible flux space for the network in Fig.6.

Figure 8.- Admissible Flux Space of the Fig. 6 network
elementary modes

Elementary modes must also obey to the non-decomposability constraint. This non-
decomposability constrain means that one EM vector cannot be described by other two or more
vectors, meaning that each elementary mode its unique in the network.
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After EMs calculation we obtain the EMs matrix that has all the EMs of the metabolic
network Eq.17.

EM, EM; EM; EM, EM: EMs; EM; EM,

fy 1 Q 1 1 0 1 1 1

ra 1 0 Q 1 a o 1 0

fy 0 1 0 1 0 o 0 1
EM = fa 0 i o 1 2 2 2 1 (17)
—_ fs 0 0 1 0 0 1 0 1

T 1 1 0 0 0 0 1 1

5] 0 0 0 0 1 1 1 0

e 1 -1 1 0 1 ] o 0

f 0 1 0 1 0 0 0 1

The rows of the EM matrix represent metabolic reactions while the columns represent the
elementary modes of the network. The values in the matrix represent the “weights” (i.e.
participation strength) of a given reaction in a given EM. Note that the EM1 vector (1,1,0,0,0,-
1,0,1,0)" may be translated into a flux vector (2,2,0,0,-2,0,2,0)™ by multiplying a positive scalar
factor, for example 2. Negative reaction “weights” apply only for reversible reactions, meaning
that the particular reaction takes place in the opposite direction of the positive flux direction in
that particular EM. Flux calculations are thus obtained by applying a linear combination of EMs
according to Eq.18

r= z AEM, (18)
i
With:
220 (19)

There is a parallelism between Egs. 18-19 and steady state Eqs 13-14. There is however
a fundamental difference when doing flux calculations by applying EM analysis. EMs embody
knowledge on regulation of metabolic processes. This is so because one EM is interpreted as a
metabolic state, i.e. it is not only the metabolic fluxes but also the genes, mRNAs, proteins, that
support that particular steady state flux distribution. For example, Tunahan Cakir et al.(2007)%
correlated transcriptomic data to active EMs in Saccharomyces cerevisiae.
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1.4 M.Sc. thesis objectives

The general objective of this thesis is the development of a rational design method for
culture media composition customized to the cell line and/or product. This method should act as
a proof of concept for the future development of a toolbox. Instead of an empirical design
approach where culture media composition is optimized resorting to intensive lab
experimentation, the goal here is to develop an In silico, experiment-free culture media design
method. Given that the knowledge of the metabolic network is easily available in public domain,
this novel methodology should be based on prior knowledge of the metabolic network of the target
cells. Moreover, since the elementary modes embody additional information on regulation, the
elementary modes framework will be privileged over the MFA or FBA techniques. As such, the
specific thesis objectives are the following:

Objective 1: Development of an In silico culture media design method based on prior
knowledge of the metabolic network that drastically reduces the experimental activity for culture
media optimization. In limit it should be experiment-free.

Objective 2: The In silico culture media design method should allow to compute culture
media formulations customized to the cell line and/or product expressed by the cell line.

Objective 3. The method to be developed should be based on elementary modes
framework. The advantage of the EM framework is the inclusion of high level regulatory
information that is easily accessible.

Objective 4: Implement the EM culture media design method in MATLAB. The input
information is the metabolic network of the target cell line including detailed information of its
biochemical composition and the synthesis of the target product. The output of the method is
theoretical culture media formulations for the particular cell line and product.

Objective 5: Apply the method/tool to design In silico culture media formulas for
Chinese Hamster Ovary (CHO) cells as illustrative case study and compare computed culture
media formulations with literature data.
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2. SBEMedia: a toolbox for In silico

culture media design

In this thesis the method for the SBEMedia toolbox was developed for In silico
experiment-free culture media design. The methodology applied in this thesis is based on the
concept of elementary modes and the respective footprint. Fig. 10 illustrates a cell growth
elementary flux mode for Chinese Hamster Ovary Cells (CHO). The nodes in green represent the
exchange of materials with the extracellular media for the cell to be able to grow according to the
particular elementary mode.
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Figure 9 - Example of a Chinese Hamster Ovary Cell elementary mode

The SBEMedia toolbox implements the following sequence of steps to compute In silico
culture media formulations based on prior knowledge of the metabolic network:

Step 1. Input metabolic network: The metabolic network comprising a list of representative
metabolic reactions including i) the synthesis of the target product and ii) the exchange reactions
of media components for the synthesis of the target product, are inputted to the system;

Step 2. Computation of elementary modes: The full set of elementary modes of inputted
metabolic network are calculated using elementary mode analysis algorithms; the resulting full
set of elementary modes displays the full range of possible metabolic states for the cells to realize
their biological function.

Step 3. Computation of the footprintome: The metabolic footprint of each elementary mode is
computed and merged together in a full matrix comprising all possible modes to interact with the
extracellular environment. The full set of footprints is denominated “footprintome”.
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Step 4. Automatic footprintome reduction: The footprintome is reduced based on three steps:
eliminating EMs that don’t produce the target product (this will later be explain), eliminating EMs
that are thermodynamically unfeasible and clustering EMs that have the same phenotype (same
list of external metabolites being produced and consumed).

Step 5. Case-dependent footprintome reduction based on optimal metabolic criteria. In this
step, a subset of elementary modes and respective footprints are selected such as to enforce a
desired metabolic state. This step is case dependent and implies the definition of optimal
metabolic criteria for the target cell

Step 6. In silico culture media formulations: Computation In silico of culture media
composition based on the final reduced footprintome.

All methods were implemented in MATLAB version R2019a%°. What follows are the
details of each step provided.

2.1. Input metabolic network

The metabolic network is inputted as a MATLAB data structure with a list of reactions.
To illustrate this, we specify below the metabolic reactions of the simple network of Fig. 6

Network = {
Internal reaction:
‘A >R’

A >

B ->P°

‘C -->P+D’
‘C<-->B’
External/Transport reactions
A’

‘<R’

P>

‘Do>’

¥

The exchange reactions, which must be placed in the end of the reactions list, implies a
decision on the identity of the culture media components whose concentrations need to be
optimised.

A more realistic metabolic network, considering the production of biomass and product
is described below in the CHO case study.

19



2.2 Computation of Elementary modes

The metabolic network is parsed and processed into a MATLAB data structure using the
efmtool package version 4.7.1. This MATLAB package is freely available for academia and may
be accessed at https://csb.ethz.ch/tools/software/efmtool.html. The efmtool package builds: i) a
list of metabolites, separated as intracellular and extracellular, ii) a list of metabolic reactions,
separated as intracellular and extracellular, iii) creates the stoichiometric matrix S (Eq. 12) and
internal and external stoichiometric submatrices. It also computes the elementary modes and
delivers the result in the form of elementary modes matrix EM (Eq. 17). The method used to
calculate the EMs is described in detail in Terzer et al. ¢, The determination of elementary modes
by this method suffers from the computational explosion problem®. It can be thus applied only
to small and medium scale networks, it cannot be applied to genome scale networks.

2.3 Computation of the footprintome

Once the network elementary modes are computed, the next step is the computation of
the footprintome. The footprint of an elementary mode may be seen as the extracellular phase
modification pattern characteristic of the particular elementary mode. This footprint is computed
from the subset of exchange reactions, in and out, and their respective weights in the EM matrix.
Thus the first procedure is to reorganize the EM matrix by considering the exchange reactions
only, and eliminating all others, resulting in Eq. 20.

EM’s
X11 X1j

EMe*h = (20)

Exchange Reaction

The stoichiometric matrix S is also reorganized by considering only the stoichiometry of
the exchange reaction (Eq.21).

Exchange Reaction

gexch —

(21)

Metabolites

The footprintome of the cell results from the multiplication of these two matrices (Eq.22):

footprintome = — S€¥°h x EMexch (22)
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This operation eliminates all the intracellular metabolites, resulting in macroscopic
reactions defining the stoichiometric conversion of extracellular substrates into extracellular
products. Note that the minus sign is required because the metabolic reactions are defined in the
perspective of the interior of the cell, i.e. the positive direction of an exchange flux is from the
extracellular to the intracellular phase. With the minus signal the perspective is flipped, such that
all culture media substrates take a negative stoichiometric coefficient, whereas all products of the
network take a positive coefficient. The final result is thus a matrix with rows representing culture
media components, columns representing elementary mode, and the matrix values are
stoichiometric conversion factors.

2.4 Automatic footprintome reduction

The footprintome is typically a large matrix that comprises all possible interaction modes
with the culture media. It may be reduced automatically by applying the following criteria:

- Elimination based on selected product. Footprints that do not produce the target product
are not useful for design purpose thus eliminated. The target products are typically
biomass and/or recombinant product. As example, if the objective is to design a cell
growth culture media, then only elementary modes with biomass production are selected
for further analysis while all other eliminated. After this reduction step, the footprintome
is normalized column wise by dividing the footprint vector by the stoichiometric
coefficient of the target product. In this way the footprint of each EM is interpreted as the
quantities of substrates consumed and sub-products produced per unit of target product
synthesized.

- Thermodynamic reduction. In this step a thermodynamic elimination of elementary
modes based on the Gibbs free energy of reaction of the metabolites in each EM is
performed. All elementary modes with positive Gibbs free energy of reaction are
considered unfeasible thus eliminated. More details on the calculation of 4G are
provided next.

