DSpace UNL

RUN >
Faculdade de Ciências e Tecnologia (FCT) >
FCT Departamentos >
FCT: Departamento de Matemática >
FCT: DM - Artigos em revista internacional com arbitragem científica >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/5532

Título: Normally ordered semigroups
Autor: Fernandes, Vítor H.
Issue Date: 2008
Editora: Cambridge University Press
Resumo: In this paper we introduce the notion of normally ordered block-group as a natural extension of the notion of normally ordered inverse semigroup considered previously by the author. We prove that the class NOS of all normally ordered blockgroups forms a pseudovariety of semigroups and, by using theMunn representation of a block-group, we deduce the decompositions in Mal’cev products NOS = EI m POI and NOS \ A = N m POI, where A, EI and N denote the pseudovarieties of all aperiodic semigroups, all semigroups with just one idempotent and all nilpotent semigroups, respectively, and POI denotes the pseudovariety of semigroups generated all semigroups of injective order-preserving partial transformations on a finite chain. These relations are obtained after showing that BG = EI m Ecom = N m Ecom, where BG and Ecom denote the pseudovarieties of all block-groups and all semigroups with commuting idempotents, respectively.
Descrição: Glasgow Mathematical Journal, nº 50 (2008), p. 325-333
URI: http://hdl.handle.net/10362/5532
ISSN: 0017-0895
Appears in Collections:FCT: DM - Artigos em revista internacional com arbitragem científica

Files in This Item:

File Description SizeFormat
Fernandes_2008.pdf178,86 kBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Universidade Nova de Lisboa  - Feedback
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia