DSpace UNL

RUN >
Faculdade de Ciências e Tecnologia (FCT) >
FCT Departamentos >
FCT: Departamento de Engenharia Electrotécnica >
FCT: DEE - Artigos em revista internacional com arbitragem científica >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10362/2416

Título: On the relation between the fractional Brownian motion and the fractional derivatives
Autor: Ortigueira, M.D.
Batista, A. G.
Palavras-chave: Forward and backward fractional derivatives
Generalised Cauchy derivative
Liouville derivative
Differintegration
Central fractional derivatives
Fractional stochastic process
Fractional Brownian motion
Issue Date: Aug-2008
Editora: Elsevier B.V.
Resumo: The definition and simulation of fractional Brownian motion are considered from the point of view of a set of coherent fractional derivative definitions. To do it, two sets of fractional derivatives are considered: (a) the forward and backward and (b) the central derivatives, together with two representations: generalised difference and integral. It is shown that for these derivatives the corresponding autocorrelation functions have the same representations. The obtained results are used to define a fractional noise and, from it, the fractional Brownian motion. This is studied. The simulation problem is also considered.
Descrição: Physics Letters A, vol. 372; Issue 7
URI: http://hdl.handle.net/10362/2416
ISSN: 0375-9601
Appears in Collections:FCT: DEE - Artigos em revista internacional com arbitragem científica

Files in This Item:

File Description SizeFormat
Ortigueira_2008.pdf494 kBAdobe PDFView/Open

Please give feedback about this item
Statistics
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Universidade Nova de Lisboa  - Feedback
Promotores do RCAAP   Financiadores do RCAAP

Fundação para a Ciência e a Tecnologia Universidade do Minho   Governo Português Ministério da Educação e Ciência PO Sociedade do Conhecimento (POSC) Portal oficial da União Europeia