- Clustering based on footprint similarity (Pattern Clustering). Many elementary modes
footprints have the same phenotype (same list of external metabolites being produced and
consumed). These are clustered together.

2.4.1 Calculation of elementary mode Gibbs free energy of
reaction (AG°r)

The change in the Gibbs free energy of formation of a substance is the difference between
the free energy of a substance and the free energies of its elements in their most
thermodynamically stable states at standard-state conditions. The Gibbs free energy of reaction,
AG®, is a measure of reaction spontaneity (AG® < 0) for constant pressure and temperature
processes which describes the majority of the biological systems®.
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Reaction 1 — Example of a reaction

ald + bB —» cC + dD

For reaction 1, the standard Gibbs free energy of reaction is given by Eq. 23:
AG’r = ¢ * AG°f(C) + d * AG°f(D) — (a * AG°f(A) + b * AG°f(B))(23)

Where AG® is the metabolite standard Gibbs free energy of formation. AG depends only
on the difference in free energy of products and reactants (or final state and initial state). AG is
independent of the path of the transformation®. With this in mind, the EMs are considered to be
macroscopic reactions that transform a number of extracellular substrates into a number of
extracellular products. The AG® was calculated for each EMs and whenever AG® >0 (non-
spontaneous reactions) the respective EM is eliminated from the list. The metabolite standard
energy of formation data were taken from the eQuilibrator®® database, that uses the group
contribution metodologies® to estimate the Gibbs free energy of formation of metabolites.

For 1gG the AG® value was not found in the literature alongside with that of biomass of
CHO cells. For these complex products the AG® was computed from the respective reaction of
formation in the network of IgG (reaction 78) and biomass (reaction 69) respectively, as shown
in Eq. 24.

AGYf = Zr_lai X AG°f (M) (24)

With n being the number of metabolite reactants in the reaction, ai are stoichiometric
coefficients and 4G%M;) the standard Gibbs free energy of formation of the metabolite i.

2.4.2 Clustering based on phenotype similarity.

In this step, after grouping the footprints together based on their phenotype the centroid
position of each cluster is computed based on the arithmetic average of the metabolite values (Eq.
25).

Y. footprinti
B n

F

(25)

With F being the centroid footprint and n the number of footprints under consideration.

Note that Eq.21 will also be applied to do the arithmetic average of all EM in a
footprintome in chapter 3.4, “Comparison with experimental data”, alongside a second method,
the weighted average of the footprintome by the AG°r of each EM, shown in Eq. 26.

_ YPAGrixX EMi
 YMAGOT

(26)

22



2.5 Case-dependent footprintome reduction based on

optimal metabolic criteria

A much smaller set of elementary modes and respective footprints are selected based on
optimal metabolic criteria. The optimal metabolic criteria are case dependent. A typical objective
might be the elimination of undesired metabolic byproducts secreted to the culture media. This is
achieved by eliminating all elementary modes that produce the particular byproduct. In the CHO
case study, hypothetical culture media that eliminate the production of lactate and ammonium is
targeted. Another important criteria, especially for animal cell lines, is the media osmolarity.
Culture media formulations that lead to a large increase in osmolarity should be eliminated (more
to this will be discussed in the case study).

2.6 In silico culture media formulations

The final step is the computation of culture media formulas from the remaining EMs. At
this stage only a small set of elementary modes survives the elimination/selection process.

It is possible to choose an optimum EM from the remaining set of EMs. For each criteria
implemented, elementary modes were given a score value between 0 and 1, dependent on the
criteria value of the respective elementary mode. The lower the score value, the better the criteria
value of an elementary mode is, compared with other EMs. If the objective is to minimize the
criteria value, then Eq. 27 is applied:

S o Criteriai 27)
coret= max(Criteria)

With Score and Criteria, being vectors containing the score and the criteria values of the
EMs for the criteria{i} and max(Criteria) being the highest values in the Criteria vector.

In cases where we want to maximize a criteria value, Eq.28 is applied:

Criteriai
Scorei=1— ( ) (28)

max(Criteria)
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The Total Score vector, comprises the final score for each EM, it is the sum of the score
vectors of all criteria implemented (Eq. 29).

n
Total Score = Z Scorei (29)
i

With n being the total number of criteria implemented.

The EM with the lowest total score value is chosen as the optimum one. Note that the
final culture media formula is a vector whose elements represent the stoichiometric quantities of
culture media components per unit of target product produced. To transform it in concentrations
we need to multiply the culture media vector by the concentration of the target product,

(Cproduct) as shown in Eq. 30.

C=0p X Cproduct (30)

With C being the concentration vector of metabolites and Op the optimal EM chosen.
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3. Results and discussion

3.1 Chinese Hamster Ovary Cells (CHO) metabolic

network

To illustrate the application of this method, a Chinese Hamster Ovary (CHO) cell line
expressing an antibody (IgG) was selected as a case study. CHO cells are currently the workhorse
in the biopharmaceutical industry to produce monoclonal antibodies. It is probably the most
important cell line in the biopharmaceutical industry today®’.

The metabolic network used in this thesis was adapted from the work published by Duarte
et al.%. In this study the authors adapted and validated the CHO metabolic network from previous
published works (Quek et al.®®, Sengupta et al.”®, Zamorano et al.”) and complemented the model
using 'H-NMR (Proton nuclear magnetic resonance) exometabolomic analysis to quantify
supernatant metabolites along culture time, under butyrate-treated conditions.

In this thesis the network was simplified by eliminating ATP, NADH, NADPH and
FADH2 and respective oxidative phosphorylation reactions. Thus the simplified metabolic
network closes the carbon and nitrogen balances, but does not close the oxygen and hydrogen
balances. The simplified CHO metabolic network has 114 reactions (79 intracellular and 35
exchange reactions) and 81 metabolites (46 intracellular and 35 extracellular). The full list of
reactions is provided in Appendix A.l. The target network “products” are biomass (X) and
antibody (IgG). The synthesis reaction of CHO biomass sets the amounts of compounds in nmol
required to synthesize 1 unit of CHO biomass. One unit of CHO biomass corresponds to 10° cells
or a CDW of 271 ug.

Reaction 2 - Biomass synthesis reaction

160.1015 Ala + 235.2056 Glu + 70.3787 GIn + 174.6799 Gly + 114.9787 Ser + 147.4132
Lys + 157.4070 Leu + 82.6648 lle + 91.8543 Arg + 169.492 Asp + 95.7754 Thr + 118.3569 Val
+40.0354 Met + 67.4027 Phe + 47.4956 Tyr + 36.2551 His + 55.559 Pro + 70.3787 Asn + 8.943
AMPRN + 4.878 Cholesterol + 14.9321 CMPRN + 4.0108 dAMP + 2.6829 dCMP + 2.6829
dGMP + 4.0108 dTMP + 0.813 DPG + 75.609 Glycogen + 16.9104 GMPRN + 18.699 PC +
7.046 PE + 0.271 PG + 2.71 Pl + 0.813 PS + 2.168 SM + 8.943 UMPRN + 9.2297 Trp --> 1 X

The 1gG synthesis reaction reflects the amount of compounds in nmol needed to
synthesize 1 mg of IgG.

Reaction 3 — Antibody IgG synthesis reaction

428.7 Ala + 362.75 Glu + 351.76 GIn + 516.64 Gly + 934.36 Ser + 472.67 Lys + 516.64
Leu +175.88 lle + 307.79 Arg + 296.8 Asp + 626.57 Thr + 714.51 Val + 65.954 Met + 285.8 Phe
+ 285.8 Tyr + 164.89 His + 505.65 Pro + 263.82 Asn + 142.9 Trp + 10.992 GDPFuc + 54.962
UDPNAG + 32.977 GDPMann + 21.985 UDPGal + 21.985 CMPSialic --> 1 P
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The culture media components that will be subject to optimization in the following section
are those present in the exchange reactions with positive influx to the intracellular phase. These
are:

Glucose (Glc), Glutamate(Glu), Serine(Ser), Lysine(Lys), Leucine(Leu), Isoleucine(lle),
Arginine(Arg), Aspartate(Asp), Threonine(Thr), Valine(Val), Methionine(Met),
Phenylalanine(Phe), Tyrosine(Tyr), Histidine(His), Proline(Pro), Choline, Asparagine(Asn),
Tryptophan(Trp) and Pyruvate(Pyr).

In the following sections, custom culture media will be developed for the specific cell
line growth specified by reaction (2) and for the specific 1gG specified by reaction (3) by
determining the optimal quantities of the exchange compounds listed above. Obviously, these
exchange compounds do not cover the complete set of media components in a typical CHO culture
media, which has typically more than 100 components. In future studies, this network could be
enlarged to include additional media exchange components.

3.2 Computation of CHO Elementary Modes

The complete set of elementary modes was computed for the CHO metabolic network
using the efmtool’. The elementary modes count of medium and large metabolic networks can
be very high, in the order of millions™. To facilitate the computation of elementary modes, it was
considered two different scenarios:

i) The metabolic network includes the biomass synthesis reaction only (without the
1gG synthesis) resulting in the biomass elementary modes (biomass-EMs).

i) The metabolic network includes the IgG synthesis reaction only (without the
biomass synthesis reaction) resulting in the product elementary modes (product-
EMs).

