DSpace UNL

RUN >
Instituto de Tecnologia Química e Biológica (ITQB) >
ITQB R&D Units >
ITQB: Biological Chemistry >
ITQB: Protein Biochemistry, Folding & Stability >
ITQB: PBFS - Artigos em revista internacional com arbitragem científica >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/5450

Título: Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity
Autor: Fritz, Günter
Botelho, Hugo M.
Morozova-Roche, Ludmilla A.
Gomes, Cláudio M.
Palavras-chave: amyloid
fibril
function
metal ions
misfolding
oligomer
self-assembly
structure
S100 proteins
Issue Date: 28-Oct-2010
Editora: Wiley
Citação: Fritz, G., Botelho, H. M., Morozova-Roche, L. A., and Gomes, C. M. (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity, Febs J 277, 4578-4590
Resumo: The S100 proteins are 10-12 kDa EF-hand proteins that act as central regulators in a multitude of cellular processes including cell survival, proliferation, differentiation and motility. Consequently, many S100 proteins are implicated and display marked changes in their expression levels in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases. The structure and function of S100 proteins are modulated by metal ions via Ca2+ binding through EF-hand motifs and binding of Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces. Ca2+ binding modulates S100 conformational opening and thus promotes and affects the interaction with p53, the receptor for advanced glycation endproducts and Toll-like receptor 4, among many others. Structural plasticity also occurs at the quaternary level, where several S100 proteins self-assemble into multiple oligomeric states, many being functionally relevant. Recently, we have found that the S100A8/A9 proteins are involved in amyloidogenic processes in corpora amylacea of prostate cancer patients, and undergo metal-mediated amyloid oligomerization and fibrillation in vitro. Here we review the unique chemical and structural properties of S100 proteins that underlie the conformational changes resulting in their oligomerization upon metal ion binding and ultimately in functional control. The possibility that S100 proteins have intrinsic amyloid-forming capacity is also addressed, as well as the hypothesis that amyloid self-assemblies may, under particular physiological conditions, affect the S100 functions within the cellular milieu.
URI: http://hdl.handle.net/10362/5450
Appears in Collections:ITQB: PBFS - Artigos em revista internacional com arbitragem científica

Files in This Item:

File Description SizeFormat
2010 - Fritz et al - FEBS J - S100 review.pdf594,91 kBAdobe PDFView/Open
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Universidade Nova de Lisboa  - Feedback
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia