DSpace UNL

RUN >
Faculdade de Ciências e Tecnologia (FCT) >
FCT Departamentos >
FCT: Departamento de Matemática >
FCT: DM - Teses de Doutoramento >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/6647

Title: Monóides de transformações
Authors: Quinteiro, Teresa Maria de Araújo Melo
Advisor: Fernandes, Vítor
Ferreira, João
Keywords: Monóides
Transformações
Ordem
Orientação
Equivalências
Producto semidirecto bilateral
Issue Date: 2011
Publisher: Faculdade de Ciências e Tecnologia
Abstract: Na Teoria dos Semigrupos é extremamente importante o papel dos semigrupos de transformações. De facto, estes desempenham o papel, na Teoria dos Semigrupos, correspondente ao dos grupos de permutações, na Teoria dos Grupos. Estão ainda presentes de modo crucial na Teoria dos Autómatos e Linguagens Formais, tendo assim aplicabilidade na Computação Teórica e na Linguística, bem como em muitas outras áreas do conhecimento. As cardinalidades e as características de diversas classes de semigrupos de transformações(totais, parciais, parciais injectivas, que preservam a ordem, a orientação ou uma relação de equivalência) têm sido objecto de pesquisa de um número considerável de autores. Na primeira parte desta dissertação apresentamos a nossa contribuição para este estudo calculando as cardinalidades e as características de alguns monóides de transformações sobre uma cadeia nita que preservam uma participação uniforme. A segunda parte deste trabalho é dedicada a uma construção de semigrupos, o produto semidirecto bilateral, introduzida para grupos por Zappa e estudada para semigrupos por Kunze. Usando várias estratégias, decompomos certos monóides de transformações como quocientes de um produto semidirecto bilateral de dois dos seus submonóides. Um dos procedimentos que utilizamos resulta de um processo geral para obter produtos semidirectos bilaterais, o qual consiste na construção de um produto semidirecto bilateral de dois monóides livres que, sob determinadas condições, induz um produto semidirecto bilateral de dois monóides de nidos por apresentações associadas a esses monóides livres. Como aplicação, deduzimos decomposições de alguns monóides de transformações sobre uma cadeia nita, entre os quais salientamos o monóide das transformações crescentes. Os resultados obtidos têm aplicabilidade imediata às pseudovariedades geradas pelos monóides em questão permitindo-nos em particular concluir que a pseudovariedade O, gerada pela família dos monóides de transformações totais e crescentes sobre uma cadeia com n elementos, está propriamente contida no produto semidirecto bilateral da pseudovariedade J, dos monóides J -triviais, por ela própria.
Description: Dissertação para obtenção do Grau de Doutor em Matemática
URI: http://hdl.handle.net/10362/6647
Appears in Collections:FCT: DM - Teses de Doutoramento

Files in This Item:

File Description SizeFormat
Quinteiro_2011.pdf1.82 MBAdobe PDFView/Open
Statistics
View Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Universidade Nova de Lisboa  - Statistics  - Feedback
Estamos no RCAAP Governo Português separator Ministério da Educação e Ciência   Fundação para a Ciência e a Tecnologia

Financiado por:

POS_C UE