By removing the biomass synthesis and IgG synthesis reactions of the network, further
reactions needed to be removed in order to not create metabolic dead ends for specific intracellular
metabolites. As a result, for the biomass producing network the 1gG glycosylation reactions were
also removed, resulting in a 106 reaction network (Appendix A, Table A.2), for the 1gG producing
network the lipid synthesis reactions were removed, as well as some reactions in the nucleotide
synthesis and glycogen synthesis metabolisms, this also led to the removal of the Choline and
Glyc3PC exchange reactions. The final number of reactions in the 1gG producing network was
92 (Appendix A, Table A.3)

The final count of Elementary Modes obtained is shown in Table 4

Table 4 Elementary mode count of the biomass and product producing networks.

Without With
ATP/NADH/NADPH/FADH2 ATP/NADH/NADPH/FADH2
Biomass-EMs | 218538 1987 460
Product-EMs | 313523 1768 927
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To note that the inclusion of oxidative phosphorylation reactions increases very
expressively the EMs count. The overall computation time for the biomass producing network
increases from 30,420s to 267,63s, and in the IgG producing network from 27,72s to 206,80s,
roughly a 10-fold increase in both networks. Although the computation time of EM for the more
complex metabolic network wouldn’t take a deterrent amount of time for the making of this work
the computation of the respective footprintome visualizations would. For this reason, we have
adopted in the proceeding studies the simplified version of the metabolic network.

Note also, that the number of final EMs is not dependent on the stoichiometry of the
biomass or 1gG synthesis reactions.

As an illustrative example, Appendix B, Table B.1, represents one EM from the biomass
producing network that uses the minimum number of metabolic reactions required to synthesize
1 unit of biomass. This EM is potentially very efficient for cell growth using the minimum
regulatory resources to synthesize one unit of biomass. Even so, only 42 from the 106 reactions
in the network do not participate in this EM. By multiplying the elementary modes coefficients
by the exchange reactions stoichiometry (reactions 73 to 106), one gets the EM footprint shown
in Table 5. The metabolites in green are end-products secreted to the culture media, whereas the
red metabolites are substrates needed to synthesize biomass. The footprint may be interpreted as
the resources needed to synthesize one unit of biomass and respective by-products if the cells
grows according to the EM shown in Appendix B.
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Table 5 — Footprint of the EM represented in Appendix B

Metabolite Footprint

(nmol/10° cell)
X 1,00
Glc
His
Isobut 0,00
[
Isoval 0,00
Leu
Lys
Met
Phe
Thr
Trp
Val
COo2
NHA4
Acetate
Ala
Arg
Asn
Asp
Gln
Cit
Choline
Formate
Glu
Glyc
Gly
Lac
Pro
Pyr
Ser
Tyr
Mal
Glyc3PC 0,00
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3.3 Computation and reduction of CHO footprintome

The footprintome may be defined as, the complete set of footprints a cell may resort to,
realize its physiological objectives. The footprintome is computed by repeating the process
described in the previous chapter for the complete set of EMs. The footprint of each EM (a column
vector) are stacked together in a large matrix in the final form of the footprintome matrix. Each
footprint is a potential culture media “candidate”, thus it is imperative to reduce as much as
possible the size of the footprintome by eliminating nonessential footprints. The full set of EMs
undergoes three steps of automatic reduction as described below for the biomass-EMs (A similar
reduction procedure was applied to the IgG-EMs with final results presented in Appendix F Fig.
F.1-F.2) as follows:

e The biomass-EMs (count = 218538) contain several EMs without biomass
production. These were eliminated reducing the total EMs count to 211580. All
columns of the footprintome are afterwards normalized by dividing by the
biomass coefficient respectively. As a result, the biomass rows are always one,
whereas the other rows read as nutrient consumption/production per unit of
biomass production.

e The next step is the thermodynamic reduction. The AG°r was computed for each
EM and those with nonnegative AG°r were eliminated. This step further reduced
the EMs count to 203137. The result of this reduction is shown in Fig. 11. The
AG°f values of each metabolite can be found in Appendix C.

e The next step is footprintome reduction by clustering based on phenotype
similarity. Footprints that have the exact same list of substrates and end-products
are clustered together. These clusters are averaged into a representative footprint
by the arithmetic average (Eq. 25). This procedure ensures that the reduced set of
footprints centroids (for simplicity sake during this work we will still be calling
the footprints centroids as only footprints, although they are no longer
representative of a singular EM) are linearly independent and characteristic of a
unique cellular phenotype. This reduces the footprints count to 3488. This step
was the one that achieved a higher degree of reduction. The result of this
reduction is shown in Fig. 12

These results are summarized in Table 6.

Table 6. Automatic footprintome reduction results

BIOMASS-EMS IGG-EMS
BEFORE REDUCTION \ 218538 313523
ELIMINATION BASED ON SELECTED PRODUCT \ 211580 307404
THERMODYNAMIC REDUCTION \ 203137 307402
CLUSTERING \ 3488 4704

After the automatic reduction steps, 3488 potential cell growth footprints remain, which
still is very high to test in the lab. Nevertheless, in a scenario of abundant resources it would be
feasible to test them in a high throughput cell culture equipment such as the Sartorius AMBR®
system.
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Other studies in the literature have attempted EM reduction using different criteria. Hyun-
Seob Song et. al. ™ proposed a reduction method based on yield analysis, in which the authors
also compute EMs ratios of specific metabolites and use it to characterize different EMs
phenotypes. The “yield analysis” method reduces EMs count to a small set representative of 99%
of all phenotypic states. This reduction is however based on experimental data. Folch-Fortuny et
al ™® proposed a method for discrimination of active EMs based on fluxomic datasets and tested it
in Escherichia coli and Pichia pastoris cultures. It reduces the full set of EMs into a small number
of representative EMs based on independent measurements of metabolic fluxes. This method
explores the analogy of EM and principal component analysis of a measured fluxomics dataset.
Ferreira et al. (2011) proposed a method to discriminate active EMs also based on experimental
measurements of metabolic fluxes. A reduced set of EMs is discriminated by maximizing the
correlation of the EM weighting factor and measured media composition.

All the above methods are good options for EMs reduction when sufficient measured data
of metabolic fluxes and/or metabolic footprints are available. Therefore, they could not be applied
in this thesis as the objective in this thesis is to design In silico (100% experiment-free) the
composition of culture media.
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Figure 10 - Reduced footprintome for biomass production (normalized to unit) after 2 steps of reduction: Step 1- biomass production, Step 2-thermodynamic
reduction. The columns represent the reduced set of EMs (203137). The colour green means that the compound is being produced by the EM. The colour red means
it’s being consumed by the EM. The black means it is neither consumed nor produced by the EM.
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Figure 11 - Reduced footprintome for biomass production (normalized to unit) after 3 steps of reduction: Step 1- biomass production, Step 2-Thermodynamic reduction, Step 3-
Pattern clustering with arithmetic averaging. The rows represent extracellular media components. The columns represent average EM clusters (3488). The green gradient represents
compound production associated with the production of 1 biomass unit. The red gradient represents compound consumption to generate 1 biomass unit. The black colour means
that the compound is neither consumed nor produced by the EM cluster.

32



3.4. Comparison with experimental data

The objective here is to compare the theoretical footprintome (computed from the
metabolic network) with measured data of uptake/production rates of media compounds in CHO
cultures (measured footprint). More specifically, the data published by Duarte et. al. /", who
studied the metabolic response of CHO cells metabolism in experiments with varying
concentration of asparagine and serine in the culture media, this data was adopted to validate the
theoretical biomass growth footprintome after thermodynamic selection (Fig. 11). In order to
compare the theoretical footprintome to a measured time point, it is required to average the full
set of footprints into a representative footprint. Two different averaging methods were applied:

i) Arithmetic average of all EM footprints (Eg. 25) in the footprintome of Fig. 11.
The idea behind this method is that the number distribution of nutrient
requirements in the footprintome is a measure of probability, thus the culture
media formulation of a particular metabolic model corresponds to the mean
concentration based on number.

i) Weighted average by the AG°r of each EM footprint (Eg. 26) in the footprintome
of Fig. 11. The idea behind this method is that thermodynamically more
favourable EMs have a higher contribution to the observed footprint.

Fig. 13A shows the overall results for the arithmetic average and the weighted average,
compared with the measured foortprint data (Fig. 13B), that was obtained from the raw data
published by Duarte et. al. (2014) (Appendix D), normalized by the cell growth rate.
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All in all these results show a remarkable concordance between the theoretical footprint
and the measured footprint. Moreover, the measured footprint is within the variance interval of
the theoretical footprints computed for most nutrients (exceptions discussed below) as shown by
the error bars in Figs. 16A. It should be highlighted that the theoretical footprint was computed
resorting to the metabolic network information only. It is completely In silico and experiment
free.

The broad error bars displayed in Figs. (13A) reflect the variablity in theoretical
footprints. Even if it is not possible to know a priori without any experimental evidence which
are the “active EMs” used by the cells to grow, it is possible to determine the average theoretical
footprint and theoretical variability around the mean.

The only large theory-measurement mismatch observed in Fig. 13A relates to the glucose
and lactate nutrients. The measured footprint is characterized by a very high glucose consumption
yield (-2866,67 nmol/10° cells ) which is linked with a very high lactate production yield (2061,90
nmol/10° cells). This type of glucose overflow metabolism is typical of high glucose
concentration in the media, which is indeed the case in the experiments described by Duarte et
al.”’, where the cell culture was initialiy fed with 50mM of glucose. The high lactate production
can be prevented with a low and steady feed of glucose as shown by Fan Y et al.”® Very likely, if
these experiments were repeated with low glucose concentrations, the glucose and lactate data
would likely be concordant with the theoretical fooprint.

To compare the arithmetic and weighted averaging methods, the Mean-Square-Error
(MSE) between theoretical and experimental footprints were computed. The glucose and lactate
data were considered outliers in the computation of the MSE. The results are shown in Table 7.

Table 7 MSE between measured and theoretical footprint

METHOD MSE
ARITHMETIC FOOTPRINT | 9.0320e+03
WEIGHTED FOOTPRINT | 8.7426e+03

Although the weighted average method presented a lower MSE then the arithmetic
method, the difference is not very significative. Comparing the arithmetic footprint with the
weighted fooprint we can see that the differences between the footprints obtained by both methods
are not significative. This could suggest a low variance in the AG® values of EMs. Fig 14 displays
the computed AG?, distribution, which is clearly a non-uniform distribution. This distribution has
a mean value of -4.0756e-04 kJ/nmol and a variance coefficient of 73,29% which is very
significant. It is not possible with these results to make a final conclusion on which method is
better to compute the footprint given the small differences obtained. It is also important to mention
that in simplifying the metabolic network we also influenced the AG?® distribution of the EM.
More studies are required in the future before a final conclusion can be taken.
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(Fig. 11)

3.4. Phenotype-targeted culture media design

The objective in this section is to design In silico culture media formulations that are
targeted to a given desired phenotype. In here the following phenotypic optimal criteria were
chosen

Minimization of lactate accumulation
Minimization of ammonium accumulation
Minimization of osmolarity build-up
Minimization of CO2 production

The methodology adopted is to further reduce the footprintome by eliminating undesired
footprints that do not comply with the above enumerated criteria.
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3.4.1 Minimization of lactate and ammonium buildup

Lactate and ammonium are by products that when accumulated to high concentrations in
the media are toxic to mammalian cells. Lactate production is the by-product of an inefficient
catabolism, as it only produces 2 ATP molecules compared to the 36 ATP molecules that result
from the full oxidation of glucose in the TCA cycle. Lactate also acidifies the media and causes
high osmolarity™, which reduces specific growth rate®® and protein yield®!. High ammonium
concentration in the media has also a detrimental effect on the cell culture, also reducing specific
growth® and protein yield®2. It is therefore of high interest to design culture media formulations
that minimize the accumulation of lactate and ammonium in the media.

Taking a closer look to the reduced footprintome for biomass production (Fig. 12) and for
IgG production (Appendix F, Fig. F.2), we observe that they contain a high number of footprints
that produce either lactate, ammonium or both metabolites simultaneously. In order to design a
culture media that theoretically eliminates the accumulation of lactate and ammonium in the
media, a phenotype targeted footprintome reduction is applied by removing all footprints that
produce lactate and/or ammonium, as follows:

e For the biomass producing network, of the 3488 footprints present in the in the
footprintome of Fig. 12, 1549 footprints either produce lactate and/or ammonium,
and were therefore removed. The footprint count after this step is 1939.

e For the IgG producing network, of the 4704 footprints present in the footprintome
of Appendix F (Fig. F.2), 1804 footprints produce lactate and/or ammonium
and were therefore removed. The footprints count after this step is 2900.
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Fig. 15 represents the biomass producing footprintome after the elimination of the lactate and/or ammonia producing EMs.
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Figure 14 - Reduced footprintome for biomass production (normalized to unit) after 4 steps of reduction: Step 1- biomass production, Step 2-Thermodynamic reduction, Step 3-
Pattern clustering with arithmetic averaging, Step 4- Elimination of all footprints that either produce lactate or ammonium. The rows represent extracellular media components.
The columns represent average EM clusters (1939). The green gradient represents compound production associated with the production of 1 biomass unit. The red gradient
represents compound consumption to generate 1 biomass unit. The black colour means that the compound is neither consumed nor produced by the EM cluster.



3.4.2 Minimization of osmolarity buildup

The next criteria considered are the osmolarity and CO2 of each footprint. In the study
by Marie M. Zhu et.al® it is shown that osmolarity and partial pressure of CO2 have a very
significant impact in a large scale CHO cell culture. High osmolarity in the culture media is shown
to have a negative effect on specific growth rate and viable cell density. Moreover, it causes a
shift in CHO cells metabolism leading to an increased production of lactate and ammonia.
Furthermore, the combined effects of high partial pressure of CO2 (pCO2) and high osmolarity
caused a more prominent effect on viable cell density than just high osmolarity alone.

The osmolarity build-up associated with each footprint was computed. The osmolarity
value of a footprint was approximated by the absolute sum of metabolite values (Eq.31). As we
are dealing with metabolite yields and we lack any sense of volume, these osmolarity values don’t
describe the real culture formula osmolarity. They can be however objectively compared between
each other.

n

Z abs(footprinti) (31)

i

Where n is the total number of metabolites in a footprint and abs(footprint;) is the absolute
value of a metabolite i.

For the minimization of the osmolarity and CO2 criteria footprints associated with low
osmolarity build-up and low CO2 production were selected. For this purpose, a score value
(Score;) is computed for each footprint {i} according to the Eqg. 32:

g . Osm 4 CO2i (32)
corer= max(0Osm) max(C02)

Where, Osm; is the osmolarity build-up associated with footprint {i}, Osm is a vector
containing the osmolarity values of all footprints, CO2; is the CO2 production by footprint {i}
and CO2 is a vector containing the CO2 values of all footprints. The EM with the lowest score is
the one chosen for culture media design. Figs. 16-17 show the final optimal footprint with the
lowest score, for the biomass producing network (Fig. 16) and IgG producing network (Fig. 17)
in comparison with their respective arithmetic footprints representatives of the footprintome (Fig.
13).
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Figure 15 - Comparison between the optimal EM (orange bars) computed for the biomass producing network
and the respective arithmetic footprint (blue bars).

By comparing the optimal EM with the respective arithmetic footprint (Fig. 16, for
biomass production), it becomes evident the absence of lactate and ammonium production, as
expected. The same can be observed for the 19G producing network (Fig.17).

In term of substrate comsumption, Fig. 16 shows that by minimizing osmolarity some
substrates have a lower yield (lysine, valine, proline, histidine etc.) compared with the arithmetic
footprint while others aren’t consumed at all. The most prominent case is the metabolite aspartate,
where in the optimal EM no consumption is predicted whereas its consumption yield is 224,78
nmol/10° cells for the arithmetic footprint. The main differences in substrate consumption are the
lower glucose consumption of 263,06 nmol/10° cells compared to 356,20 nmol/10° cells, a higher
glutamate consumption, 482,09 nmol/10° cells in comparison with 56,52 nmol/10° cells, an also
higher consumption of asparagine 404,50 nmol/10° cells compared with 215,80 nmol/10° cells
and a lower consumption of serine ,125,01 nmol/10° cells while the arithmetic footprint being
312,07 nmol/108 cells.

It may also be observed a lack of by-products formation in the optimal EM. Examples of
this are the, isobut, isoval, alanine, glycine and formate. On the contrary, malate and glutamine
are increased. Also the CO2 production is much lower in the formula chosen as a result of
minimizing CO2 production, being 161,46 nmol/10° cells compared to the arithmetic footprint of
983,73 nmol/10° cells. The full list of results can be found in Appendix E, Table E.1
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Figure 16 - Comparison between the optimal EM computed (orange bars) for the IgG producing network and
the respective arithmetic footprint (blue bars).

The effects of minimizing osmolarity and CO2 had similar results for the product
producing network, with substrates having lower consumption (lysine, valine, proline, histidine
etc.), the non-consumption of aspartate and lack of by-product formation (isobut, isoval, glycine,
formate) and an increase in specific by-products productions (citrate and alanine). The CO2
production also dropped sharply compared with the arithmetic footprint from 1330,80 nmol/10°
cells to 120,92 nmol/108cells, interestingly the glucose has a higher consumption yield in the
optimal EM with 681,53 nmol/10%cells compared with 390,55 nmol/10%cells. The glutamate,
serine and asparagine yields show similar behaviour to the biomass optimal EM. It should
however be noted that the amount of glucose used for 1gG production should be much less than
that for biomass production. The full list of results can be found in Appendix E, Table E.2

3.4.3 Final culture media concentrations

In order to formulate the final optimal culture media composition, the concentrations of
each compound need to be specified. The footprints are not ready to be used as culture media
formulas because they are expressed as yields. As such, they need to be multiplied by a
concentration value of the target product (Eq.30).

The concentration used for the optimal IgG producing EM was 0,56 mg of
IgG/ml, this being the mean value of the results from the work of Reinhart, D, et. al.® where they
benchmarked several commercial CHO culture medias for IgG antibody production, measuring
the 1IgG concentration in all tested medias.

The concentrations for the optimal biomass producing EM were obtained by initially
multiplying the computed formula by a cell concentration of 10 10° cell/ml the formula. It was
then compared with a lab tested CHO culture media. The cell concentration was adjusted such as
to minimize the MSE between the computed and experimental concentrations. The final cell
concentration calculated was 17,55 10° cell/ml (still in reasonable range) for a MSE value of
42,88.
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The comparison between lab tested CHO culture media with the final computed formula
for biomass synthesis is shown in Fig 18, these results are also shown in Table 8 alongside the

computed formula for 1gG synthesis.
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Figure 17 - Comparison between the computed formula for biomass synthesis (blue bars) with experimental CHO

culture media (orange bars).

Fig.18 shows many similarities between the In silico formula for biomass synthesis (blue
bars) and the lab tested CHO culture media (orange bars). The metabolites with more concordant
concentrations (between In silico and experiment) were lysine, valine, histidine, arginine and
choline. A significant difference is observed for glutamate and threonine concentrations, with
higher In silico concentrations (8,46 mM and 8,35 mM respectively) than the experimental
concentrations (1,79 mM and 2,50 mM respectively). The largest mismatch is a much lower In
silico glucose concentration (4,62 mM) than the experimental concentration (31,01 mM). Glucose
is the preferred carbon source by CHO cells. In batch runs, high amounts of glucose are usually
formulated in the culture media. A lower glucose concentration in the In silico formula suggests
that it needs to be complemented with a continuous feeding strategy of glucose.
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Table 8 Computed formulas for IgG and biomass syntheses and Lab tested CHO
culture media

Metabolites  Computed formula ~ Computed formula for Lab tested CHO
for 1gG synthesis biomass synthesis culture media

(mM) (mM) (mM)

Glc 0,38 4,62 31,01
Pyr 0,00 2,23 1,52
Glu 0,40 8,46 1,79
Asp 0,00 0,00 1,29
Thr 0,66 8,35 2,50
Ser 0,52 2,19 5,60
Trp 0,08 0,16 0,93
Lys 0,26 2,59 2,78
Val 0,40 2,08 2,58
lle 0,10 1,45 2,41
Leu 0,29 5,57 3,54
Phe 0,24 2,02 1,05
Tyr 0,08 0,00 0,70
Met 0,04 0,70 0,74
Asn 0,67 7,10 471
Pro 0,28 0,97 4,42
Arg 0,17 1,61 2,28
His 0,09 0,64 1,00
Choline = 0,37 0,52




4. Conclusions

In this work a method was developed capable of computing culture media In silico using
only a metabolic network of a target cell line as input and elementary mode analysis (EMA). The
Chinese Hamster Ovary (CHO) metabolic network was used as a case-study in order to validate
our approach. The proposed tool is an alternative to empirical and wet lab intensive methods used
in the industry, like RSM.

The main challenge in using EMA for In silico culture media design, is the elementary
mode computation combinatorial explosion, the computational burden associated with computing
all EM in the case study CHO metabolic network was too high. As a result, we used a more
simplistic CHO metabolic network without the respective oxidative phosphorylation reactions,
closing the balances for carbon and nitrogen but not for oxygen and hydrogen, which is sub-
optimal. We want the computed footprints values displayed in the footprintome to be as
representative of the different metabolisms of the targeted cell line as possible, the more complete
the metabolic network in use is the better, a genome scale network would be ideal but it’s not
feasible due to the computation power needed to calculate all possible millions of EMs in a
network of this scale.

Even with these drawbacks this study obtained optimistic results:

e The arithmetic and the weighted footprints when compared with the footprints
calculated from the experimental literature data’” (Fig. 13A), shows that the
majority of metabolite yields values in the literature data, are on the variance
bounds of the theoretical footprints computed (21 out of the 26 metabolites).
Which indicates that a general predictions of the metabolism footprint of a target
cell line can be done using this method

e The phenotype target design has shown to be a useful method for selecting
optimal metabolic footprints, the differences between the optimal computed EMs
for both networks and the arithmetic footprints of the respective networks were
concordant with the selective criteria chosen.

e The similarities observed between the optimal EM for the biomass producing
network with a lab teste CHO culture media (MSE value of 42,88 for a cell
concentration of 17,55 10° cell/ml), shown that this tool is capable of computing
reasonable culture media formulas that can be further tested in the lab.

The present M.Sc. thesis had the objective to develop a method in MATLAB capable of
computing culture media In silico using only the targeted cell line metabolic network, this
objective was reached, the positive results shown that further studies regarding the usage and
development of the methods present in this thesis are worth pursuing.
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4.1 Future work

The arithmetic and the weighted footprint shown similar results when compared with the
data published by Duarte et. al. /" ,as already discussed , but we could not conclude which of these
methods is better and further research is needed. This methodology should be tested with different
cell lines metabolic networks and the results compared with available literature data, to better
understand the difference between the two methods and to confirm if the results observed in this
thesis are also true for different cell lines.

There are several options for future work regarding the phenotype-targeted culture media
phase:

e The culture media for growth and IgG production computed in this thesis, should be teste
in the lab to quantify the differences between the computed formulas and the experimental
results, to study if the computed culture medias can have a decisive effect in controlling
the active EMs of the CHO cell metabolism.

o Different culture media formulas should be computed using different criteria (e. g.
minimization of glucose consumption) to study which criteria or combination of criteria
can be used to better match the experimental results, the number of criteria used can also
be a decisive factor.

o Different metabolic networks can be tested to understand more the potential of the
toolbox and to further develop it.
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Appendix

Appendix A — CHO Metabolic Networks

Table A.1 Metabolic Network for CHO cell line

Table A.1 Metabolic Network for CHO cell line

# Reactions
Glicolysis
1 1Glc + 1 ATP --> 1 G6P
2 1 G6P --> 1 F6P
3 1F6P + 1 ATP --> 1 GAP + 1 DHAP
4 1 DHAP --> 1 GAP
5 1 GAP --> 1 NADH + 1 ATP + 1 3PG
6 13PG --> 1 Pyr + 1 ATP
TCA cycle
7 1 Pyr -->1CO2 + 1 AcCoA + 1 NADH
8 1 AcCoA + 1 Oxal --> 1 Cit
9 1Cit-->1CO2 + 1 aKG + 1 NADH
10 1aKG -->1 CO2 + 1 SucCoA + 1 NADH
11 1 SucCoA -->1 Succ + 1 ATP
12 1 Succ -->1 Fum + 1 FADH2
13 1 Fum --> 1 Mal
14 1 Mal --> 1 Oxal + 1 NADH
Pyruvate fates
15 1Pyr+1NADH -->1 Lac
16 1Pyr+1Glu-->1Ala+1aKG
Pentose Phosphate Pathway
17 3G6P --> 3 CO2 + 3 R5P + 6 NADPH
Anaplerotic Reaction
18 1 Mal --> 1 Pyr + 1 CO2 + 1 NADPH
Amino Acid Metabolism
19 1 Glu <-->1aKG + 1 NH4 + 1 NADH
20 1aKG + 1 Asp-->1Glu+ 1 Oxal
21 1Glu+1NH4 + 1 ATP --> GIn
22 1 Thr --> 1 AcCoA + 1 Gly + 1 NADH
23 1 Ser -->1 Gly + 1 NADPH + 1 ATP + 1 Formate
24 1Ser -->1Pyr+ 1 NH4
25 1 Thr --> 1 NH4 + 1 aKb
26 1 ATP + 1 aKb --> 1 SucCoA + 1 NADH
27 1Trp-->2C02+1Ala+1aKa
28 2aKG + 1 Lys -->2 Glu + 3 NADPH + 1 FADH2 + 1 aKa
29 1 aKa --> 2 CO2 + 2 AcCoA + 2 NADH
30 1aKG + 1 Val -->1 CO2 + 1 Glu + 1 NADH + 1 IsobutCoA
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31 1 ATP + 1 IsobutCoA --> 1 SucCoA + 2 NADH + 1 FADH?2
32 1 IsobutCoA --> 1 Isobut
33 1laKG+1lle+1ATP-->1Glu+1AcCoA +1SucCoA+2NADH +1
FADH2
34 1aKG+1Leu-->1C0O2+1Glu+1NADH + 1 IsovalCoA
35 1 CO2 + 1 SucCoA + 1 ATP + 1 IsovalCoA --> 3 AcCoA + 1 Succ + 1 FADH2
36 1 IsovalCoA --> 1 Isoval
37 1 Phe + 1 NADH --> 1 Tyr
38 1aKG + 1 SucCoA+1Tyr-->1C02+1Glu+2AcCoA+1Fum+ 1 Succ
39 1Ser+1Met+1ATP-->1NH4+1aKb
40 1 Asn-->1NH4+1Asp
41 1Pro-->1GIlu+1NADH
42 1aKG + 1 Arg-->2Glu+1NADH
43 1 His -->1 Glu + 1 NH4
Glycogen Synthesis
44 1 G6P -->1G1P
45 2 ATP +1GI1P + 1 UMPRN --> 1 UDPG
46 1 UDPG --> 1 Glycogen
Nucleotide Synthesis
47 1 R5P + 1 ATP --> 1 PRPP
48 1C02+2GIn+1Gly+1Asp+5ATP+1PRPP-->2Glu+1Fum+1IMP
49 1Asp +2 ATP + 1 GMPRN + 1 IMP --> 1 Fum + 1 AMPRN
50 1GIn+1ATP+1IMP -->1Glu+ 1 NADH + 1 GMPRN
51 1 NH4 +1 Asp +2 ATP + 1 CO2 --> 1 NADH + 1 Orotate
52 1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN
53 1GIn+1ATP+1UMPRN -->1Glu + 1 CMPRN
54 1 AMPRN --> 1 dAMP
55 1 GMPRN --> 1 dGMP
56 1 CMPRN -->1 dCMP
57 1 UMPRN --> 1 dTMP
Lipid Synthesis
58 1 ATP + 1 Choline --> 1 Pcholine
59 18 AcCoA + 33 NADH + 22 ATP + 1 Glyc3P + 1 Pcholine --> 1 PC
60 1Ser+1PC-->1PS+ 1 Choline
61 1PS-->1C02+1PE
62 1 Glyc3P + 1 Choline --> 1 Glyc3PC
63 1 G6P --> 1 Inositol
64 18 AcCoA + 33 NADH + 22 ATP + 1 Glyc3P + 1 Inositol --> 1 Pl
65 18 AcCoA + 33 NADH + 22 ATP + 2 Glyc3P --> 1 PG
66 2 PG -->1DPG +1Glyc
67 16 AcCoA + 1 Ser + 29 NADPH + 16 ATP + 1 Choline -->2 CO2 + 1 SM
68 18 AcCoA + 14 NADPH + 18 ATP --> 9 CO2 + 1 Cholesterol
Biomass Formation
69 160.1015 Ala + 235.2056 Glu + 70.3787 GIn + 174.6799 Gly + 114.9787 Ser +

147.4132 Lys + 157.4070 Leu + 82.6648 lle + 91.8543 Arg + 169.492 Asp +
95.7754 Thr + 118.3569 Val + 40.0354 Met + 67.4027 Phe + 47.4956 Tyr +
36.2551 His + 55.559 Pro + 70.3787 Asn + 83943.063 ATP + 8.943 AMPRN +
4.878 Cholesterol + 14.9321 CMPRN + 4.0108 dAMP + 2.6829 dCMP + 2.6829
dGMP + 4.0108 dTMP + 0.813 DPG + 75.609 Glycogen + 16.9104 GMPRN +
18.699 PC + 7.046 PE + 0.271 PG + 2.71 P1 + 0.813 PS + 2.168 SM + 8.943
UMPRN + 9.2297 Trp --> 1 X

Other by-products
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70

1 AcCoA --> 1 ATP + 1 Acetate

71 1 NADH + 1 DHAP --> 1 Glyc3P

72 1 Glyc3P --> 1 Glyc
1gG Glycosylation

73 1 UDPG --> 1 UDPGal

74 1Glc +3 ATP + 1 GMPRN --> 1 GDPMann

75 1 AcCoA+1GIn+1F6P+1UMPRN +2ATP -->1Glu + 1 UDPNAG

76 3 ATP + 1 3PG + 1 UDPNAG + 1 CMPRN --> 1 CMPSialic

77 1 NADPH + 1 GDPMann --> 1 GDPFuc
1gG Formation

78 428.7 Ala + 362.75 Glu + 351.76 GIn + 516.64 Gly + 934.36 Ser + 472.67 Lys
+516.64 Leu + 175.88 lle + 307.79 Arg + 296.8 Asp + 626.57 Thr + 714.51 Val
+65.954 Met + 285.8 Phe + 285.8 Tyr + 164.89 His + 505.65 Pro + 263.82 Asn
+142.9 Trp + 10.992 GDPFuc + 54.962 UDPNAG + 32.977 GDPMann +
21.985 UDPGal + 21.985 CMPSialic --> 1 P
Transport Reactions

79 1 ATP -->

80 1 NADH -->

81 1 FADH2 -->

82 1 NADPH -->

83 1X-->

84 1P-->

85 -->1Glc

86 --> 1 His

87 1 Isobut -->

88 ->1lle

89 1 Isoval -->

90 ->1leu

91 -->1Lys

92 --> 1 Met

93 --> 1 Phe

94 -->1Thr

95 ->1Trp

96 -->1 Val

97 1CO2 -->

98 1 NH4 -->

99 1 Acetate -->

100 1 Ala -->

101 -->1 Arg

102 -->1 Asn

103 -->1 Asp

104 1GIn-->

105 1 Cit -->

106 -->1 Choline

107 1 Formate -->

108 -->1Glu

109 1 Glyc -->

110 1Gly -->

111 1lac-->

112 -->1Pro

113 -->1 Pyr

114 -->1 Ser
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115 -->1Tyr
116 1 Mal -->
117 1 Glyc3PC -->
118 1 Glyc3PC -->
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Table A.2 Biomass producing Network

# Reactions
Glycolysis
1 1Glc-->1G6P
2 1 G6P --> 1 F6P
3 1 F6P --> 1 GAP + 1 DHAP
4 1 DHAP --> 1 GAP
5 1 GAP -->1 3PG
6 1 3PG --> 1 Pyr
TCA cycle
7 1 Pyr-->1CO0O2 + 1 AcCoA
8 1 AcCoA + 1 Oxal --> 1 Cit
9 1Cit-->1C02+1aKG
10 1 aKG --> 1 CO2 + 1 SucCoA
11 1 SucCoA -->1 Succ
12 1 Succ -->1 Fum
13 1 Fum --> 1 Mal
14 1 Mal --> 1 Oxal
Pyruvate fates
15 1Pyr-->1Lac
16 1Pyr+1Glu-->1Ala+1aKG
Pentose Phosphate Pathway
17 3 G6P -->3C0O2+3R5P
Anaplerotic Reaction
18 1 Mal --> 1 Pyr + 1 CO2
Amino Acid Metabolism
19 1Glu<-->1aKG +1NH4
20 1aKG + 1 Asp -->1Glu + 1 Oxal
21 1 Glu + 1 NH4--> GIn
22 1Thr -->1 AcCoA + 1 Gly
23 1 Ser --> 1 Gly + 1 Formate
24 1Ser-->1Pyr+1NH4
25 1Thr-->1NH4 + 1 aKb
26 1 aKb --> 1 SucCoA
27 1Trp-->2C02+1Ala+1aKa
28 2aKG+1Lys-->2Glu+1aKa
29 1 aKa-->2 CO2 + 2 AcCoA
30 1aKG+1Val-->1C02+ 1 Glu+ 1 IsobutCoA
31 1 IsobutCoA --> 1 SucCoA
32 1 IsobutCoA --> 1 Isobut
33 1aKG+1lle -->1Glu+ 1 AcCoA + 1 SucCoA
34 1aKG+1 Leu-->1C0O2+1Glu + 1 IsovalCoA
35 1 CO2 + 1 SucCoA + 1 IsovalCoA --> 3 AcCoA + 1 Succ
36 1 IsovalCoA --> 1 Isoval
37 1 Phe --> 1 Tyr
38 1aKG + 1 SucCoA+1Tyr-->1C02+1Glu+2AcCoA +1Fum+ 1 Succ
39 1Ser+1Met-->1NH4+1aKb
40 1 Asn-->1NH4 +1Asp
41 1Pro-->1Glu
42 1aKG+1Arg-->2Glu
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43

1 His-->1Glu+1NH4

Glycogen Synthesis

44 1 G6P -->1 G1P

45 1 G1P + 1 UMPRN --> 1 UDPG

46 1 UDPG --> 1 Glycogen
Nucleotide Synthesis

47 1 R5P --> 1 PRPP

48 1C02+2GIn+1Gly+1Asp+1PRPP-->2Glu+1Fum+1IMP

49 1 Asp+1GMPRN + 1 IMP -->1 Fum + 1 AMPRN

50 1GIn+11IMP -->1Glu+1GMPRN

51 1 NH4 +1 Asp + 1 CO2 --> 1 Orotate

52 1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN

53 1GIn+ 1 UMPRN -->1 Glu + 1 CMPRN

54 1 AMPRN --> 1 dAMP

55 1 GMPRN --> 1 dGMP

56 1 CMPRN --> 1 dCMP

57 1 UMPRN --> 1 dTMP
Lipid Synthesis

58 1 Choline --> 1 Pcholine

59 18 AcCoA + 1 Glyc3P + 1 Pcholine --> 1 PC

60 1Ser+1PC-->1PS + 1 Choline

61 1PS-->1C02+1PE

62 1 Glyc3P + 1 Choline --> 1 Glyc3PC

63 1 G6P --> 1 Inositol

64 18 AcCoA + 1 Glyc3P + 1 Inositol --> 1 PI

65 18 AcCoA + 2 Glyc3P --> 1 PG

66 2 PG -->1DPG + 1 Glyc

67 16 AcCoA + 1 Ser + 1 Choline -->2 CO2 + 1 SM

68 18 AcCoA -->9 CO2 + 1 Cholesterol
Biomass Formation

69 160.1015 Ala + 235.2056 Glu + 70.3787 GIn + 174.6799 Gly + 114.9787 Ser +
147.4132 Lys + 157.4070 Leu + 82.6648 lle + 91.8543 Arg + 169.492 Asp + 95.7754
Thr + 118.3569 Val + 40.0354 Met + 67.4027 Phe + 47.4956 Tyr + 36.2551 His +
55.559 Pro + 70.3787 Asn + 8.943 AMPRN + 4.878 Cholesterol + 14.9321 CMPRN
+4.0108 dJAMP + 2.6829 dCMP + 2.6829 dGMP + 4.0108 dTMP + 0.813 DPG +
75.609 Glycogen + 16.9104 GMPRN + 18.699 PC + 7.046 PE + 0.271 PG + 2.71 PI
+0.813 PS + 2.168 SM + 8.943 UMPRN + 9.2297 Trp --> 1 X
Other by-products

70 1 AcCoA --> 1 Acetate

71 1 DHAP --> 1 Glyc3P

72 1 Glyc3P --> 1 Glyc
Transport Reactions

73 1X-->

74 -->1Glc

75 -->1 His

76 1 Isobut -->

77 ->1lle

78 1 Isoval -->

79 ->1Leu

80 ->1Lys

81 --> 1 Met
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82 --> 1 Phe

83 -->1Thr

84 ->1Trp

85 -->1 Val

86 1C0O2-->

87 1 NH4 -->
88 1 Acetate -->
89 1 Ala-->

90 ->1Arg

91 -->1 Asn

92 -->1 Asp

93 1Gln-->

94 1 Cit-->

95 --> 1 Choline
96 1 Formate -->
97 -->1Glu

98 1 Glyc -->

99 1Gly -->
100 1Lac-->
101 -->1 Pro

102 | -->1Pyr

103 -->1 Ser

104 | -->1Tyr
105 1 Mal -->
106 1 Glyc3PC -->
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Table A.3 Product Producina Network

# Reactions
Glycolysis
1 1Glc-->1G6P
2 1 G6P --> 1 F6P
3 1 F6P --> 1 GAP + 1 DHAP
4 1 DHAP --> 1 GAP
5 1 GAP -->1 3PG
6 1 3PG --> 1 Pyr
TCA cycle
7 1 Pyr-->1C0O2 + 1 AcCoA
8 1 AcCoA + 1 Oxal --> 1 Cit
9 1Cit-->1C02 +1aKG
10 1aKG --> 1 CO2 + 1 SucCoA
11 1 SucCoA --> 1 Succ
12 1 Succ --> 1 Fum
13 1 Fum --> 1 Mal
14 1 Mal --> 1 Oxal
Pyruvate fates
15 1Pyr-->1Llac
16 1Pyr+1Glu-->1Ala+1aKG
Pentose Phosphate Pathway
17 3G6P-->3C0O2+ 3R5P
Anaplerotic Reaction
18 1 Mal --> 1 Pyr + 1 CO2
Amino Acid Metabolism
19 1Glu<-->1aKG + 1 NH4
20 1aKG + 1 Asp-->1Glu+1O0xal
21 1 Glu + 1 NH4--> GlIn
22 1 Thr -->1 AcCoA + 1 Gly
23 1 Ser --> 1 Gly + 1 Formate
24 1 Ser-->1Pyr+1NH4
25 1 Thr-->1NH4 + 1 aKb
26 1 aKb --> 1 SucCoA
27 1Trp-->2C02+1Ala+1aKa
28 2aKG+1Lys-->2Glu+1aKa
29 1aKa-->2 CO2 + 2 AcCoA
30 1aKG+1Val-->1CO02+1Glu + 1 IsobutCoA
31 1 IsobutCoA --> 1 SucCoA
32 1 IsobutCoA --> 1 Isobut
33 1aKG+1lle-->1Glu+ 1 AcCoA + 1 SucCoA
34 1aKG+1Leu-->1C0O2+1Glu+1 IsovalCoA
35 1 CO2 + 1 SucCoA + 1 IsovalCoA --> 3 AcCoA + 1 Succ
36 1 IsovalCoA --> 1 Isoval
37 1 Phe --> 1 Tyr
38 1aKG + 1 SucCoA+1Tyr-->1C02+1Glu+2AcCoA +1Fum + 1 Succ
39 1Ser+1 Met-->1NH4 +1aKb
40 1 Asn-->1NH4 + 1 Asp
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41

1Pro-->1Glu

42 1aKG+ 1Arg-->2Glu

43 1 His-->1Glu+1NH4
Glycogen Synthesis

44 1 G6P -->1G1P

45 1 G1P +1 UMPRN --> 1 UDPG

4 Nucleotide Synthesis

46 1 R5P --> 1 PRPP

47 1CO02+2GIn+1Gly+1Asp+1PRPP-->2Glu+1Fum+1IMP

48 1GIn+1IMP-->1Glu+1GMPRN

49 1NH4 +1 Asp + 1 CO2 --> 1 Orotate

50 1 Orotate + 1 PRPP -->1 CO2 + 1 UMPRN

51 1GIn+1UMPRN -->1Glu +1 CMPRN
Other by-products

52 1 AcCoA --> 1 Acetate

53 1 DHAP --> 1 Glyc3P

54 1 Glyc3P --> 1 Glyc
1gG Glycosylation

55 1 UDPG --> 1 UDPGal

56 1 Glc + 1 GMPRN --> 1 GDPMann

57 1 AcCoA+1GIn+1F6P+1UMPRN -->1Glu+1UDPNAG

58 1 3PG + 1 UDPNAG + 1 CMPRN --> 1 CMPSialic

59 1 GDPMann --> 1 GDPFuc
1gG Formation

60 428.7 Ala + 362.75 Glu + 351.76 GIn + 516.64 Gly + 934.36 Ser + 472.67 Lys +
516.64 Leu + 175.88 lle + 307.79 Arg + 296.8 Asp + 626.57 Thr + 714.51 Val +
65.954 Met + 285.8 Phe + 285.8 Tyr + 164.89 His + 505.65 Pro + 263.82 Asn +
142.9 Trp + 10.992 GDPFuc + 54.962 UDPNAG + 32.977 GDPMann + 21.985
UDPGal + 21.985 CMPSialic --> 1 P
Transport Reactions

61 1P-->

62 -->1Glc

63 -->1 His

64 1 Isobut -->

65 ->1lle

66 1 Isoval -->

67 -->1Leu

68 -->1 Lys

69 -->1 Met

70 --> 1 Phe

71 -->1Thr

72 ->1Trp

73 -->1 Val

74 1C0O2 -->

75 1 NH4 -->

76 1 Acetate -->

77 1 Ala-->

78 -->1 Arg

79 ->1 Asn

80 -->1 Asp

81 1GlIn-->
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82 1 Cit >
83 1 Formate -->
84 -->1Glu
85 1 Glyc -->
86 1Gly -->
87 1 Lac -->
88 -->1Pro
89 -->1 Pyr
90 -->1 Ser
91 ->1Tyr
92 1 Mal -->
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Appendix B - Elementary mode that uses the minimum number of

metabolic reactions required to synthesize 1 unit of biomass.

REACTION EM REACTIONS
NUMBER COEFF

R1 269,67 '1 Glc --> 1 G6P'

R2 33,92 'l G6P --> 1 F6P

R3 33,92 'l F6P --> 1 GAP + 1 DHAP'

R4 0 'l DHAP --> 1 GAP'

R5 33,92 'l GAP -->1 3PG'

R6 33,92 '13PG --> 1 Pyr'

R7 202,25 'L Pyr-->1C0O2 + 1 AcCoA'

R8 0 'l AcCoA + 1 Oxal --> 1 Cit'

R9 0 1Cit-->1C02+1aKG'

R10 136,33 '1aKG -->1CO2 + 1 SucCoA'

R11 0 'l SucCoA -->1 Succ'

R12 136,33 'l Succ --> 1 Fum'

R13 332,50 'l Fum --> 1 Mal'

R14 0 'l Mal --> 1 Oxal'

R15 0 'l Pyr-->1 Lac'

R16 164,08 'L Pyr+1Glu-->1Ala+1aKG'

R17 51,83 '‘3G6P -->3C02 + 3 R5P"'

R18 332,50 'l Mal --> 1 Pyr + 1 CO2'

R19 325,67 '1 Glu<-->1aKG + 1 NH4'

R20 0 '1aKG + 1 Asp --> 1 Glu + 1 Oxal'

R21 216,83 'l Glu + 1 NH4--> GIn'

R22 225,67 'L Thr-->1 AcCoA+ 1Gly'

R23 0 'l Ser --> 1 Gly + 1 Formate'

R24 0 'l Ser --> 1 Pyr + 1 NH4'

R25 0 'L Thr -->1 NH4 + 1 aKb'

R26 0 'l aKb --> 1 SucCoA'

R27 0 1 Trp-->2C02 + 1 Ala +1 aKa'

R28 0 2aKG +1Lys-->2Glu+1aKa'

R29 0 'l aKa-->2 CO2 + 2 AcCoA'

R30 0 '1aKG +1Val -->1C02+1Glu + 1 IsobutCoA'

R31 0 "1 IsobutCoA --> 1 SucCoA'

R32 0 '1 IsobutCoA --> 1 Isobut'

R33 0 1aKG + 1 lle -->1Glu + 1 AcCoA + 1 SucCoA'

R34 0 '1aKG +1 Leu-->1CO2+1Glu + 1 IsovalCoA'

R35 0 'l CO2 + 1 SucCoA + 1 IsovalCoA --> 3 AcCoA + 1 Succ'

R36 0 '1 IsovalCoA --> 1 Isoval'

R37 185,00 '1 Phe --> 1 Tyr'

R38 136,33 '1aKG + 1 SucCoA + 1 Tyr-->1C02+ 1 Glu+ 2 AcCoA
+ 1 Fum + 1 Succ'

63



R39 0 'l Ser + 1 Met --> 1 NH4 + 1 aKb'

R40 0 '1 Asn --> 1 NH4 + 1 Asp'

R41 0 1Pro-->1Glu’

R42 217,17 '1aKG+1Arg-->2Glu’

R43 0 '1 His --> 1 Glu + 1 NH4'

R44 77,50 'l G6P --> 1 G1P'

R45 77,50 '1 G1P + 1 UMPRN --> 1 UDPG'

R46 77,50 '1 UDPG --> 1 Glycogen'

R47 155,50 '1 R5P --> 1 PRPP

R48 46,67 '1C0O2+2GIn+1Gly+1Asp+1PRPP-->2Glu+1
Fum + 1 IMP'

R49 13,25 '1 Asp + 1 GMPRN + 1 IMP --> 1 Fum + 1 AMPRN'

R50 33,33 '1GIn+1IMP -->1Glu + 1 GMPRN'

R51 108,83 'L NH4 +1 Asp + 1 CO2 --> 1 Orotate'

R52 108,83 '1 Orotate + 1 PRPP --> 1 CO2 + 1 UMPRN'

R53 18,08 '1 GIn+ 1 UMPRN -->1 Glu + 1 CMPRN'

R54 4,08 'l AMPRN --> 1 dAMP'

R55 2,75 'l GMPRN --> 1 dGMP"

R56 2,75 'l CMPRN --> 1 dCMP"

R57 4,08 'l UMPRN --> 1 dTMP"'

R58 27,25 '1 Choline --> 1 Pcholine'

R59 27,25 '18 AcCoA + 1 Glyc3P + 1 Pcholine --> 1 PC'

R60 8,08 '1 Ser + 1 PC --> 1 PS + 1 Choline'

R61 7,25 '1PS-->1C0O2+1PE'

R62 0 '1 Glyc3P + 1 Choline --> 1 Glyc3PC'

R63 2,75 '1 G6P --> 1 Inositol’

R64 2,75 '18 AcCoA + 1 Glyc3P + 1 Inositol --> 1 PI'

R65 1,92 '18 AcCoA + 2 Glyc3P --> 1 PG'

R66 0,83 2 PG --> 1 DPG + 1 Glyc'

R67 2,25 '16 AcCoA + 1 Ser + 1 Choline -->2 CO2 + 1 SM'

R68 5,00 '18 AcCoA -->9 CO2 + 1 Cholesterol'

R69 1,00 Biomass reaction synthesis (Reaction 2)

R70 0 'L AcCoA --> 1 Acetate’

R71 33,92 '1 DHAP --> 1 Glyc3P'

R72 0 '1 Glyc3P --> 1 Glyc'

R73 1,00 "1 X -->'

R74 269,67 '-->1Glc'

R75 37,17 '--> 1 His'

R76 0 '1 Isobut -->'

R77 84,75 -->1 lle'

R78 0 '1 Isoval -->'

R79 161,33 '-->1 Leu'

R80 151,08 -->1Lys'

R81 41,00 '--> 1 Met'

R82 254,08 '--> 1 Phe'

R83 323,83 '-->1 Thr'




R84
R85
R86
R87
R88
R89
R90
R91
R92
R93
R94
R95
R96
R97
R98
R99
R100
R101
R102
R103
R104
R105
R106

9,50
121,33
972,83

0

0

0
311,33
72,17
342,50

21,42

232,33

0,83

56,92

128,17

-->1Trp'
'-->1 Val'
'1CO2 -->'

'l NH4 -->'

'l Acetate -->'
'1 Ala -->'
'-->1 Arg'
-->1 Asn'
-->1 Asp'

1 Gln -->'

'1 Cit -->'

'--> 1 Choline'
'l Formate -->'
-->1Glu'

'1 Glyc -->'

'1 Gly -->'

'l Lac -->'
'--> 1 Pro'
'--> 1 Pyr'
'--> 1 Ser'
-->1Tyr

'l Mal -->'

'L Glyc3PC -->'
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Appendix C - Standard Gibbs free energy of formation of metabolites
values

METABOLITE GIBBS
ALANINE(ALA) -366,7
GLUTAMATE(GLU) -716,4
GLYCINE(GLY) -379,1
SERINE(SER) -522
LYSINE(LYS) -303,8
LEUCINE(LEU) -348,2
ISOLEUCINE(ILE) -343,9
ARGININE(ARG) -229,2
ASPARTATE(ASP) -726,4
THREONINE(THR) -529,3
VALINE(VAL) -358,7
METHIONINE(MET) -318,8
PHENYLALANINE(PHE) -207,1
TYROSINE(TYR) -370,7
HISTIDINE(HIS) -179,8
PROLINE(PRO) -285,6
ASPARAGINE(ASN) -526
TRYPTOPHAN(TRP) -112
GLUCOSE(GLC) -916,3
ISOBUT -368,6
ISOVAL -362,5
PYRUVATE(PYR) -483,6
co2 -386
CITRATE(CIT) -1238
NH4 -75,7
CHOLINE -31,8
GLYCEROL(GLYC) -493,6
ACETATE -369,3
LACTATE(LAC) -532,9
MALATE(MAL) -887,9
FORMATE -372,1
GLY3PC -1334
GLUTAMINE(GLN) -525,8
ATP -26,2
NADH -25,4
FADH2 52,1
NADPH -28

-3359687,065




-3479886,061

Appendix D - Literature data cell growth rate and metabolic rates

(The cell growth shown in (h) and metabolic rates in (nmol/10° cells/h) respectively)

Growth rate 0.021
Ammonia 5.52
Acetate -0.08
Alanine 2.72
Arginine -2.40
Asparagine -11.6
Aspartate -2.60
Citrate 0.51
Choline -0.58
Formate 2.77
Fumarate 0.02
Glucose -60.2
Glutamate -4.57
Glutamine 0.18
Glycerol 2.91
Glycine 1.77
Histidine -1.17
Isobutyrate 0.27
Isoleucine -2.02
Isovalerate 0.85
Lactate 43.3
Leucine -3.82
Lysine -2.22
Methionine -0.96
Phenylalanine -1.33
Proline -2.71
Pyruvate -3.07

Serine -7.20



Appendix E - Arithmetic footprint and optimal EM for biomass and 1gG
producing networks.

Table E.1 Arithmetic footprint and computed formula for the biomass
producing network.

Metabolites Arithmetic Footprint Optimal EM
(nmol/10° cells) (nmol/10° cells)
Glc -356,20 -263,06
Pyr -45,18 -127,04
CO2 983,73 161,46
Cit 51,46 0
Mal 82,81 218,56
Lac 14,90 0
Glu -56,52 -482,09
Ala 76,71 0
NH4 61,41 0
Asp -224,78 0
Gln 21,17 176,51
Thr -336,50 -476,06
Gly 54,55 0
Ser -312,07 -125,01
Formate 89,06 0
Trp -67,21 -9,23
Lys -168,29 -147,41
Val -164,33 -118,36
Isobut 16,06 0
lle -128,27 -82,66
Leu -255,46 -317,51
Isoval 16,07 0
Phe -128,13 -114,90
Tyr -60,61 0
Met -92,96 -40,04
Asn -215,80 -404,50
Pro -117,97 -55,56
Arg -120,90 -91,85
His -80,80 -36,26
Choline -46,17 -20,87
Glyc3PC 25,30 0
Glyc 46,05 0,81
Biomass(X) 1,00 1,00
Acetate 8,98 17,02




Table E.2 Arithmetic footprint and optimal EM for the 1gG producing
network metabolite values in

Table E.2 Arithmetic footprint and optimal EM for the 1gG producing
network metabolite values in

Metabolites  Arithmetic Footprint Optimal EM
(nmol/1mg of IgG) (nmol/1mg of IgG)

Glc -390,55 -681,53
Pyr -88,36 0
COo2 1330,80 120,92
Cit 148,34 483,66
Mal 89,48 43,97
Lac 26,75 0
Glu -146,05 -714,51
Ala 25,11 296,79
NH4 70,61 0
Asp -331,43 0
Gln 29,48 0
Thr -956,37 -1187,18
Gly 4,17 0
Ser -1516,11 -934,36
Formate 339,65 0
Trp -194,71 -142,90
Lys -493,11 -472,67
Val -850,61 -714,51
Isobut 63,20 0
lle -234,69 -175,88
Leu -647,85 -516,64
Isoval 63,20 0
Phe -477,51 -428,70
Tyr -191,71 -142,90
Met -170,62 -65,95
Asn -576,30 -1209,17
Pro -651,70 -505,65
Arg -377,61 -307,79
His -270,76 -164,89
Acetate 261,76 0
Glyc 55,17 0
P 1,00 1,00




Appendix F — Results from the 19gG producing network footprintome automatic reduction
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Figure F.1 Reduced footprintome for 1gG(P) production (normalized to unit) after 2 steps of reduction: Step 1- IgG(P) production, Step 2-thermodynamic reduction. The
columns represent the reduced set of EMs (307402). The colour green means that the compound is being produced by the EM. The colour red means it’s being consumed
by the EM. The black means it is neither consumed nor produced by the EM.
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Figure F.2 Reduced footprintome for IgG (P) production (normalized to unit) after 3 steps of reduction: Step 1- IgG(P) production, Step 2-Thermodynamic reduction, Step 3- Pattern
clustering with arithmetic averaging. The rows represent extracellular media components. The columns represent average EM clusters (4704). The green gradient represents compound
production associated with the production of 1 biomass unit. The red gradient represents compound consumption to generate 1 IgG unit. The black colour means that the compound is

neither consumed nor produced by the EM cluster.
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